

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Hannula, M., Kontinen, J., & Link, S. (2016). On the finite and general
implication problems of independence atoms and keys. Journal of Computer &
System Sciences, 82(5), 856-877. doi:10.1016/j.jcss.2016.02.007

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.jcss.2016.02.007
http://webauthor.lbr.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.elsevier.com/about/company-information/policies/sharing
http://www.sherpa.ac.uk/romeo/issn/0022-0000/

On the Finite and General Implication Problems of
Independence Atoms and KeysI

Miika Hannulaa, Juha Kontinena, Sebastian Linkb

aDepartment of Mathematics and Statistics, University of Helsinki, Finland
bDepartment of Computer Science, University of Auckland, New Zealand

Abstract

We investigate implication problems for keys and independence atoms in rela-
tional databases. For keys and unary independence atoms we show that finite
implication is not finitely axiomatizable, and establish a finite axiomatization
for general implication. The same axiomatization is also sound and complete
for finite and general implication of unary keys and independence atoms, which
coincide. We show that the general implication of keys and unary independence
atoms and of unary keys and general independence atoms is decidable in poly-
nomial time. For these two classes we also show how to construct Armstrong
relations. Finally, we establish tractable conditions that are sufficient for certain
classes of keys and independence atoms not to interact.

Keywords: Armstrong relation, Axiomatization, Dependence logic, Finite
implication, Implication, Independence, Key

1. Introduction

We study two fundamental classes of integrity constraints in relational data-
bases: Keys and independence atoms. Keys are one of the most important
classes of integrity constraints as effective data processing largely depends on
the identification of data records. Their importance is manifested in the de-facto
industry standard for data management, SQL, and they enjoy native support
in every real-world database system. The ultimate goal in database normal-
ization is to reduce the given set of integrity constraints to keys and domain
constraints only, as this guarantees the absence of data redundancy from any
future database instances that comply with these keys, and therefore allows
database systems to process updates efficiently [17]. A relation r satisfies the

ICorresponding author: Juha Kontinen. The first two authors were supported by grants
292767 and 264917 of the Academy of Finland. The research is supported by the Marsden
Fund Council from Government funding, administered by the Royal Society of New Zealand.

Email addresses: miika.hannula@helsinki.fi (Miika Hannula),
juha.kontinen@helsinki.fi (Juha Kontinen), s.link@auckland.ac.nz (Sebastian Link)

Preprint submitted to Elsevier February 23, 2016

key K(X) for a set X of attributes, if for all tuples t1, t2 ∈ r it is true that
t1 = t2 whenever t1 and t2 have matching values on all the attributes in X.

Independence atoms (IA) are less known in the database community, but
have already been introduced under the term cross product by Paredaens in 1980
[58]. While different, independence atoms correspond to marginal probabilis-
tic independence statements well-known in statistics and artificial intelligence.
Marginal statements were investigated in depth by Geiger, Paz, and Pearl in
1991 [22]. Independence atoms occur naturally in data processing. A relation r
satisfies the independence atom X⊥Y between two sets X and Y of attributes,
if for all tuples t1, t2 ∈ r there is some tuple t ∈ r which matches the values of
t1 on all attributes in X and matches the values of t2 on all attributes in Y .
In other words, in relations that satisfy X⊥Y , the occurrence of X-values is
independent of the occurrence of Y -values. An interesting special case are IAs
of the form X⊥X which is satisfied by a given relation if its projection on X
contains at most one tuple. In other words, the relation is constant on X. For
a simple example of a general independence atom, consider a database schema
that stores information about the enrolment of students into a fixed course. The
schema records for each enrolled student the year in which they completed a
prerequisite course. Intuitively, every student must have completed every pre-
requisite for the course in some year. For this reason, for every value in the
student column and every value in the prerequisite column there is some value
in the year column such that these three values together form a tuple. That
is, student⊥prerequiste is a constraint that should hold on every meaningful
relation over this schema. One of the most fundamental operators in relational
algebra is the Cartesian product (or cross product), combining every tuple from
one relation with every tuple from a second relation. In SQL, users must specify
this database operation in the form of the FROM clause. For a minimal example
consider two singleton attribute schemata part and supplier that we join.

part
engine

supplier
Mercedes

BMW

part supplier
engine Mercedes
engine BMW

The definition of the Cartesian product entails that the resulting relation sat-
isfies the independence atom part⊥ supplier. It contains redundant data value
occurrences in the sense that changing the value to any different value will
result in the violation of some given constraint. For instance, changing the
second occurrence of ‘engine’ to any other value in the example relation above
will violate the independence atom part⊥ supplier. Independence is therefore
a major source of data redundancy, a property that largely determines which
queries and updates can be processed efficiently [1, 17, 41, 48, 67]. Indepen-
dence is thus a fundamental concept in database schema design, exhibited for
example, by multivalued dependencies. A relation satisfies a multivalued de-
pendency X � Y ⊥R − XY over relation schema R if and only if the rela-
tion is the lossless join of its projections on XY and X(R − XY). In other
words, for each fixed X-value in the relation, the set of associated Y -values is

2

independent of the set of associated R − XY -values. Multivalued dependen-
cies correspond to saturated conditional independence atoms [23, 26, 51, 55],
and capture a large proportion of the integrity constraints specified in practice.
They form the foundation for Fagin’s Fourth Normal form [16]. Due to their
fundamental importance in everyday data processing in practice, both keys and
independence atoms have also received much research interest since the 1970s
[6, 13, 14, 17, 22, 30, 31, 32, 34, 42, 49, 50, 52, 58]. The core reasoning problems
of data dependencies are their associated implication problems, with about 100
different classes studied so far [65]. Efficient solutions to these problems have
important applications, for example, in database design, query and update pro-
cessing, data cleaning, exchange, integration and security. Section 2 contains
some showcases that illustrate the benefit of such solutions to the processing of
updates and queries, as well as data privacy.

Given their importance for data processing in practice, given that keys and
independence atoms naturally co-exist and given the long and fruitful history
of research into relational data dependencies, it is rather surprising that keys
and independence atoms have not been studied together. This is particularly
true as more expressive classes of dependencies do not have feasible implication
problems. In fact, keys are subsumed by numerical dependencies which do not
enjoy a finite axiomatization [25], and independence atoms Y ⊥Z are subsumed
by embedded multivalued dependencies X → Y ⊥Z [12, 16, 60] as the special
case where X = ∅, but whose implication problem is not finitely axiomatizable
[62] and undecidable [35, 36]. A relation satisfies an embedded multivalued de-
pendency X → Y ⊥Z if and only if the projection of the relation onto XY Z
satisfies the multivalued dependency X → Y ⊥Z. While embedded multival-
ued dependencies are strongly related to probabilistic conditional independence
statements [11], Studeny showed that their associated implication problems are
different [63, 64]. Studeny also showed that the implication problem of proba-
bilistic conditional independence statements is not finitely axiomatizable, and
the proof relies on a circular system of these statements [63, 64]. These remarks
show that independence is also a useful notion for probabilistic approaches to
certain machine learning problems [4, 15, 55]. Nevertheless these approaches
are different from the independence atoms we study here: We do not consider
probabilities but are interested in the notion of independence as a class of data
dependencies. There are also expressive classes of data dependencies whose im-
plication problem can be decided efficiently. For example, the combined class of
functional and multivalued dependencies enjoys an elegant finite axiomatization
and is decidable in almost linear time [3, 20]. These results can be extended to
the general implication problem of functional, multivalued, and unary inclusion
dependencies. On the other hand, the finite implication problem of functional,
multivalued, and unary inclusion dependencies can be decided in cubic time in
the input, and while it enjoys an elegant axiomatization it requires one cyclic
inference rule for each positive integer [10]. Note that functional dependencies
extend keys, but multivalued dependencies are full dependencies and cannot
express many independence atoms, which are embedded dependencies. In fact,
the intersection of multivalued dependencies and independence atoms consists

3

of multivalued dependencies of the form X � Y ⊥Z where X = ∅, or in other
words, of independence atoms of the form Y ⊥Z where the underlying relation
schema is the union of Y and Z. Keys and independence atoms in isolation
enjoy efficient solutions to computational problems: Finite and general impli-
cation problems coincide, and are axiomatizable by finite sets of Horn rules
[22, 42, 58, 65]. They thus are excellent candidates to push the frontier of
axiomatizable classes of data dependencies.

Motivated by real-world applications and the lack of previous research we
initiate research on the interaction of key dependencies and independence atoms.
As far as we are aware, keys and independence atoms together constitute the
first case in which keys are combined with a class of embedded data dependencies
that capture the concept of independence. Somewhat surprisingly, the efficient
solutions to computational problems that hold for each class in isolation do not
carry over to the combined class, even when independence atoms are restricted
to the unary case. In fact, we show that for the combined class of keys and
independence atoms:

• The finite and the general implication problem differ from one another.

