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Abstract

This thesis considers core properties for degenerate elliptic second-order differential opera-

tors in divergence form with bounded complex-valued coefficients. The main contribution

of the thesis is in two parts. In one dimension we characterise when the space of test func-

tions is a core for these operators. In higher dimensions we provide sufficient conditions.

For the first part we consider an operator of the form

A = − d

dx
c
d

dx
+m

d

dx
+ w I

in L2(R), where c is a bounded Lipschitz continuous complex-valued function which takes

values in a sector. We determine for which p ∈ [1,∞) the quasi-contraction semigroup

generated by −A extends consistently to a quasi-contraction semigroup on Lp(R). For

those values of p we characterise when the space of test functions C∞c (R) is a core for the

generator on Lp(R).

For the second part let ckl ∈ W 2,∞(Rd,C) for all k, l ∈ {1, . . . , d}. Let Σθ be the sector

with vertex 0 and semi-angle θ in the complex plane. Suppose (C(x) ξ, ξ) ∈ Σθ for all

x ∈ Rd and ξ ∈ Cd. We consider the divergence form operator

A = −
d∑

k,l=1

∂l(ckl ∂k)

in L2(Rd). We show that for all p in a suitable interval the contraction semigroup generated

by −A extends consistently to a contraction semigroup on Lp(Rd). For those values of p

we present a condition on the coefficients such that the space C∞c (Rd) of test functions

is a core for the generator on Lp(Rd). We also examine the operator A separately in the

more special Hilbert space L2(Rd) setting. In this setting we provide many more sufficient

conditions on the coefficients for C∞c (Rd) to be a core for A. Furthermore if all the functions

in the domain D(A) are smooth enough, we show that C∞c (Rd) is always a core for A.
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Chapter 1

Introduction

The theme of this thesis is about core properties for degenerate elliptic second-order differ-

ential operators in divergence form with bounded complex-valued coefficients in one and

higher dimensions. More specifically we will investigate when the space of test functions

is a core for those operators.

This chapter consists of two parts. In the first part I will explain the topic in detail.

This will be accompanied by a brief summary of the developments in the field. The second

part provides the outline of the thesis. The ideas pursued in subsequent chapters are

highlighted. Details about collaborative works and contributions are also given.

1.1 Core properties for degenerate elliptic operators

The Laplace operator

−∆ = −∂2
1 − . . .− ∂2

d

in L2(Rd), where d ∈ N, is undoubtedly the most well-known and ubiquitous type of

operator in mathematical analysis. This operator has been studied for centuries and many

nice properties have been observed to associate with it. One among those properties is

that the maximal domain D(−∆) of the Laplace operator consists of all twice weakly

differentiable functions in L2(Rd). That is,

D(−∆) = W 2,2(Rd). (1.1)

We note that D(−∆) is a normed space with the graph norm u 7−→ ‖u‖2 + ‖∆u‖2 for

all u ∈ D(−∆). Therefore (1.1) must be understood in the sense that the graph norm

of D(−∆) is equivalent to the Sobolev norm on W 2,2(Rd) and the two spaces are equal

as vector spaces. Since the space of test functions C∞c (Rd), which consists of all infinitely

differentiable functions on Rd with compact supports, is dense W 2,2(Rd), it is also dense in

D(−∆) with respect to the graph norm. In other words we say that C∞c (Rd) is a core for

the Laplace operator. This result is of our fundamental interest. The subject to study in

this thesis is to investigate this core property for a more general class of operators, known

as degenerate elliptic second-order differential operators in divergence form with bounded

complex-valued coefficients or degenerate elliptic operators for short, which includes the

Laplace operator as a very special case.

1



2 CHAPTER 1. INTRODUCTION

Degenerate elliptic operators are extensions of strongly elliptic operators which in turn

are the most direct generalisation of the Laplace operator. To define strongly elliptic

operators, we consider the second-order differential operator in divergence form L of the

form

L = −
d∑

k,l=1

∂l(ckl ∂k),

where ckl ∈ W 1,∞(Rd,C) for all k, l ∈ {1, . . . , d}. The operator L is called strongly elliptic

if there exists a µ > 0 such that

Re
(
C(x) ξ, ξ

)
≥ µ ‖ξ‖2 (1.2)

for all x ∈ Rd and ξ ∈ Cd, where C(x) = (ckl(x))1≤k,l≤d for all x ∈ Rd. Let ReC :=
1
2

(C +C∗), where C∗ = CT . Then (1.2) is the same as requiring there exists a µ > 0 such

that (
(ReC)(x) ξ, ξ

)
≥ µ ‖ξ‖2

for all x ∈ Rd and ξ ∈ Cd. That is, all the eigenvalues of (ReC)(x) must be strictly

positive, with the smallest eigenvalue at least the constant µ for all x ∈ Rd. Most of the

properties possessed by the Laplace operator are inherited by strongly elliptic operators,

including the core property in particular. The theory of strongly elliptic operators is vast

and fairly well-understood. Many important results in this area can be found in treatises

on the subject (cf. [GT83], [EE87], [Eva10], [Agm10], [Neč12], etc.) as well as in the large

amount of literature devoted to it.

The situation changes drastically when (1.2) is relaxed to

Re
(
C(x) ξ, ξ

)
≥ 0 (1.3)

for all x ∈ Rd and ξ ∈ Cd, in which case L is said to be degenerate elliptic. Again we can

read (1.3) in the sense that (
(ReC)(x) ξ, ξ

)
≥ 0

for all x ∈ Rd and ξ ∈ Cd. As a consequence the matrix ReC is positive (semi-)definite

when L is degenerate elliptic. But on the contrary to strongly elliptic operators, some

or all of the eigenvalues of ReC may have zeros in this case. The theory of degenerate

elliptic operators is an active area of research. Many well-known results for strongly elliptic

operators remain unsolved for degenerate elliptic operators. We will shortly point out this

kind of distinctive difference between the two classes of operators in terms of the core

properties.

Our starting point to formulate the main problems of the thesis is the first representa-

tion theorem, proved independently by Lions (cf. [Lio61]) and Kato (cf. [Kat80, Theorem

VI.2.1]). This theorem presents a convenient realisation of an operator in the setting of the

Hilbert spaces via form methods. This approach is in contrast to the classical realisation

of an operator via a detailed description of the domain of the operator. The difference lies

in the fact that form methods provide more tools and structures to analyse an operator

than the classical approach, at least in Hilbert spaces. To be specific let θ ∈ [0, π
2
). Define

Σθ = {r ei ψ : r ≥ 0 and |ψ| ≤ θ}. (1.4)
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We consider in L2(Rd) the form

a0(u, v) =
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂lv

on the domain D(a0) = C∞c (Rd), where ckl are complex-valued functions in W 1,∞(Rd) for

all k, l ∈ {1, . . . , d} which satisfy the condition

(C(x) ξ, ξ) ∈ Σθ (1.5)

for all x ∈ Rd and ξ ∈ Cd. Under those conditions imposed on the coefficients, the form

a0 can be extended to a so-called closed form a. The closure a of the form a0 satisfies all

the requirements of the first representation theorem. Using the theorem we can associate

an operator A with the form a in such a manner that D(A) ⊂ D(a) and

a(u, v) = (Au, v)L2(Rd)

for all u ∈ D(A) and v ∈ D(a). Formally we can write A in the form

A = −
d∑

k,l=1

∂l(ckl ∂k).

Since (1.5) implies (1.3), the operator A is degenerate elliptic. Furthermore the same

theorem of Lions and Kato gives that −A is the generator of a C0-semigroup S on L2(Rd).

Using interpolation, we will see that S can be extended consistently to a C0-semigroup S(p)

on Lp(Rd) under suitable conditions on the coefficients and for certain p ∈ [1,∞). Those

values for p depend on the angle θ. A very special case is when ckl is a real-valued function

for all k, l ∈ {1, . . . , d}, in which case we have θ = 0 and p can take any value in [1,∞).

Let−Ap be the generator of S(p). The domain D(Ap) is naturally normed with the graph

norm ‖ · ‖D(Ap) defined by ‖u‖D(Ap) = ‖u‖p + ‖Apu‖p for all u ∈ D(Ap). If a subspace D of

D(Ap) is dense in D(Ap) with respect to the graph norm, D is said to be a core for Ap. If

we know that D(Ap) is complete and D is a core for Ap, then (D, ‖ · ‖D(AP )) = D(Ap). This

explains the significance of a core for an operator, which lies in the fact that the domain

of Ap is sometimes too large to work with. However we can still obtain information about

Ap by knowing how it acts on a core. Since a core for an operator is often a small and nice

subspace of the domain, this is much easier to deal with. With this notion of a core for Ap
in mind, we can now state the question of our interest:

“When is C∞c (Rd) a core for Ap?”

It has been known for a long time that the space of test functions C∞c (Rd) is a core for

Ap if the matrix of coefficients C satisfies the strong ellipticity condition (1.2) with entries

belonging to W 1,∞(Rd) (cf. [ADN59] and [ER97, Theorem 1.5]). Nevertheless if C is known

to satisfy the degenerate ellipticity condition (1.3) only, the situation will be very different

and usually much more difficult since C∞c (Rd) is no longer a core in general. A common

procedure to investigate the core properties in this situation is to perform approximation

arguments to transit from the degenerate case back to the more familiar strongly elliptic
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case. Next we will describe some previous results obtained by [WD83, Theorem 1], [Ouh05,

Theorem 5.2], [CMP98, Theorem 3.5] and [ERS11, Section 4]. The overall contents are as

follows.

In 1983 Wong-Dzung considered in [WD83] the operator Bp of the form

Bp = −
d∑

k,l=1

∂l(ckl ∂k)

on the maximal domain

D(Bp) = {u ∈ Lp(Rd) : there exists an f ∈ Lp(Rd) such that for all φ ∈ C∞c (Rd)

−
d∑

k,l=1

∫
Rd
u ∂k(ckl ∂lφ) =

∫
Rd
f φ},

where p ∈ (1,∞), the coefficient matrix C = (ckl)1≤k,l≤d satisfies the degenerate ellip-

ticity condition (1.3) and its entries are real-valued C2-functions which are possibly non-

symmetric. It was shown that C∞c (Rd) is a core for Bp. It can be verified that Bp is the

same as the operator Ap obtained above via form methods with the same coefficients as

those of Bp. In his book [Ouh05] published in 2005, Ouhabaz refined the arguments used

by WongDzung in [WD83] to prove that C∞c (Rd) is core for the operator B2 in L2(Rd)

under a weaker assumptions that C still satisfies the degenerate ellipticity condition but

the principal coefficients are merely real-valued functions in W 2,∞(Rd).

In another direction, on the unit interval, Campiti, Metafune and Pallara gave a char-

acterisation for when C∞c (0, 1) is a core for the operator Cp defined by

Cp = − d

dx
(c

d

dx
) (1.6)

on the domain

D(Cp) = {u ∈ Lp(0, 1) : u ∈ W 1,p
loc (0, 1) and c u′ ∈ W 1,p

0 (0, 1)},

where p ∈ [1,∞) and the real-valued coefficient c ∈ C[0, 1] satisfies that c(0) = c(1) = 0

and c(x) > 0 for all x ∈ (0, 1) (cf. [CMP98, Theorem 3.5]). The techniques used to prove

the characterisation are intrinsically available in one dimension only. Up to now extensions

of this characterisation to higher dimensions remain widely open problems.

Next we will examine the aforementioned results more closely by considering the fol-

lowing example.

Example 1.1. Let p ∈ [1,∞) and κ ≥ 1. Let Cp be defined by (1.6) with coefficient

c(x) =
(

x2 (1−x)2

1+x2 (1−x)2

)κ
2

for all x ∈ [0, 1]. Then c ∈ W κ,∞(0, 1). The characterisation

[CMP98, Theorem 3.5] gives that C∞c (0, 1) is a core for Cp if and only if κ ≥ 2− 1
p
.

It can be shown that this example continues to hold on Lp(R) for the same range of p

when c(x) =
(

x2 (1−x)2

1+x2 (1−x)2

)κ
2

for all x ∈ R. In this case we can also verify that Cp is in

fact the same as the operator Ap obtained via form methods if the coefficient of Ap is the
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same as that of Cp. Hence the core characterisation also applies to Ap. So at least in one

dimension, it tells us in particular that the W 1,∞(R) smoothness of the coefficient does

not guarantee C∞c (R) to be a core for Ap, whereas the results of Wong-Dzung [WD83,

Theorem 1] and Ouhabaz [Ouh05, Theorem 5.2] states W 2,∞(R) smoothness is sufficient.

Generalising to arbitrary dimensions, we will refer to this phenomenon as the gap in the

smoothness of the coefficients regarding the core properties for Ap. Bridging the gap, i.e.

finding the optimal smoothness of the coefficients for C∞c (Rd) to be a core for Ap, remains

unsolved in higher dimensions up to now. A recent paper published in 2011 that slightly

touched on this direction is that of ter Elst, Robinson and Sikora [ERS11], in which they

considered a mixture of smoothness conditions between W 1,∞(Rd) and W 2,∞(Rd) on real-

valued coefficients for C∞c (Rd) to be a core for Ap.

In this thesis we will give answers to the main question posted above. We emphasise that

here we consider operators with complex-valued coefficients in contrast to operators with

real-valued coefficients in the aforementioned literature. In one dimension we will provide

a characterisation for when C∞c (Rd) is a core for the operator Ap. This characterisation is

an extension of the result in [CMP98] and the pure second-order case in [DE15]. In higher

dimensions we will provide many sufficient conditions for when C∞c (Rd) is a core for Ap.

The work is in the spirit of [WD83] and [Ouh05].

Apart from the interests in the core properties for degenerate elliptic second-order

differential operators with bounded coefficients, there is a huge literature for sufficient

conditions under which the space of test functions is still a core if the coefficients of the

operator are real-valued and unbounded either locally or at infinity. The details and

many interesting results can be found in [Kat81], [Dav85], [Lis89], [MPPS05], [MPRS10],

[CCHL12], [MS14] and references therein.

1.2 Outline of the thesis

In this section we will summarise the content as well as the ideas used in the subsequent

chapters. References are given to the original papers which we based our research on.

Details about collaborative works are also mentioned.

Chapter 2: Here we collect all the background knowledge required in subsequent

chapters. These include the notions of forms, accretive operators, consistent extension of

semigroups, first-order and second-order differential operators. Many well-known results

from the literature related to these notions are presented here for later use.

Chapter 3: In this chapter we consider the one-dimensional case. The main result in

this chapter is an extension of [CMP98, Theorem 3.5] and [DE15, Theorem 1.5] which is

on its turn an extension of [CMP98, Theorem 3.5]. Let θ ∈ [0, π
2
). Let Σθ be defined as in

(1.4). Let c ∈ W 1,∞(R) be a complex-valued function such that c(x) ∈ Σθ for all x ∈ R.

Let m ∈ W 1,∞(R) and w ∈ L∞(R). Suppose |m| ≤ M
√

Re c for some M > 0. We start

with the form a0 defined by

a0(u, v) =

∫
R
c u′ v′ +mu′ v + w u v

on the domain D(a0) = C∞c (R). Since a0 is closable, we let A be the operator associated

with the closure of the form a0. Then −A generates a quasi-contraction C0-semigroup S
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on L2(R). For certain p ∈ [1,∞), we can extend S consistently to a quasi-contraction

C0-semigroup S(p) on Lp(R). Let −Ap be the generator of S(p). We will give a core

characterisation for the operator Ap in terms of the degeneracy of the coefficient c at its

zero points.

The pure second-order case, i.e. if m = w = 0, is joint work with Tom ter Elst

(cf. [DE15]).

Chapter 4: The chapter is motivated by [WD83] and [Ouh05]. Let d ∈ N and θ ∈
[0, π

2
). Let ckl ∈ W 2,∞(Rd) be complex-valued functions for all k, l ∈ {1, . . . , d}. Suppose

(C(x) ξ, ξ) ∈ Σθ for all x ∈ Rd and ξ ∈ Cd, where C(x) = (ckl(x))1≤k,l≤d for all x ∈ Rd and

Σθ is defined by (1.4). We start with the form a0 defined by

a0(u, v) =
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂lv

on the domain D(a0) = C∞c (Rd). Since a0 is closable, we let A be the operator associated

with the closure a of the form a0. Then −A generates a quasi-contraction C0-semigroup S

on L2(R).

Let C = R + i B, where R and B are real matrices. Suppose B is symmetric. Then

we show that it is possible to extend S consistently to a quasi-contraction C0-semigroup

S(p) on Lp(R) for certain p ∈ (1,∞). Let −Ap be the generator of S(p). We will show that

C∞c (Rd) is a core for Ap.

The case p = 2 is special as we naturally obtain the operator A from the form a. Con-

sequently the assumption that B is symmetric is not needed. Suppose B is not symmetric.

Then we provide many sufficient conditions for when C∞c (Rd) is a core for A. In particular

if D(A) ⊂ W 1,2(Rd), then C∞c (Rd) is always a core for A regardless of the symmetry of B.



Chapter 2

Preliminaries

This chapter summarises all the background knowledge required in the subsequent chap-

ters. Forms, accretive operators and semigroups are defined. We will make clear the

relations between these notions. Many well-known results will be discussed. The last two

sections present applications of previous sections to first-order and second-order differential

operators.

2.1 Forms and operators associated with forms

In this section we introduce the powerful tools of form methods. We will consider forms

and their associated operators. The central result is the first representation theorem given

in Theorem 2.12.

Let H be a Hilbert space. We emphasise that the underlying field is C.

Definition 2.1. Let D be a subspace of H. A function a : D×D −→ C which is linear in

the first variable and anti-linear in the second variable is called a sesquilinear form. We

also refer to a as a form for short. The subspace D is called the domain of a. To be specific

we also write D = D(a).

For the rest of the section let a be a form with domain D(a) ⊂ H. For convenience

we will write a(u) = a(u, u) for all u ∈ D(a). It is worth noting that the set of values

{a(u) : u ∈ D(a)} determines the form a uniquely, thanks to the following proposition.

Proposition 2.2 (Polarisation identity). The following identity

a(u, v) =
1

4

(
a(u+ v)− a(u− v) + i a(u+ iv)− i a(u− iv)

)
holds for all u, v ∈ D(a).

For all θ ∈ [0, π
2
) we define Σθ = {reiψ : r ≥ 0 and |ψ| ≤ θ}, which is a sector in the

complex plane with semi-angle θ. We have the following definitions.

Definition 2.3. The form a is called

1. densely defined if D(a) is dense in H.

7
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2. accretive if Re a(u) ≥ 0 for all u ∈ D(a). If there exists an ω ∈ R such that

Re a(u) + ω ‖u‖2
H ≥ 0 for all u ∈ D(a), then a is said to be quasi-accretive.

3. sectorial if there exists a θ ∈ [0, π
2
) such that a(u) ∈ Σθ for all u ∈ D(a).

Definition 2.4. Suppose a is sectorial. Then the domain D(a) is a normed space with

norm ‖ · ‖a defined by

‖u‖a = (Re a(u) + ‖u‖2
H)1/2

for all u ∈ D(a). The form a is called closed if (D(a), ‖·‖a) is complete. A form b which has

the properties that D(a) ⊂ D(b) and b(u) = a(u) for all u ∈ D(a) is called an extension

of the form a. If there exists a closed form b which is an extension of a, then a is called

closable. In this case we also say that b is a closed extension of a.

Note that a closed extension of a form is in general not unique if it exists. If a is

closable, we will denote by a the smallest closed extension of a.

Define the form a∗ : D(a)×D(a) −→ C by a∗(u, v) = a(v, u). The form a∗ is called the

adjoint form of a. If a = a∗, the form a is called symmetric. Denote <a = 1
2

(a + a∗) and

=a = 1
2i

(a− a∗). Then a = <a + i=a. We will refer to <a as the real part of a and =a as

the imaginary part of a. Note that both <a and =a are symmetric forms. Based on these

notions we can now describe some typical properties of sectorial forms.

Proposition 2.5 ([Kat80, Subsection VI.1.2]). Suppose the form a is sectorial. Let u, v ∈
D(a). Then the following hold.

1. |(=a)(u)| ≤ tan θ (<a)(u).

2. |(<a)(u, v)| ≤
(
(<a)(u)

)1/2 (
(<a)(v)

)1/2
.

3. |(=a)(u, v)| ≤ tan θ
(
(<a)(u)

)1/2 (
(<a)(v)

)1/2
.

4. |a(u, v)| ≤ (1 + tan θ)
(
(<a)(u)

)1/2 (
(<a)(v)

)1/2
.

More generally we can compare two forms with each other.

Theorem 2.6. Let a and b be forms in H. Suppose that a is symmetric and D(a) =

D(b) = V for some V ⊂ H. Suppose there exists an M > 0 such that |b(u)| ≤M a(u) for

all u ∈ V . Then the following hold.

(a) If b is symmetric, then

|b(u, v)| ≤M a(u)1/2 a(v)1/2

for all u, v ∈ V .

(b) If b is not symmetric, then

|b(u, v)| ≤ 2M a(u)1/2 a(v)1/2

for all u, v ∈ V .
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Proof. (a) Let u, v ∈ V . By replacing v with ei ψ v for some ψ ∈ [0, 2π), we can assume

without loss of generality that b(u, v) ∈ R. Then

|b(u, v)| = 1

4

∣∣b(u+ v)− b(u− v)
∣∣ ≤ M

4

(
a(u+ v) + a(u− v)

)
=
M

2

(
a(u) + a(v)

)
, (2.1)

where we used Proposition 2.2 in the last step. We consider two cases.

Case 1: Suppose a(u) = 0.

Then (2.1) gives

|b(u, v)| ≤ M

2
a(v).

Replacing v by λ v with λ > 0 gives

|b(u, v)| ≤ M λ

2
a(v).

Since λ is arbitrary, taking the limit when λ ↓ 0 on both sides of the above inequality

yields b(u, v) = 0, which implies the claim.

Case 2: Suppose a(u) 6= 0.

Replacing u by

√
a(v)√
a(u)

u in (2.1) we obtain the desired conclusion.

(b) Note that b = <b + i=b, where <b and =b are symmetric. Note that

|(<b)(u)| =
∣∣b(u) + b∗(u)

2

∣∣ ≤ |b(u)| ≤M a(u)

for all u ∈ V . It follows from (a) that |(<b)(u, v)| ≤ M a(u)1/2 a(v)1/2 for all u, v ∈ V .

Similarly |(=b)(u, v)| ≤M a(u)1/2 a(v)1/2 for all u, v ∈ V . Hence

|b(u, v)| ≤ |(<b)(u, v)|+ |(=b)(u, v)| ≤ 2M a(u)1/2 a(v)1/2

for all u, v ∈ V .

Let A be an operator in H, that is, A : D(A) ⊂ H −→ H. The domain D(A) of A is

naturally normed with the graph norm ‖ · ‖D(A) defined by

‖u‖D(A) = ‖u‖H + ‖Au‖H

for all u ∈ D(A). Define

Θ(A) = {(Au, u) : u ∈ D(A) and ‖u‖H = 1},

which is called the numerical range of A. We will denote by ρ(A) the resolvent set of A.

We have the following definitions.

Definition 2.7. The operator A is called

1. densely defined if D(A) is dense in H.

2. closed if (D(A), ‖ · ‖D(A)) is complete. If there exists a closed operator B in H such

that D(A) ⊂ D(B) and Bu = Au for all u ∈ D(A), then A is called closable. In this

case we also say that B is a closed extension of A.
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3. accretive if Re (Au, u) ≥ 0 for all u ∈ D(A). If A is accretive and 1 ∈ ρ(−A), then A

is said to be m-accretive. If there exists an ω ∈ R such that Re (Au, u) +ω ‖u‖2
H ≥ 0

for all u ∈ D(A), then A is called quasi-accretive. If there exists an ω ∈ R such that

Re (Au, u) + ω ‖u‖2
H ≥ 0 for all u ∈ D(A) and ω + 1 ∈ ρ(−A), then A is said to be

quasi-m-accretive.

4. sectorial if Θ(A) ⊂ Σθ for some θ ∈ [0, π
2
). If A is sectorial and m-accretive, then A

is said to be m-sectorial .

Note that a closed extension of an operator is in general not unique if it exists. If A is

closable, we will denote by A the smallest closed extension of A. Closable operators and

accretive operators are related to each other in the following manner.

Proposition 2.8 ([Ouh05, Lemma 1.47]). Suppose A is densely defined and accretive.

Then A is closable.

The following definition is of our main interest.

Definition 2.9. A subspace D ⊂ D(A) is called a core for A if D is dense in D(A) with

respect to the graph norm.

The next theorem provides a useful criterion for proving the core properties for accretive

operators. It will be used extensively in Chapter 4.

Theorem 2.10 ([Ouh05, Theorem 1.50]). Let A be accretive. Assume that S is an m-

accretive operator satisfying the following two conditions.

1. D(S) ⊂ D(A).

2. There exists a constant β ∈ R such that Re (Au+ β u, Su) ≥ 0 for all u ∈ D(S).

Then the closure A is m-accretive. Furthermore D(S) is a core for A.

Next we will describe some correspondences between forms and operators. We start

first with forms constructed from sectorial operators.

Theorem 2.11 ([Kat80, Theorem VI.1.27]). Suppose A is sectorial and a(u, v) = (Au, v)

with D(a) = D(A). Then a is closable.

Conversely we have the following well-known result.

Theorem 2.12 (The first representation, [Kat80, Theorem VI.2.1]). Suppose a is a densely

defined, closed and sectorial form. Let A be defined in the following manner. Let u,w ∈ H.

We say that u ∈ D(A) and Au = w if u ∈ D(a) and a(u, v) = (w, v)H for all v ∈ D(a).

Then A is m-sectorial.

The operator A in Theorem 2.12 is called the operator associated with the form a. If

the form a is not closable, we can still associate with it an m-sectorial operator. This is

the content of the following theorem.
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Theorem 2.13 ([AE12, Theorem 3.2]). Suppose a is a densely defined and sectorial form.

Let A be defined in the following manner. Let u,w ∈ H. We say that u ∈ D(A) and Au = w

if there exists a sequence (un)n∈N in D(a) such that supn∈N Re a(un) < ∞, limn→∞ un = u

in H and limn→∞ a(un, v) = (w, v)H for all v ∈ D(a). Then A is m-sectorial.

It is a remarkable fact that m-sectorial operators are generators of holomorphic semi-

groups. For background information on semigroups we refer to [EN00], [Nag86], [Paz83],

[Gol85] and [Yos80].

Theorem 2.14 ([Kat80, Theorem IX.1.24]). Let θ ∈ [0, π
2
). Suppose A is an m-sectorial

operator with Θ(A) ⊂ Σθ. Then −A generates a contraction holomorphic semigroup with

angle π
2
− θ.

2.2 Accretive operators on Banach spaces

In Section 2.1 we discussed accretive operators on Hilbert spaces. In this section we

will extend the notion of accretivity of operators to Banach spaces. We are particularly

interested in accretive operators in Lp-spaces.

Let X be a Banach space. Let (A,D(A)) be an operator in X. We view the domain

D(A) as a normed space with the graph norm ‖ · ‖D(A) defined by

‖u‖D(A) = ‖u‖X + ‖Au‖X

for all u ∈ D(A). The notion of a core for an operator, which is the definition of our

main interest, extends verbatim to this more general context. For the sake of clarity and

completeness, we also repeat it here.

Definition 2.15. A subspace D ⊂ D(A) is called a core for A if D is dense in D(A) with

respect to the graph norm.

Next we will consider accretive operators. We denote by X∗ the dual space of X. Define

F (u) = {f ∈ X∗ : (u, f) = ‖u‖2
X = ‖f‖2

X∗}

for all u ∈ X. By the Hahn-Banach theorem the set F (u) is non-empty for all u ∈
X. A particular case is when X = Lp(Rd) with d ∈ N, in which case we have F (u) =

{‖u‖2−p
p |u|p−2 u1[u6=0]} for all u ∈ X \ {0}. We have the following definition.

Definition 2.16. The operator A is called

1. densely defined if D(A) is dense in X.

2. closed if (D(A), ‖ · ‖D(A)) is complete. If there exists a closed operator (B,D(B)) in

X such that D(A) ⊂ D(B) and Bu = Au for all u ∈ D(A), then A is called closable.

In this case we also say that B is a closed extension of A.

3. accretive if for every u ∈ D(A) there exists an f ∈ F (u) such that Re (Au, f) ≥ 0.

If A is accretive and 1 ∈ ρ(−A), then A is called m-accretive. If there exists an
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ω ∈ R such that for every u ∈ D(A) there exists an f ∈ F (u) which satisfies

Re (ω u+ Au, f) ≥ 0, then A is called quasi-accretive. If there exists an ω ∈ R such

that ω + 1 ∈ ρ(−A) and for every u ∈ D(A) there exists an f ∈ F (u) which satisfies

Re (ω u+ Au, f) ≥ 0, then A is said to be quasi-m-accretive.

It is easy to verify that this definition coincides with Definition 2.7 if X is a Hilbert

space. The importance ofm-accretive operators is due to the following well-known theorem.

Theorem 2.17 (Lumer-Phillips theorem, [LP61]). Let A be a densely defined operator in

X. Then A is m-accretive if and only if A is the generator of a contraction C0-semigroup.

When X is reflexive, the density requirement of the operator’s domain in Theorem 2.17

can be removed, as stated by the following theorem.

Theorem 2.18 ([Kat59, Corollary 2], [Kat80, Theorem III.5.29], [EN00, Corollary II.3.20]).

Suppose X is reflexive. Let S be an m-accretive operator in X. Then S is densely defined.

Moreover, S∗ is also densely defined.

2.3 Consistent semigroups

In this section we will explore the relations between consistent C0-semigroups on Lp-spaces.

Let d ∈ N. Let p1, p2 ∈ [1,∞). Let S(p1), S(p2) be C0-semigroups on Lp1(Rd) and

Lp2(Rd) respectively.

Definition 2.19. We say that S(p1) and S(p2) are consistent if S
(p1)
t u = S

(p2)
t u for all t > 0

and u ∈ Lp1(Rd) ∩ Lp2(Rd).

Theorem 2.20. Suppose S(p1) and S(p2) are bounded C0-semigroups which are consistent.

Let −Ap1 and −Ap2 be the generators of S(p1) and S(p2) respectively. Then Ap1u = Ap2u

for all u ∈ D(Ap1) ∩D(Ap2) and

D(Ap1) ∩D(Ap2) = {u ∈ D(Ap1) ∩ Lp2(Rd) : Ap1u ∈ Lp2(Rd)}

= {u ∈ D(Ap2) ∩ Lp1(Rd) : Ap2u ∈ Lp1(Rd)}

= (I + Ap1)
−1(Lp1(Rd) ∩ Lp2(Rd))

= (I + Ap2)
−1(Lp1(Rd) ∩ Lp2(Rd)). (2.2)

Moreover, D(Ap1) ∩D(Ap2) is a core for Ap1 in Lp1(Rd) and for Ap2 in Lp2(Rd).

Proof. First let u ∈ D(Ap1) ∩D(Ap2) and φ ∈ L1(Rd) ∩ L∞(Rd). Then

(Ap1u, φ) = lim
t↓0

1

t

(
(I − S(p1)

t )u, φ
)

= lim
t↓0

1

t

(
(I − S(p2)

t )u, φ
)

= (Ap2u, φ).

It follows that Ap1u = Ap2u ∈ Lp1(Rd) ∩ Lp2(Rd). In particular this implies D(Ap1) ∩
D(Ap2) ⊂ {u ∈ D(Ap1) ∩ Lp2(Rd) : Ap1u ∈ Lp2(Rd)}.

Conversely let u ∈ D(Ap1) ∩ Lp2(Rd) be such that Ap1u ∈ Lp2(Rd). Then

1

t
(I − S(p2)

t )u =
1

t
(I − S(p1)

t )u =
1

t

∫ t

0

S(p1)
s Ap1u ds =

1

t

∫ t

0

S(p2)
s Ap1u ds
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for all t > 0. Therefore limt↓0
1
t

(I −S(p2)
t )u = Ap1u in Lp2(Rd). It follows that u ∈ D(Ap2).

This proves the first two equalities in (2.2).

Secondly, if u ∈ D(Ap1) ∩D(Ap2) then (I + Ap1)u = (I + Ap2)u ∈ Lp1(Rd) ∩ Lp2(Rd).

Consequently D(Ap1) ∩D(Ap2) ⊂ (I + Ap1)
−1
(
Lp1(Rd) ∩ Lp2(Rd)

)
.

Conversely if u ∈ Lp1(Rd) ∩ Lp2(Rd) then

(
(I + Ap1)

−1u, φ
)

=

∫ ∞
0

e−t (S
(p1)
t u, φ) dt =

∫ ∞
0

e−t (S
(p2)
t u, φ) dt =

(
(I + Ap2)

−1u, φ
)

for all φ ∈ L1(Rd)∩L∞(Rd). Hence (I +Ap1)
−1u = (I +Ap1)

−1u ∈ D(Ap1)∩D(Ap2). The

last two equalities in (2.2) now follows.

Lastly we note that S(p1) leaves D(Ap1) invariant and S(p2) leaves D(Ap2) invariant. As

a consequence S
(p1)
t

(
D(Ap1) ∩ D(Ap2)

)
⊂ D(Ap1) ∩ D(Ap2) for all t > 0. But D(Ap1) ∩

D(Ap2) = (I + Ap1)
−1
(
Lp1(Rd) ∩ Lp2(Rd)

)
is dense in Lp1(Rd). Hence D(Ap1) ∩ D(Ap2)

is a core for Ap1 in Lp1(Rd) by [EN00, Proposition 1.7]. The statement for Ap2 is proved

similarly.

Lemma 2.21. Suppose S(p1) and S(p2) are consistent. Suppose further that there exists an

M > 0 and ω ∈ R such that

‖S(p1)
t u‖∞ ≤M eωt ‖u‖∞ (2.3)

for all t > 0 and u ∈ L1(Rd)∩L∞(Rd). Then D(Ap1)∩D(Ap2)∩L∞(Rd) is a core for Ap1
in Lp1(Rd).

Proof. Without loss of generality we assume that S(p1) and S(p2) are bounded and ω = 0.

By hypothesis (I +Ap1)
−1 : Lp1(Rd) −→ D(Ap1) is bounded and bijective. Since L1(Rd) ∩

L∞(Rd) is dense in Lp1(Rd), we have (I + Ap1)
−1
(
L1(Rd) ∩ L∞(Rd)

)
is dense in D(Ap1).

We will show that

(I + Ap1)
−1
(
L1(Rd) ∩ L∞(Rd)

)
⊂ D(Ap1) ∩D(Ap2) ∩ L∞(Rd), (2.4)

from which the claim follows.

Indeed we have L1(Rd) ∩ L∞(Rd) ⊂ Lp1(Rd) ∩ Lp2(Rd). Therefore

(I + Ap1)
−1
(
L1(Rd) ∩ L∞(Rd)

)
⊂ (I + Ap1)

−1
(
Lp1(Rd) ∩ Lp2(Rd)

)
= D(Ap1) ∩D(Ap2),

where the last equality follows from (2.2).

Next let u ∈ L1(Rd) ∩ L∞(Rd). Then

‖(I + Ap1)
−1u‖∞ =

∥∥∥∫ ∞
0

e−t S
(p1)
t u dt

∥∥∥
∞
≤
∫ ∞

0

e−t ‖S(p1)
t u‖∞ dt

≤M ‖u‖∞
∫ ∞

0

e−t dt = M ‖u‖∞,

where we used (2.3) in the third step. It follows that (I + Ap1)
−1
(
L1(Rd) ∩ L∞(Rd)

)
⊂

L∞(Rd).

Hence (2.4) holds.
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2.4 First-order differential operators in Lp-spaces

In this section we present some properties of first-order differential operators with Lipschitz

coefficients in Lp-spaces.

Let d ∈ N. Let bl ∈ W 1,∞(Rd,R) for all l ∈ {1, . . . , d}. For all p ∈ (1,∞) consider the

first-order differential operator Yp,0 of the form

Yp,0u =
d∑
l=1

∂l(bl u)

on the domain

D(Yp,0) = W 1,p(Rd).

It is clear that Yp,0 ⊂ Z∗ for all p ∈ (1,∞), where Z is the operator in Lq(Rd) defined by

Zu = −
d∑
l=1

bl ∂lu

on the domain D(Z) = C∞c (Rd) and q is the dual exponent of p. Hence Yp,0 is closable for

all p ∈ (1,∞). Let Yp be the closure of Yp,0 in Lp(Rd) for all p ∈ (1,∞).

Theorem 2.22 ([Rob91, Theorem V.4.1]). Let p ∈ (1,∞). Then the operator Yp generates

a quasi-contraction C0-semigroup S(p) on Lp(Rd). Moreover, S(p1) and S(p2) are consistent

for all p1, p2 ∈ (1,∞).

Let p ∈ (1,∞). We have the following core property for Yp.

Proposition 2.23. Let p ∈ (1,∞). Then the space C∞c (Rd) is a core for Yp.

Proof. Since W 1,p(Rd) ⊂ D(Yp), there exists an M > 0 such that

‖u‖D(Yp) ≤M ‖u‖W 1,p (2.5)

for all u ∈ W 1,p(Rd).

Let u ∈ D(Yp). Let ε > 0. Since Yp = Yp,0, there exists a v ∈ W 1,p(Rd) such that

‖u − v‖D(Yp) <
ε
2
. Also the space C∞c (Rd) is dense in W 1,p(Rd). Therefore there exists a

φ ∈ C∞c (Rd) such that ‖v − φ‖W 1,p ≤ ε
2M

. It follows that

‖u− φ‖D(Yp) ≤ ‖u− v‖D(Yp) + ‖v − φ‖D(Yp) ≤
ε

2
+M ‖v − φ‖W 1,p ≤ ε

2
+M

ε

2M
= ε,

where we used (2.5) in the second step. This justifies the claim.

For each n ∈ N let Jn be the usual mollifier with respect to a suitable function in

C∞c (Rd). It is useful that functions in D(Yp) can be approximated by smooth functions

which are formed by using the mollifiers. This is the content of the next proposition.

Proposition 2.24 ([ERS11, Proposition 2.1]). Let p ∈ (1,∞). Then for all u ∈ D(Yp) we

have

lim
n→∞

Yp(Jn ∗ u) = Ypu

in Lp(Rd).
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2.5 Second-order differential operators in Lp-spaces

This section deals with second-order differential operators in divergence form in Lp-spaces.

In particular we are mostly interested in those operators which are strongly elliptic. We

will consider accretive properties, elliptic regularity and semigroup extensions of these

operators.

Let d ∈ N. Let ckl ∈ W 1,∞(Rd) and mk, w ∈ L∞(Rd) for all k, l ∈ {1, . . . , d}. In what

follows we denote C(x) = (ckl(x))1≤k,l≤d for all x ∈ Rd.

Definition 2.25. Let p ∈ [1,∞]. An operator L with a suitable domain in Lp(Rd) of the

form

Lu = −
d∑

k,l=1

∂l(ckl ∂ku) +
d∑

k=1

mk ∂ku+ w u

is called strongly elliptic if there exists a µ > 0 such that

Re
(
C(x) ξ, ξ

)
≥ µ ‖ξ‖2 (2.6)

for all x ∈ Rd and ξ ∈ Cd. If (2.6) is replaced by

Re
(
C(x) ξ, ξ

)
≥ 0

for all x ∈ Rd and ξ ∈ Cd, then we say that L is degenerate elliptic.

Suppose C satisfies the strong ellipticity condition (2.6). Consider the form

a(u, v) =
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂lv +

d∑
k=1

∫
Rd
mk (∂ku) v +

∫
Rd
w u v

on the domain D(a) = W 1,2(Rd). Then a is closed. Since the coefficient matrix C satisfies

the strong ellipticity condition, a is also quasi-sectorial. Using the first representation

theorem, Theorem 2.12, we can associate with the form a an quasi-m-sectorial operator A.

Note that W 2,2(Rd) ⊂ D(A) and

Au = −
d∑

k,l=1

∂l(ckl ∂ku) +
d∑

k=1

mk ∂ku+ w u

for all u ∈ W 2,2(Rd). Let S be the holomorphic quasi-contraction semigroup generated by

−A. The following theorem is a consequence of [Aus96, Theorem 4.8].

Theorem 2.26. For each t > 0 let Kt ∈ D′(R2d) be the distributional kernel of St. Then

1. The kernel Kt is a Hölder continuous function for all t > 0.

2. There exist constants c, ω, κ, β > 0 such that

|Kt(x, y)| ≤ c

td/2
e−

β |x−y|2
t eωt,
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for all t > 0 and x, y ∈ Rd and

|Kt(x, y)−Kt(x+ h, y)|+ |Kt (x, y)−Kt(x, y + h)|

≤ c

td/2

( |h|
t1/2 + |x− y|

)κ
e−

β |x−y|2
t eωt,

for all t > 0 and x, y, h ∈ Rd with 2 |h| ≤ t1/2 + |x− y|.

The next theorem guarantees that S can be extended consistently to holomorphic quasi-

contraction semigroups on Lp-spaces.

Theorem 2.27 ([Ouh05, Theorem 6.16]). Let T be a bounded holomorphic semigroup on a

sector Σθ on L2(Rd), where θ ∈ [0, π
2
). For all z ∈ Σθ let Kz ∈ D′(R2d) be the distributional

kernel of Tz. Suppose there exist c, β > 0 such that

|Kt(x, y)| ≤ c t−d/2 e−
β |x−y|2

t

for all t > 0 and for a.e. (x, y) ∈ R2d. Then for every ψ ∈ [0, θ) there exist cψ, βψ > 0 such

that

|Kz(x, y)| ≤ cψ (Re z)−d/2 e−
βψ |x−y|
|z|

for all z ∈ Σψ and for a.e. (x, y) ∈ R2d.

In addition, T extends consistently to a bounded holomorphic semigroup on the sector

Σθ on Lp(Rd) for all p ∈ [1,∞).

Hence S extends consistently to a holomorphic semigroup S(p) on Lp(Rd) for all p ∈
[1,∞). Let −Ap be the generator of S(p) for all p ∈ [1,∞).

Theorem 2.28. Let p ∈ [1,∞). Then D(A) ∩D(Ap) ∩ L∞(Rd) is a core for Ap.

Proof. For each t > 0 let Kt ∈ D′(R2d) be the distributional kernel of St. By Theorem

2.26 there exist constants c, ω, β > 0 such that |Kt(x, y)| ≤ Gt(x − y) for all t > 0 and

x, y ∈ Rd, where

Gt(x) =
c

td/2
e−

β |x|2
t eωt

for all t > 0 and x ∈ Rd.

Let t > 0 and u ∈ L1(Rd) ∩ L∞(Rd). Then

|(S(p)
t u)(x)| = |(Stu)(x)| =

∣∣∣ ∫
Rd
Kt(x, y)u(y) dy

∣∣∣
≤
∫
Rd
|Kt(x, y)| |u(y)| dy ≤

∫
Rd
Gt(x− y) |u(y)| dy

≤ ‖Gt ∗ |u|‖∞ ≤ ‖Gt‖1 ‖u‖∞

for a.e. x ∈ Rd. We have

‖Gt‖1 = c eωt
∫
Rd
t−d/2 e−

β |x|2
t dx = c eωt

∫
Rd
e−β |x|

2

dx = M eωt,
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where

M = c

∫
Rd
e−β |x|

2

dx <∞.

It follows that

‖S(p)
t u‖∞ ≤M eωt ‖u‖∞.

Since S and S(p) are consistent, the space D(A) ∩ D(Ap) ∩ L∞(Rd) is a core for Ap by

Lemma 2.21.

It is well-known that elements of D(Ap) possess certain regularity properties when

p ∈ (1,∞), as stated in the next theorem.

Theorem 2.29 (Elliptic regularity). Let p ∈ (1,∞). Then

D(Ap) = W 2,p(Rd).

This theorem is folklore. For an explicit reference see [ER97, Theorem 1.5].

Before ending this section we will consider an integration by parts formula for pure

second-order differential operators. For the rest of this section let ckl ∈ W 1,∞(Rd) for all

k, l ∈ {1, . . . , d}. That is, we no longer require that C = (ckl)1≤k,l≤d satisfies the strongly

elliptic condition (2.6).

Let p ∈ (1,∞). Define the pure second-order differential operator Bp : D(Bp) ⊂
Lp(Rd) −→ Lp(Rd) by

Bpu = −
d∑

k,l=1

∂l(ckl ∂ku)

on the domain

D(Bp) = {u ∈ Lp(Rd) : there exists an f ∈ Lp(Rd) such that

−
d∑

k,l=1

∫
Rd
u ∂k(ckl ∂lφ) =

∫
Rd
f φ for all φ ∈ C∞c (Rd)}.

Note that W 2,p(Rd) ⊂ D(Bp).

In Chapters 3 and 4 we will be interested in proving that operators of this type are

accretive or quasi-accretive under further restrictions. A convenient tool we would like to

use in doing so is the method of integration by parts. The following theorem states that

we can indeed perform this method on Bp.

Theorem 2.30. Let u ∈ W 2,p(Rd). Then∫
[u6=0]

(Bpu) |u|p−2 u =

∫
[u6=0]

|u|p−2 (C∇u,∇u)

+ (p− 2)

∫
[u6=0]

|u|p−4
(
C Re (u∇u),Re (u∇u)

)
− i (p− 2)

∫
[u6=0]

|u|p−4
(
C Re (u∇u), Im (u∇u)

)
. (2.7)
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Proof. This follows immediately from the proof of [MS08, Proposition 3.5].

We emphasise that we do not require ckl = clk for all k, l ∈ {1, . . . , d} in the above

theorem (cf. [MS08, Theorem 3.1] and [MS08, Proposition 3.5]).

Let u ∈ W 2,p(Rd). If p ∈ [2,∞) then |u|p−2 u ∈ W 1,q(Rd), where q is the dual exponent

of p. In this case (2.7) is a consequence of the integration by parts. Therefore the signifi-

cance part of Theorem 2.30 is when p ∈ (1, 2), in which case the smoothness of |u|p−2 u is

not obvious due to the singularity of |u|p−2 near the zeros of u.

Next we will extend Theorem 2.30 to the case p = 1 in one dimension. Let a, b ∈
[−∞,∞] with a < b. Let c ∈ W 1,∞(R,C).

Proposition 2.31. Let u ∈ W 2,1(a, b). Then

−
∫ b

a

(c u′)′ u (|u|2 + δ2)−1/2 =

∫ b

a

c |u′|2 (|u|2 + δ2)−1/2 −
∫ b

a

c u′ uRe (u′ u) (|u|2 + δ2)−3/2

− c u′ u (|u|2 + δ2)−1/2|ba (2.8)

for all δ ∈ R \ {0}.

Proof. First note that u ∈ W 1,∞(a, b) by the Sobolev imbedding theorem. Let (un)n∈N ⊂
C∞c (R) be such that limn→∞ un = u inW 2,1(a, b). Without loss of generality we may assume

that limn→∞ un(x) = u(x) and limn→∞ u
′
n(x) = u′(x) for a.e. x ∈ (a, b) as well as there

exists an M > 0 such that ‖un‖L∞(a,b) ≤ M ‖u‖L∞(a,b) and ‖u′n‖L∞(a,b) ≤ M ‖u′‖L∞(a,b) for

all n ∈ N.

Let δ ∈ R \ {0}. It follows from integration by parts that

−
∫ b

a

(c u′n)′ un (|un|2 + δ2)−1/2 =

∫ b

a

c |u′n|2 (|un|2 + δ2)−1/2

−
∫ b

a

c u′n un Re (u′n un) (|un|2 + δ2)−3/2

− c u′n un (|un|2 + δ2)−1/2|ba. (2.9)

Since W 1,1(a, b) ⊂ L∞(a, b) by the Sobolev imbedding theorem and limn→∞ un = u in

W 2,1(a, b), we have limn→∞ un = u in L∞(a, b).

Next note that limn→∞(|un|2 + δ2)−1/2(x) = (|u|2 + δ2)−1/2(x) for a.e. x ∈ (a, b) and

(|un|2 + δ2)−1/2 ≤ δ−1 for all n ∈ N. Therefore we have∥∥un (|un|2 + δ2)−1/2 − u (|u|2 + δ2)−1/2
∥∥
L∞(a,b)

≤
∥∥(un − u) (|un|2 + δ2)−1/2

∥∥
L∞(a,b)

+
∥∥u ((|un|2 + δ2)−1/2 − (|u|2 + δ2)−1/2

)∥∥
L∞(a,b)

≤ ‖un − u‖L∞(a,b)
1

|δ|
+ ‖u‖L∞(a,b)

‖un − u‖L∞(a,b)

|δ|2
,

where the last step follows from the mean value theorem applied to the function x 7−→
(x2 + δ2)−1/2 on R. Hence limn→∞ un (|un|2 + δ2)−1/2 = u (|u|2 + δ2)−1/2 in L∞(a, b).
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On the other hand we have limn→∞(c u′n)′ = (c u′)′ in L1(a, b) as c ∈ W 1,∞(R), u ∈
W 2,1(a, b) and limn→∞ un = u in W 2,1(a, b). Therefore

lim
n→∞

∫ b

a

(c u′n)′ un (|un|2 + δ2)−1/2 =

∫ b

a

(c u′)′ u (|u|2 + δ2)−1/2.

We also have W 1,1(a, b) ⊂ C[a, b] if a, b ∈ R by the Sobolev imbedding theorem and

limx→±∞ v(x) = 0 for all v ∈ W 1,1(R) by [Bre11, Corollary 8.9]. Hence

lim
n→∞

c u′n un (|un|2 + δ2)−1/2|ba = c u′ u (|u|2 + δ2)−1/2|ba.

Next we consider the second term on the right hand side of (2.9). We note that

limn→∞ u
′
n = u′ in L1(a, b) and

‖u′n − u′‖2
L2(a,b) =

∫ b

a

|u′n − u′|2 ≤ ‖u′n − u′‖L∞(a,b)

∫ b

a

|u′n − u′|

≤ (M + 1) ‖u′‖L∞(a,b) ‖u′n − u′‖L1(a,b).

It follows that limn→∞ u
′
n = u′ in L2(a, b). Furthermore by assumption ‖un‖L∞(a,b) ≤

M ‖u‖L∞(a,b) for all n ∈ N. Therefore limn→∞ u
′
n un = u′ u in L2(a, b). It follows that

lim
n→∞

∫ b

a

c u′n un Re (u′n un) (|un|2 + δ2)−3/2 =

∫ b

a

c u′ uRe (u′ u) (|u|2 + δ2)−3/2

by the Lebesgue dominated convergence theorem. The claim now follows.

Corollary 2.32. Let u ∈ W 2,1(a, b). Then∫ b

a

|Im (u′ u)|2 |u|−3 1[u6=0] <∞.

Proof. By Proposition 2.31 we have

−
∫ b

a

u′′ u (|u|2 + δ2)−1/2 =

∫ b

a

|u′|2 (|u|2 + δ2)−1/2 −
∫ b

a

u′ uRe (u′ u) (|u|2 + δ2)−3/2

− u′ u (|u|2 + δ2)−1/2|ba

for all δ ∈ R \ {0}. Taking the real parts on both sides gives

Re

∫ b

a

u′′ u (|u|2 + δ2)−1/2 =

∫ b

a

|u′|2 (|u|2 + δ2)−1/2 −
∫ b

a

(
Re (u′ u)

)2
(|u|2 + δ2)−3/2

− Re
(
u′ u (|u|2 + δ2)−1/2

)
|ba

≥
∫ b

a

|u′ u|2 (|u|2 + δ2)−3/2 −
∫ b

a

(
Re (u′ u)

)2
(|u|2 + δ2)−3/2

− Re
(
u′ u (|u|2 + δ2)−1/2

)
|ba

=

∫ b

a

(
Im (u′ u)

)2
(|u|2 + δ2)−3/2 − Re

(
u′ u (|u|2 + δ2)−1/2

)
|ba.
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For the rest of the proof we use the convention that (u′ u |u|−1)(x) = 0 for all x ∈ [a, b]

such that u(x) = 0. Since |u′′ u (|u|2 + δ2)−1/2| ≤ |u′′| for all δ ∈ R \ {0} and u′′ ∈ L1(a, b),

we have

lim
δ→0

∫ b

a

u′′ u (|u|2 + δ2)−1/2 =

∫ b

a

u′′ u |u|−1

by the Lebesgue dominated convergence theorem. It follows from Fatou’s lemma that

0 ≤
∫ b

a

(
Im (u′ u)

)2 |u|−3 1[u6=0] ≤ lim inf
δ→0

∫ b

a

(
Im (u′ u)

)2
(|u|2 + δ2)−3/2

≤ lim inf
δ→0

(
Re

∫ b

a

u′′ u (|u|2 + δ2)−1/2 + Re
(
u′ u (|u|2 + δ2)−1/2

)
|ba
)

= Re

∫ b

a

u′′ u |u|−1 + Re
(
u′ u |u|−1

)
|ba <∞.

This verifies the claim.

Proposition 2.33. Suppose c(x) ∈ [0,∞) for all x ∈ R. Let u ∈ W 2,1(a, b). Then the

limit

L = lim
δ→0

∫ b

a

c |u′|2 δ2 (|u|2 + δ2)−3/2 (2.10)

exists in [0,∞) and

−Re

∫ b

a

(c u′)′ u |u|−1 1[u6=0] = L+

∫ b

a

c
(
Im (u′ u)

)2 |u|−3 1[u6=0] − cRe
(
u′ u |u|−1

)
|ba,

where we use the convention that (u′ u |u|−1)(x) = 0 for all x ∈ [a, b] such that u(x) = 0.

Proof. Let δ ∈ R \ {0}. Taking the real part both sides of (2.8) gives

−Re

∫ b

a

(c u′)′ u (|u|2 + δ2)−1/2 =

∫ b

a

c |u′|2 (|u|2 + δ2)−1/2

−
∫ b

a

c
(
Re (u′ u)

)2
(|u|2 + δ2)−3/2

− cRe
(
u′ u (|u|2 + δ2)−1/2

)
|ba.

Note that∫ b

a

c
(
Re (u′ u)

)2
(|u|2+δ2)−3/2 =

∫ b

a

c |u′ u|2 (|u|2+δ2)−3/2−
∫ b

a

c
(
Im (u′ u)

)2
(|u|2+δ2)−3/2.

Therefore

−Re

∫ b

a

(c u′)′ u (|u|2 + δ2)−1/2 =

∫ b

a

c |u′|2 δ2 (|u|2 + δ2)−3/2

+

∫ b

a

c
(
Im (u′ u)

)2
(|u|2 + δ2)−3/2

− cRe
(
u′ u (|u|2 + δ2)−1/2

)
|ba.
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Clearly

lim
δ→0

cRe
(
u′ u (|u|2 + δ2)−1/2

)
|ba = cRe

(
u′ u |u|−1

)
|ba,

where we use the convention that (u′ u |u|−1)(x) = 0 for all x ∈ [a, b] such that u(x) = 0.

It follows from the Lebesgue dominated convergence theorem that

lim
δ→0

Re

∫ b

a

(c u′)′ u (|u|2 + δ2)−1/2 = Re

∫ b

a

(c u′)′ u |u|−1 1[u6=0].

By the monotone convergence theorem we also have

lim
δ→0

∫ b

a

c
(
Im (u′ u)

)2
(|u|2 + δ2)−3/2 =

∫ b

a

c
(
Im (u′ u)

)2 |u|−3 1[u6=0].

Hence by Corollary 2.32 the limit

L = lim
δ→0

∫ b

a

c |u′|2 δ2 (|u|2 + δ2)−3/2

exists in [0,∞) and

Re

∫ b

a

(c u′)′ u |u|−1 1[u6=0] = L+

∫ b

a

c
(
Im (u′ u)

)2 |u|−3 1[u6=0] − cRe
(
u′ u |u|−1

)
|ba

as claimed.

It is possible that the limit L defined as in (2.10) is strictly positive for some u ∈
W 2,1(a, b), as shown by the following example.

Example 2.34. Let a = 0, b = 1 and c = 1R. Let u(x) = x for all x ∈ (0, 1). Let L be

defined as in (2.10). Then

L = lim
δ→0

∫ 1

0

δ2

(x2 + δ2)3/2
dx = lim

δ→0

∫ 1/|δ|

0

1

(x2 + 1)3/2
dx =

∫ ∞
0

1

(x2 + 1)3/2
dx = 1.



22 CHAPTER 2. PRELIMINARIES



Chapter 3

Degenerate elliptic operators in one

dimension

3.1 Introduction

The subject to study in this chapter is degenerate elliptic second-order differential operators

with bounded complex-valued coefficients in one dimension. We will give a core character-

isation for these operators. The results are extensions of those in [CMP98, Theorem 3.5]

and [DE15, Theorem 1.5].

The following assumptions will be made throughout the chapter without being men-

tioned explicitly. If further assumptions are imposed, they will be articulated in the state-

ments in which they are required.

Let θ ∈ [0, π
2
). Define

Σθ = {r ei ψ : r ≥ 0 and |ψ| ≤ θ}.

Let c ∈ W 1,∞(R,C) be such that c(x) ∈ Σθ for all x ∈ R. Let m ∈ L∞(R,C) and Mm > 0.

Suppose

|m| ≤Mm

√
Re c. (3.1)

Let w ∈ L∞(R,C).

Consider the form a0 defined by

a0(u, v) =

∫
R

(
c u′ v′ +mu′ v + w u v

)
(3.2)

on the domain

D(a0) = C∞c (R).

We will show in Lemma 3.7 in Section 3.2 that a0 is closable. Let a be the closure of the

form a0. It follows from the first representation theorem [Kat80, Theorem VI.2.1] that

there exists an quasi-m-sectorial operator A associated with the form a. Formally we can

write

A = − d

dx

(
c
d

dx

)
+m

d

dx
+ w I.

Let S be the C0-semigroup generated by −A. If A is strongly elliptic, that is, if inf Re c > 0,

then S extends consistently to a C0-semigroup on Lp(R) for all p ∈ [1,∞) by [AMT98,

Theorem 2.21]. We prove in Section 3.3 the following extension.

23
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Proposition 3.1. Let p ∈ (1,∞) and m ∈ W 1,∞(R,C). Suppose

(I)
∣∣∣1− 2

p

∣∣∣ < cos θ or

(II)
∣∣∣1− 2

p

∣∣∣ ≤ cos θ and m = 0.

Then S extends consistently to a quasi-contraction C0-semigroup on Lp(R).

The case p = 1 follows directly from [AE12, Corollary 3.13(iii)].

Proposition 3.2. Suppose c,m ∈ W 1,∞(R,R). Then S extends consistently to a quasi-

contraction C0-semigroup on L1(R).

Let p ∈ [1,∞). Suppose S extends consistently to a C0-semigroup S(p) on Lp(R). Let

−Ap be the generator of S(p). Clearly C∞c (R) ⊂ D(Ap). Our aim is to characterise when

C∞c (R) is a core for Ap. For this we need to introduce more notation.

Define

P = [Re c > 0] and N = [Re c = 0].

Let {Ik : k ∈ K} be the set of connected components of P , with Ik 6= Ik′ for all k, k′ ∈ K
with k 6= k′. Write Ik = (ak, bk) for all k ∈ K, with ak, bk ∈ [−∞,∞]. Let

El = {ak : k ∈ K} ∩ R, Er = {bk : k ∈ K} ∩ R and E = El ∪ Er

be the set of all finite left endpoints, finite right endpoints and finite endpoints respectively.

(The intersection with R is needed to deal with unbounded Ik and to obtain that E ⊂ R.)

For all k ∈ K define

mk =


ak+bk

2
if ak ∈ R and bk ∈ R,

ak + 1 if ak ∈ R and bk =∞,
bk − 1 if ak = −∞ and bk ∈ R,
0 if ak = −∞ and bk =∞.

Next define the function Z : R −→ R by

Z(x) =

{ ∫ mk
x

1
Re c

if x ∈ Ik and k ∈ K,
∞ if x ∈ N .

The main theorem of this chapter is as follows.

Theorem 3.3. Let p ∈ (1,∞) and m ∈ W 1,∞(R,C). Suppose

(I)
∣∣∣1− 2

p

∣∣∣ < cos θ or

(II)
∣∣∣1− 2

p

∣∣∣ ≤ cos θ and m = 0.

Suppose that for all x0 ∈ E there exists a δ0 > 0 such that∫
(x0−δ0,x0+δ0)∩P

∣∣∣m
c

∣∣∣ <∞.
Then the space C∞c (R) is a core for Ap if and only if Z|(x−δ,x+δ) 6∈ Lq(x− δ, x + δ) for all

x ∈ E and δ > 0, where q is the dual exponent of p.
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This theorem has the following obvious corollary.

Corollary 3.4. Let p ∈ (1,∞) and m ∈ W 1,∞(R,C). Suppose c ∈ W 1,∞(R,C) and c′ is

Hölder continuous of order 1− 1
p
. Moreover, assume that

(I) θ ∈ [0, arccos
∣∣1− 2

p

∣∣) or

(II) m = 0 and θ = arccos
∣∣1− 2

p

∣∣.
Suppose that for all x0 ∈ E there exists a δ0 > 0 such that∫

(x0−δ0,x0+δ0)∩P

∣∣∣m
c

∣∣∣ <∞.
Then the space C∞c (R) is a core for Ap.

If p = 1 then the condition on m
c

is superfluous in Theorem 3.3.

Theorem 3.5. Suppose c,m ∈ W 1,∞(R,R). Then the space C∞c (R) is a core for A1.

The following is a brief summary of the subsequent sections. In Section 3.2 we give

detailed description of the form a and its associated operator A. In Section 3.3 we prove

Proposition 3.1. We will determine the operator Ap in Section 3.4. The main theorems,

Theorems 3.3 and 3.5, are proved in Sections 3.5 and 3.6 respectively. Finally we consider

three intriguing examples to illustrate Theorem 3.3 in Section 3.7.

3.2 The form and the operator on L2

Let a0 be as in Section 3.1. We will now show that a0 is indeed closable.

Lemma 3.6. There exist an ω > 0 and a θ′ ∈ [0, π
2
) such that a0(u) + ω‖u‖2

2 ∈ Σθ′ for all

u ∈ D(a0).

Proof. Let u ∈ D(a0). Then

Re a0(u) ≥
∫

(Re c) |u′|2 −
∫
|m| |u′| |u| −

∫
|w| |u|2

≥
∫

(Re c) |u′|2 − εMm

∫
(Re c) |u′|2 −

( 1

4ε
+ ‖w‖∞

)
‖u‖2

2

= (1− εMm)

∫
(Re c) |u′|2 −

( 1

4ε
+ ‖w‖∞

)
‖u‖2

2

for all ε > 0. Choosing ε = 1
2Mm

in the above inequality gives∫
(Re c) |u′|2 ≤ 2 Re a0(u) + (Mm + 2 ‖w‖∞) ‖u‖2

2. (3.3)

It follows that

|Im a0(u)| ≤ tan θ

∫
(Re c) |u′|2 +

∫
|m| |u′| |u|+

∫
|w| |u|2
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≤ (tan θ +Mm)

∫
(Re c) |u′|2 +

(1

4
+ ‖w‖∞

)
‖u‖2

2

≤ (tan θ +Mm)
(

2 Re a0(u) + (Mm + 2 ‖w‖∞) ‖u‖2
2

)
+
(1

4
+ ‖w‖∞

)
‖u‖2

2

= 2(tan θ +Mm) Re a0(u) +
(

(tan θ +Mm) (Mm + 2 ‖w‖∞) +
1

4
+ ‖w‖∞

)
‖u‖2

2.

That is, a0(u) + ω‖u‖2
2 ∈ Σθ′ where

ω =
1

2(tan θ +Mm)

(
(tan θ +Mm) (Mm + 2 ‖w‖∞) +

1

4
+ ‖w‖∞

)
and θ′ is such that

tan(θ′) = 2(tan θ +Mm).

The lemma now follows.

Proposition 3.7. The form a0 is closable.

Proof. Define the operator A0 in L2(R) by

A0u = −(c u′)′ +mu′ + w u

on the domain D(A0) = C∞c (R). Then a0(u, v) = (A0u, v) and (A0u, u) + ω ‖u‖2
2 ∈ Σθ′

for all u, v ∈ C∞c (R), where ω and θ′ are as in Lemma 3.6. It now follows from [Kat80,

Theorem VI.1.27] that a0 is closable.

Our next aim is to derive a comprehensive description of the closure of a0. If Ω ⊂ R is

open and u ∈ W 1,1
loc (Ω), then we denote by u′ ∈ L1,loc(Ω) the derivative. If v ∈ L1,loc(R) then

we say that v ∈ C(Ω) if v|Ω has a continuous representative which extends continuously to

Ω. For all u ∈ L1,loc(R) with u|P ∈ W 1,1(P) define Du : R −→ C by

(Du)(x) =

{
u′(x) if x ∈ P ,
0 if x ∈ N .

In order to avoid clutter we write

L2(R) ∩W 1,2
loc (P) = {u ∈ L2(R) : u|P ∈ W 1,2

loc (P)}.

Define the form a by

D(a) = {u ∈ L2(R) ∩W 1,2
loc (P) :

√
Re cDu ∈ L2(R)}

and

a(u, v) =

∫
R

(
c (Du)Dv +m (Du) v + w u v

)
for all u, v ∈ D(a). Note that |cDu| ≤

√
‖c‖∞

cos θ

√
Re c |Du| and |mDu| ≤ Mm

√
Re c |Du|

for all u ∈ D(a). Hence cDu and mDu belong to L2(R) if u ∈ D(a). The domain D(a) is

naturally normed with

u 7−→
(

Re a(u) + (1 + ω) ‖u‖2
2

)1/2

,

where ω is as in Lemma 3.6. The following proposition shows that we can replace this

norm by a simpler one.
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Proposition 3.8. The norm u 7−→
(

Re a(u) + (1 + ω) ‖u‖2
2

)1/2

on D(a) is equivalent to

u 7−→
(∫

R
(Re c) |Du|2 + ‖u‖2

2

)1/2

,

where ω is as in Lemma 3.6.