• For keys and unary independence atoms the general implication problem
has a 2-ary axiomatization J by Horn rules. Here, IAs X⊥Y where X and
Y consist of one attribute only are called unary, and an axiomatization is
k-ary when every inference rule has at most k premises.

• The finite implication problem for keys and unary independence atoms is
not finitely axiomatizable.

While the last result appears to be discouraging for the database practitioner,
our research brings forward very useful applications. In fact, all the inference
rules that are sound for general implication are also sound for finite implication.
This means, in particular, that our inference rules can be exploited to avoid
redundant integrity checks when updates are processed, saving more time as the
database grows. Furthermore, query optimizers can exploit our inference rules
to optimize efficiently the evaluation of queries. Examples of such applications
are given in Section 2.

In view of our second and third main result together, it follows that our 2-ary
axiomatization J for the general implication problem is somewhat ‘as complete
as possible’ for finite implication. It means, in particular, our results provide
reassurance that we have exhausted a complete list of ‘cheap’ opportunities
to benefit our application at hand, for examples, integrity checking or query
optimization. As the third result shows, other opportunities for optimization
cannot be captured completely by a simple set of rules, but must be dealt with
on a case-by-case basis which requires an analysis that is more costly.

We remark that the rules R1−R5 of J characterize the implication problem
for the class of independence atoms alone [42, 58]. Notably, R1,R2,R4,R5
characterize also the implication problem for the class of marginal probabilistic
independence statements [22, Theorem 3], in which the sets of given random

4

variables are assumed to be disjoint. The extra rule R3 captures our more
general notion in which the sets of attributes may intersect non-trivially (also
defined in [57]). It is therefore not surprising that our axiomatization J shows
strong similarities with the semi-graphoids which are sound for the implication
of general conditional independence atoms [11, 23, 26, 56].

Our results are somewhat similar to those known for the combined class of
functional dependencies (FDs) and inclusion dependencies (INDs). While both
classes in isolation have matching finite and general implication problems and
enjoy finite axiomatizations, the finite and the general implication problems
differ for the combined class of FDs and unary INDs already [8]. For FDs and
unary INDs the general implication problem has a 2-ary axiomatization by Horn
rules [10], while their finite implication problem is not finitely axiomatizable
[8]. Interestingly, key dependencies are strictly subsumed by FDs. It is also
known that both implication problems are undecidable for FDs and INDs [9, 54],
but decidable for FDs and unary INDs [10]. The containment problem for
conjunctive queries has also been investigated in the presence of functional and
inclusion dependencies [37]. Query answering on inconsistent and incomplete
databases with keys and inclusion dependencies has also been studied in [7].

The results, described so far, have been announced in [29]. In the current
article, we provide complete proofs and further examples that motivate and
illustrate these results. In the following, we explain the new contributions that
we added to the current article.

We show that the combined class of unary keys and independence atoms en-
joys desirable properties. Firstly, the combined class is important in practice as
most real-world database schema designs choose to rely on unary keys only. The
thinking is to avoid the specification of natural keys as their enforcement may
prohibit the entry of important data that violate the natural key as an excep-
tion. Instead, relation schemata are augmented by a single surrogate attribute
which serves as a unary (artificial) key. We hasten to point out that natural keys
should be dealt with in any case, particularly to ensure consistency with respect
to natural keys that capture semantically meaningful business rules. Never-
theless, the reliance on unary keys is a phenomenon that is common practice.
Secondly, we show for this class that the associated finite and general impli-
cation problems coincide. Thirdly, we show that the axiomatization J for the
general implication problem of general keys and unary independence atoms is
also sound and complete for the implication problem of unary keys and general
independence atoms.

We also consider the computational complexity of the general implication
problems of keys and unary independence atoms and of unary keys and general
independence atoms. By utilizing our complete axiomatization, we show that
these implication problems can be decided in polynomial time.

In addition, we establish two conditions that allow us to exploit previous
research on the individual class of keys and the individual class of independence
atoms in the context of the combined class of keys and independence atoms. The
conditions identify situations in which there is no interaction between the given
set ΣK of keys and the given set ΣI of independence atoms. That is, for every

5

key ϕ it holds that ΣK ∪ΣI implies ϕ if and only if ΣK implies ϕ, and for every
independence atom ϕ it holds that ΣK∪ΣI implies ϕ if and only if ΣI implies ϕ.
As our conditions can be verified in polynomial time, instances of the combined
implication problems that comply with our condition can be solved efficiently
by using tools to decide implication for either keys or independence atoms only.
Again, our research fits in with previous research on the combined class of
functional and inclusion dependencies, for which several sufficient conditions
are known that guarantee no interaction between them [46, 47].

Finally, we investigate the concept of Armstrong relations [18] in our setting.
A relation is Armstrong for a given set of constraints from a class C when it
satisfies all of the given constraints but violates all those constraints from C
which are not implied by the given set. In this sense, an Armstrong relation
is a concise representation of a given constraint set in the form of a data sam-
ple. Armstrong relations have been shown to be useful for the acquisition of
semantically meaningful constraints for a given application domain [43]. We
show how to construct i) infinite Armstrong relations for every given set of keys
and unary independence atoms where implication refers to general implication,
and ii) finite Armstrong relations for every given set of independence atoms and
unary keys.

Our work originated from recent developments in the area of dependence
logic, which constitutes a novel approach to the study of various notions of de-
pendence and independence that is intimately linked with databases and their
data dependencies [24, 66]. It has been shown recently, e.g., that the general
implication problem of so-called conditional independence atoms and inclusion
atoms can be finitely axiomatized in this context [28]. For databases, this result
establishes a finite axiomatization (utilizing implicit existential quantification)
of the general implication problem for inclusion, functional, and embedded mul-
tivalued dependencies taken together. This result is similar to the axiomatiza-
tion of the general implication problem for FDs and INDs [54]. A comparison
to our work shows how the axiomatizability for expressive classes of data de-
pendencies can be achieved by relaxing the notion of an axiomatization, while
the same class is not axiomatizable with respect to the traditional notion.
Organization. In Section 2, we motivate our research into implication prob-
lems for keys and independence atoms with examples from integrity checking,
query optimization, and data privacy which can exploit our inference rules to
their advantage. We fix the notation for keys, independence atoms, and impli-
cation problems in Section 3. A 2-ary finite axiomatization I for the general
implication problem of keys and unary independence atoms is established in
Section 4. The difference between finite and general implication for keys and
unary independence atoms, as well as the impossibility of having any k-ary ax-
iomatization for the finite implication problem is established in Section 5. The
finite and general implication problems for the class of unary keys and general
independence atoms are shown to coincide in Section 6, where we also show
that our set I of inference rules is sound and complete for these implication
problems. The construction of Armstrong relations for sub-classes of keys and
independence atoms is discussed in Section 7. In Section 8, we define a poly-

6

nomial time algorithm for deciding the general implication problem of keys and
unary independence atoms. Furthermore, in Section 9 we establish two condi-
tions on the given sets of keys and independence atoms that guarantees that
there is no interaction between them. These conditions can be verified in poly-
nomial time. We conclude in Section 10 where we also list some open problems
and comment on future work.

2. Motivating Examples

In this section we present three showcases that illustrate how an understand-
ing of the interaction of keys and independence atoms can benefit various areas
of data processing. Our complete axiomatizations guarantee us that we can
exhaust all implied constraints for these showcases. While this cannot be guar-
anteed by our incomplete axiomatizations, they still allow us to infer a large
number of implied constraints using our inference rules. Any remaining im-
plied constraints that cannot ‘simply’ be inferred by our inference rules must be
detected by a case by case analysis.

2.1. Query Optimization

In this section we give some minimal examples that illustrate the use of some
inference rules to optimize queries. The examples illustrate how the formaliza-
tion of some commonsense reasoning in the form of inference rules can benefit
query processing.

As a first example, consider a simple relation schema supplies with two
attributes supplier and part. Suppose we want to know for each part how many
distinct suppliers supply the part. A näıve SQL query Q would be

SELECT part, COUNT(DISTINCT supplier)
FROM supplies
GROUP BY part ;

Here, the command DISTINCT is used to eliminate duplicate suppliers. In data
processing duplicate elimination is time-consuming and not executed by default.
However, duplicate elimination in query Q is redundant for the following reason.
The GROUP BY clause uses parts to partition the input relation over supplies
into sub-relations. That is, the GROUP BY clause causes each sub-relation to sat-
isfy the independence atom part⊥part, which means that all tuples of the same
sub-relation have the same value on part. As the input relation over supplies
satisfies the key K(supplier, part), so does each of the sub-relations. However,
the key K(supplier, part) and the independence atom part⊥part together imply
the key K(supplier). Hence, there are no duplicate suppliers in any sub-relation
and Q can be replaced by the more efficient query Q′.