Proof. Let u ∈ D(a). Then

Re a(u) + (1 + ω) ‖u‖2
2 ≤

∫
(Re c) |u′|2 +

∫
|m| |u′| |u|+ (1 + ω + ‖w‖∞) ‖u‖2

2

≤ (1 +Mm)

∫
(Re c) |u′|2 +

(5

4
+ ω + ‖w‖∞

)
‖u‖2

2

≤M ′
(∫

(Re c) |u′|2 + ‖u‖2
2

)
,

where M ′ = (1 +Mm) ∨ (5
4

+ ω + ‖w‖∞). Also by (3.3) we have∫
(Re c) |u′|2 + ‖u‖2

2 ≤ 2 Re a(u) + (1 +Mm + 2 ‖w‖∞) ‖u‖2
2

≤ 2 (1 +Mm + 2 ‖w‖∞)
(

Re a(u) + (1 + ω) ‖u‖2
2

)
.

This completes the proof.

Due to Proposition 3.8 we define the norm ‖ · ‖D(a) on D(a) by

‖u‖2
D(a) =

∫
R
(Re c) |Du|2 + ‖u‖2

2.

Note that if u ∈ D(a), then u1P , u1N ∈ D(a) and

‖u‖2
D(a) = ‖u1P‖2

D(a) + ‖u1N‖2
D(a). (3.4)

Moreover, ‖u1N‖D(a) = ‖u1N‖L2(R).

Lemma 3.9. The form a is the closure of a0. Moreover, C∞c (P)+L2(N ) is dense in D(a).

Proof. We first show that a is closed. Let (un)n∈N be a Cauchy sequence in D(a). Then

(un)n∈N is a Cauchy sequence in L2(R), so u = limun exists in L2(R). Similarly v =

lim
√

Re cDun exists in L2(R). Let τ ∈ C∞c (P). Then

(u, τ ′)L2(P) = lim(un, τ
′)L2(P) = − lim(u′n, τ)L2(P) = −

( 1√
Re c

v, τ
)
L2(P)

.

So u ∈ W 1,2
loc (P) and u′ = 1√

Re c
v|P in L2,loc(P). Then

√
Re cDu = v ∈ L2(R). It is now

easy to verify that limun = u in D(a). So a is closed.

Secondly we show that for all u ∈ D(a) with u = u1P and for all ε > 0 there exists

a v ∈ C∞c (P) such that ‖u − v‖D(a) < ε. Since u1Ik ∈ D(a) for all u ∈ D(a) and k ∈ K
and ‖u‖2

D(a) =
∑

k∈K ‖u1Ik‖2 for all u ∈ D(a) with u = u1P , it suffices to show that
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for all u ∈ D(a), k ∈ K and ε > 0 with u = u1Ik , there exists a v ∈ C∞c (Ik) such that

‖u − v‖D(a) < ε. If Ik is bounded and c takes real-valued, this is the content of [CMP98,

Lemma 2.6]. Now suppose that Ik = (ak, bk) is unbounded with ak ∈ R and bk =∞. (The

proof for other cases like bounded Ik is similar.) Without loss of generality we may assume

that u is real-valued. Since lim(−n) ∨ u ∧ n = u in D(a) by [GT83, Lemma 7.6], we may

assumed that u is bounded. For all n ∈ N with n ≥ ak + 3 define χn : R −→ R by

χn(x) =



0 if x ≤ ak + 1
n
,

n(x− ak − 1
n
) if ak + 1

n
< x ≤ ak + 2

n
,

1 if ak + 2
n
< x ≤ n,

− 1
n
(x− 2n) if n < x ≤ 2n,

0 if x > 2n.

Then χn ∈ W 1,2(R) ∩W 1,∞(R), 0 ≤ χn ≤ 1 and∫
R
(Re c) |χ′n|2 ≤

∫
(ak+ 1

n
,ak+ 2

n
)

‖c′‖∞ (x− ak)n2 +

∫
(n,2n)

‖c‖∞n−2 ≤ 2 ‖c′‖∞ + ‖c‖∞.

So χn u ∈ D(a) and

‖χn u‖2
D(a) ≤

∫
R
|u|2 + 2

∫
R
(Re c) |χ′n|2 |u|2 + 2

∫
R
(Re c) |χn|2 |Du|2

≤ 2 ‖u‖2
D(a) + (4 ‖c′‖∞ + 2 ‖c‖∞) ‖u‖2

∞

for all n ∈ N with n ≥ ak+3. Passing to a subsequence if necessary, the sequence (χn u)n∈N
is weakly convergent in D(a). But limχn u = u in L2(R). So limχn u = u in D(a). Let

V = {v ∈ D(a) : supp v is compact and supp v ⊂ Ik}. We proved that u is in the weak

closure of V in D(a). Since V is convex, the weak closure equals the norm closure and u

is therefore in the norm closure of V in D(a). By regularising elements of V we see that u

is an element of the norm closure of C∞c (Ik) in D(a).

Thirdly, the density of C∞c (P)+L2(N ) in D(a) now follows from (3.4) and the previous

step.

Finally, let u ∈ D(a) and ε > 0. Since C∞c (R) is dense in L2(R), there exists a

v1 ∈ C∞c (R) such that ‖u−v1‖L2(R) < ε. Therefore ‖(u−v1)1N‖D(a) = ‖(u−v1)1N‖L2(N ) ≤
‖u−v1‖L2(R) < ε. By the above there exists a v2 ∈ C∞c (P) such that ‖(u−v1)1P−v2‖D(a) <

ε. Using (3.4) it follows that

‖u− v1 − v2‖2
D(a) = ‖(u− v1)1P − v2‖2

D(a) + ‖(u− v1)1N‖2
D(a) ≤ 2ε2.

So C∞c (R) is dense in D(a) and a is the closure of a0.

Let A be the operator associated with a. Then the detailed descriptions of A are

possible, as shown in the following lemma.
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Lemma 3.10. Let u ∈ L2(R). Then the following are equivalent.

(i) u ∈ D(A).

(ii) u ∈ L2(R) ∩W 1,2
loc (P),

√
Re cDu ∈ L2(R) and cDu ∈ W 1,2(R).

(iii) u ∈ L2(R) ∩W 1,2
loc (P),

√
Re cDu ∈ L2(R) and (cDu)|P ∈ W 1,2(P).

(iv) u ∈ L2(R) ∩W 1,2
loc (P) and (cDu)|P ∈ W 1,2

0 (P).

(v) u ∈ L2(R) ∩W 1,2
loc (P), (cDu)|P ∈ W 1,2

loc (P), D(cDu) ∈ L2(R),

limx↓a(cDu)(x) = 0 for all a ∈ El and limx↑b(cDu)(x) = 0 for all b ∈ Er.

(vi) u ∈ L2(R) ∩W 1,2
loc (P), (cDu)|P ∈ W 1,2

loc (P), D(cDu)−mDu ∈ L2(R),

limx↓a(cDu)(x) = 0 for all a ∈ El and limx↑b(cDu)(x) = 0 for all b ∈ Er.

Proof. (i =⇒ ii) Let u ∈ D(A). Write f = Au ∈ L2(R). Then u ∈ D(a), which implies

u ∈ L2(R)∩W 1,2
loc (P) and

√
Re cDu ∈ L2(R). It follows that cDu,mDu ∈ L2(R). Clearly

w u ∈ L2(R) since w ∈ L∞(R) and u ∈ L2(R). Let v ∈ C∞c (R). Then∫
R
(cDu) v′ +m (Du) v + w u v = a(u, v) =

∫
R
f v

or equivalently ∫
R
(cDu) v′ =

∫
R
(f −mDu− w u) v.

Hence cDu ∈ W 1,2(R).

(ii =⇒ iii) Trivial.

(iii =⇒ i) By hypothesis D(cDu) ∈ L2(R) and w u ∈ L2(R). Since u ∈ D(a), we have

mDu ∈ L2(R). Let f = −D(cDu) +mDu+ w u. Then f ∈ L2(R). Moreover,

a(u, v) =

∫
P
c (Du) v′ +m (Du) v + w u v =

∫
P
f v =

∫
R
f v

for all v ∈ C∞c (P). If v ∈ L2(N ) then a(u, v) =
∫
Rw u1N v =

∫
R f v. So a(u, v) =

∫
R f v

for all v ∈ C∞c (P) + L2(N ). Since C∞c (P) + L2(N ) is a core for a by Lemma 3.9, we have

u ∈ D(A).

(iii =⇒ iv) Let a ∈ El, δ > 0 and suppose that (a, a + δ) ⊂ P . Then (cDu)|(a,a+δ) ∈
W 1,2(a, a + δ) ⊂ C[a, a + δ]. So L = limx↓a(cDu)(x) exists. Moreover, since

√
Re cDu ∈

L2(P) one has ∫
(a,a+δ)

|cDu|2

|c|
≤ 1

cos θ

∫
P
|
√

Re cDu|2 <∞.

So L = 0. By a symmetry argument one deduces that (cDu)|P ∈ W 1,2
0 (P).

(iv =⇒ v) Trivial.

(v =⇒ iii) Let a ∈ El, s ∈ (a,∞) and suppose that (a, s] ⊂ P . By assumption and the

Poincaré inequality (cDu)|P ∈ W 1,2(a, s) ⊂ C1/2[a, s]. Since limx↓a(cDu)(x) = 0, there

exists an M > 0 such that |(c u′)(x)| ≤ M
√
x− a for all x ∈ (a, s). Let ε ∈ (0, s − a).

Then u ∈ W 1,2(a+ ε, s). Moreover, (c u′)|(a+ε,s) ∈ W 1,2(a+ ε, s). Therefore

[c u′ u]sa+ε =

∫ s

a+ε

(c u′ u)′ =

∫ s

a+ε

u (c u′)′ +

∫ s

a+ε

c |u′|2. (3.5)
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Note that (cDu)′|P ∈ L2(P) and u ∈ L2(R). Hence
(
u (c u′)′

)
|(a,s) ∈ L1(a, s) and

limε↓0
∫ s
a+ε

u (c u′)′ ∈ C exists. It follows from (3.5) that

(c u′ u)(a+ ε) = (c u′ u)(s)−
∫ s

a+ε

u (c u′)′ −
∫ s

a+ε

c |u′|2. (3.6)

Taking the real parts in (3.6) gives

Re (c u′ u)(a+ ε) = Re (c u′ u)(s)− Re

∫ s

a+ε

u (c u′)′ −
∫ s

a+ε

(Re c) |u′|2. (3.7)

The limit when ε ↓ 0 of the right hand side of (3.7) exists in [−∞,∞). Now we let

L = limε↓0 Re (c u′ u)(a + ε) ∈ [−∞,∞). Suppose L 6= 0. Then |Re (c u′ u)(x)| ≥ δ for all

small x− a, where δ = 1
2

(1 ∧ |L|). Hence |(c u′ u)(x)| ≥ δ for all small x− a and

|u(x)| = |(c u
′ u)(x)|

|(c u′)(x)|
≥ δ

M
√
x− a

.

So u|(a,s) 6∈ L2(a, s). This is a contradiction. Hence

L = lim
x↓a

Re (c u′ u)(x) = 0. (3.8)

Similarly, limx↑b Re (c u′ u)(x) = 0 for all b ∈ Er.
Let k ∈ K be such that a = ak. If Ik is bounded, then by taking limits in (3.7) one

deduces that

0 = [Re (c u′ u)]bkak = Re

∫ bk

ak

u (c u′)′ +

∫ bk

ak

(Re c) |u′|2.

Therefore ∫
Ik

(Re c) |u′|2 = −Re

∫
Ik

u (c u′)′. (3.9)

Alternatively, if Ik is unbounded, then as in (3.7) we deduce that limx→∞Re (c u′ u)(x) ∈
(−∞,∞] exists. Suppose that limx→∞Re (c u′ u)(x) 6= 0. Then there are δ > 0 and

N ∈ (a,∞) such that |c u′ u)(x)| ≥ δ for all x ∈ (N,∞). On the other hand

|(c u′)(x)| =
∣∣∣∣∫ x

a

(c u′)′(t) dt

∣∣∣∣ ≤ √x− a ‖D(cDu)‖2

for all x ∈ (a,∞). If x ∈ (N,∞) then

|u(x)| =
∣∣∣∣(c u′ u)(x)

(c u′)(x)

∣∣∣∣ ≥ δ

‖D(cDu)‖2

1√
x− a

.

This implies u 6∈ L2(R), which is a contradiction. Therefore limx→∞Re (c u′ u)(x) = 0 and

(3.9) is valid also for unbounded interval Ik.

Summing over all k ∈ K and using (3.9) give∫
P

(Re c) |u′|2 = −Re

∫
P
u (c u′)′ <∞.
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So
√

Re cDu ∈ L2(R). Then also cDu ∈ L2(R). Since D(cDu) ∈ L2(R), it follows that

(cDu)|P ∈ W 1,2(P).

(v =⇒ vi) First note that u ∈ D(a) since (i) and (v) are equivalent. Hence mDu ∈
L2(R) by (3.1) and the equivalence of (i) and (ii). Therefore D(cDu) − mDu ∈ L2(R).

The rest is trivial.

(vi =⇒ v) The aim is to show that
√

Re cDu ∈ L2(R), which will then immediately

imply that mDu ∈ L2(R). This together with the fact that D(cDu)−mDu ∈ L2(R) will

give D(cDu) ∈ L2(R) as required.

The following proof applies for both bounded and unbounded connected components

(if there are any) of P . Therefore we will present the proof only for an unbounded case.

Now suppose there exists an s ∈ R such that [s,∞) ⊂ P . Let f = D(cDu)−mDu ∈
L2(R) by hypothesis. Let x ∈ [s,∞). Then

[c u′ u]xs =

∫ x

s

u (c u′)′ +

∫ x

s

c |u′|2 =

∫ x

s

f u+

∫ x

s

c |u′|2 +

∫ x

s

mu′ u,

which implies that

Re (c u′ u)(x) = Re (c u′ u)(s) + Re

∫ x

s

f u+

∫ x

s

(Re c) |u′|2 + Re

∫ x

s

mu′ u. (3.10)

But

|mu′ u| ≤Mm

√
Re c |u′| |u| ≤ 1

2
(Re c) |u′|2 +

M2
m

2
|u|2. (3.11)

Therefore

Re (c u′ u)(x) ≥ Re (c u′ u)(s) + Re

∫ x

s

f u+
1

2

∫ x

s

(Re c) |u′|2 − M2
m

2

∫ x

s

|u|2.

As a consequence we have∫ x

s

(Re c) |u′|2 −M0 ≤ 2 Re (c u′ u)(x), (3.12)

where

M0 = 2 |Re (c u′ u)(s)|+ 2

∫ ∞
s

|f u|+M2
m

∫ ∞
s

|u|2 ∈ R

since f, u ∈ L2(R).

We will show that
√

Re c u′ ∈ L2(s,∞). Now suppose the opposite, that is, suppose

that
∫∞
s

(Re c) |u′|2 =∞. We first notice that

|(c u′)(x)| =
∣∣∣(c u′)(s) +

∫ x

s

(f +mu′)
∣∣∣

≤ |(c u′)(s)|+
(
‖f‖2 +

(∫ x

s

|mu′|2
)1/2

)√
x− s

= |(c u′)(s)|+
(
‖f‖2 +Mm

(∫ x

s

(Re c) |u′|2
)1/2

)√
x− s. (3.13)
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Since
∫∞
s

(Re c) |u′|2 =∞, there exists an N1 > s such that

|(c u′)(s)| ≤
(
‖f‖2 +Mm

(∫ N1

s

(Re c) |u′|2
)1/2

)√
N1 − s.

Let x ∈ (N1,∞). Then (3.13) gives

|(c u′)(x)| ≤ 2

(
‖f‖2 +Mm

(∫ x

s

(Re c) |u′|2
)1/2

)√
x− s. (3.14)

Now (3.12) and (3.14) together yield∫ x

s

(Re c) |u′|2 −M0 ≤ 4 |u(x)|
(
‖f‖2 +Mm

(∫ x

s

(Re c) |u′|2
)1/2

)√
x− s. (3.15)

Let s′ ∈ [s,∞) be such that
∫ s′
s

(Re c) |u′|2 ≥M0. Then (3.15) gives∫ x

s′
(Re c) |u′|2 ≤ 4 |u(x)|

(
M1 +Mm

(∫ x

s′
(Re c) |u′|2

)1/2
)√

x− s (3.16)

for all x > N1 ∨ s′, where M1 = ‖f‖2 +Mm

( ∫ s′
s

(Re c) |u′|2
)1/2

. Let N2 > s′ be such that∫ N2

s′
(Re c) |u′|2 ≥

(
M1

Mm

)2

. If x ≥ N1 ∨N2 then (3.16) gives∫ x

s′
(Re c) |u′|2 ≤ 8Mm |u(x)|

(∫ x

s′
(Re c) |u′|2

)1/2√
x− s

or equivalently

|u(x)| ≥

( ∫ x
s′

(Re c) |u′|2
)1/2

8Mm

√
x− s

.

Since
∫∞
s′

(Re c) |u′|2 = ∞, there exists an N3 > s′ such that
∫ N3

s′
(Re c) |u′|2 ≥ 64M2

m. It

follows that

|u(x)| ≥ 1√
x− s

for all x ≥ N1 ∨ N2 ∨ N3. This implies u 6∈ L2(R), which is a contradiction. Hence∫∞
s

(Re c) |u′|2 <∞.

Thus so far we have proved that
√

Re c u′ ∈ L2(Ik) for all k ∈ K. Next we will show

that
√

Re cDu ∈ L2(R). For that let k ∈ K and suppose Ik = (ak, bk) is bounded. Then

mu′ u ∈ L1(Ik) by (3.11). Let s ∈ Ik. Then (3.10) implies that L = limx↑bk Re (c u′ u)(x)

exists in R. On the other hand
√

Re c u′ ∈ L2(Ik) implies that cDu ∈ L2(Ik) and mDu ∈
L2(Ik). But D(cDu) − mDu ∈ L2(Ik). Consequently (cDu)|Ik ∈ W 1,2(Ik) ⊂ C1/2(Ik).

Since limx↑bk(cDu)(x) = 0, there exists an M > 0 such that (cDu)(x) ≤M
√
bk − x. Now

suppose L 6= 0. Then for all x ∈ Ik with bk − x small enough, we have |Re (c u′ u)(x)| ≥ δ,

where δ = 1
2

(1 ∧ |L|). Hence |(c u′ u)(x)| ≥ δ for all small bk − x and

|u(x)| ≥ δ

M
√
bk − x

.
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Thus u 6∈ L2(Ik), which is a contradiction. Therefore we must have L = 0. Analogously

limx↓ak Re (c u′ u)(x) = 0. Taking limits to the endpoints of Ik on both sides of (3.10) gives∫
Ik

(Re c) |u′|2 = −Re

∫
Ik

f u+ Re

∫
Ik

mu′ u

≤ −Re

∫
Ik

f u+
1

2

∫
Ik

(Re c) |u′|2 +
M2

m

2

∫
Ik

|u|2

or equivalently ∫
Ik

(Re c) |u′|2 ≤ −2 Re

∫
Ik

f u+M2
m

∫
Ik

|u|2.

This is for all k ∈ K such that Ik is bounded. Let

Pb = {Ik ⊂ P : k ∈ K and Ik is bounded}.

Then ∫
Pb

(Re c) |u′|2 ≤ −2 Re

∫
Pb
f u+M2

m

∫
Pb
|u|2 <∞.

Since P has at most two unbounded connected components, it follows that
√

Re cDu ∈
L2(R).

This completes the proof of the lemma.

3.3 Lp extension

We will now assume in addition to (3.1) that m ∈ W 1,∞(R,C) for the rest of this chapter.

Let S be the C0-semigroup generated by −A. We will show in this section that it is

possible to extend S to a quasi-contraction C0-semigroup on Lp(R) for certain p ∈ [1,∞).

This is the content of Propositions 3.1 and 3.2. Since Proposition 3.2 was already proved,

it remains to prove Proposition 3.1.

Proof of Proposition 3.1. We proceed via two steps.

Step 1: Suppose A is strongly elliptic, i.e. ess inf Re c > 0. Using duality arguments

we may assume p ≥ 2. If m 6= 0, we choose α ∈ (0, 1) such that 1 − 2
p
≤ α cos θ, set

ε = 1
4

(1 − α) p and β = M2
m

4 ε
+ ‖w‖∞. If m = 0, we set β = ‖w‖∞. Note that in either

case β is independent with ess inf Re c. By [AT98, Theorem 18] the semigroup S extends

consistently to a C0-semigroup S(p) on Lp(R). We will show that ‖St‖p→p ≤ eβ t for all

t > 0. Let −Ap be the generator of S(p) and D = D(Ap) ∩ D(A) ∩ L∞(R). Let u ∈ D
and set v = |u|p−2 u. Then v ∈ Lq(R) ∩ L2(R), where q is the dual exponent of p. Since

ess inf c > 0, we have D(a0) = W 1,2(R). It follows that u ∈ D(A) ⊂ D(a0) = W 1,2(R).

Note that

v′ =
p

2
|u|p−2 u′ +

p− 2

2
|u|p−4 u2 u′

on the set {x ∈ R : u(x) 6= 0}. This together with [GT83, Lemma 7.7] give v ∈ W 1,2(R).

We will show that Re
∫

(Au) v ≥ −β ‖u‖pp, where here and in the rest of Step 1 the integral

is over the set {x ∈ R : u(x) 6= 0}. We have

Re

∫
(Apu) v = Re

∫
(Au) v = Re a0(u, v) = Re

∫
(c u′ v′ +mu′ v + w u v). (3.17)
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But

c u′ v′ =
p

2
c |u|p−2 |u′|2 +

p− 2

2
c |u|p−4 u2 (u′)2.

Since |c| ≤ 1
cos θ

Re c we have

Re (c u′ v′) ≥ p

2
(Re c) |u|p−2 |u′|2 − p− 2

2

Re c

cos θ
|u|p−2 |u′|2

= (Re c)

(
p

2
− p− 2

2
· 1

cos θ

)
|u|p−2 |u′|2. (3.18)

Next we use w ∈ L∞(R) to obtain

|w u v| ≤ ‖w‖∞ |u|p. (3.19)

If m = 0 then 1− 2
p
≤ cos θ. It follows from (3.17), (3.18) and (3.19) that

Re

∫
(Apu) v ≥ −‖w‖∞ ‖u‖pp = −β ‖u‖pp.

If m 6= 0, then we use |m| ≤Mm

√
Re c to obtain

|mu′ v| ≤ ε (Re c) |u|p−2 |u′|2 +
M2

m

4ε
|u|p. (3.20)

It follows from (3.17), (3.18), (3.19) and (3.20) that

Re

∫
(Apu) v ≥

∫
(Re c)

(
p

2
− p− 2

2
· 1

cos θ
− ε
)
|u|p−2 |u′|2 −

(
M2

m

4ε
+ ‖w‖∞

)
|u|p

≥ −β ‖u‖pp.

Therefore the restriction (β I + Ap)|D is accretive. Since D is a core for Ap by Theorem

2.28, the operator β I +Ap is also accretive by [LP61, Lemma 3.4]. By the Lumer-Phillips

theorem we have that S(p) is a quasi-contraction semigroup and ‖St‖p→p ≤ eβ t for all t > 0.

Step 2: Suppose A is degenerate elliptic. Using duality arguments we may assume

p ∈ (1, 2). Let n ∈ N and set cn = c + 1
n
. Let A[n] = − d

dx
cn

d
dx

be the operator associated

with the form (3.2) with c replaced by cn. Moreover, let S[n] be the semigroup generated

by −A[n]. Then by Step 1 there exists a β > 0 such that S[n] extends consistently to a

C0-semigroup S(n,p) on Lp(R) and ‖S(n,p)
t ‖p→p ≤ eβ t for all t > 0 and n ∈ N. Let t > 0 and

u ∈ L2,c(R). By [AE12, Corollary 3.9] we have that limn→∞ ‖S[n]
t u−Stu‖2 = 0. Passing to

a subsequence if necessary we may assume limn→∞ S
[n]
t u = Stu almost everywhere on R.

It follows from Fatou’s lemma that

‖Stu‖p = ‖ lim inf S
[n]
t u‖p ≤ lim inf ‖S[n]

t u‖p ≤ eβt ‖u‖p <∞.

But L2,c(R) is dense in L2(R) ∩ Lp(R). Therefore ‖Stu‖p ≤ eβt ‖u‖p for all u ∈ L2(R) ∩
Lp(R). Hence St|L2(R)∩Lp(R) extends consistently to a quasi-contraction operator S

(p)
t on

Lp(R). Then S(p) is a C0-semigroup on Lp(R) by [Voi92, Proposition 1]. The proof is now

complete.



3.4. THE GENERATOR ON Lp 35

3.4 The generator on Lp

Propositions 3.1 and 3.2 provide conditions such that the semigroup S extends consistently

to a C0-semigroup S(p) on Lp(R). Let −Ap be the generator of S(p). In this section we give

a detailed description for the domain of Ap.

In addition to (3.1) and m ∈ W 1,∞(R), we will assume for the rest of the chapter that

m also satisfies the following condition: For all x0 ∈ E there exists a δ > 0 such that∫
(x0−δ,x0+δ)∩P

∣∣∣m
c

∣∣∣ <∞. (3.21)

An easy example is m ∈ W 1,∞(R) with |m| ≤ M Re c for some M ≥ 0, which also

supersedes (3.1) as c is bounded. A more interesting example is provided in Example 3.26.

Condition (3.21) implies in particular that∫ mk

ak

∣∣∣m
c

∣∣∣ <∞ (3.22)

for all k ∈ K with ak ∈ R and ∫ bk

mk

∣∣∣m
c

∣∣∣ <∞ (3.23)

for all k ∈ K with bk ∈ R. Define H : P −→ C by

H(x) = e
∫mk
x

m
c (3.24)

if x ∈ Ik and k ∈ K. If k ∈ K is such that ak ∈ R, then we obtain from (3.22) that

e
−

∫mk
ak
|mc | ≤ |H(x)| ≤ e

∫mk
ak
|mc |

for all x ∈ (ak,mk], the limit limx↓ak H(x) exists in C and is non-zero. Similarly if k ∈ K
is such that bk ∈ R, then we obtain from (3.23) that

e
−

∫ bk
mk
|mc | ≤ |H(x)| ≤ e

∫ bk
mk
|mc |

for all x ∈ [mk, bk), the limit limx↑bk H(x) exists in C and is also non-zero. It is useful to

keep these facts in mind as we will use them frequently later on.

For all p ∈ [1,∞) define the operator Bp in Lp(R) by

Bpu = −D(cDu) +mDu+ w u

on the domain

D(Bp) = {u ∈ Lp(R) ∩W 1,p
loc (P) : cDu ∈ W 1,p

loc (P), D(cDu)−mDu ∈ Lp(R),

limx↓a(cDu)(x) = 0 for all a ∈ El and

limx↑b(cDu)(x) = 0 for all b ∈ Er}.

Clearly W 2,p(R) ⊂ D(Bp) for all p ∈ [1,∞). We will show that Bp = Ap for all p ∈ [1,∞)

under suitable conditions.
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Lemma 3.11. The operator Bp is closed for all p ∈ [1,∞).

Proof. Let (un)n∈N be a sequence in D(Bp). Let u, v ∈ Lp(R). Suppose limun = u in

Lp(R) and limBpun = v in Lp(R). Write

vn = Bpun (3.25)

for all n ∈ N. By elliptic regularity limun(x) = u(x) for all x ∈ P . First suppose that

E 6= ∅. Let a ∈ El and k ∈ K be such that a = ak. It follows from (3.25) that

H(x) (c u′n)(x) =

∫ x

ak

(−vn + w un)H

for all x ∈ Ik and n ∈ N, where H is defined by (3.24). Therefore

lim
n→∞

H(x) (c u′n)(x) =

∫ x

ak

(−v + w u)H

uniformly for all x ∈ Ik. Let J b P be an open interval. Then Re c is strictly positive

on J . It follows that u is differentiable on J and H(x) (c u′)(x) =
∫ x
ak

(−v + w u)H for

all x ∈ J . Hence limx↓ak H(x) (c u′)(x) = 0. But limx↓ak |H(x)| exists in R and is non-

zero. Therefore we have limx↓ak(c u
′)(x) = 0. Moreover, (H cu′)′(x) =

(
(−v + w u)H

)
(x)

for almost every x ∈ Ik. Equivalently −(c u′)′ + mu′ + w u = v almost everywhere on Ik.

Similarly limx↑b(c u
′)(x) = 0 for all b ∈ Er. We proved that −D(cDu)+mDu+w u = v 1P .

Clearly vn|N = w un|N for all n ∈ N. So v|N = (w u)|N and −D(cDu) +mDu+ w u = v.

Hence u ∈ D(Bp) and v = Bpu. Thus Bp is closed. If E = ∅, then the proof is similar with

small modifications.

We first concentrate on the case p ∈ (1,∞).

Lemma 3.12. Let p ∈ (1,∞). Suppose

(I)
∣∣∣1− 2

p

∣∣∣ < cos θ or

(II)
∣∣∣1− 2

p

∣∣∣ ≤ cos θ and m = 0.

Then Bp is quasi-accretive.

Proof. We will show that there exists a β > 0 such that Re
∫

(Bpu) |u|p−2 u ≥ −β ‖u‖pp
for all u ∈ D(Bp), where here and in the rest of the proof the integral is over the set

{x ∈ R : u(x) 6= 0}. Let u ∈ D(Bp). Let a ∈ El, s ∈ (a,∞) and suppose that (a, s] ⊂ P .

Let ε ∈ (0, s − a). Note that Re c is strictly positive on (a + ε, s). Therefore elliptic

regularity gives u|(a+ε,s) ∈ W 2,p(a+ ε, s). It follows from [MS08, Theorem 3.1] that

Re

∫ s

a+ε

(Bpu) |u|p−2 u =

∫ s

a+ε

Re

(
p

2
c |u|p−2 |u′|2 +

p− 2

2
c |u|p−4 u2 (u′)2

)
+

∫ s

a+ε

Re
(
mu′ |u|p−2 u+ w |u|p

)
− Re (c u′ |u|p−2 u)

∣∣s
a+ε

. (3.26)
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Clearly limε↓0
∫ s
a+ε

(Bpu) |u|p−2 u =
∫ s
a

(Bpu) |u|p−2 u ∈ C.

We next consider the integrands on the right hand side of (3.26). If m 6= 0, then we

choose α ∈ (0, 1) such that
∣∣∣1− 2

p

∣∣∣ ≤ α cos θ, set ε′ = 1
4

(1− α) p and β = M2
m

4 ε′
+ ‖w‖∞. If

m = 0 then we set β = ‖w‖∞. Then it follows as in the proof of Proposition 3.1 Step 1

that

Re

(
p

2
c |u|p−2 |u′|2 +

p− 2

2
c |u|p−4 u2 (u′)2 +mu′ |u|p−2 u+ w |u|p

)
≥ −β |u|p.

Therefore

lim
ε↓0

∫ s

a+ε

Re

(
p

2
c |u|p−2 |u′|2 +

p− 2

2
c |u|p−4 u2 (u′)2 +mu′ |u|p−2 u+ (w + β) |u|p

)
=

∫ s

a

Re

(
p

2
c |u|p−2 |u′|2 +

p− 2

2
c |u|p−4 u2 (u′)2 +mu′ |u|p−2 u+ (w + β) |u|p

)
∈ [0,∞].

By a similar argument used in (3.8) we obtain from (3.26) that limx↓a Re (c u′ |u|p−2 u)(x) =

0. Similarly limx↑b Re (c u′ |u|p−2 u)(x) = 0 if b ∈ Er. Arguing as at the end of the proof of

Lemma 3.10 gives limx→∞Re (c u′ |u|p−2 u)(x) = 0 if (a,∞) ⊂ P . Taking limits in (3.26)

we have

Re

∫
Ik

(Bpu) |u|p−2 u =

∫
Ik

Re

(
p

2
c |u|p−2 |u′|2 +

p− 2

2
c |u|p−4 u2 (u′)2

)
+

∫
Ik

(
mu′ |u|p−2 u+ w |u|p

)
≥ −β

∫
Ik

|u|p

for all k ∈ K. Summing over all k gives the lemma.

Proposition 3.13. Let p ∈ (1,∞). Suppose

(I)
∣∣∣1− 2

p

∣∣∣ < cos θ or

(II)
∣∣∣1− 2

p

∣∣∣ ≤ cos θ and m = 0.

Let S(p) be the C0-semigroup on Lp(R) which is consistent with S. Then −Bp is the

generator of S(p).

Proof. Recall that −Ap is the generator of S(p). We first show that D(Ap) ⊂ D(Bp). Let

u ∈ D(Ap) ∩D(A). Then u ∈ L2(R) ∩ Lp(R) and

−D(cDu) +mDu+ w u = Au = Apu ∈ Lp(R).

Let J b P be an open interval. Since Re c is strictly positive on J , it follows from elliptic

regularity that u|J ∈ W 2,p(R) and cDu ∈ W 1,p
loc (P). Since u ∈ D(A), we know that

(cDu)|P ∈ W 1,2
0 (P). Hence limx↓a(cDu)(x) = 0 for all a ∈ El and limx↑b(cDu)(x) = 0 for

all b ∈ Er. Therefore D(Ap) ∩D(A) ⊂ D(Bp) and Ap|D(Ap)∩D(A) ⊂ Bp. Since Bp is closed

and D(Ap) ∩D(A) is a core for Ap, we obtain that Ap ⊂ Bp.

Finally since Ap is the generator of a quasi-contraction C0-semigroup, Ap is m-quasi-

accretive by the Lumer-Phillips theorem. But Bp is quasi-accretive by Lemma 3.12. There-

fore Ap = Bp as required.
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The next two results for p = 1 are of independent interests, which are not essential to

the core characterisation for A1 in Section 3.6.

Lemma 3.14. Suppose c ∈ W 1,∞(R,R) and m = 0. Then B1 is quasi-accretive.

Proof. We may assume without loss of generality that w = 0. We will show that there exists

a β > 0 such that Re
∫

(B1u)u |u|−1 1[u6=0] ≥ −β ‖u‖1 for all u ∈ D(B1). Let u ∈ D(B1).

Let a ∈ El, s ∈ (a,∞) and suppose that (a, s] ⊂ P . Let ε ∈ (0, s − a). Note that Re c is

strictly positive on (a + ε, s). Therefore elliptic regularity gives u|(a+ε,s) ∈ W 2,1(a + ε, s).

It follows from Proposition 2.33 that

Re

∫ s

a+ε

(B1u)u |u|−1 1[u6=0] = L(a+ ε, s) +

∫ s

a+ε

c
(
Im (u′ u)

)2 |u|−3 1[u6=0]

− cRe
(
u′ u |u|−1

)
|sa+ε, (3.27)

where

L(a+ ε, s) = lim
δ→0

∫ s

a+ε

c |u′|2 δ2 (|u|2 + δ2)−3/2 ∈ [0,∞)

and we use the convention that (u′ u |u|−1)(x) = 0 for all x ∈ R such that u(x) = 0. Clearly

limε↓0
∫ s
a+ε

(B1u)u |u|−1 1[u6=0] =
∫ s
a

(B1u)u |u|−1 1[u6=0] ∈ C. Furthermore

lim
ε↓0

∫ s

a+ε

c
(
Im (u′ u)

)2 |u|−3 1[u6=0] =

∫ s

a

c
(
Im (u′ u)

)2 |u|−3 1[u6=0] ∈ [0,∞].

Note that 0 ≤
∣∣(cRe (u′ u |u|−1)

)
(x)
∣∣ ≤ |(c u′)(x)| for all x ∈ (a, s). It follows that

limx↓a
(
cRe (u′ u |u|−1)

)
(x) = 0 since limx↓a(c u

′)(x) = 0 by hypothesis. Hence we deduce

from (3.27) that limε↓0 L(a+ ε, s) exists in [0,∞].

Similarly if b ∈ Er then limx↑b
(
cRe (u′ u |u|−1)

)
(x) = 0 and limε↓0 L(s, b − ε) exists in

[0,∞].

Hence

Re

∫
Ik

(B1u)u |u|−1 1[u6=0] = lim
ε↓0

(
L(ak+ε, s)+L(s, bk−ε)

)
+

∫
Ik

c
(
Im (u′ u)

)2 |u|−3 1[u6=0] ≥ 0

for all k ∈ K with Ik = (ak, bk) bounded and s ∈ Ik.
Now let a ∈ El and suppose (a,∞) ⊂ P . Without loss of generality we may assume

that a = −1. Let s ∈ (0,∞). Let τ ∈ C∞c (R,R) be such that supp τ ⊂ (a,∞) and

τ |[0,s+1] = 1|[0,s+1]. For all n ∈ N define τn ∈ C∞c (R) by

τn(x) =

{
τ(x) if x ∈ (−∞, s),
τ(n−1 x) if x ∈ [s,∞).

Then supp τn ⊂ (a,∞). Let un = u τn for all n ∈ N. Since u|(a,∞) ∈ W 2,1
loc (a,∞), we deduce

that un ∈ W 2,1(R) ⊂ D(B1) for all n ∈ N. In particular un|[s,∞) ∈ W 2,1(s,∞) for all n ∈ N.

Moreover, un(n(s+ 1)) = 0 for all n ∈ N. It follows from Proposition 2.33 that we have

Re

∫ ∞
s

(B1un)un |un|−1 1[un 6=0] = Pn +
(
cRe (u′n un |un|−1)

)
(s), (3.28)
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for all n ∈ N, where

Pn = L(s, n(s+ 1)) +

∫ ∞
s

c
(
Im (u′n un)

)2 |un|−3 1[u6=0]

and

L(s, n(s+ 1)) = lim
δ→0

∫ n(s+1)

s

c |u′n|2 δ2 (|un|2 + δ2)−3/2 ∈ [0,∞)

and we use the convention that (u′n un |un|−1)(x) = 0 for all x ∈ R such that un(x) = 0.

Since limx↓a(c u
′)(x) = 0, we have

|(c u′)(x)| =
∣∣ ∫ x

a

(c u′)′
∣∣ ≤ ∫ x

a

|(c u′)′| ≤
∫ ∞
a

|(c u′)′| <∞

for all x ∈ (a,∞), as (c u′)′ ∈ L1(a,∞) by hypothesis. Therefore∫ ∞
s

|(c u′n)′ − (c u′)′| =
∫ ∞
s

|(c u′)′ (τn − 1) + 2 c u′ τ ′n + c′ u τ ′n + c u τ ′′n |

≤
∫ ∞
ns

|(c u′)′|+ 2

n
‖τ ′‖∞

∫ ∞
a

|(c u′)′|+ 1

n
‖τ ′‖∞ ‖c′‖∞

∫ ∞
a

|u|

+
1

n2
‖τ ′′‖∞ ‖c‖∞

∫ ∞
s

|u|

for all n ∈ N. Hence limn→∞(c u′n)′|(s,∞) = (c u′)′|(s,∞) in L1(s,∞). Consequently

lim
n→∞

∫ ∞
s

(B1un)un |un|−1 1[un 6=0] = lim
n→∞

∫ ∞
s

(B1un)u |u|−1 1[u6=0] 1[τn 6=0]

=

∫ ∞
s

(B1u)u |u|−1 1[u6=0].

Also

|(c u′n)(s)− (c u′)(s)| = |(c u)(s) τ ′n(s)| ≤ 1

n
‖τ ′‖∞ |(c u)(s)|.

This implies

lim
n→∞

(
c u′n un |un|−1

)
(s) = lim

n→∞

(
c u′n u |u|−1

)
(s) =

(
c u′ u |u|−1

)
(s).

It now follows from (3.28) that P = limn→∞ Pn exists in [0,∞). Hence

Re

∫ ∞
s

(B1u)u |u|−1 1[u6=0] = P +
(
cRe (u′ u |u|−1)

)
(s). (3.29)

By similar arguments as used before in the case of bounded intervals of P , we obtain that

limε↓0 L(a+ ε, s) ∈ [0,∞] and

Re

∫ s

a

(B1u)u |u|−1 1[u6=0] = lim
ε↓0

L(a+ ε, s) +

∫ s

a

c
(
Im (u′ u)

)2 |u|−3 1[u6=0]

−
(
cRe (u′ u |u|−1)

)
(s). (3.30)
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Adding (3.29) and (3.30) together gives

Re

∫ ∞
a

(B1u)u |u|−1 1[u6=0] = P + lim
ε↓0

L(a+ ε, s) +

∫ s

a

c
(
Im (u′ u)

)2 |u|−3 1[u6=0] ≥ 0.

Similar result holds for the interval (−∞, b) if (−∞, b) ⊂ P , where b ∈ Er. Thus we have

proved that

Re

∫
Ik

(B1u)u |u|−1 1[u6=0] ≥ 0

for all intervals Ik ⊂ P . Summing over all k gives the lemma.

Proposition 3.15. Suppose c ∈ W 1,∞(R,R) and m = 0. Let S(1) be the C0-semigroup on

L1(R) which is consistent with S. Then −B1 is the generator of S(1).

Proof. The proof is the same as that of Proposition 3.13.

We finish this section with some regularity properties of the operator Ap. For that we

need some more definitions. Define the function W : P −→ C by

W (x) =

∫ mk

x

1

H c

if x ∈ Ik and k ∈ K. Recall that we defined the function Z : R −→ R by

Z(x) =

{ ∫ mk
x

1
Re c

if x ∈ Ik and k ∈ K,
∞ if x ∈ N .

For convenience, in what follows we will write D(Ap) ⊂ C[a, b] to mean that u|(a,b) ∈
C[a, b] for all u ∈ D(Ap), where p ∈ (1,∞) and a, b ∈ R with a < b.

Lemma 3.16. Let p ∈ (1,∞). Suppose

(I)
∣∣∣1− 2

p

∣∣∣ < cos θ or

(II)
∣∣∣1− 2

p

∣∣∣ ≤ cos θ and m = 0.

Let −Ap be the generator of the C0-semigroup S(p) on Lp(R) which is consistent with S.

Let q be the dual exponent of p and let k ∈ K.

(a) If ak ∈ R and Z|(ak,mk) ∈ Lq(ak,mk), then D(Ap) ⊂ C[ak,mk].

(b) If bk ∈ R and Z|(mk,bk) ∈ Lq(mk, bk), then D(Ap) ⊂ C[mk, bk].

(c) If Ik is bounded and Z|Ik ∈ Lq(Ik), then

u(bk)− u(ak) =

∫
Ik

W · (−Apu+ w u) ·H

and

|u(bk)− u(x)| ≤ 3 e
∫
Ik
|mc | (1 + ‖w‖∞) ‖Z|Ik‖Lq(Ik) ‖u1Ik‖D(Ap)

for all u ∈ D(Ap) and x ∈ Ik.
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Proof. The proof is inspired by the proof of [CMP98, Theorem 3.3].

(a) Let u ∈ D(Ap) = D(Bp). Clearly u is continuous on P since u ∈ W 1,p
loc (P). Let

f = −Apu + w u. Then f = (c u′)′ − mu′ on (ak, bk). Then f ∈ Lp(ak, bk). Moreover,

limx↓ak(c u
′)(x) = 0. So if t ∈ (ak,mk] then

H(t) (c u′)(t) =

∫ t

ak

f H.

Therefore if x ∈ (ak,mk] then

u(mk)− u(x) =

∫ mk

x

1

H(t) c(t)

∫ t

ak

f(s)H(s) ds dt

= W (x)

∫ x

ak

f H +

∫ mk

x

W f H, (3.31)

where we used integration by parts. But |
∫ x
ak
f H| ≤ e

∫mk
ak
|mc | ‖f‖p (x − ak)

1/q for all

x ∈ (ak,mk]. Also limx↓ak(x − ak)
1/qW (x) = 0 since Z|(ak,mk] is decreasing, Z|(ak,mk) ∈

Lq(ak,mk) and |W (x)| ≤ e
∫mk
ak
|mc | |Z(x)| for all x ∈ (ak,mk]. So limx↓akW (x)

∫ x
ak
f H = 0.

Obviously limx↓ak
∫ mk
x

W f H exists. So limx↓ak u(x) exists and u has a continuous repre-

sentative on [ak,mk]. Note that

u(mk)− u(ak) =

∫ mk

ak

W f H. (3.32)

This proves Statement (a).

(b) The proof is similar to that of (a) and we also have

u(bk)− u(mk) =

∫ bk

mk

W f H. (3.33)

(c) Now let k ∈ K and suppose Ik is bounded. The first part of (c) follows by adding

(3.32) and (3.33). Also (3.31) and (3.33) together give

u(bk)− u(x) = W (x)

∫ x

ak

f H +

∫ bk

x

W f H

for all x ∈ (ak,mk]. Since Ik is bounded, we have the estimate

e
−

∫mk
ak
|mc | ≤ |H(x)| ≤ e

∫mk
ak
|mc |

for all x ∈ Ik. With this in mind we obtain

|u(bk)− u(x)| ≤ e
∫
Ik
|mc |
(
|Z(x)| (x− ak)1/q + ‖Z|Ik‖Lq(Ik)

)
‖f‖Lp(Ik)

for all x ∈ (ak,mk]. Since Z is positive and decreasing on (ak,mk), we deduce that

‖Z|Ik‖
q
Lq(Ik) ≥

∫ x

(ak+x)/2

|Z(t)|q dt ≥
∫ x

(ak+x)/2

|Z(x)|q dt =
x− ak

2
|Z(x)|q.
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Hence Z(x) (x− ak)1/q ≤ q
√

2 ‖Z|Ik‖Lq(Ik). Also

‖f‖Lp(Ik) = ‖Apu− w u‖Lp(Ik) ≤ (1 + ‖w‖∞) ‖u1Ik‖D(Ap).

Therefore

|u(bk)− u(x)| ≤ (1 +
q
√

2) e
∫
Ik
|mc | (1 + ‖w‖∞) ‖Z|Ik‖Lq(Ik) ‖u1Ik‖D(Ap).

The proof is similar if x ∈ [mk, bk).

3.5 Core characterisation for p ∈ (1,∞)

Throughout this section we fix p ∈ (1,∞) such that

(I)
∣∣∣1− 2

p

∣∣∣ < cos θ or

(II)
∣∣∣1− 2

p

∣∣∣ ≤ cos θ and m = 0.

Let −Ap be the generator of the C0-semigroup S(p) on Lp(R) which is consistent with S.

Let q be the dual exponent of p. We will devote this section to proving Theorem 3.3 which

gives a characterisation for when the space of test functions C∞c (R) is a core for Ap. We

first consider the ‘only if’ part of the theorem. There are two cases to consider: whether

or not the point in E is a cluster point of E. These are the content of the following two

lemmas.

Lemma 3.17. Let x0 ∈ El ∩ Er. Suppose there exists a δ > 0 such that Z|(x0−δ,x0+δ) ∈
Lq(x0 − δ, x0 + δ). Then C∞c (R) is not a core for Ap.

Proof. Since x0 ∈ El ∩ Er, there are k, l ∈ K such that x0 = bk = al. Then Z|(mk,bk) ∈
Lq(mk, bk) and Z|(al,ml) ∈ Lq(al,ml). By Lemma 3.16 and the closed graph theorem, there

exists an M > 0 such that D(Ap) ⊂ C[mk, bk], D(Ap) ⊂ C[al,ml] and

‖u‖C[mk,bk] ≤M ‖u‖D(Ap) and ‖u‖C[al,ml] ≤M ‖u‖D(Ap)

for all u ∈ D(Ap). There exists a χ ∈ C∞c (R) such that χ|[mk,ml] = (2M + 1)1. Then

u = χ1[x0,∞) ∈ D(Ap). Suppose there exists a v ∈ C∞c (R) such that ‖u − v‖D(Ap) ≤ 1.

Then |v(x)| = |u(x) − v(x)| ≤ M ‖u − v‖D(Ap) ≤ M for all x ∈ (mk, bk). So |v(x0)| ≤ M .

Similarly |v(x)−(2M+1)| = |u(x)−v(x)| ≤M for all x ∈ (al,ml). Hence |v(x0)| ≥M+1.

This is a contradiction.

Lemma 3.18. Let x0 ∈ E. Suppose there exists a δ0 > 0 such that Z|(x0−δ0,x0+δ0) ∈
Lq(x0 − δ0, x0 + δ0). Furthermore suppose that x0 is a cluster point of E. Then C∞c (R) is

not a core for Ap.

Proof. Without loss of generality we may assume that [x0 − δ0, x0) ⊂ P , x0 + δ0 ∈ Er and∫
(x0−δ0,x0+δ0)∩P

∣∣m
c

∣∣ <∞. Note that

∞|(x0, x0 + δ0) ∩N| ≤
∫ x0+δ0

x0

|Z|q <∞.
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Therefore we must have |(x0, x0 + δ0) ∩N| = 0.

It follows from Lemma 3.16(b) that D(Ap) ⊂ C[x0− δ0, x0] and there exists an M1 > 0

such that ‖u‖C[x0−δ0,x0] ≤M1 ‖u‖D(Ap) for all u ∈ D(Ap). Let

M2 = e
∫ x0+δ0
x0
|mc | (1 + ‖w‖∞) ‖Z|(x0,x0+δ0)‖Lq(x0,x0+δ0).

There exists a χ ∈ C∞c (R) such that χ|(x0−δ0,x0+δ0) = 31. Set u = χ1(−∞,x0). Then

u ∈ D(Ap). Choose ε = min(M−1
1 , (4M2)−1, p

√
δ0). Suppose there exists a test function

v ∈ C∞c (R) such that ‖u− v‖D(Ap) < ε. Then |u(x)− v(x)| ≤ M1 ‖u− v‖D(Ap) ≤ 1 for all

x ∈ (x0 − δ0, x0), so |v(x0)| ≥ 2.

Let δ ∈ (0, δ0] and suppose that x0 + δ ∈ Er. We use Lemma 3.16(c) to deduce that

v(x0 + δ)− v(x0) =

∫
(x0,x0+δ)

v′ =

∫
(x0,x0+δ)∩P

v′ =
∑
k∈K

Ik⊂(x0,x0+δ)

∫
Ik

v′

=
∑
k∈K

Ik⊂(x0,x0+δ)

(v(bk)− v(ak)) =
∑
k∈K

Ik⊂(x0,x0+δ)

∫
Ik

W · (−Apv + w v) ·H.

Nevertheless we have∣∣∣ ∫
Ik

W · (−Apv + w v) ·H
∣∣∣ ≤ e

∫
Ik
|mc |

∫
Ik

|Z| |Apv − w v| ≤ e
∫ x0+δ0
x0
|mc |

∫
Ik

|Z| |Apv − w v|

for all k ∈ K such that Ik ⊂ (x0, x0 + δ0). Hence

|v(x0 + δ)− v(x0)| ≤
∑
k∈K

Ik⊂(x0,x0+δ)

∣∣∣ ∫
Ik

W · (−Apv + w v) ·H
∣∣∣

≤
∑
k∈K

Ik⊂(x0,x0+δ)

e
∫ x0+δ0
x0
|mc |

∫
Ik

|Z| |Apv − w v|

= e
∫ x0+δ0
x0
|mc |

∫
(x0,x0+δ0)

|Z| |Apv − w v| ≤M2 ‖v 1(x0,x0+δ0)‖D(Ap).

So |v(bk) − v(x0)| ≤ M2 ‖v 1(x0,x0+δ0)‖D(Ap) for all k ∈ K such that Ik ⊂ (x0, x0 + δ0). If

k ∈ K and Ik ⊂ (x0, x0 + δ0), then it follows from Lemma 3.16(c) that |v(bk) − v(x)| ≤
3M2 ‖v 1(x0,x0+δ0)‖D(Ap) for all x ∈ Ik. Therefore |v(x0)− v(x)| ≤ 4M2 ‖v 1(x0,x0+δ0)‖D(Ap)

for all x ∈ (x0, x0 + δ0) ∩ P . But (x0, x0 + δ0) ∩ P is dense in (x0, x0 + δ0) because

|(x0, x0 + δ0)∩N| = 0. So |v(x0)− v(x)| ≤ 4M2 ‖v 1(x0,x0+δ0)‖D(Ap) for all x ∈ (x0, x0 + δ0).

Next

‖v 1(x0,x0+δ0)‖D(Ap) = ‖(u− v)1(x0,x0+δ0)‖D(Ap) ≤ ‖u− v‖D(Ap) ≤ (4M2)−1.

Since |v(x0)| ≥ 2, this implies that |v(x)| ≥ 1 for all x ∈ (x0, x0 + δ0). In particular∫
(x0,x0+δ0)

|v|p ≥ δ0.

On the other hand we have∫
(x0,x0+δ0)

|v|p =

∫
(x0,x0+δ0)

|u− v|p ≤ ‖u− v‖pD(Ap) < εp ≤ δ0.

This is a contradiction.
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We next turn to the ‘if’ part of Theorem 3.3. Since −Ap is the generator of a quasi-

contraction C0-semigroup, there exists a β > 0 such that (β I + Ap)(D(Ap)) = Lp(R).

Without loss of generality we will assume from now on that β = 1 and that −Ap is the

generator of a contraction C0-semigroup. It follows that the space C∞c (R) is a core for Ap
if and only if (I + Ap)(C

∞
c (R)) is dense in Lp(R). In other words, the space C∞c (R) is a

core for Ap if and only if for all g ∈ Lq(R) with
∫
R g (I + Ap)u = 0 for all u ∈ C∞c (R) it

follows that g = 0.

We start with a lemma.

Lemma 3.19. Let g ∈ Lq(R) and suppose that
∫
R g (I + Ap)u = 0 for all u ∈ C∞c (R).

Then we have the following.

(a) g ∈ W 2,q
loc (P) and

−g 1P = −D(cDg)−D(mg) + w g

= −D(cDg)−mDg + (w −m′) g.

(b) Let k ∈ K and s ∈ Ik. If ak ∈ R then (cDg + mg)|(ak,s) ∈ W 1,q(ak, s). If bk ∈ R
then (cDg +mg)|(s,bk) ∈ W 1,q(s, bk).

(c) If k ∈ K, then (cDg)|Ik extends to a continuous function on Ik.

For all x0 ∈ El and y0 ∈ Er define

Lx0 = lim
x↓x0

(cDg)(x) and Ry0 = lim
y↑y0

(cDg)(y).

Moreover, set L−∞ = 0 and R∞ = 0. Then the following hold.

(d) Let u ∈ W 2,p
c (R). Then with the convention that u(−∞) = u(∞) = 0 the series∑

k∈K

(
Rbk u(bk)− Lak u(ak)

)
is absolutely convergent and

∑
k∈K

(
Rbk u(bk)− Lak u(ak)

)
= −

∫
N

(1 + w) g u.

(e) Let x0 ∈ Er and x1 ∈ El with x0 < x1. Then

|Rx0 − Lx1| ≤ 2 (1 + ‖w‖∞) ‖g‖q (x1 − x0)1/p.

(f) Let k ∈ K and suppose that Ik is bounded. Then

|Lak − (cDg)(x)| ≤ |(mg)(x)|+ (1 + ‖w‖∞) ‖g‖Lq(Ik) (x− ak)1/p

and

|Rbk − (cDg)(x)| ≤ |(mg)(x)|+ (1 + ‖w‖∞) ‖g‖Lq(Ik) (bk − x)1/p

for all x ∈ Ik.
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(g) Let x0 ∈ Er and suppose that x0 is a cluster point of E. Then

Rx0 = lim
x↓x0
x∈El

Lx = lim
x↓x0
x∈Er

Rx.

(h) Let x0 ∈ Er and suppose that x0 is a cluster point of E. Then there exists a δ > 0

such that (cDg)|(x0,x0+δ) ∈ Lq(x0, x0 + δ).

(i) Let x0 ∈ E. Then limx→x0(mg)(x) = 0.

Proof. (a) Since
∫
R g (I + Ap)u = 0 for all u ∈ C∞c (P) and Re c is strictly positive on

compact subsets of P , it follows from elliptic regularity that g ∈ W 2,q
loc (P). Also

−
∫
P
g u =

∫
R
g Apu =

∫
P
g′ c u′ + g mu′ + g w u

for all u ∈ C∞c (P). Therefore

−g 1P = −D(cDg)−D(mg) + w g

= −D(cDg)−mDg + (w −m′) g,

where we used that m ∈ W 1,∞(R).

(b) Let k ∈ K and s ∈ Ik. Suppose ak ∈ R. Let x ∈ (ak, s). Let ε ∈ (0, s− ak). Then

(cDg +mg)
∣∣x
ak+ε

=

∫ x

ak+ε

(cDg +mg)′. (3.34)

Statement (a) gives (cDg+mg)′|(ak,s) ∈ Lq(ak, s) ⊂ L1(ak, s). Therefore limε↓0
∫ x
ak+ε

(cDg+

mg)′ exists in C. It follows that L = limε↓0(cDg +mg)(ak + ε) exists in C. Taking limits

when ε ↓ 0 on both sides of (3.34) gives

(cDg +mg)(x) = L+

∫ x

ak

(cDg +mg)′.

Therefore

|(cDg +mg)(x)| ≤ |L|+ ‖(cDg +mg)′‖Lq(ak,s) (s− ak)1/p.

Hence cDg+mg is bounded on (ak, s), which implies (cDg+mg)|(ak,s) ∈ Lq(ak, s). Recall

that (cDg+mg)′|(ak,s) ∈ Lq(ak, s) by Statement (a). These two together justify the claim.

Similarly we derive that (cDg +mg)|(s,bk) ∈ W 1,q(s, bk) if bk ∈ R.

(c) Let k ∈ K. Then (cDg)|Ik ∈ W
1,q
loc (Ik) ⊂ C(Ik). If x ∈ Ik then

[H−1 cDg]mkx =

∫ mk

x

(
D(cDg) +mDg

)
H−1,

where H is defined by (3.24). Since H|Ik extends to a continuous function H̃ on Ik and

H̃(x) 6= 0 for all x ∈ Ik, we have (cDg)|Ik extends to a continuous function on Ik.

(d) Since
∫
R g (I + Ap)u = 0 for all u ∈ C∞c (R), it follows by density and continuity

that
∫
R g (I + Ap)u = 0 for all u ∈ W 2,p

c (R).
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Let k ∈ K and a′, b′ ∈ R be such that ak < a′ < b′ < bk. Then

−
∫ b′

a′
g ·Apv =

∫ b′

a′
g (c v′)′ −mv′ − w u = [c g v′]b

′

a′ −
∫ b′

a′

(
g′ c v′ + g mv′ + g w v

)
(3.35)

for all v ∈ W 2,p
c (R). Suppose ak ∈ R. Since there exists a v ∈ C∞c (R) such that

v′|(ak−1,ak+1) = 1, it follows that L = lima′↓ak(c g)(a′) exists. If L 6= 0 then

∞ =

∫ mk

ak

|c g|q

|c|q
≤
∫
R
|g|q <∞,

which is a contradiction. Hence lima′↓ak(c g)(a′) = 0. Similarly limb′↑bk(c g)(b′) = 0 if

bk ∈ R. By taking the limits to the endpoints of the interval Ik on both sides of (3.35) and

noticing that v has compact support, we have

−
∫
Ik

g · Apv = −
∫
Ik

(
c g′ v′ +mg v′ + w g v

)
(3.36)

for all v ∈ W 2,p
c (R). Now let u ∈ W 2,p

c (R) and replace v with u in (3.36) to obtain

−
∫
Ik

g · Apu = −
∫
Ik

(
c g′ u′ +mg u′ + w g u

)
.

Then ∫
R
g u = −

∫
R
g · Apu = −

∑
k∈K

∫
Ik

g · Apu−
∫
N
g · Apu

= −
∑
k∈K

∫
Ik

(
c g′ u′ +mg u′ + w g u

)
−
∫
N
w g u. (3.37)

Note that the series in (3.37) is absolutely convergent.

On the other hand∫
R
g u =

∫
N
g u+

∫
P
g u =

∫
N
g u+

∑
k∈K

∫
Ik

g u (3.38)

where the series is again absolutely convergent. Let k ∈ K and a′, b′ ∈ R be such that

ak < a′ < b′ < bk. Then∫ b′

a′
g u =

∫ b′

a′

(
(c g′)′ + (mg)′ − w g

)
u

= [c g′ u+mg u]b
′

a′ −
∫ b′

a′

(
c g′ u′ +mg u′ + w g u

)
. (3.39)

Let s ∈ Ik. Suppose ak ∈ R. It follows from Statement (b) that (c g′ + mg)|(ak,s) ∈
W 1,q(ak, s) ⊂ C1/p[ak, s]. Thus lima′↓ak(c g

′ + mg)(a′) exists in C. But lima′↓ak(c g
′)(a′)

exists in C by Statement (c). Hence L′ = lima′↓ak(mg)(a′) exists in C. Our next aim is to

show that L′ = 0. Indeed, suppose that L′ 6= 0. We consider three cases.

Case 1: Suppose there exists a δ > 0 such that (ak, ak + δ) ⊂ (ak, s) and m(x) = 0 for all
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x ∈ (ak, ak + δ). Then clearly L′ = 0, which gives a contradiction.

Case 2: Suppose there exists a δ > 0 such that (ak, ak + δ) ⊂ (ak, s) and m(x) 6= 0 for all

x ∈ (ak, ak + δ). Then

∞ =

∫ ak+δ

ak

|mg|q

|m|q
≤
∫
R
|g|q <∞,

which is a contradiction.

Case 3: Suppose for all δ > 0 there exist z1, z2 ∈ (ak, ak + δ) such that m(z1) = 0 and

m(z2) 6= 0. Let a′ ∈ (ak, s). Note that m is continuous on R. Therefore there exist a

z ∈ (ak, a
′) and a δ0 > 0 such that [z, z + δ0] ⊂ (ak, a

′), m(z) = 0 and m(x) 6= 0 for all

x ∈ (z, z + δ0]. It follows as in Case 2 that (mg)(z) = 0. Furthermore we have

|(mg)(a′)| =
∣∣∣ ∫ a′

z

(mg)′
∣∣∣ =

∣∣∣ ∫ a′

z

(
m′ g +mg′

)∣∣∣
≤ ‖m′‖∞ ‖g‖Lq(R) (a′ − z)1/p + ‖cDg‖L∞(ak,s)

∫ a′

z

∣∣∣m
c

∣∣∣
≤ ‖m′‖∞ ‖g‖Lq(R) (a′ − ak)1/p + ‖cDg‖L∞(ak,s)

∫ a′

ak

∣∣∣m
c

∣∣∣.
It follows from (3.21) that

lim
a′↓ak

(mg)(a′) = 0. (3.40)

Similarly

lim
b′↑bk

(mg)(b′) = 0 (3.41)

if bk ∈ R.

Now taking the limits to the endpoints of the interval Ik on both sides of (3.39), using

Statement (b) and again noticing that u has compact support, we have∫
Ik

g u = Rbk u(bk)− Lak u(ak)−
∫
Ik

(
(c g′ +mg)u′ + w g u

)
.

Substituting this into (3.38) yields∫
R
g u =

∫
N
g u+

∑
k∈K

(
Rbk u(bk)− Lak u(ak)

)
−
∑
k∈K

∫
Ik

(
c g′ u′ +mg u′ + w g u

)
. (3.42)

Statement (d) now follows by comparing (3.37) and (3.42).

(e) Let k ∈ K and suppose that Ik is bounded. Let a′, b′ ∈ R be such that ak < a′ <

b′ < bk. Then

(c g′)(b′)− (c g′)(a′) =

∫ b′

a′
(c g′)′ =

∫ b′

a′
g − (mg)′ + w g

= −[mg]b
′

a′ +

∫ b′

a′
(1 + w) g. (3.43)
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By taking limits together with (3.40) and (3.41) we obtain

Rbk − Lak =

∫
Ik

(1 + w) g. (3.44)

Now let k0, k1 ∈ K be such that x0 = bk0 and x1 = ak1 . Let n ∈ N. Then there exists a

u ∈ C∞c (R) such that 0 ≤ u ≤ 1, suppu ⊂
(

(x0 − 1
n
) ∨ ak0 , (x1 + 1

n
) ∧ bk1

)
and u(x) = 1

for all x ∈ [x0, x1]. Define h : R −→ R by

h(x) =

{
1 if there exists a k ∈ K such that x ∈ Ik ⊂ suppu,

0 otherwise.

Then supph ⊂ [x0, x1]. Moreover, it follows from Statement (d) and (3.44) that

−
∫
N

(1 + w) g u = Rx0 − Lx1 +

∫
R
(1 + w) g h.

This implies

|Rx0 − Lx1| ≤ (1 + ‖w‖∞)
(∫

R
|g u|+

∫
R
|g h|

)
≤ (1 + ‖w‖∞) ‖g‖Lq(R) (‖u‖Lp(R) + ‖h‖Lp(R))

≤ 2 (1 + ‖w‖∞) ‖g‖Lq(R)

(
x1 − x0 +

2

n

)1/p

.

This is for all n ∈ N. Therefore Statement (e) follows.

(f) For the first inequality let b′ = x in (3.43) and take the limit a′ ↓ ak to obtain

(c g′)(x)− Lak = −(mg)(x) +

∫ x

ak

(1 + w) g. (3.45)

Thus

|Lak − (c g′)(x)| ≤ |(mg)(x)|+ (1 + ‖w‖∞) ‖g‖Lq(Ik) (x− ak)1/p.

The second inequality is proved similarly.

(g) This follows from Statement (e).

(h) By Statement (g) there exists a δ > 0 such that |Rx0 − Lx| ≤ 1 for all x ∈
El ∩ (x0, x0 + δ). Without loss of generality we may assume that x0 + δ ∈ Er. Now let

x ∈ P ∩ (x0, x0 + δ). There exists a k ∈ K such that x ∈ Ik. Then Ik ⊂ (x0, x0 + δ) and

therefore ak ∈ El ∩ (x0, x0 + δ). So |Rx0 − Lak | ≤ 1. Next, by Statement (f) we estimate

|Lak − (cDg)(x)| ≤ |(mg)(x)|+ (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ.

It follows that

|(cDg)(x)| ≤ |(mg)(x)|+ (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ + |Rx0|+ 1.

Obviously if x ∈ N ∩ (x0, x0 + δ), then (cDg)(x) = 0. Since |mg| ≤ ‖m‖∞ |g| ∈ Lq(R), we

have cDg ∈ Lq(x0, x0 + δ) as claimed.
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(i) By (3.40) and (3.41) we have that limx↓ak(mg)(x) = 0 for all k ∈ K with ak ∈ R
and limx↑bk(mg)(x) = 0 for all k ∈ K with bk ∈ R. Therefore we may assume without loss

of generality that x0 ∈ Er and we will show that limx↓x0(mg)(x) = 0.