SELECT part, COUNT(supplier)
FROM supplies
GROUP BY part ;

7

in which no time is wasted on finding non-existing duplicate suppliers in each
sub-relation. The example illustrates how special independence atoms of the
form A⊥A are already practically relevant: They apply to every sub-relation
generated by the GROUP BY A in SQL. The fact that the key K(supplier, part)
and the independence atom part⊥part together imply the key K(supplier) is
just an instance of the following sound inference rule

X⊥X K(XY)

K(Y)
.

The inference rule formalizes the commonsense reasoning that Y -values are
unique (K(Y)) whenever XY -values are unique (K(XY)) and the X-values are
constant (X⊥X). It is important to observe that this line of reasoning is not
limited to SQL-based database systems. In fact, GROUP BY clauses are also in-
tegral to SPARQL [2] and PIG Latin queries [21], and any reasonable query
language that supports aggregation.

For an example with a general independence atom take the relation schema
car with attributes model, vehicle, part. A näıve query that returns for the
model Ferrari all combinations of vehicles and parts, we write:

SELECT c1.vehicle, c2.part
FROM car c1, car c2
WHERE c1.model=‘Ferrari’ AND c1.model=c2.model ;

Knowing that the IA vehicle⊥part holds for each given model (in particular, for
Ferrari’s), we can rewrite this into:

SELECT vehicle, part
FROM car
WHERE model=‘Ferrari’ ;

saving a join. It is important to stress in this example that this optimization is
only possible when the underlying relation satisfies the IA vehicle⊥part. If this
is not the case, then we need the original self-join query to ensure that we also
return a combination of vehicles and parts that do not occur together in some
tuple of the relation.

The last example showed the importance of independence atoms alone for
query optimization. For an example that involves the combined class of keys
and independence atoms, consider the relation schema health with attributes
date, patient and status. Here, a health record captures the status of a patient
on a certain date. For simplicity, we assume that the domain of status is either
‘admitted’ or ‘released’, that is, we record when a patient has been admitted to
a hospital, or released. We may ask the query that returns patients that were
admitted and released on the same date:

SELECT DISTINCT date, patient
FROM health
GROUP BY date, patient
HAVING COUNT(DISTINCT status)> 1 AND

COUNT(patient)> 1;

8

Here, the clause HAVING COUNT(DISTINCT status)> 1 ensures that only groups of
date, patient are considered in which the patient on that date has two different
statuses (i.e., admitted and released). In other words, each group of date, patient
satisfies the independence atom status⊥patient. Each group of date, patient
also violates the independence atom status⊥ status, since there are two different
values present in each group. The second condition COUNT(patient)> 1 ensures
that the number of (duplicate) patients in each group is more than 1, i.e., each
group violates the key K(patient). The constraints status⊥patient, K(patient),
and status⊥ status form an instance of our inference rule

X⊥Y K(X)

Y ⊥Y
.

Informally, this inference rule formalizes the commonsense reasoning that Y -
values are constant (Y ⊥Y) whenever X-values and Y -values are independent
(X⊥Y), and Y -values are unique (K(Y)). In fact, as each group satisfies
status⊥patient and violates status⊥ status, it follows by this rule that each
group must also violate K(patient). For this reason, the query above can be
simplified to:

SELECT DISTINCT date, patient
FROM health
GROUP BY date, patient
HAVING COUNT(DISTINCT status)> 1;

We emphasize that it may be common sense to not include the condition
COUNT(patient)> 1 in the original query. Nevertheless, the example shows how
commonsense reasoning is expressed in the form of an inference rule, and how
it can be applied in SQL.

2.2. Integrity Enforcement

Integrity enforcement ensures that updates of a given database result in a
new database that complies with every element of the given set Σ of integrity
constraints that have been specified to hold. For this purpose, the database sys-
tem must validate for each integrity constraint σ in Σ whether the new database
satisfies σ. This can be a time-consuming task and the larger the database the
more time is required. It is therefore important to keep the validation at a min-
imum necessary, in particular, Σ should not contain any ‘redundant’ constraints
σ, i.e. constraints σ ∈ Σ for which Σ−{σ} |=(FIN) σ holds. Our results concern-
ing the general and finite implication problem for keys and unary independence
atoms ensure that we can remove redundant constraints that can be inferred us-
ing our inference rules. The negative results we establish on the completeness of
an axiomatization for finite implication also apply to the removal of redundant
constraints. In particular, for finite implication we cannot expect to use a finite
axiomatization to remove all redundant constraints but only those constraints
that can be ‘easily’ identified as redundant. In the finite case, the decidability
of the problem whether a given set of our constraints is redundant is open. For

9

the class of unary keys and general independence atoms, we can identify all
redundant constraints. As a simple example, if Σ is given by status⊥patient,
status⊥ status and k(patient), then status⊥ status can be removed from Σ as it
is (finitely) implied by status⊥patient and k(patient). In this example it is also
guaranteed that none of the remaining rules is redundant.

2.3. Protecting Privacy under Inference Attacks

Our final example illustrates the significance of keys and independence atoms
for data privacy under smart inference attacks. Assume all patients (with some
given condition) receive the same set of therapies, i.e. we have an independence
atom patient⊥ therapy on the schema treatment. If a user asks

SELECT patient, therapy
FROM treatment
WHERE patient=‘Bob’ AND therapy=‘Radiation’ ;

then direct access to (Bob, Radiation) would be prohibited to some users due
to privacy concerns by Bob. However, if a smart user asks the following two
queries

SELECT patient
FROM treatment
WHERE patient=‘Bob’;

and

SELECT therapy
FROM treatment
WHERE therapy=‘Radiation’;

then access control is bypassed and returns answers that include ‘Bob’ and
‘Radiation’, respectively. The user can conclude from both answers that Bob
has been treated with Radiation due to the independence atom. Based on the
independence atom the same user should only see the correct answer to one of
the queries. In addition, if the answer to the first user query contains ‘Bob’
just once, then the user can infer that ‘Radiation’ was the only therapy that
‘Bob’ underwent. This is because k(patient) (here in the case where the patient
is ‘Bob’) and patient⊥ therapy together imply therapy⊥ therapy. So, reasoning
about independence atoms (and keys) can help detect and prevent inference
attacks by smart users.

3. Preliminaries

3.1. Definitions

A relation schema R is a set of symbols A called attributes, each equipped
with a domain Dom(A) representing the possible values that can occur in the
column named A. A tuple t over R is a mapping R →

⋃
A∈R Dom(A) where

t(A) ∈ Dom(A) for each A ∈ R. For a tuple t over R and R′ ⊆ R, t(R′) is

10

the restriction of t on R′. A relation r over R is a set of tuples t over R. If
R′ ⊆ R and r is a relation over R, then we write r(R′) for {t(R′) : t ∈ r}. If
A ∈ R is an attribute and r is a relation over R, then we write r(A = a) for
{t ∈ r : t(A) = a}. For sets of attributes X and Y , we often write XY for
X ∪ Y , and denote singleton sets of attributes {A} by A. Also, for a relation
schema A1 . . . An, a relation r(A1 . . . An) is sometimes identified with the set
notation {(a1, . . . , an) | ∃t ∈ r : t(Ai) = ai for 1 ≤ i ≤ n}.

3.2. Independence Atoms and Keys

Let R be a relation schema and X ⊆ R. Then K(X) is an R-key, given the
following semantic rule for a relation r over R:

• r |= K(X) if and only if for all t, t′ ∈ r: if t(X) = t′(X), then t = t′.

Let R be a relation schema and X,Y ⊆ R. Then X⊥Y is an R-independence
atom, given the following semantic rule for a relation r over R:

• r |= X⊥Y if and only if for all t, t′ ∈ r there exists a t′′ ∈ r such that
t′′(X) = t(X) ∧ t′′(Y) = t′(Y).

Remark. r |= X⊥X means that only one value exists for X in r.

An independence atom X ⊥ Y is called unary if X and Y are single attributes.
Similarly, a key K(A) is called unary if A is a single attribute. R-keys and
R-independence atoms are together called R-constraints. If Σ is a set of R-
constraints and R′ ⊆ R, then we write Σ � R′ for the subset of all constraints
of Σ that only mention attributes contained in R′.

3.3. Implication Problems

For a set Σ ∪ {φ} of independence atoms and keys we say that Σ implies φ,
written Σ |= φ, if every relation that satisfies every element in Σ also satisfies
φ. We write Σ |=FIN φ, if every finite relation that satisfies every element in Σ
also satisfies φ. We say that φ is a k-ary (finite) implication of Σ, if there exists
Σ′ ⊆ Σ such that |Σ′| ≤ k and Σ′ |= φ (Σ′ |=FIN φ).

In this article we consider the axiomatizability of the so-called finite and
the general implication problem for independence atoms and keys. The general
implication problem for independence atoms and keys is defined as follows.

PROBLEM: General implication problem for
independence atoms and keys

INPUT: Relation schema R,
Set Σ ∪ {ϕ} of independence atoms and
keys over R

OUTPUT: Yes, if Σ |= ϕ; No, otherwise

The finite implication problem is defined analogously by replacing Σ |= φ with
Σ |=FIN φ.