If x0 is not a cluster point of E, then there exists a δ > 0 such that (x0, x0 + δ) ⊂ N .

Since (mg)(x) = 0 for all x ∈ N , we clearly have limx↓x0(mg)(x) = 0.

Now suppose x0 is a cluster point of E. By (3.21) there exists a δ > 0 such that∫
(x0,x0+δ)

∣∣m
c

∣∣ <∞. If x ∈ N then again (mg)(x) = 0. Thus we only need to consider the

case x ∈ (x0, x0 + δ) ∩ P . Then there exists a k ∈ K such that x ∈ Ik ∩ (x0, x0 + δ). It

follows from (3.45) that

|(cDg +mg)(x)| ≤ |Lak |+ (1 + ‖w‖∞) ‖g‖Lq(R) (x− ak)1/p

≤ |Rx0 |+ 3 (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ,

where we used Statement (e) in the second step. Let M0 = |Rx0|+3 (1+‖w‖∞) ‖g‖Lq(R)
p
√
δ.

Then M0 is independent with k and we have

|(mg)(x)| =
∣∣∣ ∫ x

ak

(mg)′
∣∣∣ =

∣∣∣ ∫ x

ak

(m′ g +mg′)
∣∣∣

≤
∫ x

ak

∣∣∣∣(m′ − m2

c

)
g

∣∣∣∣+

∫ x

ak

∣∣∣m
c

∣∣∣ |c g′ +mg|

≤ (‖m′‖∞ +Mm) ‖g‖Lq(R) (x− ak)1/p +M0

∫ x

ak

∣∣∣m
c

∣∣∣
≤ (‖m′‖∞ +Mm) ‖g‖Lq(R) (x− x0)1/p +M0

∫
(x0,x)∩P

∣∣∣m
c

∣∣∣.
It now follows from (3.21) that limx↓x0(mg)(x) = 0 as required.

Our next aim is to prove that if
∫

(x−δ,x+δ)
|Z|q =∞ for all x ∈ E and δ > 0, and if g is

as in Lemma 3.19, then Lx = 0 for all x ∈ El and Rx = 0 for all x ∈ Er. Again we have to

split the proof into several cases, which depend on whether a point in E is a cluster point

of E or not.

Lemma 3.20. Adopt the assumptions and notation as in Lemma 3.19. Then the following

are valid.

(a) If x0 ∈ El and Z|(x0,x0+δ) 6∈ Lq(x0, x0 + δ) for all δ > 0, then Lx0 = 0.

(b) If x0 ∈ Er and Z|(x0−δ,x0) 6∈ Lq(x0 − δ, x0) for all δ > 0, then Rx0 = 0.

Proof. The proof is inspired by the proof of [CMP98, Proposition 3.5]. We only prove

Statement (a). Suppose that Lx0 6= 0. Replacing g by λ g for some λ ∈ C if necessary, we

may assume without loss of generality that Lx0 = 2 + tan θ. There exists a δ > 0 such that

(x0, x0 + δ] ⊂ P and
∣∣(c g′)(x) − (2 + tan θ)

∣∣ < 1 for all x ∈ (x0, x0 + δ). Set s = x0 + δ.

Let x ∈ (x0, s). Write y = (c g′)(x)− (2 + tan θ). Then |y| < 1 and
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Re g′(x) = Re

(
2 + tan θ + y

c(x)

)

=
Re c(x) · Re (2 + tan θ + y)− Im c(x) · Im (2 + tan θ + y)

|c(x)|2

≥ (1 + tan θ) Re c(x)− tan θRe c(x)

|c(x)|2

=
Re c(x)

|c(x)|2
≥ cos2 θ

Re c(x)
.

It follows that

Re g(x) = Re g(s)−
∫ s

x

Re g′(t) dt ≤ Re g(s)−
∫ s

x

cos2 θ

Re c(t)
dt = α− (cos2 θ)Z(x)

for all x ∈ (x0, x0 + δ), where α = Re g(s) + cos2 θ
∫ mk
s

1
Re c

and k ∈ K is such that x0 = ak.

Hence g 6∈ Lq(R). This is a contradiction.

Lemma 3.21. Adopt the assumptions and notation as in Lemma 3.19. Let x0 ∈ E and

suppose that
∫

(x0−δ,x0+δ)
|Z|q = ∞ for all δ > 0. Suppose that x0 is not a cluster point of

E. Then Lx0 = 0 if x0 ∈ El and Rx0 = 0 if x0 ∈ Er.

Proof. Without loss of generality we may assume that x0 ∈ Er. If
∫

(x0−δ,x0)
|Z|q = ∞ for

all δ > 0, then it follows from Lemma 3.20(b) that Rx0 = 0. Suppose there exists a δ0 > 0

such that
∫

(x0−δ0,x0)
|Z|q < ∞. Then

∫
(x0,x0+δ)

|Z|q = ∞ for all δ ∈ (0, δ0). Since x0 is

not a cluster point of E, there exists a δ ∈ (0, δ0) such that either (x0, x0 + δ] ⊂ P or

(x0, x0 + δ] ⊂ N . These give rise to two cases.

Case 1: Suppose there exists a δ ∈ (0, δ0) such that (x0, x0 + δ] ⊂ P .

Then Lx0 = 0 by Lemma 3.20(a). Without loss of generality we may assume that (x0 −
δ, x0) ⊂ P . There exists a u ∈ C∞c (R) such that u(x0) = 1 and suppu ⊂ (x0 − δ, x0 + δ).

Then it follows from Lemma 3.19(d) that Rx0 − Lx0 = 0. Hence Rx0 = 0.

Case 2: Suppose there exists a δ ∈ (0, δ0) such that (x0, x0 + δ] ⊂ N .

Without loss of generality we may assume that (x0 − δ, x0) ⊂ P . Let n ∈ N. There exists

a u ∈ C∞c (R) such that u(x0) = 1, 0 ≤ u ≤ 1 and suppu ⊂ (x0 − δ, x0 + 1
n
∧ δ). Then

Lemma 3.19(d) implies that |Rx0| = |
∫
N (1 + w) g u| ≤ (1 + ‖w‖∞) ‖g‖Lq(R) n

−1/p. Hence

Rx0 = 0.

We next consider the situation when x0 ∈ E is a cluster point of E. We divide the

proof into two lemmas which deal with two cases whether or not |(x0− δ, x0 + δ)∩N| > 0

for all δ > 0.

Lemma 3.22. Adopt the assumptions and notation as in Lemma 3.19. Let x0 ∈ E and

suppose that
∫

(x0−δ,x0+δ)
|Z|q = ∞ for all δ > 0. Suppose that x0 is a cluster point of E.

Suppose further that there exists a δ0 > 0 such that |(x0 − δ0, x0 + δ0) ∩ N| = 0. Then

Lx0 = 0 if x0 ∈ El and Rx0 = 0 if x0 ∈ Er.
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Proof. Without loss of generality we may assume that x0 ∈ Er. If
∫

(x0−δ,x0)
|Z|q = ∞

for all δ > 0, then Rx0 = 0 by Lemma 3.20(b). Hence we may assume that the interval

(x0 − δ0, x0) ⊂ P and
∫

(x0−δ0,x0)
|Z|q < ∞. Suppose that Rx0 6= 0. Replacing g by λ g for

some λ ∈ C if necessary, we may assume without loss of generality that Rx0 = 2 + tan θ.

By Statements (f), (g) and (i) in Lemma 3.19, there exists a δ ∈ (0, δ0) such that

|(c g′)(x) − Rx0| < 1 for all x ∈ (x0, x0 + δ) ∩ P . Using the same argument as in Lemma

3.20, we also have Re g′(x) ≥ cos2 θ
Re c(x)

for all x ∈ (x0, x0 + δ) ∩P . Without loss of generality

we may assume that x0 + δ ∈ Er.
Let k ∈ K. Suppose that Ik ⊂ (x0, x0 + δ). Then Re g|Ik is increasing. If Re g(mk) ≥ 0

then

|Ik| |Re g(mk)|q = 2

∫ bk

mk

|Re g(mk)|q dx

≤ 2

∫ bk

mk

|Re g(x)|q dx ≤ 2

∫
Ik

|Re g|q.

Similarly if Re g(mk) ≤ 0 then

|Ik| |Re g(mk)|q ≤ 2

∫
Ik

|Re g|q.

Next, for all x ∈ (ak,mk) it follows that

Re g(x)− Re g(mk) = −
∫ mk

x

Re g′(t) dt ≤ −
∫ mk

x

cos2 θ

Re c(t)
dt = −(cos2 θ)Z(x).

Alternatively if x ∈ (mk, bk) then

Re g(x)− Re g(mk) =

∫ x

mk

Re g′(t) dt ≥
∫ x

mk

cos2 θ

Re c(t)
dt = −(cos2 θ)Z(x).

Therefore

(cos2q θ) |Z(x)|q ≤ |Re g(x)− Re g(mk)|q ≤ 2q
(
|Re g(x)|q + |Re g(mk)|q

)
for all x ∈ Ik. Hence

(cos2q θ)

∫
Ik

|Z|q ≤ 2q |Ik| |Re g(mk)|q + 2q
∫
Ik

|Re g|q ≤ 3 · 2q
∫
Ik

|Re g|q.

This is for all k ∈ K with Ik ⊂ (x0, x0 + δ).

Finally, since |(x0, x0 + δ) ∩N| = 0, we have

(cos2q θ)

∫
(x0,x0+δ)

|Z|q = (cos2q θ)

∫
(x0,x0+δ)∩P

|Z|q = (cos2q θ)
∑
k∈K

Ik⊂(x0,x0+δ)

∫
Ik

|Z|q

≤
∑
k∈K

Ik⊂(x0,x0+δ)

3 · 2q
∫
Ik

|Re g|q ≤ 3 · 2q ‖g‖qLq(R) <∞.

But by assumption
∫

(x0,x0+δ)
|Z|q =∞. This is a contradiction. Thus Rx0 = 0.
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Lemma 3.23. Adopt the assumptions and notation as in Lemma 3.19. Let x0 ∈ E and

suppose that
∫

(x0−δ,x0+δ)
|Z|q = ∞ for all δ > 0. Suppose that x0 is a cluster point of E.

Suppose further that |(x0 − δ, x0 + δ) ∩N| > 0 for all δ > 0. Then Lx0 = 0 if x0 ∈ El and

Rx0 = 0 if x0 ∈ Er.

Proof. Without loss of generality we may assume that 0 = x0 ∈ El. Let δ0 > 0 be such

that (0, 2 δ0) ⊂ P . By Lemma 3.20(a) it suffices to consider the case when
∫

(0,δ0)
|Z|q <∞.

Then
∫

(−δ,0)
|Z|q =∞ for all δ > 0. By Lemma 3.19(h) we may assume that (cDg)|(−δ0,0) ∈

Lq(−δ0, 0).

Define τ : R −→ R by

τ(x) =


0 if x ∈ (−∞, 0],

2x2 if x ∈ (0, 1
2
],

1− 2(1− x)2 if x ∈ (1
2
, 1],

1 if x ∈ (1,∞).

Then τ is differentiable and
∫
R |τ

′|p = 2p

p+1
. Moreover, τ ∈ W 2,p

loc (R). Finally let χ ∈ C∞c (R)

be such that χ|(−δ0,δ0) = 1 and suppχ ⊂ (−∞, 2 δ0).

Let δ ∈ (0, δ0) and suppose that −δ ∈ El. Let K1 = {k ∈ K : Ik ⊂ (−δ, 0)}. Then

K1 is infinite and countable. Without loss of generality we may assume that K1 = N and

a1 = −δ. Let n ∈ N. Then (−δ, 0)\(I1∪ . . .∪In) has at most n connected components. Let

N ∈ {1, . . . , n} be the number of components and denote these components by J1, . . . , JN .

Let λi = |Ji| > 0 for all i ∈ {1, . . . , N} and set λ =
∑N

i=1 λi. Then

λ = δ −
N∑
k=1

|Ik| ≥ δ − |(−δ, 0) ∩ P| = |(−δ, 0) ∩N| > 0

by assumption. Define vn : R −→ R by

vn(x) =
N∑
i=1

λi
λ
τ

(
x− inf Ji

λi

)
.

Then vn ∈ W 2,p
loc (R), supp vn ⊂ [−δ,∞), vn(0) = 1, 0 ≤ vn ≤ 1 and∫

R
|v′n|p =

N∑
i=1

(λi
λ

)p
· 2p

(p+ 1)λp−1
i

=
2p

(p+ 1)λp−1
≤ 2p

(p+ 1) |(−δ, 0) ∪N|p−1
. (3.46)

Define un : R −→ R by

un(x) =

{
vn(x) if x < 0,

χ(x) if x ≥ 0.

Then un ∈ W 2,p
c (R). Therefore by Lemma 3.19(d) we have that

−L0 +
∑
k∈K1

(
Rbk un(bk)− Lak un(ak)

)
= −

∫
N

(1 + w) g un. (3.47)

Note that ∣∣∣ ∫
N

(1 + w) g un

∣∣∣ =
∣∣∣ ∫

(−δ,0)∩N
(1 + w) g un

∣∣∣ ≤ (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ.
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Recall that K1 = N. If k ∈ {1, . . . , n}, then un(bk) = un(ak) by construction. So

∣∣∣ n∑
k=1

(
Rbk un(bk)− Lak un(ak)

)∣∣∣ ≤ n∑
k=1

un(ak) |Rbk − Lak | ≤
n∑
k=1

∣∣∣ ∫
Ik

(1 + w) g
∣∣∣

≤
∫
I1∪...∪In

|(1 + w) g| ≤ (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ,

where we used (3.44) to obtain the second inequality.

Let k ∈ N be such that k > n. Let a, b ∈ R and suppose that ak < a < b < bk. Then

(c g′ un)(b)− (c g′ un)(a) =

∫ b

a

(c g′ un)′ =

∫ b

a

(
(c g′)′ un + c g′ u′n

)
=

∫ b

a

((
(1 + w) g − (mg)′

)
un + c g′ u′n

)

= −[mg un]ba +

∫ b

a

(
(1 + w) g un + (c g′ +mg)u′n

)
,

where we used Lemma 3.19(a) in the third step. Taking limits and using Statement (i) in

Lemma 3.19 give

Rbk un(bk)− Lak un(ak) =

∫
Ik

(
(1 + w) g un + (c g′ +mg)u′n

)
.

It follows that∣∣∣ ∞∑
k=n+1

(
Rbk un(bk)− Lak un(ak)

)∣∣∣ =
∣∣∣ ∞∑
k=n+1

∫
Ik

(
(1 + w) g un + (c g′ +mg)u′n

)∣∣∣
=
∣∣∣ ∫⋃

k≥n+1 Ik

(
(1 + w) g un + (c g′ +mg)u′n

)∣∣∣
≤
∫

(−δ,0)

|(1 + w) g un|+
∫
⋃∞
k=n+1 Ik

|(c g′ +mg)u′n|.

Obviously ∫
(−δ,0)

|(1 + w) g un| ≤ (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ.

For the second term we estimate∫
⋃∞
k=n+1 Ik

|(c g′ +mg)u′n| ≤ ‖v′n‖Lp(R) ·
(∫

⋃∞
k=n+1 Ik

|c g′ +mg|q
)1/q

≤
(

2p

(p+ 1) |(−δ, 0) ∪N|p−1

)1/p(∫
⋃∞
k=n+1 Ik

|c g′ +mg|q
)1/q

(3.48)
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by (3.46). Note that (cDg)|(−δ,0) ∈ Lq(−δ, 0) by Lemma 3.19(b), |mg| ≤ ‖m‖∞ |g| ∈ Lq(R)

and
⋃∞
k=n+1 Ik ↓ ∅ if n −→ ∞. Therefore the right-hand side of (3.48) tends to 0 by

Lebesgue dominated convergence theorem. It now follows from (3.47) that

L0 ≤ 3 (1 + ‖w‖∞) ‖g‖Lq(R)
p
√
δ.

This is for all δ > 0 with −δ ∈ El. Hence L0 = 0.

Proof of Theorem 3.3. (=⇒) This follows from Lemmas 3.17 and 3.18.

(⇐=) Adopt the assumptions and notations as in Lemma 3.19. Then it follows from

Lemmas 3.20–3.23 that Lx = 0 for all x ∈ El and Rx = 0 for all x ∈ Er. By Lemma 3.19(a)

we have that g ∈ W 1,q
loc (P), (cDg)|P ∈ W 1,q

loc (P) and D(cDg) + D(mg) ∈ Lq(R). Thus

g ∈ D(A∗p) by Proposition 3.13. Moreover, (I + Ap)
∗(g) = 0. Since (I + Ap)

∗ is invertible,

we have g = 0. Hence C∞c (R) is a core for Ap.

The proof of Theorem 3.3 is complete.

3.6 Core characterisation for p = 1

If c and m are real-valued, then we show in this section that C∞c (R) is a core for the

generator −A1 of the C0-semigroup S(1) on L1(R) which is consistent with S.

Proof of Theorem 3.5. Since c ∈ W 1,∞(R), it follows that Z|(ak,mk) /∈ L∞(ak,mk) for all

k ∈ K with ak ∈ R and Z|(mk,bk) /∈ L∞(mk, bk) for all k ∈ K with bk ∈ R. Without loss of

generality we may assume that w = 0. Let ω > 0 be as in Lemma 3.6. Let β > ω + 2M2
m

be such that β I + A1 is accretive (cf. Theorem 3.2). Let g ∈ L∞(R). Suppose that∫
R g (β I + A1)u = 0 for all u ∈ C∞c (R). Without loss of generality we may assume that g

is real-valued. It follows from elliptic regularity that g ∈ W 2,r
loc (P) for all r ∈ (1,∞) and

D(cDg) +mDg = β g 1P .

Let k ∈ K. Using similar arguments as in Lemma 3.19(c) we have that (c g′)|Ik extends

to a continuous function on Ik. Suppose ak ∈ R. Let L = limx↓ak(c g
′)(x) ∈ C. Suppose

L 6= 0. Without loss of generality we may assume that L = 2. We argue as in the proof of

Lemma 3.20 to obtain that there exist s ∈ Ik and α ∈ R such that

(Re g)(x) ≤ (Re g)(s)− Z(x) + α

for all x ∈ (ak, s). This implies that g /∈ L∞(R), which is a contradiction. Hence

limx↓x0(c g
′)(x) = 0 for all x0 ∈ El. Analogously limx↑x0(c g

′)(x) = 0 for all x0 ∈ Er.
Let k ∈ K and suppose that Ik is bounded. Then g 1Ik ∈ D(A) by Lemma 3.10(vi =⇒ i).

Therefore

0 ≤ a(g 1Ik) + ω

∫
Ik

g2 =
(
A(g 1Ik), g 1Ik

)
+ ω

∫
Ik

g2 = −(β − ω)

∫
Ik

g2 ≤ 0.

It follows that g 1Ik = 0.

Next let k ∈ K and suppose that Ik is unbounded. We may assume without loss of

generality that Ik is bounded from below and Ik = (0,∞). Let τ ∈ C∞c (R,R) be such that

supp τ ⊂ (−1, 2) and τ |[0,1] = 1. For all n ∈ N define τn ∈ C∞c (R) by τn(x) = τ(n−1 x) for
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all x ∈ R. Let n ∈ N. Then g τn 1(0,∞) ∈ D(A) by Lemma 3.10(vi =⇒ i). Moreover, we

have

−ω
∫ ∞

0

g2 τ 2
n ≤ a(g τn 1(0,∞)) =

∫ ∞
0

c |(g τn)′|2 +m (g τn)′ g τn. (3.49)

Note that ∫ ∞
0

c |(g τn)′|2 ≤ 2

∫ ∞
0

c (g′)2 τ 2
n + 2

∫ ∞
0

c g2 (τ ′n)2

and ∫ ∞
0

m (g τn)′ g τn =

∫ ∞
0

m
(
g′ g τ 2

n + g2 τ ′n τn
)

≤
∫ ∞

0

Mm

√
c
(
|g′| |g| τ 2

n + g2 |τ ′n| τn
)

≤
∫ ∞

0

c (g′)2 τ 2
n +

∫ ∞
0

c g2 (τ ′n)2 +
M2

m

2

∫ ∞
0

g2 τ 2
n,

where we used (3.1) in the second step. It follows from (3.49) that

−ω
∫ ∞

0

g2 τ 2
n ≤ 3

∫ ∞
0

c (g′)2 τ 2
n + 3

∫ ∞
0

c g2 (τ ′n)2 +
M2

m

2

∫ ∞
0

g2 τ 2
n

or equivalently

−
(
ω +

M2
m

2

) ∫ ∞
0

g2 τ 2
n ≤ 3

∫ ∞
0

c (g′)2 τ 2
n + 3

∫ ∞
0

c g2 (τ ′n)2. (3.50)

We note that (c g′)′(x) + (mg′)(x) = β g(x) for a.e. x ∈ (0,∞) and τn has a compact

support. Let ε > 0. Then∫ ∞
ε

c (g′)2 τ 2
n = g c g′ τ 2

n|∞ε −
∫ ∞
ε

g (c g′ τ 2
n)′

= −(g c g′ τ 2
n)(ε)−

∫ ∞
ε

g
(
(c g′)′ τ 2

n + 2 c g′ τn τ
′
n

)
= −(g c g′ τ 2

n)(ε)− β
∫ ∞
ε

g2 τ 2
n +

∫ ∞
ε

mg′ g τ 2
n − 2

∫ ∞
ε

c g′ g τn τ
′
n

≤ −(g c g′ τ 2
n)(ε)− β

∫ ∞
ε

g2 τ 2
n +

∫ ∞
ε

Mm

√
c |g′| |g| τ 2

n − 2

∫ ∞
ε

c g′ g τn τ
′
n

≤ −(g c g′ τ 2
n)(ε)− β

∫ ∞
ε

g2 τ 2
n +

1

4

∫ ∞
ε

c (g′)2 τ 2
n +M2

m

∫ ∞
ε

g2 τ 2
n

+
1

2

∫ ∞
ε

c (g′)2 τ 2
n + 2

∫ ∞
ε

c g2 (τ ′n)2

= −(g c g′ τ 2
n)(ε) + (−β +M2

m)

∫ ∞
ε

g2 τ 2
n + 2

∫ ∞
ε

c g2 (τ ′n)2

+
3

4

∫ ∞
ε

c (g′)2 τ 2
n.
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By rearrangement it follows that∫ ∞
ε

c (g′)2 τ 2
n ≤ −4 (g c g′ τ 2

n)(ε) + 4 (−β +M2
m)

∫ ∞
ε

g2 τ 2
n + 8

∫ ∞
ε

c g2 (τ ′n)2.

Since g is bounded and limx↓0(c g′)(x) = 0, taking the limits both sides when ε ↓ 0 gives∫ ∞
0

c (g′)2 τ 2
n ≤ 4 (−β +M2

m)

∫ ∞
0

g2 τ 2
n + 8

∫ ∞
0

c g2 (τ ′n)2.

This together with (3.50) give

−
(
ω +

M2
m

2

) ∫ ∞
0

g2 τ 2
n ≤ 12 (−β +M2

m)

∫ ∞
0

g2 τ 2
n + 27

∫ ∞
0

c g2 (τ ′n)2

or equivalently

γ

∫ ∞
0

g2 τ 2
n ≤ 27

∫ ∞
0

g2 (τ ′n)2 ≤ 54 ‖c‖∞ ‖g‖2
∞ ‖τ ′‖2

∞ n
−1,

where

γ = 12β − ω − 25

2
M2

m > 0.

Using Fatou’s lemma we deduce that
∫∞

0
g2 = 0, which implies g|(0,∞) = 0. Hence g|P = 0.

Then
∫
R g 1N u = 0 for all u ∈ C∞c (R) and g = 0. Thus C∞c (R) is a core for A1.

3.7 Examples

In this section we provide two examples to illustrate the main theorem of this chapter and

one example to illustrate condition (3.21).

Example 3.24. Let b ∈ (0,∞) and κ ∈ (1,∞). Define c : R −→ [0,∞) by c(x) =(
d(x, bZ)

)κ
. Then c ∈ W 1,∞(R). Set s = b/2. Then Z(x) = (κ− 1)−1

(
x−(κ−1) − s−(κ−1)

)
for all x ∈ (0, s). So if x ∈ (0, s/2) then

1− 2−(κ−1)

κ− 1
x−(κ−1) ≤ Z(x) ≤ 1

κ− 1
x−(κ−1)

and if x ∈ [s/2, s) then

0 ≤ Z(x) ≤ 1

κ− 1
x−(κ−1).

Let p ∈ (1,∞) and let q be the dual exponent. Then Z ∈ Lq(0, s) if and only if q(κ−1) < 1

and if q(κ− 1) < 1 then

2 (1− 2−(κ−1))q

(κ− 1)q 41−(κ−1)q (1− (κ− 1)q)
b1−(κ−1)q

≤
∫ b

0

Zq ≤ 2

(κ− 1)q (1− (κ− 1)q)
b1−(κ−1)q. (3.51)

It follows from Theorem 3.3 that C∞c (R) is a core for Ap if and only if κ ≥ 1 + 1
q
.
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We next ‘extend’ this example to a Cantor-like set instead of the grid bZ.

Example 3.25. Fix λ ∈ [0, 1). Let K∞ =
⋂∞
n=0Kn ⊂ [0, 1] be the generalized Cantor set

with K0 = [0, 1] and for any n ∈ N0 construct Kn+1 by removing the central open interval

of length (1 − λ) 3−(n+1) from each of the 2n intervals of Kn. So if λ = 0, then K∞ is the

usual Cantor set. It is easy to verify that |Kn| = λ + (1 − λ) (2
3
)n for all n ∈ N0. Hence

|K∞| = λ.

Fix κ ∈ (1,∞) and define c : R −→ [0,∞) by

c(x) =
( d(x,K∞)

1 + d(x,K∞)

)κ
.

(The denominator is to make c bounded.) Let p ∈ (1,∞) and let q be the dual exponent

of p. Then it follows from Example 3.24 that
∫

(x−δ,x+δ)
Zq =∞ for all x ∈ E and δ > 0 if

q(κ− 1) ≥ 1.

Next suppose that q(κ− 1) < 1. Then (3.51) gives∫
P∩[0,1]

Zq ≤
∞∑
n=0

2n
2

(κ− 1)q (1− (κ− 1)q)

(
(1− λ)3−(n+1)

)1−(κ−1)q

.

Using also the lower bound in (3.51) it follows that Z|P∩[0,1] ∈ Lq(P ∩ [0, 1]) if and only if

2 < 31−(κ−1)q.

Now N = K∞ is negligible if and only if λ = 0. Moreover, Z(x) = ∞ for all x ∈ K∞
by definition. Hence if λ = 0 and 2 < 31−(κ−1)q, then

∫
(x−δ,x+δ)

Zq < ∞ for all x ∈ E and

δ > 0. Alternatively, if λ > 0 or 2 ≥ 31−(κ−1)q, then by symmetry and self-similarity one

deduces that
∫

(x−δ,x+δ)
Zq =∞ for all x ∈ E and δ > 0. Therefore Theorem 3.3 gives that

C∞c (R) is a core for Ap if and only if λ > 0 or 2 ≥ 31−(κ−1)q.

Example 3.26. Adopt the assumptions and notation as in Example 3.25. Recall that

we denote by {Ik : k ∈ K} the set of distinct connected components of P . Since K is

countable, we can set K = N. Let α ∈ (0, 1)∩
(
0, κ

2
∧ (κ− 1)

]
. Define m : R −→ [0,∞) by

m(x) =


1

k2

( d(x,K∞)

1 + d(x,K∞)

)κ−α
if x ∈ Ik and k ∈ K,

0 if x ∈ N .

Then m ∈ W 1,∞(R). Moreover, m satisfies (3.1) and (3.21).
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Chapter 4

Higher dimensions

4.1 Introduction

In this chapter we investigate degenerate elliptic second-order differential operators with

bounded complex-valued coefficients in higher dimensions. We will provide many sufficient

conditions for when C∞c (Rd) is a core for these operators. The results are generalisations

of those in [WD83, Theorem I] and [Ouh05, Theorem 5.2].

Let d ∈ N and θ ∈ [0, π
2
). Let ckl ∈ W 2,∞(Rd,C) for all k, l ∈ {1, . . . , d}. Define

C = (ckl)1≤k,l≤d and Σθ = {r ei ψ : r ≥ 0 and |ψ| ≤ θ}. Assume that

(C(x) ξ, ξ) ∈ Σθ (4.1)

for all x ∈ Rd and ξ ∈ Cd. Later on we will usually refer to (4.1) as C takes values in the

sector Σθ.

Define the form

a0(u, v) =
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂lv

on the domain D(a0) = C∞c (Rd). Then it follows from (4.1) that

a0(u, u) =
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂lu =

∫
Rd

(C∇u,∇u) ∈ Σθ

for all u ∈ C∞c (Rd). Using [Kat80, Theorem VI.1.27] we deduce as in the proof of Propo-

sition 3.7 that a0 is closable.

Let A be the operator associated with the closure of the form a0. Then W 2,2(Rd) ⊂
D(A) and

Au = −
d∑

k,l=1

∂l(ckl ∂ku)

for all u ∈ W 2,2(Rd). Furthermore, by [Kat80, Theorem VI.2.1], the operator A is an m-

sectorial operator. Let S be the C0-semigroup generated by −A. If A is strongly elliptic,

that is, if there exists a µ > 0 such that

Re (C(x) ξ, ξ) ≥ µ ‖ξ‖2

59
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for all x ∈ Rd and ξ ∈ Cd, then S extends consistently to a C0-semigroup on Lp(Rd) for

all p ∈ [1,∞) by [Aus96, Theorem 4.8]. In the general case where the coefficient matrix

merely satisfies

(C(x) ξ, ξ) ∈ Σθ

for all x ∈ Rd and ξ ∈ Cd, then we prove in Section 4.3 that an extension is possible

for certain p ∈ (1,∞). Before presenting the precise statement, we need to introduce the

following notation. We write

C = R + i B,

where R and B are d× d matrix-valued functions with real-valued entries. Let Ba be the

anti-symmetric part of B, that is, Ba = 1
2
(B−BT ). The result about semigroup extension

is as follows.

Proposition 4.1. Let p ∈ (1,∞). Suppose |1 − 2
p
| ≤ cos θ and Ba = 0. Then S extends

consistently to a contraction C0-semigroup S(p) on Lp(Rd).

Let p ∈ (1,∞) be such that
∣∣∣1− 2

p

∣∣∣ ≤ cos θ. Using Proposition 4.1 we can now extend

S consistently to a C0-semigroup S(p) on Lp(Rd). Let −Ap be the generator of S(p). Clearly

C∞c (Rd) ⊂ D(Ap). We wish to show that C∞c (Rd) is a core for Ap under certain conditions

on the coefficients. The first main result of this chapter is as follows.

Theorem 4.2. Let p ∈ (1,∞) be such that |1 − 2
p
| < cos θ. Suppose Ba = 0. Then the

space C∞c (Rd) is a core for Ap.

Next let Rs and Bs be the symmetric parts of the matrices R and B respectively, that

is, Rs = 1
2

(R + RT ) and Bs = 1
2
(B + BT ). Since A is naturally defined in L2(Rd) via

the closure of the form a0, the condition Ba = 0 can be dropped in the proof of the core

properties for A. In this case we prove the following sufficient conditions for C∞c (Rd) to be

a core for A.

Theorem 4.3. Suppose one of the following holds.

(i) The matrix Bs has constant entries.

(ii) There exist θ1, θ2 ∈ [0, π
2
), φ ∈ W 2,∞(Rd) and a d × d matrix C̃ with entries in

W 2,∞(Rd) such that θ = θ1 + θ2, φ(x) ∈ Σθ1 for all x ∈ Rd, C̃ takes values in Σθ2

and C = φ C̃. Write C̃ = R̃+ i B̃, where R̃ and B̃ are d× d matrix-valued functions

with real-valued entries. Set R̃s = 1
2

(R̃ + R̃T ). Also define Re C̃ = 1
2

(
C̃ + (C̃)∗

)
.

Suppose further that there exists an h > 0 such that

tr (U (Re C̃)U) ≥ h tr (U R̃s U)

for all u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

(iii) There exists an M > 0 such that ‖(∂lBa)U‖2
HS ≤M tr (U Rs U) for all l ∈ {1, . . . , d}

and u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

Then C∞c (Rd) is a core for A.
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If functions in D(A) are known to possess certain smoothness properties, then C∞c (Rd)

is always a core for A regardless of Ba.

Theorem 4.4. Suppose D(A) ⊂ W 1,2(Rd). Then C∞c (Rd) is a core for A.

An overview of the contents of the subsequent sections is as follows. In Section 2 we

examine the matrix of coefficients C closely. We will prove various results concerning

the correspondences between Rs, Bs and Ba. In Section 3 we prove the extension of the

semigroup S to Lp-spaces. We will analyse the operator Ap in detail and then prove that

C∞c (Rd) is a core for Ap in Sections 4 and 5. In Section 6 we deal specifically with the

operator A in L2(Rd) and we present the proofs of Theorems 4.3 and 4.4. In Section 7 we

provide some interesting examples.

4.2 The coefficient matrix C

Define

ReC =
C + C∗

2
and ImC =

C − C∗

2i
,

where C∗ is the conjugate transpose of C. Then (ReC)(x) and (ImC)(x) are self-adjoint

for all x ∈ Rd and

C = ReC + i ImC. (4.2)

We will also consider the coefficient matrix C in the form

C = R + i B, (4.3)

where R and B are real matrices. Write R = Rs +Ra, where Rs = R+RT

2
is the symmetric

part of R and Ra = R−RT
2

is the anti-symmetric part of R. Similarly B = Bs + Ba, where

Bs = B+BT

2
and Ba = B−BT

2
. A comparison between (4.2) and (4.3) gives

ReC = Rs + i Ba and ImC = Bs − i Ra.

In this section we will list various relations among Rs, Ra, Bs and Ba which will be used

in subsequent sections.

Lemma 4.5. We have

|(Bs ξ, η)| ≤ 1

2
tan θ

(
(Rs ξ, ξ) + (Rs η, η)

)
for all ξ, η ∈ Rd.

Proof. Since C takes values in Σθ, we have∣∣((ImC(x)) ξ, ξ
)∣∣ ≤ tan θ

(
(ReC(x)) ξ, ξ

)
for all x ∈ Rd and ξ ∈ Cd. It follows that

|(Bs ξ, ξ)| ≤ tan θ (Rs ξ, ξ)

for all ξ ∈ Rd. We next use polarisation to obtain

|(Bs ξ, η)| ≤ tan θ (Rs ξ, ξ)
1/2 (Rs η, η)1/2 ≤ 1

2
tan θ

(
(Rs ξ, ξ) + (Rs η, η)

)
for all ξ, η ∈ Rd as required.
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Lemma 4.6. Let j ∈ {1, . . . , d}. Let f ∈ W 2,∞(Rd) be such that f(x) ≥ 0 for all x ∈ Rd.

Then

|∂jf |2 ≤ 2 ‖∂2
j f‖∞ f.

Proof. Let j ∈ {1, . . . , d}, x ∈ Rd and h ∈ R. For each n ∈ N let fn = Jn ∗ f , where Jn
denotes the usual mollifier with respect to a suitable function in C∞c (Rd). Then fn ≥ 0

and fn ∈ C∞(Rd) for all n ∈ N. Using the Taylor expansion we have

0 ≤ fn(x) + h (∂jfn)(x) +
h2

2
‖∂2

j fn‖∞

for all n ∈ N. Letting n −→∞ we obtain

0 ≤ f(x) + h (∂jf)(x) +
h2

2
‖∂2

j f‖∞.

This is true for all h ∈ R. Hence |∂jf(x)|2 ≤ 2 ‖∂2
j f‖∞ f(x) as required.

Lemma 4.7. Let j ∈ {1, . . . , d}. Let f ∈ W 2,∞(Rd) be such that f(x) ∈ Σθ for all x ∈ Rd.

Then

|∂jf |2 ≤ 4 (1 + tan θ)2 sup
1≤j≤d

‖∂2
j f‖∞Re f.

Proof. Since f(x) ∈ Σθ for all x ∈ Rd, we have Re f ≥ 0. Therefore by Lemma 4.6 we have

|∂j(Re f)|2 ≤ 2 ‖∂2
j (Re f)‖∞Re f ≤ 2 sup

1≤j≤d
‖∂2

j f‖∞Re f.

Also |Im f | ≤ (tan θ) Re f . That is, (tan θ) Re f ± Im f ≥ 0. Applying Lemma 4.6 again

we obtain

|∂j((tan θ) Re f + Im f)|2 ≤ 2 ‖∂2
j ((tan θ) Re f + Im f)‖∞ ((tan θ) Re f + Im f)

≤ 2 (1 + tan θ) sup
1≤j≤d

‖∂2
j f‖∞ ((tan θ) Re f + Im f)

and

|∂j((tan θ) Re f − Im f)|2 ≤ 2 ‖∂2
j ((tan θ) Re f − Im f)‖∞ ((tan θ) Re f − Im f)

≤ 2 (1 + tan θ) sup
1≤j≤d

‖∂2
j f‖∞ ((tan θ) Re f − Im f).

Adding the two inequalities gives

(tan θ)2 |∂j(Re f)|2 + |∂j(Im f)|2 ≤ 2 (1 + tan θ)2 sup
1≤j≤d

‖∂2
j f‖∞Re f.

Hence

|∂jf |2 = |∂j(Re f)|2 + |∂j(Im f)|2 ≤ 4 (1 + tan θ)2 sup
1≤j≤d

‖∂2
j f‖∞Re f

as required.

Lemma 4.8. Let j ∈ {1, . . . , d}. Let ξ, η ∈ Cd. Then the following are valid.
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(a) |((∂jC) ξ, η)|2 ≤M
(

((ReC) ξ, ξ) + ((ReC) η, η)
)

, where

M = 8 (1 + tan θ)2 (‖ξ‖2 + ‖η‖2) sup
1≤l≤d

‖∂2
l C‖∞.

(b) |((∂jImC) ξ, η)|2 ≤M
(

((ReC) ξ, ξ) + ((ReC) η, η)
)

, where

M = 8 (1 + tan θ)2 (‖ξ‖2 + ‖η‖2) sup
1≤l≤d

‖∂2
l C‖∞.

Proof. We will prove Statement (a). The proof for Statement (b) is similar.

Since C takes values in Σθ, we have

|(C ξ, ξ)| ≤ (1 + tan θ) ((ReC) ξ, ξ).

Polarisation gives

|(C ξ, η)| ≤ 2 (1 + tan θ) ((ReC) ξ, ξ)1/2 ((ReC) η, η)1/2

≤ (1 + tan θ)
(

((ReC) ξ, ξ) + ((ReC) η, η)
)
.

Let

X = (1 + tan θ)
(

((ReC) ξ, ξ) + ((ReC) η, η)
)

and

Y = (C ξ, η) = Y1 + i Y2,

where Y1 and Y2 are real-valued functions. Since X − Y1 ≥ 0, it follows from Lemma 4.6

that

|∂j(X − Y1)|2 ≤ 2 ‖∂2
j (X − Y1)‖∞ (X − Y1) ≤ 2 (‖∂2

jX‖∞ + ‖∂2
jY ‖∞) (X − Y1).

Arguing similarly for X + Y1 ≥ 0 we yield

|∂j(X + Y1)|2 ≤ 2 (‖∂2
jX‖∞ + ‖∂2

jY ‖∞) (X + Y1).

By adding the two inequalities we obtain

|∂jX|2 + |∂jY1|2 ≤ 2 (‖∂2
jX‖∞ + ‖∂2

jY ‖∞)X.

Analogously

|∂jX|2 + |∂jY2|2 ≤ 2 (‖∂2
jX‖∞ + ‖∂2

jY ‖∞)X.

Hence

|((∂jC) ξ, η)|2 = |∂jY1|2 + |∂jY2|2 ≤ 4 (‖∂2
jX‖∞ + ‖∂2

jY ‖∞)X

≤M
(

((ReC) ξ, ξ) + ((ReC) η, η)
)
,

where

M = 8 (1 + tan θ)2 (‖ξ‖2 + ‖η‖2) sup
1≤l≤d

‖∂2
l C‖∞.

The proof is complete.
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Proposition 4.9 (Complex version of Oleinik’s inequality). Let j ∈ {1, . . . , d}. Let U be

a complex d× d matrix. Then the following are valid.

(a) |tr ((∂jC)U)|2 ≤M
(

tr (U∗ (ReC)U) + tr (U (ReC)U∗)
)

, where

M = 16 d (1 + tan θ)2 sup
1≤l≤d

‖∂2
l C‖∞.

(b) |tr ((∂jImC)U)|2 ≤M
(

tr (U∗ (ReC)U) + tr (U (ReC)U∗)
)

, where

M = 16 d (1 + tan θ)2 sup
1≤l≤d

‖∂2
l C‖∞.

Proof. We will prove Statement (a). The proof for Statement (b) is similar.

Let j ∈ {1, . . . , d} and

M = 16 d (1 + tan θ)2 sup
1≤l≤d

‖∂2
l C‖∞.

Let V be a unitary matrix such that U = V |U |, where |U | =
√
U∗ U . Since |U | is positive

and Hermitian, there exists a unitary matrix W such that |U | = W DW ∗, where D is a

positive diagonal matrix. It follows that

|tr ((∂jC)U)|2 = |tr ((∂jC)V |U |)|2 = |tr (W ∗ (∂jC)V W W ∗ |U |W )|2

= |tr (W ∗ (∂jC)V W D)|2 =
∣∣∣ d∑
k=1

(W ∗ (∂jC)V W )kkDkk

∣∣∣2

≤ d
d∑

k=1

|(W ∗ (∂jC)V W )kk|2 |Dkk|2

≤M
d∑

k=1

(
(W ∗ (ReC)W )kk + (W ∗ V ∗ (ReC)V W )kk

)
|Dkk|2

≤M
d∑

k=1

(
Dkk (W ∗ (ReC)W )kkDkk +Dkk (W ∗ V ∗ (ReC)V W )kkDkk

)
≤M

(
tr (|U | (ReC) |U |) + tr (|U |V ∗ (ReC)V |U |)

)
= M

(
tr (U (ReC)U∗) + tr (U∗ (ReC)U)

)
,

where we used Lemma 4.8 in the second inequality.

Corollary 4.10. Let j ∈ {1, . . . , d}. Suppose U is a complex d× d matrix with UT = U .

Then the following are valid.

(a) |tr ((∂jC)U)|2 ≤M tr (U Rs U), where

M = 32 d (1 + tan θ)2 sup
1≤l≤d

‖∂2
l C‖∞.
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(b) |tr ((∂jImC)U)|2 ≤M tr (U Rs U), where

M = 32 d (1 + tan θ)2 sup
1≤l≤d

‖∂2
l C‖∞.

Proof. Since UT = U we have

tr (U∗ (ReC)U) + tr (U (ReC)U∗) = tr (U (ReC)U) + tr (U (ReC)U)

= tr (U (ReC)U) + tr (U (ReC)T U)

= 2 tr (U Rs U).

Next we use Proposition 4.9 to derive the result.

Lemma 4.11. Let U be a complex d× d matrix. Then

((ReC)U ξ, U ξ) ≤ tr (U∗ (ReC)U) ‖ξ‖2

for all ξ ∈ Cd.

Proof. By hypothesis ReC ≥ 0. Therefore ((ReC)U ξ, U ξ) ≥ 0 for all ξ ∈ Cd. It follows

that U∗ (ReC)U ≥ 0. Hence U∗ (ReC)U ≤ tr (U∗ (ReC)U) I, where I denotes the

identity matrix. This justifies the claim.

Lemma 4.12. We have

|(Ba ξ, ξ)| ≤ (Rs ξ, ξ)

for all ξ ∈ Cd.

Proof. Write ξ = ξ1 + i ξ2, where ξ1, ξ2 ∈ Rd. Then (Rs ξ, ξ) = (Rs ξ1, ξ1) + (Rs ξ2, ξ2) and

(Ba ξ, ξ) = −2i (Ba ξ1, ξ2). Since C takes values in Σθ, we have ((ReC) ξ, ξ) ≥ 0 for all

ξ ∈ Cd. Equivalently

−2 (Ba ξ1, ξ2) ≤ (Rs ξ1, ξ1) + (Rs ξ2, ξ2).

Replacing ξ by ξ and repeating the same process as above we also obtain

2 (Ba ξ1, ξ2) ≤ (Rs ξ1, ξ1) + (Rs ξ2, ξ2).

The result now follows.

Lemma 4.13. Let l ∈ {1, . . . , d} and ξ ∈ Cd. Then

|((∂lBa) ξ, ξ)|2 ≤M (Rs ξ, ξ),

where M = 2 ‖ξ‖2 sup1≤l≤d ‖∂2
l C‖∞.

Proof. Let l ∈ {1, . . . , d} and ξ ∈ Cd. By Lemma 4.12 we deduce that Rs± i Ba ≥ 0. Now

we use Lemma 4.6 to derive

|(∂l(Rs + i Ba) ξ, ξ)|2 ≤ 2 ‖(∂2
l (Rs + i Ba) ξ, ξ)‖∞ ((Rs + i Ba) ξ, ξ)

≤ 2 ‖ξ‖2 sup
1≤l≤d

‖∂2
l C‖∞ ((Rs + i Ba) ξ, ξ)
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and

|(∂l(Rs − i Ba) ξ, ξ)|2 ≤ 2 ‖(∂2
l (Rs − i Ba) ξ, ξ)‖∞ ((Rs − i Ba) ξ, ξ)

≤ 2 ‖ξ‖2 sup
1≤l≤d

‖∂2
l C‖∞ ((Rs − i Ba) ξ, ξ).

Adding the two inequalities together gives

|((∂lRs) ξ, ξ)|2 + |((∂lBa) ξ, ξ)|2 ≤ 2 ‖ξ‖2 sup
1≤l≤d

‖∂2
l C‖∞ (Rs ξ, ξ),

which clearly implies the result.

Lemma 4.14. Let Q be a complex d× d matrix. Suppose there exists an M > 0 such that

|(Qξ, ξ)| ≤M (Rs ξ, ξ) for all ξ ∈ Cd. Then ‖Qξ‖2 ≤ 4M2 ‖Rs‖∞ (Rs ξ, ξ) for all ξ ∈ Cd.

Proof. Since |(Qξ, ξ)| ≤M (Rs ξ, ξ) for all ξ ∈ Cd, polarisation gives

|(Qξ, η)| ≤ 2M (Rs ξ, ξ)
1/2 (Rs η, η)1/2 ≤ 2M ‖Rs‖1/2

∞ ‖η‖ (Rs ξ, ξ)
1/2

for all ξ, η ∈ Cd. It follows that

‖Qξ‖ ≤ 2M ‖Rs‖1/2
∞ (Rs ξ, ξ)

1/2

for all ξ ∈ Cd, which justifies the claim.

Lemma 4.15. We have

‖C ξ‖2 ≤ 16 (1 + tan θ)2 ‖Rs‖∞ (Rs ξ, ξ)

for all ξ ∈ Cd.

Proof. Let ξ ∈ Cd. Since C takes values in Σθ, we have

|(C ξ, ξ)| ≤ ((ReC) ξ, ξ) + |((ImC) ξ, ξ)| ≤ (1 + tan θ) ((ReC) ξ, ξ).

However ((ReC) ξ, ξ) ≤ 2 (Rs ξ, ξ) by Lemma 4.12. It follows that

|(C ξ, ξ)| ≤ 2 (1 + tan θ) (Rs ξ, ξ).

Using Lemma 4.14 we obtain

‖C ξ‖2 ≤ 16 (1 + tan θ)2 ‖Rs‖∞ (Rs ξ, ξ)

as required.

Recall that the Hilbert-Schmidt norm for a matrix V ∈Md×d(C) is defined by

‖V ‖HS = (tr (V ∗ V ))1/2 =

(
d∑
j=1

‖V ej‖2

)1/2

.

Lemma 4.16. Let U a complex d× d matrix with UT = U . Then

‖C U‖2
HS ≤ 16 (1 + tan θ)2 ‖Rs‖∞ tr (U Rs U).

Proof. We note that

‖C U‖2
HS =

d∑
j=1

‖C Uej‖2
2 ≤ 16 (1 + tan θ)2 ‖Rs‖∞

d∑
j=1

(Rs Uej, Uej)

= 16 (1 + tan θ)2 ‖Rs‖∞ tr (U Rs U),

where we used Lemma 4.15 in the second step.
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4.3 Lp extension

Let S be the contraction C0-semigroup generated by −A. In this section we will extend S

to a contraction C0-semigroup on Lp(Rd) for all p ∈ (1,∞) with |1− 2
p
| ≤ cos θ, under the

condition that Ba = 0.

Proof of Proposition 4.1. We proceed via two steps.

Step 1: Suppose that A is strongly elliptic.

Then S extends consistently to a C0-semigroup S(p) on Lp(Rd) by [AMT98, Theorem 2.21].

Using duality arguments we can assume without loss of generality that p ≥ 2. Let −Ap be

the generator of S(p). Let u ∈ D, where D = D(A)∩D(Ap)∩L∞(Rd). Since A is strongly

elliptic, the form a0 is closable and D(a0) = W 1,2(Rd). By construction D(A) ⊂ D(a0).

Therefore u ∈ W 1,2(Rd). Set v = |u|p−2 u. Then v ∈ Lq(Rd) ∩ L2(Rd), where q is the dual

exponent of p. By [GT83, Lemma 7.7] we have

∂lv =
p

2
|u|p−2 ∂lu+

p− 2

2
|u|p−4 u2 ∂lu

for all l ∈ {1, . . . , d}. It follows that v ∈ W 1,2(Rd). Our aim is to prove the inequality

Re
∫

(Apu) v ≥ 0, where here and in the rest of this paragraph the integral is over the set

{x ∈ Rd : u(x) 6= 0}. Indeed we have∫
(Apu) v =

∫
(Au) v = a0(u, v) =

d∑
k,l=1

∫
ckl (∂ku) ∂lv

=
d∑

k,l=1

∫
ckl (∂ku)

(p
2
|u|p−2 ∂lu+

p− 2

2
|u|p−4 u2 ∂lu

)

=
1

2

∫
|u|p−4

d∑
k,l=1

(
p ckl |u|2 (∂ku) ∂lu+ (p− 2) ckl u

2 (∂ku) ∂lu
)

=
1

2

∫
|u|p−4

(
p (C u∇u, u∇u) + (p− 2) (C u∇u, u∇u)

)
.

Write u∇u = ξ + i η, where ξ, η ∈ Rd. Then

Re (C u∇u, u∇u) = (Rs ξ, ξ) + (Rs η, η) + 2 (Ba ξ, η) = (Rs ξ, ξ) + (Rs η, η)

as Ba = 0 by hypothesis and

Re (C u∇u, u∇u) = (Rs ξ, ξ)− (Rs η, η) + 2 (Bs ξ, η).

Therefore

Re

∫
(Apu) v =

∫
|u|p−4

(
(p− 1) (Rs ξ, ξ) + (Rs η, η) + (p− 2) (Bs ξ, η)

)
=

∫
|u|p−4

(
(Rs ξ

′, ξ′) + (Rs η, η) +
p− 2√
p− 1

(Bs ξ
′, η)
)
,
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where ξ′ =
√
p− 1 ξ. If θ = 0 then it follows from Lemma 4.5 that (Bs ξ

′, η) = 0. Conse-

quently

Re

∫
(Apu) v =

∫
|u|p−4

(
(Rs ξ

′, ξ′) + (Rs η, η)
)
≥ 0.

If θ 6= 0 then

Re

∫
(Apu) v ≥

∫
|u|p−4

(
(Rs ξ

′, ξ′) + (Rs η, η)− 2 cot θ |(Bs ξ
′, η)|

)
≥ 0,

where we again used Lemma 4.5 and the fact that |1 − 2
p
| ≤ cos θ is equivalent to |p −

2| tan θ ≤ 2
√
p− 1. In either case the restriction Ap|D is accretive. Since D is a core

for Ap, we also have that Ap is accretive by [LP61, Lemma 3.4]. By the Lumer-Phillips

theorem, S(p) is a contraction semigroup.

Step 2: Suppose that A is degenerate elliptic.

Let n ∈ N. Let A[n] = A− 1
n

∆, where ∆ = ∂2
1 + . . .+∂2

d . Then A[n] is strongly elliptic. Let

S[n] be the contraction C0-semigroup generated by A[n]. Then S[n] extends consistently to

a contraction C0-semigroup S(n,p) on Lp(Rd) by Step 1. Using duality arguments we can

assume without loss of generality that p ∈ (1, 2).

Let t > 0 and u ∈ L2,c(Rd). By [AE12, Corollary 3.9] we have limn→∞ S
[n]
t u = Stu in

L2(Rd). Also by [AE12, Lemma 4.5] we obtain limn→∞ S
[n]
t u = Stu in L1(Rd). Interpolation

then gives limn→∞ S
[n]
t u = Stu in Lp(Rd). It follows that ‖Stu‖p ≤ ‖u‖p as S(n,p) is

contractive on Lp(Rd). But L2,c(Rd) is dense in L2(Rd)∩Lp(Rd). Therefore ‖Stu‖p ≤ ‖u‖p
for all u ∈ L2(Rd)∩Lp(Rd). That is, St|L2(Rd)∩Lp(Rd) extends continuously to a contraction

operator S
(p)
t on Lp(Rd). We now use [Voi92, Proposition 1] to conclude that S(p) is a

C0-semigroup on Lp(Rd).

4.4 The operator Bp

Let p ∈ (1,∞). Let q be such that 1
p

+ 1
q

= 1. Define

Hqu = −
d∑

k,l=1

∂k(ckl ∂lu) (4.4)

on the domain

D(Hq) = C∞c (Rd).

Next define Bp = (Hq)
∗, which is the dual of Hq. Then Bp is closed by [Kat80, Subsection

III.5.5]. Also note that W 2,p(Rd) ⊂ D(Bp) and

Bpu = −
d∑

k,l=1

∂l(ckl ∂ku)

for all u ∈ W 2,p(Rd).

We will prove at the end of this section that C∞c (Rd) is a core for Bp if |1− 2
p
| < cos θ

and Ba = 0. In the next section we will prove that Ap = Bp under the same assumptions.

The proofs require a lot of preparation.
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Proposition 4.17. Suppose |1− 2
p
| ≤ cos θ and Ba = 0. Then

Re (Bpu, |u|p−2 u) ≥ 0

for all u ∈ W 2,p(Rd).

Proof. Let u ∈ W 2,p(Rd). It follows from Theorem 2.30 that

(Bpu, |u|p−2 u) =

∫
[u6=0]

|u|p−2 (C∇u,∇u)

+ (p− 2)

∫
[u6=0]

|u|p−4
(
C Re (u∇u),Re (u∇u)

)
− i (p− 2)

∫
[u6=0]

|u|p−4
(
C Re (u∇u), Im (u∇u)

)
. (4.5)

Write u∇u = ξ + i η, where ξ, η ∈ Rd. Then

|u|2 (C∇u,∇u) = (C u∇u, u∇u) =
(
C(ξ + i η), ξ + i η

)
= (Rξ, ξ) + (Rη, η) + (B ξ, η)− (B η, ξ)

− i
(
(Rη, ξ)− (Rξ, η) + (B ξ, ξ) + (B η, η)

)
.

Therefore

Re
(
|u|2 (C∇u,∇u)

)
= (Rξ, ξ) + (Rη, η) + (B ξ, η)− (B η, ξ)

= (Rs ξ, ξ) + (Rs η, η) + 2 (Ba ξ, η)

= (Rs ξ, ξ) + (Rs η, η)

since Ba = 0. We also have

Re
(
C Re (u∇u),Re (u∇u)

)
= Re (C ξ, ξ) = (Rξ, ξ) = (Rs ξ, ξ).

Similarly

Re
(
i
(
C Re (u∇u), Im (u∇u)

))
= Re

(
i (C ξ, η)

)
= −(B ξ, η) = −(Bs ξ, η)

since Ba = 0. Hence taking the real parts on both sides of (4.5) yields

Re (Bpu, |u|p−2 u) =

∫
[u6=0]

|u|p−4
(

(p− 1) (Rs ξ, ξ) + (Rs η, η) + (p− 2) (Bs ξ, η)
)

since Ba = 0. Now we argue as in Step 1 of the proof of Proposition 4.1 to derive the

claim.

Let J ∈ C∞c (Rd,R) be such that J ≥ 0, supp J ⊂ B1(0) and
∫
Rd J = 1. For each

n ∈ N and x ∈ Rd define Jn(x) = nd J(nx). For all n ∈ N define the bounded operator

T
(1)
n : W 1,p(Rd) −→ Lp(Rd) by

T (1)
n u = −

d∑
k,l=1

∫
Rd
Jn(y)

(
(I − Ly) (∂lckl)

)
Ly(∂ku) dy
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and the bounded operator T
(2)
n : W 1,p(Rd) −→ Lp(Rd) by

T (2)
n u = −

d∑
k,l=1

∫
Rd

(
∂

∂yl

(
Jn(y) (I − Ly) ckl

))
Ly(∂ku) dy,

where (Lyu)(x) = u(x − y) for all x, y ∈ Rd. Also define for all n ∈ N the operator

Tn : W 1,p(Rd) −→ Lp(Rd) by

Tn = T (1)
n + T (2)

n . (4.6)

Lemma 4.18. The sequence {T (1)
n }n∈N is bounded. Furthermore limn→∞ ‖T (1)

n u‖p = 0 for

all u ∈ W 1,p(Rd).

Proof. Let n ∈ N and u ∈ W 1,p(Rd). For all k, l ∈ {1, . . . , d} we have ckl ∈ W 2,∞(Rd),

which implies

|(∂lckl)(x)− (∂lckl)(x− y)| ≤ ‖ckl‖W 2,∞ |y| (4.7)

for all x, y ∈ Rd. It follows that

‖T (1)
n u‖p ≤

d∑
k,l=1

∫
Rd
|Jn(y)|

∥∥∥((I − Ly) (∂lckl)
)
Ly(∂ku)

∥∥∥
p
dy

≤
d∑

k,l=1

∫
Rd
|Jn(y)| ‖(I − Ly) (∂lckl)‖∞ ‖Ly(∂ku)‖p dy

≤
( d∑
k,l=1

‖ckl‖W 2,∞

)
‖u‖W 1,p

∫
Rd
|Jn(y)| |y| dy

=
( d∑
k,l=1

‖ckl‖W 2,∞

)
‖u‖W 1,p

1

n

∫
Rd
|J(y)| |y| dy,

where we used Jn(y) = nd J(n y) in the last step. Note that

lim
n→∞

1

n

∫
Rd
|J(y)| |y| dy = 0.

Hence limn→∞ ‖T (1)
n u‖p = 0. Moreover, {T (1)

n }n∈N is bounded.

Lemma 4.19. The sequence {T (2)
n }n∈N is bounded. Furthermore limn→∞ ‖T (2)

n u‖p = 0 for

all u ∈ W 1,p(Rd) ∩ Lp,c(Rd).

Proof. Let n ∈ N and u ∈ W 1,p(Rd). Expanding T
(2)
n gives

T (2)
n u = −

d∑
k,l=1

∫
Rd

(
Jn(y)Ly(∂lckl) + (∂lJn)(y) (I − Ly) ckl

)
Ly(∂ku) dy,

where we used Ly(∂lckl) = − ∂
∂yl

(Lyckl) for all k, l ∈ {1, . . . , d}. Therefore
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‖T (2)
n u‖p ≤

d∑
k,l=1

(
‖(∂lckl) (∂ku)‖p +

∫
Rd
|(∂lJn)(y)| ‖((I − Ly) ckl)Ly(∂ku)‖p dy

)

≤
d∑

k,l=1

(
‖∂lckl‖∞ ‖(∂ku)‖p +

∫
Rd
|(∂lJn)(y)| ‖(I − Ly) ckl‖∞ ‖Ly(∂ku)‖p dy

)
≤M ‖u‖W 1,p , (4.8)

where

M =
d∑

k,l=1

(
‖ckl‖W 2,∞

(
1 +

∫
Rd
|(∂lJ)(y)| |y| dy

))
(4.9)

and we used (4.7) in the last step. Therefore {T (2)
n }n∈N is bounded.

To prove to the latter statement of the lemma, we consider two cases.

Case 1: Suppose u ∈ C∞c (Rd).

Since Jn has a compact support, we have

d∑
k,l=1

∫
Rd

(
∂

∂yl

(
Jn(y) (I − Ly) ckl

))
(∂ku) dy = 0.

Consequently

T (2)
n u =

d∑
k,l=1

∫
Rd

(
∂

∂yl

(
Jn(y) (I − Ly) ckl

))
(I − Ly) (∂ku) dy

=
d∑

k,l=1

∫
Rd

(
Jn(y)Ly(∂lckl) + (∂lJn)(y) (I − Ly) ckl

)
(I − Ly) (∂ku) dy.

It follows that

‖T (2)
n u‖p ≤

d∑
k,l=1

∫
Rd

(
Jn(y) ‖Ly(∂lckl)‖∞+ |(∂lJn)(y)| ‖(I −Ly) ckl‖∞

)
‖(I −Ly)(∂ku)‖p dy.

Note that

‖(I − Ly)(∂ku)‖p =
(∫

Rd
|(∂ku)(x)− (∂ku)(x− y)|p dx

) 1
p

≤
(∫

Rd
(‖u‖W 2,∞ |y|)p 1supp ∂ku∪ suppLy(∂ku) dx

) 1
p

≤ 2 |supp ∂ku|1/p ‖u‖W 2,∞ |y| ≤ 2

n
|suppu|1/p ‖u‖W 2,∞

for all k ∈ {1, . . . , d} and y ∈ Rd such that |y| < 1
n
, where in the last step we used the fact

that supp ∂ku ⊂ suppu for all k ∈ {1, . . . , d}. Therefore

‖T (2)
n u‖p ≤

2M

n
|suppu|1/p ‖u‖W 2,∞ , (4.10)
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where M is defined by (4.9) and we used the fact that
∫
Rd Jn(y) dy = 1. Hence (4.10) gives

limn→∞ ‖T (2)
n u‖p = 0.

Case 2: Suppose u ∈ W 1,p(Rd) ∩ Lp,c(Rd).

Let ε > 0. Let v ∈ C∞c (Rd) be such that ‖u − v‖W 1,p < ε
2M

. Choose an n ∈ N such that
2M
n
|supp v|1/p ‖v‖W 2,∞ < ε

2
. Then it follows from (4.8) and (4.10) that

‖T (2)
n u‖p ≤ ‖T (2)

n (u− v)‖p + ‖T (2)
n v‖p ≤M ‖u− v‖W 1,p +

2M

n
|supp v|1/p ‖v‖W 2,∞ < ε.

The proof is complete.

Lemma 4.20. The sequence {Tn}n∈N is bounded. Furthermore limn→∞ ‖Tnu‖p = 0 for all

u ∈ W 1,p(Rd) ∩ Lp,c(Rd).

Proof. This is a consequence of Lemmas 4.18 and 4.19.

We have the following approximation proposition (cf. [Fri44] and [Kat72] for a special

case of the proposition when the coefficient ckl are real-valued for all k, l ∈ {1, . . . , d}).

Proposition 4.21. Let u ∈ D(Bp)∩W 1,p(Rd)∩Lp,c(Rd). Then limn→∞Bp(Jn ∗ u) = Bpu

in Lp(Rd).

Proof. Let u ∈ D(Bp)∩W 1,p(Rd)∩Lp,c(Rd). It is well-known that limn→∞ Jn∗(Bpu) = Bpu

in Lp(Rd). Therefore it suffices to show that

lim
n→∞

‖Bp(Jn ∗ u)− Jn ∗ (Bpu)‖p = 0.

In what follows note that Ly(∂lu) = − ∂
∂l

(Lyu) and ∂l(Jn ∗ u) = (∂lJn) ∗ u for all l ∈
{1, . . . , d}. We first calculate Jn ∗ (Bpu). Let x ∈ Rd. Define φ(y) = Jn(x − y) for all

y ∈ Rd. Then φ ∈ C∞c (Rd). By the definition of Bp we have

(Jn ∗ (Bpu))(x) =

∫
Rd
Jn(x− y) (Bpu)(y) dy = (Bpu, φ) = (u,Hqφ)

= −
d∑

k,l=1

∫
Rd

( ∂

∂yk

(
ckl(y)

∂

∂yl
Jn(x− y)

))
u(y) dy

=
d∑

k,l=1

∫
Rd

(
ckl(y)

∂

∂yl
Jn(x− y)

)
(∂ku)(y) dy

= −
d∑

k,l=1

∫
Rd

(∂lJn)(x− y) (ckl ∂ku)(y) dy

= −
d∑

k,l=1

∫
Rd

(∂lJn)(y) (ckl ∂ku)(x− y) dy

for all n ∈ N. Hence

Jn ∗ (Bpu) = −
d∑

k,l=1

∫
Rd

(∂lJn)(y)Ly(ckl ∂ku) dy
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for all n ∈ N.

Let n ∈ N. We have

Bp(Jn ∗ u)− Jn ∗ (Bpu)

= −
d∑

k,l=1

(
∂l

(
ckl

∫
Rd
Jn(y)Ly(∂ku) dy

)
−
∫
Rd

(∂lJn)(y)Ly(ckl ∂ku) dy

)

= −
d∑

k,l=1

(
(∂lckl)

∫
Rd
Jn(y)Ly(∂ku) dy + ckl ∂l

(∫
Rd
Jn(y)Ly(∂ku) dy

)

−
∫
Rd

(∂lJn)(y)Ly(ckl ∂ku) dy

= −
d∑

k,l=1

(
(∂lckl)

∫
Rd
Jn(y)Ly(∂ku) dy + ckl

∫
Rd

(∂lJn)(y)Ly(∂ku) dy

−
∫
Rd

(∂lJn)(y)Ly(ckl ∂ku) dy

)
.