11

In general for a set R of inference rules, we denote by Σ `R φ the inference
of φ from Σ. That is, there is some sequence γ = [σ1, . . . , σn] of independence
atoms and keys such that σn = φ and every σi is an element of Σ or results from
an application of an inference rule in R to some elements in {σ1, . . . , σi−1}. A
set R of inference rules is said to be sound for the general implication problem
of independence atoms and keys, if for every R and for every set Σ, Σ `R φ
implies that Σ |= φ. A set R is called complete for the general implication
problem if Σ |= φ implies that Σ `R φ. The (finite) set R is said to be a (finite)
axiomatization of the general implication for independence atoms and keys if
R is both sound and complete. These notions are defined analogously for the
finite implication problem. For k ≥ 1, a rule is called k-ary if it is of the form

A1 A2 . . . Ak−1 Ak

B
(1)

A set of inference rules is called k-ary if it consists of at most k-ary rules. In
this paper the set of 2-ary inference rules I for IAs and keys, depicted in Figure
1, will be studied. Note that in the context of unary IAs the rules R4 and R5
become redundant. It is also worth noting that the rules R1−R5 are sound and
complete for the implication problem of IAs alone [42, 57, 58], and the unary
rules R6 and R7 are sound and complete for the implication problem of keys
alone [65]. It is also straightforward to show that for unary IAs alone the 2-ary
set of rules R1−R3 form a sound and complete axiomatization which yields a
1-ary axiomatization since the rule R3 can be replaced with

X⊥X
X⊥Y

.

On the other hand, there exists no 1-ary axiomatization for the combined class
of keys and unary IAs; evidently the rule R9 does not reduce to any set of 1-ary
rules.

4. General Implication

In this section we will show that the set of axioms I in Table 1 is sound and
complete for the general implication problem of unary independence atoms and
arbitrary keys taken together. It is straightforward to check the soundness of
the axioms I.

Theorem 4.1. The axioms I are sound for the general implication problem of
independence atoms and keys.

Proof. Assume R is a relation schema and Σ consists of R-keys and R-indepen-
dence atoms. Let r be a relation over R. We will show using induction on the
length of derivation [σ1, . . . , σn] from Σ that if r |= Σ then r |= σi for 1 ≤ i ≤ n.
We consider only the cases where σn has been obtained by Rule R8 or R9.

We consider first the case where σn has been obtained by applying Rule R8
to σj and σk. Then σn, σj , and σk are of the form K(Y), X⊥X, and K(XY),

12

∅⊥X
X⊥Y
Y ⊥X

(trivial independence, R1) (symmetry, R2)

X⊥X Y ⊥Z
XY ⊥Z

X⊥Y Z
X⊥Y

(constancy, R3) (decomposition, R4)

X⊥Y XY ⊥Z
X⊥Y Z K(R)

(exchange, R5) (trivial key, R6)

K(X)

K(XY)

X⊥X K(XY)

K(Y)
(upward closure, R7) (1st composition, R8)

X⊥Y K(X)

Y ⊥Y
(2nd composition, R9)

Table 1: The Set of Axioms I for Independence Atoms and Keys in Database Relations

respectively. By the induction hypothesis, r |= σj and r |= σk. We will show
r |= σn. For that end, let t1, t2 ∈ r such that t1(Y) = t2(Y). By the induction
hypothesis r |= X⊥X implying that the attribute X has only one value in r.
Therefore it holds that t1(XY) = t2(XY). Again by assumption r |= K(XY),
thus t1 = t2 as wanted.

Let us then consider Rule R9. Now σn, σj , and σk are of the form Y ⊥Y ,
X⊥Y , and K(X), respectively. By the induction hypothesis, r |= σj and r |=
σk. We will show r |= σn. Let t1, t2 ∈ r. We need to show that t1(Y) = t2(Y).
For a contradiction, assume that t1(Y) 6= t2(Y). Since r |= σj , there exists t3 ∈ r
such that t3(X) = t1(X) and t3(Y) = t2(Y). Hence there exists t1, t3 ∈ r such
that t1(X) = t3(X) and t1 6= t3 contradicting the assumption that r |= K(X).
Therefore, we must have t1(Y) = t2(Y), and r |= Y ⊥Y , as was to be shown.

Next we will show that the set of axioms I is complete for the general
implication problem of unary independence atoms and arbitrary keys. This
result is obtained by an infinite relation construction. Later we will see that
no finite counter-example can here be constructed; this is implied by Theorem
5.10.

Theorem 4.2. Assume that R is a relation schema and Σ ∪ {φ} consists of
R-keys and unary R-independence atoms. Then Σ `I φ iff Σ |= φ.

Proof. Assume to the contrary that Σ 6`I φ. We show the theorem by construct-
ing a countably infinite relation r witnessing Σ 6|= φ. Let ΣI∪ΣK be the partition

13

of Σ to independence atoms and keys, respectively. Let X1 ⊥ Y1, . . . , Xm ⊥ Ym
be an enumeration of ΣI. Let R′ := {A ∈ R : Σ `I A ⊥ A}. We notice that
by the assumption and rules R2 − R4,R7 − R8, Σ′ 6`I φ′ and {A ∈ R − R′ :
Σ′ `I A ⊥ A} = ∅ where Σ′ ∪{φ′} is the set of atoms obtained from Σ∪{φ} by
projecting to attributes in R − R′. It easy to see that then Σ′ 6|= φ′ ⇒ Σ 6|= φ.
Hence we may assume without loss of generality that R′ = ∅.

The relation r is now constructed as follows. We first define an increasing
chain (with respect to ⊆) of finite relations rn, for n ≥ 0, such that

1. rn |= ΣK and
2. rn |= Xl ⊥ Yl if n ≥ 1 and n = l (mod m).

Then letting r :=
⋃

n≥0 rn, we obtain that r |= Σ. Regarding φ, we have two
cases: φ is either of the form

(i) K(X) or

(ii) X⊥Y .

We consider the construction of rn separately in these two cases.

Case (i). Consider first the case where φ = K(X) for some X ⊆ R. We
construct the relations rn inductively as follows:

The base case. Assume first that n = 0. We let r0 := {t0, t1} where for all
A ∈ R, t0(A) := 0 and

• t1(A) :=

{
0 if A ∈ X,
1 otherwise.

Now item 2 is holds trivially. For item 1, if r0 6|= K(Y) for some K(Y) ∈ ΣK,
then Y ⊆ X and hence φ is derivable by R7, contrary to the assumption.

The inductive step. Assuming that rn is a finite relation satisfying items 1-2,
we construct a finite relation rn+1 satisfying the same conditions. Assume that
l = n + 1 (mod m). If rn |= Xl⊥Yl, then we let rn+1 := rn. Otherwise, let
(a1, b1), . . . , (ak, bk) be an enumeration of rn(Xl)×rn(Yl)\rn(XlYl), and assume
that M is the maximal number occurring in rn. We then let rn+1 be obtained
by extending rn with tuples si, for 1 ≤ i ≤ k, such that for all A ∈ R,

si(A) =

ai if A = Xl,

bi if A = Yl,

M + i otherwise.

(2)

Note that rn+1 is well-defined due to the assumption R′ = ∅, and that item 2
follows from the definition. For item 1, assume to the contrary that rn+1 6|= K(Z)
for some K(Z) ∈ ΣK. Then, by the definition of rn+1, and since rn |= K(Z) by
the induction assumption, we obtain that Z = Xl or Z = Yl. Then with one
application of R9 one derives from K(Z) and Xl⊥Yl either Xl⊥Xl or Yl⊥Yl
which both contradict the assumption R′ = ∅. Hence item 1 follows.

By the above construction, taking r :=
⋃

n≥0 rn, we obtain that r |= Σ. Also
r 6|= φ since r0 6|= φ.

14

Case (ii). Consider next the case where φ = X⊥Y . We add the following
condition to the construction of rn:

3. for no t ∈ rn : t(XY) = t0(X)t1(Y).

The base case. Assume first that n = 0. We let r0 := {t0, t1} where for all
A ∈ R, t0(A) := 0 and t1(A) := 1. Note that r0 satisfies items 1 and 2 trivially,
and item 3 follows since neither X nor Y is empty (otherwise one derives φ by
R1).

The inductive step. Assume that rn is a finite relation satisfying items 1-3.
The relation rn+1 is now constructed as in case (i). Since items 1 and 2 hold,
it suffices to show item 3. Assume that φ is X⊥Y . Assume to the contrary
that for some t ∈ rn+1 \ rn : t(XY) = t0(X)t1(Y). Then by the definition of
rn+1, XY ⊆ XlYl. Moreover, by the assumption and the definition of t0 and
t1, it follows that X and Y are two distinct attributes. Hence X⊥Y is either
Xl⊥Yl or Yl⊥Xl. Since Xl⊥Yl ∈ Σ, we then, by R2, obtain that Σ `I φ
which contradicts the assumption. Hence, item 3 also holds. This concludes the
construction of the relations rn.