On the other hand expanding T
(1)
n and T

(2)
n gives

T (1)
n u = −

d∑
k,l=1

∫
Rd

(
Jn(y) (∂lckl)Ly(∂ku)− Jn(y)Ly

(
(∂lckl) ∂ku

))
dy

and

T (2)
n u = −

d∑
k,l=1

∫
Rd

(
Jn(y)Ly(∂lckl) + (∂lJn)(y) (I − Ly) ckl

)
Ly(∂ku) dy

= −
d∑

k,l=1

∫
Rd

(
Jn(y)Ly

(
(∂lckl) ∂ku

)
+ (∂lJn)(y) ckl Ly(∂ku)

− (∂lJn)(y)Ly(ckl ∂ku)
)
dy.

Therefore

Tnu = T (1)
n u+ T (2)

n u = −
d∑

k,l=1

(
(∂lckl)

∫
Rd
Jn(y)Ly(∂ku) dy + ckl

∫
Rd

(∂lJn)(y)Ly(∂ku) dy

−
∫
Rd

(∂lJn)(y)Ly(ckl ∂ku) dy

)
.

Hence

Bp(Jn ∗ u)− Jn ∗ (Bpu) = Tnu. (4.11)

The claim now follows from Lemma 4.20.
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Let τ ∈ C∞c (Rd) be such that 0 ≤ τ ≤ 1, τ |B1(0) = 1 and supp τ ⊂ B2(0). Define

τn(x) = τ(n−1 x) for all x ∈ Rd and n ∈ N.

Lemma 4.22. Let u ∈ D(Bp) ∩ W 1,p(Rd). Then τn u ∈ D(Bp) for all n ∈ N and we

have limn→∞ τn u = u in D(Bp). If u satisfies further that u ∈ W 2,p(Rd) and ∇(Bpu) ∈
(Lp(Rd))d, then ∇(Bp(τn u)) ∈ (Lp(Rd))d and limn→∞∇(Bp(τn u)) = ∇(Bpu) in (Lp(Rd))d.

Proof. Let n ∈ N and φ ∈ C∞c (Rd). Then

(τn u,Hqφ) = (v, φ),

where

v = τn (Bpu) + (Bpτn)u−
d∑

k,l=1

ckl (∂ku) (∂lτn)−
d∑

k,l=1

ckl (∂lu) (∂kτn). (4.12)

It follows that

‖v‖p ≤M1 ‖u‖W 1,p + ‖Bpu‖p <∞,

where M1 = 3 sup{‖ckl τ‖W 2,∞ : 1 ≤ k, l ≤ d}. Therefore τn u ∈ D(Bp) and Bp(τn u) = v.

Next we consider the expression for v in (4.12). For the first term we have ‖τn (Bpu)‖p ≤
‖Bpu‖ for all n ∈ N and {τn (Bpu)}n∈N converges to Bpu pointwise. As a consequence

limn→∞ τn (Bpu) = Bpu in Lp(Rd) by the Lebesgue dominated convergence theorem. For

the second term we notice that

(∂kτn)(x) =
1

n
(∂kτ)(n−1 x) and (∂l∂kτn)(x) =

1

n2
(∂l∂kτ)(n−1 x) (4.13)

for all x ∈ Rd, n ∈ N and k, l ∈ {1, . . . , d}. Since ckl ∈ W 2,∞(Rd) for all k, l ∈ {1, . . . , d},
we obtain

‖(Bpτn)u‖p =
∥∥∥( d∑

k,l=1

(∂lckl) (∂kτn) + ckl (∂l∂kτn)
)
u
∥∥∥
p
≤ 2d2

n
‖ckl‖W 2,∞ ‖τ‖W 2,∞ ‖u‖p

(4.14)

for all n ∈ N. It follows that limn→∞ ‖(Bpτn)u‖p = 0. Similarly the last two terms also

converge to 0 in Lp(Rd). Clearly limn→∞ τn u = u in Lp(Rd). Hence limn→∞ τn u = u in

D(Bp).

To prove the second statement let j ∈ {1, . . . , d} and n ∈ N. Using (4.12) we have

∂j(Bp(τn u)) = τn ∂j(Bpu) + (∂jτn) (Bpu) + (Bpτn) (∂ju) + (∂j(Bpτn))u

−
d∑

k,l=1

(∂jckl) (∂ku) (∂lτn) + ckl (∂j∂ku) (∂lτn) + ckl (∂ku) (∂j∂lτn)

−
d∑

k,l=1

(∂jckl) (∂lu) (∂kτn) + ckl (∂j∂lu) (∂kτn) + ckl (∂lu) (∂j∂kτn). (4.15)

It follows that

‖∂j(Bp(τn u))‖p ≤M2 ‖u‖W 2,p + (1 ∧ ‖τ‖W 1,∞) ‖Bpu‖W 1,p <∞,
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where M2 = 8 sup{‖ckl‖W 2,∞ ‖τ‖W 3,∞ : 1 ≤ k, l ≤ d}. Therefore ∂j(Bp(τn u)) ∈ Lp(Rd).

Furthermore notice that

(∂j∂l∂kτn)(x) =
1

n3
(∂j∂l∂kτ)(n−1 x) (4.16)

for all x ∈ Rd and k, l ∈ {1, . . . , d}. Using (4.13), (4.16) and repeating the arguments used

in (4.14) we see that all terms in the expression for ∂j(Bp(τn u)) in (4.15) converge to 0 in

Lp(Rd) as n tends to infinity except for the first one, whereas the first term converges to

∂j(Bpu) in Lp(Rd) as n tends to infinity. Hence limn→∞ ∂j(Bp(τn u)) = ∂j(Bpu) in Lp(Rd).

This completes the proof.

Proposition 4.23. The space C∞c (Rd) is dense in (D(Bp) ∩W 1,p(Rd), ‖ · ‖D(Bp)).

Proof. Let u ∈ D(Bp) ∩ W 1,p(Rd) and ε > 0. For all n ∈ N set un = τn u ∈ D(Bp) ∩
W 1,p(Rd)∩Lp,c(Rd). By Lemma 4.22 we can choose an n ∈ N such that ‖u−un‖D(Bp) <

ε
2
.

Next for all m ∈ N set vm = Jm ∗ (τn u) ∈ C∞c (Rd). We now use Lemma 4.21 to choose an

m ∈ N such that ‖un − vm‖D(Bp) <
ε
2
. Then

‖u− vm‖D(Bp) ≤ ‖u− un‖D(Bp) + ‖un − vm‖D(Bp) < ε.

This verifies the claim.

Proposition 4.24. Suppose |1− 2
p
| < cos θ and Ba = 0. Then there exists an M > 0 such

that

Re (∇(Bpu), |∇u|p−2∇u) ≥ −M ‖∇u‖pp
for all u ∈ W 2,p(Rd) such that ∇(Bpu) ∈ (Lp(Rd))d.

Proof. The condition |1 − 2
p
| < cos θ is equivalent to |p − 2| tan θ < 2

√
p− 1. Let ε0 ∈

(0, 1 ∧ (p− 1)) be such that

|p− 2| tan θ ≤ 2
√

(1− ε) (p− 1− ε)

for all ε ∈ (0, ε0). Let ε ∈ (0, ε0) be such that

ε <
ε0

32 d (1 + tan θ)2 sup1≤l≤d ‖∂2
l C‖∞

. (4.17)

Let u ∈ W 2,p(Rd). By Lemma 4.22 we can assume without loss of generality that

u has a compact support. For the rest of the proof, all integrations are over the set

{x ∈ Rd : |(∇u)(x)| 6= 0}. We have

(∇(Bpu), |∇u|p−2∇u) = −
d∑

k,l,j=1

∫ (
∂j∂l(ckl ∂ku)

)
|∇u|p−2 ∂ju

= −
d∑

k,l,j=1

∫ (
∂l
(
(∂jckl) (∂ku) + ckl (∂j∂ku)

))
|∇u|p−2 ∂ju
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= −
d∑

k,l,j=1

∫ (
∂l
(
(∂jckl) (∂ku)

))
|∇u|p−2 ∂ju

+
d∑

k,l,j=1

∫
ckl (∂j∂ku) ∂l

(
|∇u|p−2 ∂ju

)
= (I) + (II).

We first consider the real part of (I). We have

−Re
d∑

k,l,j=1

∫ (
∂l
(
(∂jckl) (∂ku)

))
|∇u|p−2 ∂ju = −Re

d∑
k,l,j=1

∫
(∂l∂jckl) (∂ku) (∂ju) |∇u|p−2

− Re
d∑

k,l,j=1

∫
(∂jckl) (∂l∂ku) (∂ju) |∇u|p−2

= (Ia) + (Ib).

For (Ia) we have

(Ia) ≥ −1

2

d∑
k,l,j=1

‖ckl‖W 2,∞

∫
(|∂ku|2 + |∂ju|2) |∇u|p−2 ≥ −M1 ‖∇u‖pp,

where M1 = d2 sup{‖ckl‖W 2,∞ : 1 ≤ k, l ≤ d}. Let U = (∂l∂ku)1≤k,l≤d. For (Ib) we estimate

(Ib) = −Re
d∑
j=1

∫
tr ((∂jC)U) (∂ju) |∇u|p−2

≥ −
d∑
j=1

∫ (
ε |tr ((∂jC)U)|2 |∇u|p−2 +

1

4ε
|∂ju|2 |∇u|p−2

)
≥ −ε′

∫
tr (U Rs U) |∇u|p−2 −M2 ‖∇u‖pp,

where we used Corollary 4.10(a) in the last step with ε′ = 32 ε d (1+tan θ)2 sup1≤l≤d ‖∂2
l C‖∞

and M2 = 1
4ε

. Note that ε′ ∈ (0, ε0) by (4.17).

Next we consider the real part of (II). Note that

Re
d∑

k,l,j=1

∫
ckl (∂j∂ku) ∂l

(
|∇u|p−2 ∂ju

)
= Re

d∑
k,l,j=1

∫
ckl (∂j∂ku) (∂l∂ju) |∇u|p−2

+ Re
d∑

k,l,j=1

∫
ckl (∂j∂ku) (∂ju) ∂l(|∇u|p−2)

= (IIa) + (IIb).
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For (IIa) we have

(IIa) =

∫
tr (U (ReC)U) |∇u|p−2 =

∫
tr (U Rs U) |∇u|p−2

as Ba = 0. For (IIb) we have the following estimate

(IIb) = Re
d∑

k,l,i,j=1

p− 2

2

∫
ckl (∂j∂ku) (∂ju)

(
(∂l∂iu) (∂iu) + (∂l∂iu) (∂iu)

)
|∇u|p−4

=
p− 2

2

∫
Re
((
C U ∇u, U ∇u

)
+
(
C U ∇u, U ∇u

))
|∇u|p−4

= (p− 2)

∫ (
(Rs ξ, ξ)− (Bs ξ, η)

)
|∇u|p−4,

where ξ, η ∈ Rd and U ∇u = ξ + i η.

In total we obtain

Re (∇(Bpu), |∇u|p−2∇u) ≥ −(M1 +M2) ‖∇u‖pp + (1− ε′)
∫

tr (U Rs U) |∇u|p−2

+ (p− 2)

∫ (
(Rs ξ, ξ)− (Bs ξ, η)

)
|∇u|p−4

= −(M1 +M2) ‖∇u‖pp + P,

where

P = (1− ε′)
∫

tr (U Rs U) |∇u|p−2 + (p− 2)

∫ (
(Rs ξ, ξ)− (Bs ξ, η)

)
|∇u|p−4.

Next we will show that P ≥ 0. Since Ba = 0, it follows from Lemma 4.11 that

(Rs ξ, ξ) + (Rs η, η) = ((ReC)U ∇u, U ∇u) ≤ tr (U∗ (ReC)U) |∇u|2

= tr (U Rs U) |∇u|2 = tr (U Rs U) |∇u|2.

Therefore

P ≥
∫ (

(p− 1− ε′) (Rs ξ, ξ) + (1− ε′) (Rs η, η)− (p− 2) (Bs ξ, η)
)
|∇u|p−4

=

∫ (
(Rs ξ

′, ξ′) + (Rs η
′, η′)− p− 2√

(1− ε′) (p− 1− ε′)
(Bs ξ

′, η′)
)
|∇u|p−4, (4.18)

where ξ′ =
√
p− 1− ε′ ξ and η′ =

√
1− ε′ η. If θ = 0 then it follows from Lemma 4.5 that

(Bs ξ
′, η′) = 0. Therefore (4.18) gives

P ≥
∫ (

(Rs ξ
′, ξ′) + (Rs η

′, η′)
)
|∇u|p−4 ≥ 0.

If θ 6= 0 then (4.18) can be estimated by

P ≥
∫ (

(Rs ξ
′, ξ′) + (Rs η

′, η′)− 2 cot θ |(Bs ξ
′, η′)|

)
|∇u|p−4 ≥ 0,
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where we again used Lemma 4.5. Either way we always have

Re (∇(Bpu), |∇u|p−2∇u) ≥ −(M1 +M2) ‖∇u‖pp

as claimed.

Proposition 4.25. Suppose |1 − 2
p
| < cos θ and Ba = 0. Then Bp is m-accretive. Fur-

thermore C∞c (Rd) is a core for Bp.

Proof. We will proceed in three steps.

Step 1: We will show that Bp|D(Bp)∩W 1,p(Rd) is m-accretive.

It follows from Propositions 4.17 and 4.23 that Bp|D(Bp)∩W 1,p(Rd) is accretive. Hence

Bp|D(Bp)∩W 1,p(Rd) is also accretive.

Next we will show that there exists a λ > 0 such that (λ + Bp)(D(Bp) ∩ W 1,p(Rd))

is dense in Lp(Rd). In fact we will show that there exists a λ > 0 such that W 1,p(Rd) ⊂
(λ + Bp)(D(Bp) ∩ W 1,p(Rd)). Since −∆ satisfies the same conditions as those of Bp,

Proposition 4.24 also applies to −∆. In particular there exists an M ′ > 0 such that

Re
(
∇(∆u), |∇u|p−2∇u

)
≥ −M ′ ‖∇u‖pp

for all u ∈ W 3,p(Rd).

For all n ∈ N define the operator Bp,n by

Bp,nu = Bpu−
1

n
∆u

on the domain

D(Bp,n) = W 2,p(Rd),

where ∆ = ∂2
1 + . . . + ∂2

d . Note that for each n ∈ N the operator Bp,n is strongly elliptic,

which implies that Bp,n is closed.

Let M be as in Proposition 4.24 and λ = M + M ′ + 1. Let f ∈ W 1,p(Rd). Let n ∈ N.

Then there exists a un ∈ W 2,p(Rd) such that (λ + Bp,n)un = f . Elliptic regularity gives

un ∈ W 3,p(Rd). It follows that ∇(Bp,nun) = ∇(f − λun) ∈ (Lp(Rd))d and ∇(Bpun) =

∇(Bp,nun) + 1
n
∇(∆un) ∈ (Lp(Rd))d. By Proposition 4.17 we have

(f, |un|p−2 un) = λ ‖un‖pp + (Bp,nun, |un|p−2 un) ≥ λ ‖un‖pp ≥ ‖un‖pp.

However

(f, |un|p−2 un) ≤ ‖f‖p ‖|un|p−2 un‖q = ‖f‖p ‖un‖p/qp

by Hölder’s inequality. Therefore ‖un‖pp ≤ ‖f‖p ‖un‖
p/q
p , or equivalently ‖un‖p ≤ ‖f‖p.

Also it follows from Proposition 4.24 that

(∇f, |∇un|p−2∇un) = λ ‖∇un‖pp + Re
(
∇(Bp,nun), |∇un|p−2∇un

)
= λ ‖∇un‖pp + Re

(
∇(Bpun), |∇un|p−2∇un

)
− 1

n
Re
(
∇(∆un), |∇un|p−2∇un

)
≥ (λ−M −M ′) ‖∇un‖pp = ‖∇un‖pp.
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Again the Hölder’s inequality gives ‖∇un‖p ≤ ‖∇f‖p. Hence ‖un‖W 1,p ≤ ‖f‖W 1,p . In

particular {uk}k∈N is bounded in W 1,p(Rd). Passing to a subsequence if necessary we may

assume that {uk}k∈N converges weakly to a u ∈ W 1,p(Rd). Note that Bp,nun = f − λun.

Therefore {Bp,nun}k∈N is bounded in Lp(Rd). Passing to a subsequence if necessary we

again assume that {Bp,kuk}k∈N converges weakly to a v ∈ Lp(Rd). Then v = f − λu. We

will show that Bpu = v. Indeed let φ ∈ C∞c (Rd). Then limn→∞B
∗
p,nφ = B∗pφ strongly in

Lq(Rd) and

(v, φ) = lim
n→∞

(Bp,nun, φ) = lim
n→∞

(un, B
∗
p,nφ) = (u,B∗pφ).

Therefore u ∈ D(Bp) and Bpu = v. Hence (λ+Bp)u = f .

Step 2: We will show that Bp|D(Bp)∩W 1,p(Rd) = Bp, which implies Bp is m-accretive.

Clearly D(Bp) ∩W 1,p(Rd)
‖·‖D(Bp) ⊂ D(Bp). For the reverse inclusion let u ∈ D(Bp) and

λ be defined as in Step 1. Since (λ + Bp)u ∈ Lp(Rd) and Bp|D(Bp)∩W 1,p(Rd) is m-accretive,

there exists a v ∈ D(Bp) ∩W 1,p(Rd)
‖·‖D(Bp) such that (λ+Bp)v = (λ+Bp)u. Equivalently

(u− v, (λ+Hq)φ) = 0 (4.19)

for all φ ∈ C∞c (Rd).

Define Gq = (Bp|C∞c (Rd))
∗. Then Hq ⊂ Gq. Note that |1 − 2

p
| < cos θ is equivalent to

|1 − 2
q
| < cos θ. Furthermore C∗ satisfies the same condition as those of C. Therefore

all previous results apply to Gq. In particular, Proposition 4.23 gives C∞c (Rd) is dense in

(D(Gq) ∩W 1,q(Rd), ‖ · ‖D(Gq)) and Step 1 gives Gq|D(Gq)∩W 1,q(Rd) is m-accretive.

Now it follows from (4.19) that

(u− v, (λ+Gq)φ) = 0

for all φ ∈ (D(Gq) ∩W 1,q(Rd), ‖ · ‖D(Gq)). Since Gq|D(Gq)∩W 1,q(Rd) is m-accretive, we must

have u = v.

Step 3: We will show that C∞c (Rd) is a core for Bp.

This follows immediately from Proposition 4.23 and Step 2.

4.5 The core property for Ap

Let p ∈ (1,∞) be such that |1 − 2
p
| < cos θ. Suppose Ba = 0. In Section 4.3, we proved

that the contraction C0-semigroup S generated by A extends consistently to a contraction

C0-semigroup S(p) on Lp(Rd). Let −Ap be the generator of S(p). In this section we will

show that the operator Ap and Bp are in fact the same. Consequently the space of test

functions C∞c (Rd) is a core for Ap. This is the content of Theorem 4.2, which is also the

main theorem of the chapter.

Proposition 4.26. Let p ∈ (1,∞) be such that |1 − 2
p
| < cos θ. Suppose Ba = 0. Then

Ap = Bp.

Proof. Let u ∈ D(A) ∩D(Ap). Then

(Apu, φ) = (Au, φ) = a(u, φ) = (u,Hqφ)
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for all φ ∈ C∞c (Rd). It follows that u ∈ D(Bp) and Bpu = Apu. In particular this

implies that D(A) ∩ D(Ap) ⊂ D(Bp). However D(A) ∩ D(Ap) is a core for Ap and Bp is

closed. Hence D(Ap) ⊂ D(Bp). On the other hand note that −Ap generates a contraction

C0-semigroup. Therefore Ap is m-accretive. By Proposition 4.25 the operator Bp is also

m-accretive. Hence Ap = Bp as required.

The main result of this chapter now follows immediately from the above proposition.

Proof of Theorem 4.2. By Proposition 4.25 the space C∞c (Rd) is a core for Bp. Since

Ap = Bp by Proposition 4.26, it follows that C∞c (Rd) is also a core for Ap.

4.6 More sufficient conditions in L2

This section is motivated by the fact that B2 is accretive on W 2,2(Rd) without the require-

ment that Ba = 0 (cf. Proposition 4.17). In fact more is true.

Proposition 4.27. We have

Re (B2u, u) ≥ 0

for all u ∈ W 1,2(Rd) ∩D(B2).

Proof. Let u ∈ W 1,2(Rd) ∩D(B2). Then

Re (B2u, u) = −Re
d∑

k,l=1

∫
Rd

(∂l(ckl ∂ku))u = Re
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂lu

= Re

∫
Rd

(C∇u,∇u) =

∫
Rd

((ReC)∇u,∇u) ≥ 0

as claimed.

Define the operator Z = B2|C∞c (Rd). Then Z is closed. Furthermore we have the

following.

Proposition 4.28. The operator Z is accretive and Z = B2|W 1,2(Rd)∩D(B2).

Proof. It suffices to show Z = B2|W 1,2(Rd)∩D(B2). This follows immediately from Proposition

4.23.

From now on we drop the condition that Ba 6= 0. In this section we will provide many

sufficient conditions for the space of test functions C∞c (Rd) to be a core for the operator

A. Define the operator L in L2(Rd) as follows.

Lu = −
d∑

k,l=1

∂k
(
(Ba)kl ∂lu

)
(4.20)

on the domain

D(L) = C∞c (Rd).
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Next define the operator associated with Ba as (Ba)
op = L∗, which is the dual of L. In

what follows we denote (∂kBa)kl = ∂k
(
(Ba)kl

)
for all k, l ∈ {1, . . . , d}. Although (Ba)

op

appears to be a differential operator of second order, it is in fact a first-order differential

operator. Indeed for all u ∈ D((Ba)
op) and φ ∈ C∞c (Rd) we have

(
(Ba)

opu, φ
)

= (u, Lφ) = −
d∑

k,l=1

∫
Rd
u ∂k

(
(Ba)kl ∂lφ

)

= −
d∑

k,l=1

∫
Rd
u
(

(∂kBa)kl ∂lφ+ (Ba)kl ∂k∂lφ
)

= −
d∑

k,l=1

∫
Rd
u (∂kBa)kl ∂lφ, (4.21)

where the last step follows from the anti-symmetry of Ba. Note that (Ba)kl ∈ W 2,∞(Rd)

for all k, l ∈ {1, . . . , d}. Therefore it follows from (4.21) that W 1,2(Rd) ⊂ D((Ba)
op) and

(
(Ba)

opu, φ
)

=
d∑

k,l=1

∫
Rd
∂l
(
(∂kBa)kl u

)
φ =

d∑
k,l=1

∫
Rd

(
(∂l∂kBa)kl u+ (∂kBa)kl (∂lu)

)
φ

=
d∑

k,l=1

∫
Rd

(∂kBa)kl (∂lu)φ = −
d∑

k,l=1

∫
Rd

(∂lBa)kl (∂ku)φ

for all u ∈ W 1,2(Rd) and φ ∈ C∞c (Rd) since Ba is anti-symmetric. Hence

(Ba)
opu =

d∑
k,l=1

∂l
(
(∂kBa)kl u

)
= −

d∑
k,l=1

(∂lBa)kl ∂ku

for all u ∈ W 1,2(Rd).

Lemma 4.29. For all ε > 0 there exists an M > 0 such that∣∣((Ba)
opu,−∆u

)∣∣ ≤ ε

∫
Rd
‖(∂lBa)U‖2

HS +M ‖∇u‖2
2

for all u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

Proof. Let u ∈ C∞c (Rd) and write U = (∂l∂ku)1≤k,l≤d. Then

∣∣((Ba)
opu,−∆u

)∣∣ =
∣∣∣ d∑
k,l,j=1

∫
Rd

(∂lBa)kl (∂ku) ∂2
ju
∣∣∣

=
∣∣∣ d∑
k,l,j=1

∫
Rd

(
(∂j∂lBa)kl ∂ku+ (∂lBa)kl ∂k∂ju

)
∂ju
∣∣∣

≤
∣∣∣ d∑
k,l,j=1

∫
Rd

(∂j∂lBa)kl (∂ku) ∂ju
∣∣∣+
∣∣∣ d∑
k,l,j=1

∫
Rd

(∂lBa)kl (∂k∂ju) ∂ju
∣∣∣

= (I) + (II).
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For (I) we have

∣∣∣ d∑
k,l,j=1

∫
Rd

(∂j∂lBa)kl (∂ku) ∂ju
∣∣∣ ≤ d2 sup

1≤k,l≤d
‖(Ba)kl‖W 2,∞ ‖∇u‖2

2.

We estimate the term (II) by

∣∣∣ d∑
k,l,j=1

∫
Rd

(∂lBa)kl (∂k∂ju) ∂ju
∣∣∣ =

∣∣∣ d∑
l,j=1

∫
Rd

(
(∂lBa)U

)
lj
∂ju
∣∣∣

≤ ε
d∑

l,j=1

∫
Rd

∣∣((∂lBa)U
)
lj

∣∣2 +
d

4ε
‖∇u‖2

2

= ε

∫
Rd
‖(∂lBa)U‖2

HS +
d

4ε
‖∇u‖2

2.

Hence ∣∣((Ba)
opu,−∆u

)∣∣ ≤ ε

∫
Rd
‖(∂lBa)U‖2

HS +M ‖∇u‖2
2,

where

M = d2 sup
1≤k,l≤d

‖(Ba)kl‖W 2,∞ +
d

4ε

as required.

Lemma 4.30. For all ε > 0 there exists an M > 0 such that∣∣∣ ∫
Rd

tr (U Ba U) ≤ ε

∫
Rd
‖(∂lBa)U‖2

HS +M ‖∇u‖2
2

for all u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

Proof. Let u ∈ C∞c (Rd) and write U = (∂l∂ku)1≤k,l≤d. Then

((Ba)
opu,−∆u) =

d∑
k,l,j=1

∫
Rd

(
∂l((Ba)kl ∂ku)

)
∂2
ju

= −
d∑

k,l,j=1

∫
Rd

(
∂l
(
(∂jBa)kl ∂ku+ (Ba)kl ∂j∂ku

))
∂ju

= −
d∑

k,l,j=1

∫
Rd

(∂l∂jBa)kl (∂ku) ∂ju+ (∂jBa)kl (∂l∂ku) ∂ju

+
d∑

k,l,j=1

∫
Rd

(Ba)kl (∂j∂ku) ∂l∂ju

= −
d∑

k,l,j=1

∫
Rd

(∂l∂jBa)kl (∂ku) ∂ju+

∫
Rd

tr (U Ba U),
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where in the last step we used
∑d

k,l=1(∂jBa)kl (∂l∂ku) = 0 for all j ∈ {1, . . . , d}, which

follows from the anti-symmetry of Ba.

Let ε > 0 and M be as in Lemma 4.29. Then

∣∣∣ ∫
Rd

tr (U Ba U)
∣∣∣ ≤ |((Ba)

opu,−∆u)|+
∣∣∣ d∑
k,l,j=1

∫
Rd

(∂l∂jBa)kl (∂ku) ∂ju
∣∣∣

≤ ε

∫
Rd
‖(∂lBa)U‖2

HS + (M + d2 ‖Ba‖W 2,∞) ‖∇u‖2
2,

where we used Lemma 4.29 in the last step.

Lemma 4.31. Let u ∈ C∞c (Rd). Then

Re
(
(B2 −B∗2)u,−∆u

)
= 2 Im

d∑
k,l,j=1

∫
Rd

(∂l∂jImC)kl (∂ku) ∂ju

+ 2 Im
d∑
j=1

∫
Rd

tr ((∂jImC)U) ∂ju.

Proof. Let u ∈ C∞c (Rd) and write U = (∂l∂ku)1≤k,l≤d. Then

(
(B2 −B∗2)u,−∆u

)
=

d∑
k,l,j=1

∫
Rd

(
∂l
(
(ckl − clk) ∂ku

))
∂2
ju

= 2i
d∑

k,l,j=1

∫
Rd

(
∂l
(
(ImC)kl ∂ku

))
∂2
ju

= −2i
d∑

k,l,j=1

∫
Rd

(
∂l
(
(∂jImC)kl ∂ku+ (ImC)kl ∂j∂ku

))
∂ju

= −2i
d∑

k,l,j=1

∫
Rd

(
(∂l∂jImC)kl (∂ku) + (∂jImC)kl (∂l∂ku)

)
∂ju

+ 2i
d∑

k,l,j=1

∫
Rd

(ImC)kl (∂j∂ku) (∂l ∂ju)

= −2i
d∑

k,l,j=1

∫
Rd

(∂l∂jImC)kl (∂ku) ∂ju− 2i
d∑
j=1

∫
Rd

tr ((∂jImC)U) ∂ju

+ 2i

∫
Rd

tr (U (ImC)U).

Taking the real parts both sides gives the statement since tr (U (ImC)U) ∈ R.
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Lemma 4.32. Let u ∈ C∞c (Rd). Then

Re
d∑
j=1

∫
Rd

tr
(
(∂jC)U

)
∂ju =

1

2
Re

d∑
k,l,j=1

∫
Rd

(∂2
j ckl) (∂lu) ∂ku− 2 (∂k∂jckl) (∂lu) ∂ju

+ Im
d∑

k,l,j=1

∫
Rd

(∂l∂jImC)kl (∂ju) ∂ku

+ Im
d∑
j=1

∫
Rd

tr ((∂jImC)U) ∂ju.

Proof. Let u ∈ C∞c (Rd) and write U = (∂l∂ku)1≤k,l≤d. Then

(B2u,−∆u) =
d∑

k,l,j=1

∫
Rd

(∂l(ckl ∂ku) ∂2
ju = −

d∑
k,l,j=1

∫
Rd

(
∂l((∂jckl) ∂ku+ ckl ∂j∂ku)

)
∂ju

=
d∑

k,l,j=1

∫
Rd

((∂jckl) ∂ku+ ckl ∂j∂ku) ∂l∂ju

= −
d∑

k,l,j=1

∫
Rd

(
(∂2
j ckl) ∂ku+ (∂jckl) ∂j∂ku+ (∂jckl) ∂j∂ku+ ckl ∂

2
j ∂ku

)
∂lu

= −
d∑

k,l,j=1

∫
Rd

(∂2
j ckl) (∂ku) ∂lu+ 2 (∂jckl) (∂j∂ku) ∂lu− (∂2

ju) ∂k(ckl ∂lu)

= −
d∑

k,l,j=1

∫
Rd

(∂2
j ckl) (∂ku) ∂lu− 2 (∂ju)

(
(∂k∂jckl) ∂lu+ (∂jckl) (∂k∂lu)

)
+ (−∆u,B∗2u).

Hence

d∑
k,l,j=1

∫
Rd

(∂jckl) (∂l∂ku) ∂ju =
1

2

d∑
k,l,j=1

∫
Rd

(∂2
j ckl) (∂ku) ∂lu− 2 (∂k∂jckl) (∂lu) (∂ju)

+
1

2

(
(B2u,−∆u)− (−∆u,B∗2u)

)
.

Replacing u by u in the above equation and taking the real parts on both sides gives

Re
d∑
j=1

∫
Rd

tr
(
(∂jC)U

)
∂ju = Re

d∑
k,l,j=1

∫
Rd

(∂jckl) (∂l∂ku) ∂ju

=
1

2
Re

d∑
k,l,j=1

∫
Rd

(∂2
j ckl) (∂ku) ∂lu− 2 (∂k∂jckl) (∂lu) (∂ju)

+
1

2
Re
(
(B2 −B∗2)u,−∆u

)
.
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Using Lemma 4.31 we yield the result.

Proposition 4.33. Suppose one of the following holds.

(i) The matrix Bs has constant entries.

(ii) There exist θ1, θ2 ∈ [0, π
2
), φ ∈ W 2,∞(Rd) and a d × d matrix C̃ with entries in

W 2,∞(Rd) such that θ = θ1 + θ2, φ(x) ∈ Σθ1 for all x ∈ Rd, C̃ takes values in Σθ2

and C = φ C̃. Write C̃ = R̃+ i B̃, where R̃ and B̃ are d× d matrix-valued functions

with real-valued entries. Set R̃s = 1
2

(R̃ + R̃T ). Also define Re C̃ = 1
2

(
C̃ + (C̃)∗

)
.

Suppose further that there exists an h > 0 such that

tr (U (Re C̃)U) ≥ h tr (U R̃s U)

for all u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

(iii) There exists an M > 0 such that ‖(∂lBa)U‖2
HS ≤M tr (U Rs U) for all l ∈ {1, . . . , d}

and u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

Then Z is m-accretive.

Proof. By Proposition 4.28 we have that that D(−∆) = W 2,2(Rd) ⊂ D(Z). We will show

that there exists a β ∈ R such that

Re (Zu,−∆u) ≥ −β ‖∇u‖2
2 (4.22)

for all u ∈ D(−∆) = W 2,2(Rd). It then follows from [Ouh05, Theorem 1.50] that Z is

m-accretive. Since C∞c (Rd) is dense in W 2,2(Rd) and is a core for Z, it suffices to show

that (4.22) holds for all u ∈ C∞c (Rd).