Now, taking r :=
⋃

n≥0 rn, we again obtain that r |= Σ. Also r 6|= φ follows
from item 3. This concludes the proof of Theorem 4.2.

The existence of a complete axiomatization without arity restrictions for
independence atoms remains open. In particular, our construction of a counter-
model does not carry over to the general case since the interaction between
independence atoms and keys is more complicated as shown by the following
example. It is an interesting open problem to determine whether the general
implication problem is finitely axiomatizable.

Example 4.3. It is easy to check that any relation satisfying A⊥BC and
K(AB), must also satisfy the functional dependency B → C. Therefore,

{A⊥BC,K(AB), B⊥D} |= BC⊥D

but it is also straightforward to see that {A⊥BC,K(AB), B⊥D} 6`J BC⊥D.
Therefore, the system J does not completely axiomatize the general implication
problem of keys and arbitrary independence atoms.

5. Finite Implication

In Section 5.1 we will show that general and finite implication do not coincide
for keys and unary independence atoms. Using these results, we will show in
Section 5.2 that for no k there exists a k-ary axiomatization of the corresponding
finite implication problem whereas 2-ary axiomatization exists for the general
implication problem.

15

⊥ ⊥ ⊥ ⊥ ⊥A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

Figure 1: Σ5

5.1. Separating Finite and General Implication

For n ≥ 2, let Rn := {Ai, Bi : 1 ≤ i ≤ n} be a relation schema, and let
Σn := {Ai ⊥ Bi : 1 ≤ i ≤ n} ∪ {K(BiAs(i)) : 1 ≤ i ≤ n} where s denotes the
successor function that maps i to i + 1, for i < n, and n to 1. Then each Σn

can be thought of as a smiley face of n − 1 eyes. For Σ5, this is illustrated in
Figure 1 where each pair of attributes connected by an edge represents a key of
Σ5. In this section we show in Lemmata 5.1 and 5.2 that Σn |=FIN K(A1B1),
for n ≥ 2, and Σ2 6|= K(A1B1). In Section 5.2 we show that K(A1B1) cannot
be deduced from Σn in any sound (2n − 1)-ary axiomatization for the finite
implication problem of independence atoms and keys. Since this holds for all n,
no finite axiomatization exists for the finite implication.

Lemma 5.1. For n ≥ 2, Σn |=FIN K(A1B1).

Proof. Let n ≥ 2, and let r be a finite relation over Rn such that r |= Σn. We
show that r |= K(A1B1). First note that since r |= K(BnA1), we obtain that

|r| = |r(BnA1)| ≤ |r(Bn)| · |r(A1)|. (3)

Let then 2 ≤ i ≤ n, and assume that |r(Bi)| = m. Then since r |= Ai ⊥ Bi,
each member of r(Ai) has at least m repetitions in r, that is, |r(Ai = b)| ≥
m for each b ∈ r(Ai). Therefore, and since r |= K(Bi−1Ai), we obtain that
|r(Bi−1)| ≥ m. From this and the assumption that |r(Bi)| = m, it follows that
|r(Bi)| ≤ |r(Bi−1)|. Therefore, we conclude that |r(Bn)| ≤ |r(B1)| in which
case |r| ≤ |r(B1)| · |r(A1)| by (3). But now since r |= A1 ⊥ B1, we obtain that
|r(B1)| · |r(A1)| = |r(B1A1)| from which the claim follows.

The following lemma can be proved by constructing a counter example for
Σ2 |= K(A1B1), similar to the one presented in the proof of Theorem 4.2.

Lemma 5.2. Σ2 6|= K(A1B1).

Proof. We construct a countably infinite relation r over R2 witnessing Σ 6|=
K(A1B1). For this we will inductively define an increasing chain (with respect
to ⊆) of finite relations rn over R2 such that r1 6|= K(A1B1) and, for n ≥ 1,

1. rn |=

{
K(B2A1),

K(B1A2),

16

2. rn |=

{
A1 ⊥ B1 if n is odd,

A2 ⊥ B2 if n is even.

Then, letting r :=
⋃

n≥1 rn, we obtain that r |= Σ and r 6|= φ. The construction
of relations rn is done as follows:

The base case. We first let r1(A1B1A2B2) := {(0, 0, 0, 0),
(0, 0, 1, 1)}. Then r1 |= K(B2A1), r1 |= K(B1A2) and r1 |= A1 ⊥ B1.

The inductive step. Assume that rn(A1B1A2B2) is a finite relation satisfying
the induction assumption; we will construct a finite relation rn+1 also satisfying
the induction assumption. Assume first that n + 1 is even. Let m be the
maximal number occurring in rn, and let (a1, b1), . . . , (ak, bk) enumerate the
set (rn(A2) × rn(B2)) \ rn(A2B2). Note that this set is non-empty because
otherwise, by the induction assumption, we would obtain a finite relation r
witnessing Σ2 6|= K(A1B1), contrary to Lemma 5.1. We then let

rn+1(A1B1A2B2) :=

rn ∪ {(m+ i,m+ i, ai, bi) : 1 ≤ i ≤ k}.

By the construction and the induction assumption, it is straightforward to check
that items 1 and 2 hold. In the case where n + 1 is odd, the relation rn+1 can
be constructed analogously. This concludes the construction and the proof.

Hence, from Lemmata 5.1 and 5.2, we directly obtain the following theorem.

Theorem 5.3. For keys and unary independence atoms taken together, the
finite implication problem and the general implication problem do not coincide.

5.2. Non-axiomatizability of Finite Implication

In this section we will show that for no k there exists a k-ary axiomatization
of the finite implication problem for unary independence atoms and keys taken
together. First recall from the previous section the definition of Σn over a
relation schema Rn. We denote by Cl(Σn) the set of all independence atoms
and keys over Rn that are derivable from Σn using the rules R1,R2,R7, i.e.,

Cl(Σn) =Σn ∪ {K(D) : C ⊆ D ⊆ Rn,K(C) ∈ Σn} ∪ {Bi⊥Ai : 1 ≤ i ≤ n}∪
{A⊥∅, ∅⊥A : A ⊆ Rn}.

Recall that the rules R1,R2,R7 state existence of trivial IAs, symmetry of IAs,
and upward closure of keys. We will now show that Cl(Σn) is closed under
(2n− 1)-ary finite implication. Hence, and since K(A1B1) 6∈ Cl(Σn), it follows
that no sound (2n − 1)-ary axiomatization of independence atoms and keys
allows a deduction of K(A1B1) from Σn.

Note that R1,R2,R7 are all 1-ary rules, i.e., rules of the form (1) for k = 1.
Hence the above claim follows if one can show that every (2n − 1)-ary finite
implication of Σn is included in Cl(Σn). Therefore it suffices to prove the fol-
lowing theorem which states that given any subset Σ′ ⊆ Σn of size 2n − 1, and
any consequence φ of Σ′, we find that φ ∈ Cl(Σn)

17

Theorem 5.4. Let n ≥ 2, Σ′ := Σn\{ψ} where ψ ∈ Σn, and let φ be an Rn-key
or a unary Rn-independence atom such that Σ′ |=FIN φ. Then φ ∈ Cl(Σn).

The proof of Theorem 5.4 is divided into four cases, covered in Lemmata
5.6, 5.7, 5.8, and 5.9. In each case φ (or ψ) is fixed either as a key or a unary
independence atom.

The first case where both φ and ψ are keys is essentially proved in Lemma
5.5 where, given a K(D) 6∈ Cl(Σn), we construct a finite relation r satisfying
Σ′ := Σn \ {K(BnA1)} and violating K(D). For the construction of r, we
will first define tuples t, t′ such that for all X ∈ Rn, t(X) = t′(X) if and
only if X ∈ D. Then r will be obtained by extending {t, t′} inductively over
columns as follows. Assume that r is constructed up to Xi where Xi is the ith
member ofA1, B1, . . . , An, Bn. Then we have two cases forXi+1. If t(XiXi+1) 6=
t′(XiXi+1), then we will define r(XiXi+1) so that r(XiXi+1) = r(Xi)×r(Xi+1)
and r |= K(XiXi+1). If t(XiXi+1) = t′(XiXi+1), then by K(D) 6∈ Cl(Σn) we
obtain that XiXi+1 = AjBj , and therefore r must satisfy Xi ⊥ Xi+1. Again,
r(XiXi+1) will be a cartesian product but this time we must include repetitions
for XiXi+1 in r. We will start the proof with a careful investigation of the
cardinalities |r(Xi)| that enables the above construction.

Lemma 5.5. Let n ≥ 2, and let D ⊆ Rn be such that K(D) 6∈ Cl(Σn). Then
there exists a finite relation r and t0, t1 ∈ r such that r |= Σn \ {K(BnA1)},
t0(X) = 0 for all X ∈ Rn, and

t1(X) =

{
0 if X ∈ D,
1 if X ∈ Rn \D.