Let u ∈ C∞c (Rd) and U = (∂l∂ku)1≤k,l≤d. Using integration by parts we obtain

(Zu,−∆u) =
d∑

k,l,j=1

∫
Rd

(
∂l(ckl ∂ku)

)
∂2
ju = −

d∑
k,l,j=1

∫
Rd

(
∂l
(
(∂jckl) (∂ku) + ckl (∂j∂ku)

))
∂ju

= −
d∑

k,l,j=1

∫
Rd

(∂l∂jckl) (∂ku) ∂ju+ (∂jckl) (∂l∂ku) ∂ju− ckl (∂j∂ku) ∂l∂ju

= −
d∑

k,l,j=1

∫
Rd

(∂l∂jckl) (∂ku) ∂ju−
d∑
j=1

∫
Rd

tr
(
(∂jC)U

)
∂ju+

∫
Rd

tr (U C U).

Therefore

Re (Zu,−∆u) = −Re
d∑

k,l,j=1

∫
Rd

(∂l∂jckl) (∂ku) ∂ju− Re
d∑
j=1

∫
Rd

tr
(
(∂jC)U

)
∂ju

+

∫
Rd

tr
(
U (ReC)U

)
= (I) + (II) + (III).
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The estimate for (I) is straightforward as

(I) ≥ −
d∑

k,l,j=1

∫
Rd

∣∣(∂l∂jckl) (∂ku) ∂ju
∣∣ ≥ −M1‖∇u‖2

2, (4.23)

where M1 = d2 sup1≤k,l≤d ‖ckl‖W 2,∞ . The estimates for (II) and (III) are more involved.

We consider three cases according to the three conditions (i), (ii) and (iii) imposed above.

Case 1: Suppose (i) holds.

Since U = UT and Ra = −RT
a , we have

tr
(
(∂jRa)U

)
= tr

(
UT (∂jRa)

T
)

= −tr
(
U (∂jRa)

)
= −tr

(
(∂jRa)U

)
.

Therefore tr
(
(∂jRa)U

)
= 0. This implies

tr
(
(∂jImC)U

)
= tr

(
(∂jBs)U

)
− i tr

(
(∂jRa)U

)
= tr

(
(∂jBs)U

)
= 0,

where the last equality follows from the hypothesis. Using Lemma 4.32 we obtain that

(II) =
d∑

k,l,j=1

∫
Rd

Re
(1

2
(∂2
j ckl) (∂lu) ∂ku−(∂k∂jckl) (∂lu) ∂ju

)
+Im

(
(∂l∂jImC)kl (∂ju) ∂ku

)
.

Consequently

(II) ≥ −M2 ‖∇u‖2
2,

where M2 = 3 d2 sup1≤k,l≤d ‖ckl‖W 2,∞ . Note that (III) ≥ 0. Hence

Re (Zu,−∆u) ≥ −(M1 +M2) ‖∇u‖2
2.

Case 2: Suppose (ii) holds.

We first consider (II). We have

(II) = −Re
d∑
j=1

∫
Rd

tr
(
∂j(φ C̃)U

)
∂ju

= −Re
d∑
j=1

∫
Rd

(∂jφ) tr (C̃ U) ∂ju− Re
d∑
j=1

∫
Rd
φ tr

(
(∂jC̃)U

)
∂ju

= (IIa) + (IIb).

Let

M3 = 64 d (1 + tan θ1)2 (1 + tan θ2)2 ‖R̃s‖∞ sup
1≤j≤d

‖∂2
jφ‖∞

and

M4 = 32 d2 (1 + tan θ1) (1 + tan θ2)2 sup
1≤j≤d

‖∂2
j C̃‖∞.

Let

ε =
(1− tan θ1 tan θ2)h

4 (M3 ∨M4 ∨ 1)
.
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Note that ε > 0 as 1− tan θ1 tan θ2 > 0. Indeed, if tan θ = 0 then θ = θ1 = θ2 = 0, which

implies 1− tan θ1 tan θ2 = 1 > 0. If tan θ > 0 then 1− tan θ1 tan θ2 = tan θ1+tan θ2
tan θ

> 0.

For (IIa) we estimate

(IIa) ≥ −ε
∫
Rd

( d∑
j=1

|∂jφ|2
)
|tr (C̃ U)|2 − 1

4ε
‖∇u‖2

2.

Note that

|∂jφ|2 ≤ 4 (1 + tan θ1)2 sup
1≤j≤d

‖∂2
jφ‖∞Reφ

for all j ∈ {1 . . . , d} by Lemma 4.7. Moreover,

|tr (C̃ U)|2 ≤ d ‖C̃ U‖2
HS ≤ 16 d (1 + tan θ2)2 ‖R̃s‖∞ tr (U R̃s U),

where we used Lemma 4.16 in the last step. Consequently

(IIa) ≥ −εM3

∫
Rd

(Reφ) tr (U R̃s U)− 1

4ε
‖∇u‖2

2

≥ −(1− tan θ1 tan θ2)h

4

∫
Rd

(Reφ) tr (U R̃s U)− 1

4ε
‖∇u‖2

2. (4.24)

For (IIb) we estimate as follows. Since φ(x) ∈ Σθ1 for all x ∈ Rd, we have

|φ| ≤ |Reφ|+ |Imφ| ≤ (1 + tan θ1) Reφ.

Therefore

(IIb) ≥ −
d∑
j=1

∫
Rd
|φ|
∣∣tr ((∂jC̃)U

)∣∣ |∂ju|
≥ −(1 + tan θ1)

d∑
j=1

∫
Rd

(Reφ)
(
ε
∣∣tr ((∂jC̃)U

)∣∣2 +
1

4ε
|∂ju|2

)

≥ −ε (1 + tan θ1)
d∑
j=1

∫
Rd

(Reφ)
∣∣tr ((∂jC̃)U

)∣∣2 − (1 + tan θ1) ‖φ‖∞
4ε

‖∇u‖2
2

≥ −εM4

∫
Rd

(Reφ) tr (U R̃s U)− (1 + tan θ1) ‖φ‖∞
4ε

‖∇u‖2
2

≥ −(1− tan θ1 tan θ2)h

4

∫
Rd

(Reφ) tr (U R̃s U)− (1 + tan θ1) ‖φ‖∞
4ε

‖∇u‖2
2, (4.25)

where we used Corollary 4.10(a) in the fourth step.

On the other hand, estimating (III) gives

(III) =

∫
Rd

tr
(
U (Re (φ C̃))U

)
=

∫
Rd

(Reφ) tr (U (Re C̃)U)− (Imφ) tr (U (Im C̃)U).
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Since φ(x) ∈ Σθ1 for all x ∈ Rd, we have |Imφ| ≤ (tan θ1) Reφ. Also as C̃ takes values in

Σθ2 , we deduce that |(Im (C̃ Uej, Uej)| ≤ (tan θ2) Re (C̃ Uej, Uej), which in turns implies

that |tr (U (Im C̃)U)| ≤ (tan θ2) tr (U (Re C̃)U). Therefore

(III) ≥
∫
Rd

(1− tan θ1 tan θ2) (Reφ) tr (U (Re C̃)U)

≥
∫
Rd

(1− tan θ1 tan θ2)h (Reφ) tr (U R̃s U) (4.26)

by the hypothesis. Hence by (4.23), (4.24), (4.25) and (4.26) we have

Re (Zu,−∆u) ≥ (1− tan θ1 tan θ2)h

2

∫
Rd

(Reφ) tr (U R̃s U)

−
(
M1 +

1 + (1 + tan θ1) ‖φ‖∞
4ε

)
‖∇u‖2

2

≥ −
(
M1 +

1 + (1 + tan θ1) ‖φ‖∞
4ε

)
‖∇u‖2

2.

Case 3: Suppose (iii) holds.

Let ε1 = 1
2M

and M ′ be corresponding to ε1 as in Lemma 4.30. Then

(III) =

∫
Rd

tr (U Rs U) + i

∫
Rd

tr (U Ba U)

≥
∫
Rd

tr (U Rs U)− ε1

∫
Rd
‖(∂lBa)U‖2

HS −M ′ ‖∇u‖2
2

≥ 1

2

∫
Rd

tr (U Rs U)−M ′ ‖∇u‖2
2

since ‖(∂lBa)U‖2
HS ≤M tr (U Rs U) by hypothesis.

Let ε2 = 1
4dM ′′

, where M ′′ is the constant as in Corollary 4.10(a). Then

(II) ≥ −ε2

d∑
j=1

∫
Rd

∣∣tr ((∂jC)U
)∣∣2 − 1

4ε2

‖∇u‖2
2 ≥ −

1

4

∫
Rd

tr (U Rs U)− 1

4ε2

‖∇u‖2
2,

where we used Corollary 4.10(a) in the last step. Hence

Re (Zu,−∆u) ≥ 1

4

∫
Rd

tr (U Rs U)− (
1

4ε2

+M1 +M ′) ‖∇u‖2
2.

The proof is complete.

We emphasise that it is not known yet whether B2 is accretive if Ba 6= 0.

Theorem 4.34. Suppose one of the following holds.

(i) The matrix Bs has constant entries.
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(ii) There exist θ1, θ2 ∈ [0, π
2
), φ ∈ W 2,∞(Rd) and a d × d matrix C̃ with entries in

W 2,∞(Rd) such that θ = θ1 + θ2, φ(x) ∈ Σθ1 for all x ∈ Rd, C̃ takes values in Σθ2

and C = φ C̃. Write C̃ = R̃+ i B̃, where R̃ and B̃ are d× d matrix-valued functions

with real-valued entries. Set R̃s = 1
2

(R̃ + R̃T ). Also define Re C̃ = 1
2

(
C̃ + (C̃)∗

)
.

Suppose further that there exists an h > 0 such that

tr (U (Re C̃)U) ≥ h tr (U R̃s U)

for all u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

(iii) There exists an M > 0 such that ‖(∂lBa)U‖2
HS ≤M tr (U Rs U) for all l ∈ {1, . . . , d}

and u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

Then A = B2 = Z.

Proof. By Proposition 4.33 the operator Z is m-accretive. We will show that Z = B2.

Clearly Z ⊂ B2. For the reverse inclusion let u ∈ D(B2). Then (I +B2)u ∈ L2(Rd). Since

Z is m-accretive, there exists a v ∈ D(Z) such that (I + Z)v = (I + B2)u. But B2 is an

extension of Z. Therefore (I +B2)v = (I +B2)u. Let φ ∈ C∞c (Rd). Then

0 = ((I +B2)(u− v), φ) = (u− v, (I +H2)φ),

where H2 is defined by (4.4). But H2 satisfies the same criteria as those of B2|C∞c (Rd).

Therefore analogous arguments give that H2 is also m-accretive. Consequently u = v.

Hence Z = B2. It follows that B2 is m-accretive. In particular B2 is accretive. Note that

A is m-accretive and A ⊂ B2. Therefore we must have A = B2 = Z.

Theorem 4.3 now follows from Theorem 4.34 as an easy consequence.

Proof of Theorem 4.3. By Theorem 4.34 we have A = Z. Since C∞c (Rd) is a core for Z, it

is also a core for A.

The next proposition provides three easy criteria to verify Condition (iii) in Theorem

4.3.

Proposition 4.35. Suppose C satisfies one of the following.

(a) There exists an r ∈ R \ {0} such that Rs + ir ∂lBa ≥ 0 for all l ∈ {1, . . . , d}.

(b) The matrices Rs and ∂lBa commute for all l ∈ {1, . . . , d}.

(c) There exist a real-valued function φ ∈ W 2,∞(Rd) which satisfies φ ≥ 0 and a d × d
matrix C̃ which has constant entries and takes values in Σθ such that C = φ C̃.

Then there exists an M > 0 such that ‖(∂lBa)U‖2
HS ≤M tr (U Rs U) for all l ∈ {1, . . . , d}

and u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d.

Proof. Let l ∈ {1, . . . , d}. Let u ∈ C∞c (Rd) and U = (∂l∂ku)1≤k,l≤d.

We first deal with (a) and (b). Set P =
√
U U∗ ≥ 0. Let V be a unitary matrix such

that P = V DP V
∗, where DP is a positive diagonal matrix. Then
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‖(∂lBa)U‖2
HS = −tr (U∗ (∂lBa)

2 U) = −tr ((∂lBa)
2 P 2) = −tr ((∂lBa)

2 V D2
P V

∗)

= −tr (V ∗ (∂lBa)
2 V D2

P ) =
d∑

k=1

|(V ∗ (∂lBa)
2 V )kk| |(DP )kk|2.

We consider two cases.

Case 1: Suppose (a) holds.

Then |((∂lBa) ξ, ξ)| ≤ 1
|r| (Rs ξ, ξ) for all ξ ∈ Cd. By Lemma 4.14 we have ‖(∂lBa) ξ‖2 ≤

4
r2
‖Rs‖∞ (Rs ξ, ξ) for all ξ ∈ Cd. In particular ‖(∂lBa)V ek‖2 ≤ 4

r2
‖Rs‖∞ (V ∗Rs V )kk for

all k ∈ {1, . . . , d}. It follows that

‖(∂lBa)U‖2
HS ≤

4

r2
‖Rs‖∞

d∑
k=1

(V ∗Rs V )kk |(DP )kk|2 =
4

r2
‖Rs‖∞ tr (V ∗Rs V D

2
P )

=
4

r2
‖Rs‖∞ tr (Rs P

2) =
4

r2
‖Rs‖∞ tr (U∗Rs U)

=
4

r2
‖Rs‖∞ tr (U Rs U

∗) =
4

r2
‖Rs‖∞ tr (U Rs U),

where the last equality follows from the fact that U = UT .

Case 2: Suppose (b) holds.

Let W be a unitary matrix such that ∂lBa = W DW ∗, where D is diagonal. Therefore

|Dkk|2 = |(W ∗ (∂lBa)W )kk|2 ≤ 2 sup
1≤l≤d

‖∂2
l C‖∞ (W ∗RsW )kk

for all k ∈ {1, . . . , d} by Lemma 4.13. Since Rs and ∂lBa commute, we may assume without

loss of generality that the matrix W also diagonalises Rs. It follows that

|(V ∗ (∂lBa)
2 V )kk| = |(V ∗W D2W ∗ V )kk| = |((W ∗ V )∗D2W ∗ V )kk|

=
d∑
j=1

(
(W ∗ V )∗

)
kj
|Djj|2 (W ∗ V )jk

≤ 2 sup
1≤l≤d

‖∂2
l C‖∞

d∑
j=1

(
(W ∗ V )∗

)
kj

(W ∗RsW )jj (W ∗ V )jk

= 2 sup
1≤l≤d

‖∂2
l C‖∞ (V ∗Rs V )kk

for all k ∈ {1, . . . , d}. Hence

‖(∂lBa)U‖2
HS ≤ 2 sup

1≤l≤d
‖∂2

l C‖∞
d∑

k=1

(V ∗Rs V )kk |(DP )kk|2

= 2 sup
1≤l≤d

‖∂2
l C‖∞ tr (V ∗Rs V D

2
P ) = 2 sup

1≤l≤d
‖∂2

l C‖∞ tr (Rs P
2)

= 2 sup
1≤l≤d

‖∂2
l C‖∞ tr (U Rs U).
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This completes the proof of the proposition under the assumptions (a) and (b).

Next we turn to (c). Suppose (c) holds. Write C̃ = R̃+ i B̃. Set R̃s = 1
2

(R̃+ R̃T ) and

B̃a = 1
2

(B̃ − B̃T ). Since φ is real-valued, we have Rs = φ R̃s and Ba = φ B̃a. Applying

Lemma 4.6 to φ we obtain (∂lφ)2 ≤ 2 ‖φ‖W 2,∞ φ. By Lemmas 4.12 and 4.14 we also have

‖B̃a ξ‖2 ≤ 4 ‖R̃s‖∞ (R̃s ξ, ξ) for all ξ ∈ Cd. Therefore

‖(∂lBa)U‖2
HS =

d∑
j=1

‖(∂lBa)U ej‖2
2 = (∂lφ)2

d∑
j=1

‖B̃a U ej‖2
2

≤ 8 ‖φ‖W 2,∞ ‖R̃s‖∞ φ
d∑
j=1

(R̃s U ej, U ej) = 8 ‖φ‖W 2,∞ ‖R̃s‖∞ tr (U Rs U).

The proof is complete.

Our next aim is to show that if D(A) ⊂ W 1,2(Rd), then C∞c (Rd) is a core for A.

Lemma 4.36. Suppose D(A) ⊂ W 1,2(Rd). Then

d∑
k,l=1

∫
Rd
ckl η (∂ku) ∂lφ =

(
η Au−

d∑
k,l=1

ckl (∂ku) ∂lη, φ
)

for all u ∈ D(A) and η, φ ∈ C∞c (Rd).

Proof. Let u ∈ D(A) and η, φ ∈ C∞c (Rd). Then

(η Au, φ) = (Au, η φ) = a(u, η φ) =
d∑

k,l=1

∫
Rd
ckl (∂ku) ∂l(η φ)

=
d∑

k,l=1

∫
Rd
ckl (∂ku) (∂lη)φ+

d∑
k,l=1

∫
Rd
ckl (∂ku) η ∂lφ.

Next we rearrange the terms to derive the lemma.

Recall that Jn is the usual mollifier with respect to a suitable function in C∞c (Rd) for

all n ∈ N.

Proposition 4.37. Suppose D(A) ⊂ W 1,2(Rd). Then C∞c (Rd) is a core for A if and only

if limn→∞A(Jn ∗ u) = Au in L2(Rd) for all u ∈ D(A).

Proof. (=⇒) It is well-known that limn→∞ Jn ∗ (Au) = Au in L2(Rd). Therefore it suffices

to show that limn→∞ ‖A(Jn ∗ u)− Jn ∗ (Au)‖2 = 0.

By a similar calculation as in (4.11) we yield

A(Jn ∗ u)− Jn ∗ Au = Tnu (4.27)

for all n ∈ N and u ∈ C∞c (Rd), where the bounded operator Tn : W 1,2(Rd) −→ L2(Rd) is

defined by (4.6). Let n ∈ N and u ∈ D(A). Since C∞c (Rd) is a core for D(A), there exists

a sequence {φj}j∈N in C∞c (Rd) such that

lim
j→∞

φj = u (4.28)
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in D(A). By hypothesis D(A) ⊂ W 1,2(Rd). Therefore the inclusion D(A) ↪→ W 1,2(Rd)

is continuous. It follows from (4.28) that limj→∞ φj = u in W 1,2(Rd). Recall that the

operator Tn is bounded. As a consequence limj→∞ Tnφj = Tnu in L2(Rd). We also derive

from (4.28) that limj→∞ Jn ∗ φj = Jn ∗ u in L2(Rd) and limj→∞ Jn ∗ (Aφj) = Jn ∗ (Au) in

L2(Rd). Therefore (4.27) gives

lim
j→∞

A(Jn ∗ φj) = lim
j→∞

(
Tnφj + Jn ∗ (Aφj)

)
= Tnu+ Jn ∗ (Au)

in L2(Rd). Since Tn is bounded, it is also closed. Hence Jn ∗ u ∈ D(A) and A(Jn ∗ u) =

Tnu+ Jn ∗ (Au). That is,

A(Jn ∗ u)− Jn ∗ Au = Tnu (4.29)

also holds for all n ∈ N and u ∈ D(A).

Let ψ ∈ W 2,2(Rd). Then limn→∞ Jn ∗ψ = ψ in W 2,2(Rd). Consequently limn→∞A(Jn ∗
ψ) = Aψ in L2(Rd). Also limn→∞ Jn ∗ (Aψ) = Aψ in L2(Rd). Therefore it follows from

(4.29) that limn→∞ ‖Tnu‖2 = 0. This is for all ψ ∈ W 2,2(Rd). Since W 2,2(Rd) is dense in

W 1,2(Rd) and {Tn}n∈N is bounded by Lemma 4.20, we deduce that limn→∞ ‖Tnu‖2 = 0 for

all u ∈ W 1,2(Rd). In particular limn→∞ ‖Tnu‖2 = 0 for all u ∈ D(A) as D(A) ⊂ W 1,2(Rd)

by hypothesis.

(⇐=) Let τ ∈ C∞c (Rd) be such that 0 ≤ τ ≤ 1, τ |B1(0) = 1 and supp τ ⊂ B2(0). Define

τn(x) = τ(n−1 x) for all x ∈ Rd and n ∈ N.

Let n ∈ N. Let u ∈ D(A) and φ ∈ C∞c (Rd). Then u ∈ W 1,2(Rd) and hence τn u ∈
W 1,2(Rd). Moreover

a(τn u, φ) =
d∑

k,l=1

∫
Rd
ckl ∂k(τn u) ∂lφ =

d∑
k,l=1

∫
Rd
ckl ((∂kτn)u+ τn ∂ku) ∂lφ = (fn, φ),

where

fn = (Aτn)u+ τnAu−
d∑

k,l=1

ckl (∂kτn) ∂lu−
d∑

k,l=1

ckl (∂lτn) ∂ku

and we used Lemma 4.36 in the last equality. Since fn ∈ L2(Rd), we have τn u ∈ D(A) and

A(τn u) = fn. Next we will show that limn→∞ fn = Au in L2(Rd). Clearly limn→∞ τnAu =

Au in L2(Rd). Note that

‖(Aτn)u‖2 =
∥∥∥− d∑

k,l=1

(∂l(ckl ∂kτn))u
∥∥∥

2
=
∥∥∥ d∑
k,l=1

(
(∂lckl) ∂kτn + ckl ∂l∂kτn

)
u
∥∥∥

2

≤
d∑

k,l=1

‖ckl‖W 2,∞

( 1

n
‖∂kτ‖∞ +

1

n2
‖∂l∂kτ‖∞

)
‖u‖2.

Similarly ∥∥∥ d∑
k,l=1

ckl (∂kτn) ∂lu
∥∥∥

2
≤ 1

n

d∑
k,l=1

‖ckl‖∞ ‖∂kτ‖∞ ‖∂lu‖2
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and ∥∥∥ d∑
k,l=1

ckl (∂lτn) ∂ku
∥∥∥

2
≤ 1

n

d∑
k,l=1

‖ckl‖∞ ‖∂lτ‖∞ ‖∂ku‖2.

It follows that these three terms go to 0 in L2(Rd) as n tends to infinity. Hence

lim
n→∞

‖A(τn u)− Au‖2 = 0. (4.30)

Finally we will show that C∞c (Rd) is a core for A. Let u ∈ D(A). The hypothesis gives

lim
k→∞
‖A(Jk ∗ (τn u))− A(τn u)‖2 = 0 (4.31)

for all n ∈ N. Let ε > 0. By (4.30) we can choose an n ∈ N such that ‖A(τn u)−Au‖2 <
ε
2
.

Next we use (4.31) to choose a k ∈ N such that ‖A(Jk ∗ (τn u))− A(τn u)‖2 <
ε
2
. Then

‖A(Jk ∗ (τn u))− Au‖2 ≤ ‖A(Jk ∗ (τn u))− A(τn u)‖2 + ‖A(τn u)− Au‖2 < ε.

Note that Jk ∗ (τn u) ∈ C∞c (Rd). Hence C∞c (Rd) is indeed a core for A.

Let δ ∈ (0, 1). Define

Cδ = (Rs + iδ Ba) + i (Bs − i Ra).

Lemma 4.38. The matrix Cδ takes values in Σψ, where ψ ∈ [0, π
2
) is such that tanψ =

1
δ

tan θ.

Proof. Let ξ ∈ Cd. Then

|((ImCδ) ξ, ξ)| = |((ImC) ξ, ξ)| ≤ tan θ ((ReC) ξ, ξ) =
1

δ
tan θ ((δ Rs + iδ Ba) ξ, ξ)

≤ 1

δ
tan θ ((Rs + iδ Ba) ξ, ξ) =

1

δ
tan θ ((ReCδ) ξ, ξ)

since C takes values in Σθ and (Rs ξ, ξ) ≥ 0 by Lemma 4.12. The statement now follows.

Define the form

a0,δ(u, v) =

∫
Rd

(Cδ∇u,∇u)

on the domain D(a0,δ) = C∞c (Rd). Then by the same analysis as in Section 4.1, the form

a0,δ is closable. Let Aδ be the operator associated with the closure of a0,δ. Then we also

have that W 2,2(Rd) ⊂ D(Aδ) and

Aδu = −
d∑

k,l=1

∂l((Cδ)kl ∂ku)

for all u ∈ W 2,2(Rd). Define

Hδ = −
d∑

k,l=1

∂k((Cδ)kl ∂lu)

on the domain D(Hδ) = C∞c (Rd). Then we have the following.
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Proposition 4.39. The space C∞c (Rd) is a core for Aδ. Furthermore Aδ = (Hδ)
∗.

Proof. We note that

tr (U (ReCδ)U) = (1− δ) tr (U Rs U) + δ tr (U (ReC)U) ≥ (1− δ) tr (U Rs U)

for all u ∈ C∞c (Rd), where U = (∂l∂ku)1≤k,l≤d. That is, Cδ satisfies Condition (ii) in

Theorem 4.3. Hence C∞c (Rd) is a core for Aδ and Aδ = (Hδ)
∗ by Theorem 4.3.

Lemma 4.40. Suppose D(A) ⊂ W 1,2(Rd). Then D(A) ⊂ D(Aδ) ∩D((Ba)
op) and

Au = Aδu+ i(1− δ) (Ba)
opu

for all u ∈ D(A).

Proof. Recall that the operators H2 and L are defined by (4.4) and (4.20) respectively.

First note that D(A) ⊂ W 1,2(Rd) ⊂ D((Ba)
op). Moreover, the condition D(A) ⊂ W 1,2(Rd)

implies that

(u,H2φ) = −
∫
Rd
u ∂k(ckl ∂lφ) =

∫
Rd
ckl (∂ku) ∂lφ = a(u, φ) = (Au, φ)

for all u ∈ D(A) and φ ∈ C∞c (Rd), where we used integration by parts in the second step.

Since Au ∈ L2(Rd), we conclude that u ∈ D(B2) and

B2u = Au (4.32)

for all u ∈ D(A). Therefore we also have D(A) ⊂ D(B2).

Next let u ∈ D(A). Then

(u,Hδφ) = (u,H2φ)− i(1− δ) (u, Lφ) = (B2u, φ)− i(1− δ)
(
(Ba)

opu, φ
)

=
(
B2u− i(1− δ) (Ba)

opu, φ
)

for all φ ∈ C∞c (Rd). Note that B2u− i(1− δ) (Ba)
opu ∈ L2(Rd). Hence u ∈ D(Aδ) and

Aδu = B2u− i(1− δ) (Ba)
opu = Au− i(1− δ) (Ba)

opu,

where we used (4.32) in the last step. The lemma now follows.

Lemma 4.41. Suppose D(A) ⊂ W 1,2(Rd). Then there exists a δ0 ∈ (0, 1) such that for all

δ ∈ [δ0, 1) there exists an M > 0 such that D(Aδ) ⊂ W 1,2(Rd) and ‖u‖W 1,2 ≤ M ‖u‖D(Aδ)

for all u ∈ D(Aδ).

Proof. Since D(A) ⊂ W 1,2(Rd), there exists an M1 > 0 such that ‖u‖W 1,2 ≤M1 ‖u‖D(A) for

all u ∈ D(A) by the closed graph theorem. Similarly the inclusion W 1,2(Rd) ⊂ D((Ba)
op)

implies that there exists an M2 > 0 which satisfies ‖u‖D((Ba)op) ≤ M2 ‖u‖W 1,2 for all

u ∈ D((Ba)
op). Let δ0 = (1− 1

2M1M2
) ∨ 1

2
and δ ∈ [δ0, 1). If u ∈ D(A) then u ∈ D(Aδ) by

Lemma 4.40. Therefore
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‖u‖W 1,2 ≤M1 (‖u‖2 + ‖Au‖2) ≤M1 (‖u‖2 + ‖Aδu‖2 + (1− δ) ‖(Ba)
opu‖2)

= M1 ‖u‖D(Aδ) + (1− δ)M1‖(Ba)
opu‖2 ≤M1 ‖u‖D(Aδ) + (1− δ)M1M2 ‖u‖W 1,2

for all u ∈ D(A). It follows that

‖u‖W 1,2 ≤ M1

1− (1− δ)M1M2

‖u‖D(Aδ)

for all u ∈ D(A). In particular

‖u‖W 1,2 ≤ M1

1− (1− δ)M1M2

‖u‖D(Aδ) (4.33)

for all u ∈ C∞c (Rd). Note that C∞c (Rd) is a core for Aδ by Lemma 4.39 and the space

W 1,2(Rd) is complete. Consequently (4.33) implies that D(Aδ) ⊂ W 1,2(Rd) and

‖u‖W 1,2 ≤ M1

1− (1− δ)M1M2

‖u‖D(Aδ).

for all u ∈ D(Aδ) as required.

Lemma 4.42. Let u ∈ D(A). Then limn→∞Aδ(Jn ∗ u) = Aδu in L2(Rd).

Proof. The proof is the same as that of the ‘only if’ part of Proposition 4.37. Note that

C∞c (Rd) is a core for Aδ by Lemma 4.39 and D(Aδ) ⊂ W 1,2(Rd) by Lemma 4.41.

We are now in the position to prove Theorem 4.4.

Proof of Theorem 4.4. Let δ = δ0, where δ0 is defined as in Lemma 4.41. By Lemma

4.42 we have limn→∞Aδ(Jn ∗ u) = Aδu in L2(Rd) for all u ∈ D(A). Furthermore [ERS11,

Proposition 2.1] gives that limn→∞(Ba)
op(Jn∗u) = (Ba)

opu in L2(Rd) for all u ∈ D((Ba)
op).

Hence limn→∞A(Jn ∗ u) = Au in L2(Rd) for all u ∈ D(A) as A ⊂ Aδ + i(1 − δ) (Ba)
op.

Using Proposition 4.37 we can conclude that C∞c (Rd) is a core for A.

4.7 Examples

In this section we present several applications of Theorems 4.2, 4.3 and 4.4 in showing the

core properties for some specific degenerate elliptic operators in higher dimensions.

Example 4.43. For all (x, y) ∈ R2 let φ(x, y) = π
4

cos(sin(x+ y)). Let

C =

(
2 cosφ+ i sinφ sinφ

− sinφ 2 cosφ+ i sinφ

)
.

Then
(
C(x, y) ξ, ξ

)
∈ Σπ

4
for all (x, y) ∈ R2 and ξ ∈ C2. Note that Ba = 0.

Consider the form a0 defined by

a0(u, v) =

∫
R2

(C∇u,∇v)
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on the domain D(a0) = C∞c (R2). Then a0 is closable by [Kat80, Theorem VI.1.27]. Let

A be the operator associated with the closure of a0 in L2(R2). Since Ba = 0, we can

extend the contraction C0-semigroup S generated by −A to a contraction C0-semigroup

S(p) on Lp(R2) for all p ∈ [4− 2
√

2, 4 + 2
√

2] by Proposition 4.1. Let −Ap be the generator

of S(p) for all p ∈ [4 − 2
√

2, 4 + 2
√

2]. Then the space C∞c (R2) is a core for Ap for all

p ∈ (4− 2
√

2, 4 + 2
√

2) by Theorem 4.2.

Example 4.44. For all (x, y) ∈ R2 let

C(x, y) =

(
1√
2
(1 + i) ei (x+y)

i e−i (x+y) 1√
2
(1 + i)

)
.

Note that

C = (1 + i) (ReC), (4.34)

where

(ReC)(x, y) =

(
1√
2

cos(x+y)+sin(x+y)
2

− i cos(x+y)−sin(x+y)
2

cos(x+y)+sin(x+y)
2

+ i cos(x+y)−sin(x+y)
2

1√
2

)
.

Therefore
(
C(x, y) ξ, ξ

)
∈ Σπ

4
for all (x, y) ∈ R2 and ξ ∈ C2.

Consider the form a0 defined by

a0(u, v) =

∫
R2

(C∇u,∇v)

on the domain D(a0) = C∞c (R2). Then a0 is closable by [Kat80, Theorem VI.1.27]. Let A

be the operator associated with the closure of a0 in L2(R2).

Using (4.34) and the fact that ReC is self-adjoint, we conclude that the space C∞c (R2)

is a core for A by Theorem 4.3(i).

Example 4.45. Let ckl ∈ C for all k, l ∈ {1, 2}. Suppose there exists a constant µ > 0

such that

Re (C ξ, ξ) ≥ µ ‖ξ‖2

for all ξ ∈ C2, where C = (ckl)1≤k,l≤2. Define A1 = ∂x and A2 = cosx ∂y+sin x ∂z. Consider

the form a0 defined by

a0(u, v) =
2∑

k,l=1

∫
R3

ckl(Aku)Alv

on the domain D(a0) = C∞c (R3). Then a0 is closable by [Kat80, Theorem VI.1.27]. Let A

be the operator associated with the closure of a0 in L2(R3). Then formally

A = −
2∑

k,l=1

cklAlAk.

We have D(A) ⊂ W 1,2(R3). This follows from the regularity of sub-elliptic operators on Lie

groups associated to unitary representations. Specifically it follows from [ER98, Theorem

9.2.II] together with [ER94, Lemma 6.1] and [ER94, Theorem 7.2.(VI and V)] applied

to the standard representation of the covering group of the Euclidean motion group (cf.

[DER03, Example II.5.1]).

Hence C∞c (R3) is a core for A by Theorem 4.4.
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