Proof. Let n ≥ 2, and let D ⊆ Rn be such that K(D) 6∈ Cl(Σn). We define
a finite relation r = {t0, . . . , tm−1} where m := 2n+2, and r, t0, t1 satisfy the
claim. We construct r inductively over columns. Let ai := 2i, bi := 2n+1−i, for
1 ≤ i ≤ n, and let

• t(X) = 0 for all X ∈ Rn,

• t′(X) =

{
0 if X ∈ D,
1 if X ∈ Rn \D.

The idea is to build inductively on i a relation ri = {t0, t1, . . . , tm−1} over Ri

such that ri |= Σ′ � Ri, t0 = t � Ri, t1 = t′ � Ri, and t0(AiBi), . . . , tm−1(AiBi)
lists two copies of {0, . . . , ai − 1} × {0, . . . , bi − 1}. Then r := rn is as wanted.

First for i = 1, we define ri as a set of tuples t0, . . . , tm−1 over Ri where
t0(A1B1), . . . , tm−1(A1B1) lists two copies of {0, . . . , ai − 1} × {0, . . . , bi − 1}
and t0 = t � Ri, and t1 = t′ � Ri. Note that the size of r1 collapses to m/2.
However, later each ri will be of size m.

Assume then that ri = {t0, . . . , tm−1} is defined. By the induction assump-
tion each value of ri(Bi) has ai+1 many repetitions in t0(Bi), . . . , tm−1(Bi).
Hence, we let first t′i extend ti with a value for Ai+1 such that t′0(BiAi+1), . . . ,

18

t′m−1(BiAi+1) lists {0, . . . , bi− 1}×{0, . . . , ai+1− 1} without repetitions. Then
we let ri+1 := {u0, . . . , um−1} where each ui extend t′i with a value for Bi+1

such that u0(Ai+1, Bi+1), . . . , um−1(Ai+1, Bi+1) lists two copies of {0, . . . , bi −
1} × {0, . . . , ai+1 − 1}. Then we obtain that ri+1 |= Σ′ � Ri. Also it easy to
see that for any t and t′, ri+1 can be constructed so that u0 = t � Ri+1 and
u1 = t′ � Ri+1. This concludes the construction of relations ri and the proof.

The proof of the first case is now easy.

Lemma 5.6. Let n ≥ 2, Σ′ := Σn \ {ψ} where ψ ∈ Σn is a key, and assume
that φ is an Rn-key such that Σ′ |=FIN φ. Then φ ∈ Cl(Σn).

Proof. By symmetry, we may assume that ψ = K(BnA1). Then Σ′ is as in
Figure 2. Let us assume to the contrary that φ 6∈ Cl(Σn) where φ = K(D) for

⊥ ⊥ ⊥ ⊥ ⊥A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

Figure 2: Σ′ in case n = 5

some D ⊆ Rn. Then by Lemma 5.5 there exists a finite relation r over Rn such
that r |= Σ′ and r 6|= φ. Therefore, Σ′ 6|=FIN φ which shows the claim.

The remaining cases are stated in the following lemmata. In the next case
ψ is an independence atom and φ is a key.

Lemma 5.7. Let n ≥ 2, Σ′ := Σn \ {ψ} where ψ ∈ Σn is a unary independence
atom, and assume that φ is an Rn-key such that Σ′ |=FIN φ. Then φ ∈ Cl(Σn).

Proof. By symmetry, we may assume that ψ = A1 ⊥ B1. Let us assume to the
contrary that φ 6∈ Cl(Σn) where φ = K(D) for some D ⊆ Rn. We will show that
Σ′ 6|=FIN φ. First we define Σ∗ := Σn \ {K(BnA1)}. Then by Lemma 5.5, there
exists a finite relation r∗ = {t0, t1, . . . , tm−1} such that r∗ |= Σ∗, t0(X) = 0 for
all X ∈ Rn, and

t1(X) =

{
0 if X ∈ D,
1 if X ∈ Rn \D.

We let r be obtained from r∗ by replacing, for 0 ≤ i ≤ m− 1, ti(A1) with

• i if i 6= 1,

•

{
0 if i = 1 and Bn 6∈ D,
1 if i = 1 and Bn ∈ D.

The construction of r is illustrated in Figure 3 in case Bn 6∈ D. From the
definition of r and the fact that A1Bn 6⊆ D it follows that r 6|= K(D) and
r |= Σ∗ \ {A1 ⊥ B1}. For r |= Σ′, we still need to show that r |= K(BnA1).

19

A1 B1 An Bn

t0 0 0
t1 0 1
t2 2 y2
t3 3 y3
...

...
...

...
...

...
...

...
...

tm−2 m− 2 ym−2
tm−1 m− 1 ym−1

Figure 3: r in case Bn 6∈ D

Because of the definition of ti(A1) in r, K(BnA1) could be violated only in
{t0, t1}. In that case we would have t1(A1B1) = 00 in r which contradicts with
the definitions. Hence we obtain that r 6|= K(D) which concludes the proof.

In the third case ψ is a key and φ is an independence atom.

Lemma 5.8. Let n ≥ 2, Σ′ := Σn\{ψ} where ψ ∈ Σn is a key, and assume that
φ is a unary Rn-independence atom such that Σ′ |=FIN φ. Then φ ∈ Cl(Σn).

Proof. By symmetry, we may assume that ψ = K(BnA1). Hence Σ′ is as in
Figure 2. Assume to the contrary that φ 6∈ Cl(Σn). We will show that Σ′ 6|=FIN

φ. Due to R2 and by symmetry of Σ′, it suffices to consider only the cases
where φ = Ai ⊥ Y , for some 1 ≤ i ≤ n and Y ∈ Rn \ {Bi}.

So let 1 ≤ i ≤ n. We will construct two finite relations r and r′ such that

1. r |= Σ′ and r′ |= Σ′,

2. r 6|=

{
Ai ⊥ Aj for j ≤ i,
Ai ⊥ Bj for j > i,

3. r′ 6|=

{
Ai ⊥ Aj for j > i,

Ai ⊥ Bj for j < i.

We let r := {t0, t1, t2, t3} (see Figure 4) where we define, for X ∈ Rn,

• t0(X) = 0,

• t1(X) =

0 if X = Aj for j ≤ i,

or X = Bj for j > i,

1 otherwise,

• t2(X) =

{
0 if X = Bi,

1 otherwise,

• t3(X) =

0 if X = Bj for j < i,

or X = Aj for j > i,

1 otherwise.

20

A1 B1 Ai−1 Bi−1 Ai Bi Ai+1 Bi+1 An Bn

t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t1 0 1 0 1 0 1 0 1 1 0 1 0 1 0
t2 1 1 1 1 1 1 1 0 1 1 1 1 1 1
t3 1 0 1 0 1 0 1 1 0 1 0 1 0 1

Figure 4: r

Then we let r′ := {t0, t4} (see Figure 5) where we define, for X ∈ Rn,

• t4(X) =

0 if X = Bj for j ≥ i,

or X = Aj for j < i,

1 otherwise.

A1 B1 Ai−1 Bi−1 Ai Bi Ai+1 Bi+1 An Bn

t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Figure 5: r′

It is straightforward to check that items 1-3 hold. This concludes the proof of
Lemma 5.8.

In the last case both ψ and φ are independence atoms.

Lemma 5.9. Let n ≥ 2, Σ′ := Σn \ {ψ} where ψ ∈ Σn is a unary independence
atom, and assume that φ is a unary Rn-independence atom such that Σ′ |=FIN φ.
Then φ ∈ Cl(Σn).

Proof. By symmetry, we may assume that ψ = A1 ⊥ B1. Assume to the
contrary that φ 6∈ Cl(Σn). We will show that Σ′ 6|=FIN φ. Analogously to the
proof of Lemma 5.8, it suffices to consider only the cases where φ = Ai ⊥ Y ,
for some 1 ≤ i ≤ n and Y ∈ Rn \ {Bi}. Let 1 ≤ i ≤ n. We will construct four
relations r0, r1, r2, r3 such that

1. ri |= Σ′ for i = 0, 1, 2, 3,

2. r0 6|= Ai ⊥ Aj for 1 ≤ j ≤ n,

3. r1 6|= A1 ⊥ Bj for 1 < j,

and if 1 < i,

4. r2 6|= Ai ⊥ Bj for j < i,

5. r3 6|= Ai ⊥ Bj for i < j.

For the constructions, we first define tuples t0, . . . , t6 as follows:

• t0(X) = 0,

21

• t1(X) =

{
0 if X = Bj for j > 1,

1 otherwise.

• t2(X) =

{
0 if X = Aj for j > 1,

1 otherwise.

• t3(X) =

0 if X = Aj for 1 < j < i, or

X = Bj for i ≤ j ≤ n,
1 otherwise.

• t4(X) =

0 if X = A1,

or X = Bj for j ≤ i,
1 otherwise,

• t5(X) =

0 if X = Aj for 1 < j ≤ i,

or X = Bj for i < j,

1 otherwise,

• t6(X) =

{
0 if X = Aj for i < j,

1 otherwise.

Then we let r0 := {t0, t1}, r1 := {t0, t2}, r2 := {t0, t3}, and r3 := {t0, t4, t5, t6}
which are illustrated in Figure 6-9, respectively.

A1 B1 Ai−1 Bi−1 Ai Bi Ai+1 Bi+1 An Bn

t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t1 1 1 1 0 1 0 1 0 1 0 1 0 1 0

Figure 6: r0

A1 B1 Ai−1 Bi−1 Ai Bi Ai+1 Bi+1 An Bn

t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t2 1 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 7: r1

A1 B1 Ai−1 Bi−1 Ai Bi Ai+1 Bi+1 An Bn

t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t3 1 1 0 1 0 1 1 0 1 0 1 0 1 0

Figure 8: r2

Recall that in the last two cases the presupposition is that 1 < i. Also in
the last case i < n since i < j ≤ n. Again, it is straightforward to check that
items 1-5 hold. This concludes the proof of Lemma 5.9.

22

A1 B1 Ai−1 Bi−1 Ai Bi Ai+1 Bi+1 An Bn

t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 1 0 1 0 1 0 1 1 1 1 1 1
t5 1 1 0 1 0 1 0 1 1 0 1 0 1 0
t6 1 1 1 1 1 1 1 1 0 1 0 1 0 1

Figure 9: r3

From Lemmata 5.6, 5.7, 5.8 and 5.9 we obtain Theorem 5.4. Using this we
can prove the following theorem. Note that the theorem denies existence of any
sort of k-ary axiomatization, finite or infinite.

Theorem 5.10. For no natural number k, there exists a sound and complete
k-ary axiomatization of the finite implication problem for unary independence
atoms and keys taken together.

Proof. Let A be a sound k-ary axiomatization for unary independence atoms
and keys over some natural number k, and let n be such that n ≥ 2 and 2n > k.
First we observe that the closure of Σn under k-ary finite implication is Cl(Σn).
For this, first note that every instance of Cl(Σn) can be derived from Σn using
a sound 1-ary rule R1, R2, or R7. On the other hand, assume that Σ′ |= φ
where Σ′ ⊆ Cl(Σn) is a subset of size k and φ is a key or a unary independence
atom. Since each instance of Σ′ is derivable from at most one instance of Σn

with single application of R1, R2, or R7, we find a subset Σ′′ ⊆ Σn of size at
most k such that Σ′′ |= Σ′, and hence Σ′′ |= φ. Since Σ′′ is a proper subset of
Σn, we obtain by Theorem 5.4 that φ ∈ Cl(Σn). Hence, the closure of Σn under
k-ary finite implication is exactly Cl(Σn).

Since A is k-ary and K(A1B1) 6∈ Cl(Σn), it follows that Σn 6`A K(A1B1). On
the other hand, Σn |=FIN K(A1B1) by Theorem 5.1. Hence A is not complete
which shows the claim.

Let us then turn to the case where independence atoms have no arity re-
strictions. Fix X⊥Y as a Rn-independence atom of arity greater than 1. Us-
ing Decomposition and Symmetry (rules R4 and R2), one then finds a unary
A⊥B 6∈ Cl(Σn) such that {X⊥Y } |= A⊥B. Now by Theorem 5.4, given
any proper subset Σ′ ⊂ Σn, it follows that Σ′ 6|= A⊥B, thus implying that
Σ′ 6|= X⊥Y . Hence, a Rn-independence atom φ is a consequence of Σ′ only if
it is unary. It is easy to see that this observation together with the proof of
Theorem 5.10 shows the following generalization.

Theorem 5.11. For no natural number k, there is a sound and complete k-
ary axiomatization of the finite implication problem for independence atoms and
keys taken together.

6. Unary Keys and General Independence Atoms

Considering our results for the combined class of general keys and unary
independence atoms, we show now that the combined class of unary keys and

23

general independence atoms enjoys more desirable properties. Indeed, the as-
sociated finite and general implication problems coincide for this class, and are
finitely 2-ary axiomatizable by the axiomatization I (see Table 1 in page 10) for
the combined class of general keys and unary independence atoms. For proving
Theorem 6.2, it suffices to construct a finite model of Σ∪{¬φ}, given Σ 6`I φ. If
φ is a key, then the model consists of two rows which differ from another only on
derivably key attributes. If φ is an independence atom, then using Theorem 6.1
we first obtain a finite model of the restriction of {X⊥Y : X⊥Y ∈ Σ} ∪ {¬φ}
to the attributes that are neither derivably keys nor derivably constants. A
straightforward extension to the remaining attributes results then in a model of
Σ ∪ {¬φ}.

Theorem 6.1 ([42]). Rules R1 − R5 of the axiomatization I are sound and
complete for the finite implication problem of independence atoms.

Theorem 6.2. Assume that R is a relation schema and Σ ∪ {φ} consists of
R-independence atoms and unary R-keys. Then the following are equivalent:

1. Σ `I φ,

2. Σ |= φ,

3. Σ |=FIN φ.

Proof. It is straightforward to see that (1) ⇒ (2) and (2) ⇒ (3). We show
that (3) ⇒ (1). Assume to the contrary that Σ 6`I φ, we show by constructing
a counterexample that Σ 6|=FIN φ. Let U := {A ∈ R : Σ `I K(A)} and
V := {B ∈ R : Σ `I B⊥B}. We consider the cases where φ is either a unary
key or an independence atom in the following.

Assume first that φ = K(C) for some C ∈ R. Then we let r := {t0, t1} where

• t0(X) = 0 for X ∈ R,

• t1(X) =

{
0 if X ∈ R \ U,
1 if X ∈ U.

Since C 6∈ U , we obtain that r 6|= K(C). Also for any K(A) ∈ Σ, r |= K(A) since
A ∈ U . Let then X⊥Y ∈ Σ, we show that r |= X⊥Y . If X ∩U 6= ∅, then using
rules R7 and R9, we obtain that Σ `I Y ⊥Y , and therefore, by rules R2 and
R4, Y ⊆ V . Since U and V are disjoint (otherwise, using rules R7 and R8, one
could deduce K(C)), Y is constant in r. Hence we conclude that r |= X⊥Y .
Since the case where Y ∩ U 6= ∅ is analogous, and the case where XY ∩ U = ∅
is trivial, this concludes the case where φ = K(C).

Assume then that φ = C⊥D for some C,D ⊆ R. First note that U∩CD = ∅
because otherwise one could deduce C⊥D using rules R1, R2, R3, R7 and R9.
Let Σ′ := {A \ UV ⊥B \ UV : A⊥B ∈ Σ}. Then Σ′ 6`I C \ V ⊥D \ V because
otherwise one could deduce C⊥D with R1, R2 and R3. By Theorem 6.1 there
exists a finite relation r′ := {t1, . . . , tn} over R \ UV such that r′ |= Σ′ and
r′ 6|= C \ V ⊥D \ V . We then let r be obtained from r′ by extending each ti to
UV as follows: ti(A) = i for A ∈ U , and ti(B) = 0 for B ∈ V . Note that r is

24

well defined since U and V are again disjoint (otherwise, using rules R1, R3 and
R9, one could deduce C⊥D). Since r 6|= C⊥D, it suffices to show that r |= Σ.
If K(A) ∈ Σ, then r |= K(A) by A ∈ U . Let X⊥Y ∈ Σ. The cases where U
intersects with X or Y are analogous to the previous case. Hence assume that
XY ∩ U = ∅. Then X \ V ⊥Y \ V ∈ Σ′, and therefore r |= X \ V ⊥Y \ V by
the construction. Since also r |= V ⊥V , we conclude that r |= X⊥Y . This
concludes the case where φ = C⊥D and the proof.

7. Armstrong relations

In this section we consider Armstrong relations for different classes of IAs
and keys. Given a relation schema R, and a set Σ of constraints in a class
C, an Armstrong relation for the (finite) implication problem of C is a relation
that satisfies all constraints in C and violates all constraints in C not (finitely)
implied by Σ. We say that the (finite) implication problem for a class C of
constraints enjoys Armstrong relations if for all relation schemata R and all sets
Σ of constraints in C, Σ has an Armstrong relation for the (finite) implication
problem of C.

The concept of Armstrong relations is motivated by theory and practice. In
terms of theory, Armstrong relations embody a stronger notion of completeness
in the sense that a single relation must violate all non-implied constraints. This
means that an Armstrong relation can be regarded as an exact representation
of the given set of constraints. In fact, given a set Σ of constraints from class
C, and an Armstrong relation db for Σ in C, the problem of deciding whether
any given constraint ϕ in C is implied by Σ reduces to the problem of deciding
whether ϕ is satisfied by db. These properties of Armstrong relations have also
been shown useful in practice, where they can be used to identify constraints
that are semantically meaningful for a given application domain. This task is
paramount for the design of any database schema and therefore the processing
and application of data as a whole. The task is also challenging as database
designers cannot be expected to know much about the application domain. It is
therefore helpful for the designers to consult with domain experts. However, do-
main experts cannot be expected to know anything about database constraints,
which raises the question of how the designers should communicate effectively
with the domain experts. This communication mismatch between designers and
domain experts may be addressed by Armstrong relations. For example, instead
of explaining their current understanding of the application domain by referring
to the set Σ of constraints they perceive as meaningful, the designers may use
an algorithm to compute an Armstrong relation for Σ and inspect the relation
together with the domain experts. The domain experts can then notice flaws
with the perceptions, and point these flaws out to the designers. This improves
the designer’s understanding of the application domain. Indeed, for keys and
functional dependencies, empirical evidence suggests that the process of using
Armstrong relations in the requirements acquisition phase does indeed lead to
the discovery of additional constraints that are meaningful for the application
domain [43, 45].

25

In the following we present one result for the general implication problem
for the class of keys and unary independence atoms, and one result for the
implication problem for the class of independence atoms and unary keys.

Our first main result shows how to construct for every given set of keys and
unary independence atoms an infinite Armstrong relation. As the finite implica-
tion problem for this class is different from the general implication problem, see
Theorem 5.3, it is impossible in general to construct finite Armstrong relations.

Theorem 7.1. The implication problem for keys and unary independence atoms
enjoys infinite Armstrong relations.

Proof. Let R be a relation schema and Σ a set of keys and unary IAs over R. We
construct an infinite relation r satisfying exactly those keys and unary IAs that
are implied by Σ. Let R′ := {A ∈ R : Σ |= A⊥A} and Σ′ the restriction of Σ to
R\R′. Now if r′ is an Armstrong relation for Σ′ and r an extension to R obtained
from r′ by extending its tuples with constant values for R′, then using the sound
rules in Table 1 we notice that Σ |= φ ⇔ Σ′ |= φ′ and r |= φ ⇔ r′ |= φ′, where
φ′ is the restriction of φ to R \R′. Hence, and since Σ′ 6|= A⊥A for A ∈ R \R′,
we may without loss of generality assume that R′ = ∅.

Let then K(X1), . . . ,K(Xn) list all R-keys that are not implied by Σ. We
define r′ :=

⋃n
i=1 r

′
i where each ri consists of two tuples ti, t

′
i defined as follows

for A ∈ R:

• ti(A) =

{
0 if A ∈ Xi,

i otherwise,

• t′i(A) =

{
0 if A ∈ Xi,

n+ i otherwise.

Then r′ 6|= K(Xi) for all i = 1, . . . , n. Let Y1⊥Z1, . . . , Ym⊥Zm list all R-
independence atoms implied by Σ. We let r :=

⋃∞
i=0 ri where r0 := r′∪{c, c′} for

constant tuples c and c′ mapping all attributes of R to −1 and −2, respectively.
Note that then r 6|= A⊥A for all A ∈ R. The remaining ri are constructed
inductively. For the claim it then suffices to confirm that for all i,

(i) ri |= φ if φ is a key implied by Σ,

(ii) ri |= Yk⊥Zk if i ≥ 1 and k = i (mod n),

(iii) there exists no unary IA X⊥Y not implied by Σ and t ∈ ri such that
t(X) = −1 and t(Y) = −2.

The base case. First consider the case where i = 0. Items (ii) and (iii) are
evident so we show only item (i). Assume that Σ |= K(X). Then X 6⊆ Xi for
all i = 1, . . . , n and hence by the construction each t ∈ r0 maps some A ∈ X to
a unique number −2,−1, 1, . . . , 2n, i.e., such that it differs from all t′(A) where
t′ 6= t.

26

The inductive case. If ri is defined and ri |= Yk⊥Zk for k = i+ 1 (mod n),
then we let ri+1 := ri. Otherwise, let (a1, b1), . . . , (al, bl) enumerate r(Yk) ×
r(Zk) \ r(YkZk), and let M be the greatest number appearing in ri. We then
let ri+1 be obtained by extending ri with tuples tj , for 1 ≤ j ≤ l, such that for
all A ∈ R,

tj(A) =

aj if A = Yk,

bj if A = Zk,

M + j otherwise.

(4)

Checking items (i)-(iii) proceeds then as in Case (ii) in the proof of Theorem
4.2. This concludes the proof.

Theorem 7.1 establishes the general existence of infinite Armstrong relations
for every set of keys and unary independence atoms. As the requirement of hav-
ing infinite relations is necessary for the general implication problem, we cannot
simply use these Armstrong relations for acquiring semantically meaningful keys
and unary independence atoms. In the future, one may think about effective
ways of presenting carefully chosen snippets of these relations to help with the
acquisition. Since finite implication is the practically relevant case, the interest-
ing open question remains whether the finite implication problem for keys and
unary independence atoms enjoys finite or infinite Armstrong relations.

Our second main result shows how to construct finite Armstrong relations
for every given set of independence atoms and unary keys. Note that finite and
general implication problems coincide in this case.

Theorem 7.2. The implication problem and finite implication problem for in-
dependence atoms and unary keys enjoy finite Armstrong relations.

Proof. Let R be a relation schema and Σ a set of independence atoms and
unary keys over R. As in the proof of Theorem 7.1, we may assume that
V := {A ∈ R : Σ |= A⊥A} = ∅. Given U := {A ∈ R : Σ |= K(A)} and let
Σ′ := {X \U⊥Y \U : X⊥Y ∈ Σ}. Let r′ = {t1, . . . , tn} be a finite Armstrong
relation (with respect to IAs only) for Σ′ over R \ U , obtained by Theorem 4
in [42]. We define r := {ti,j : i = 1, . . . , n and j = 0, 1} where each ti,j agrees
with ti on attributes of R \ U and maps all attributes of U to jn + i. By the
construction, r |= K(A)⇔ Σ |= K(A).

Let X⊥Y be a non-trivial R-independence atom, i.e., atom of the form
X⊥Y where X and Y are both non-empty (otherwise clearly r |= X⊥Y
and Σ |= X⊥Y). First note that XY ∩ U = ∅ because otherwise using
R2,R4,R7,R9 one contradicts the assumption V = ∅. Since r′ is an Armstrong
relation for Σ′, it holds by the construction that Σ′ |= X⊥Y ⇔ r |= X⊥Y . It
remains to show that Σ |= X⊥Y ⇔ Σ′ |= X⊥Y , and since Σ |= Σ′ it suffices to
consider only the direction “⇒”. Assume that Σ |= X⊥Y and let r0 be a rela-
tion over R\U with r0 |= Σ′. Let r1 be obtained from r0 by extending its tuples
with key values for the attributes of U . Then r1 satisfies every unary key and

27

trivial IA that is in Σ. Moreover, if A⊥B ∈ Σ is non-trivial, then AB ∩ U = ∅
by R2,R7,R9 and since V = ∅. Hence A⊥B ∈ Σ′ and r1 |= A⊥B by the
construction. Therefore by the assumption r1 |= X⊥Y , and hence r0 |= X⊥Y .
This concludes the proof of the claim and the theorem.

Theorem 7.2 meets the theoretical and practical motivation for Armstrong
relations in the case of independence atoms and unary keys. Further research
may investigate how to improve our construction in terms of the number of tu-
ples required in an Armstrong relation. Based on algorithmic implementations
of these constructions, it is worth investigating how many more meaningful inde-
pendence atoms and unary keys can be identified by the inspection of Armstrong
relations, in comparison to not having available such relations.

8. On the complexity of the implication problems

In this section we study the complexity of the implication problems axiom-
atized in Theorems 4.2 and 6.2. It is known that the implication problems of
keys and independence atoms in isolation can be decided in polynomial time
[42, 65]. Below |(R,Σ∪{φ})| denotes the length of a string encoding R and the
formulas in Σ ∪ {φ} under a fixed string encoding of these objects.

The following lemma shows that an IA is derivable exactly when its constant
part and non-constant part are derivable separately.

Lemma 8.1. Assume that R is a relation schema and that Σ is a finite set
of R-keys and R-independence atoms. Denote by Z ⊆ R the maximal set of
attributes such that Σ `I Z ⊥ Z. Then Σ `I X ⊥ Y if and only if the following
conditions hold:

1. Σ∗ `I (X \Z) ⊥ (Y \Z), where Σ∗ := {(U \Z) ⊥ (V \Z) : U ⊥ V ∈ Σ}
2. X ∩ Y ⊆ Z (i.e., Σ `I (X ∩ Y) ⊥ (X ∩ Y)).

Furthermore, Σ `I K(X) if and only if Y \ Z ⊆ X for some K(Y) ∈ Σ.

Proof. We consider the first claim only. The conditions 1 and 2 together are
clearly sufficient. We show using induction on the length of derivation that
Σ `I X ⊥ Y implies conditions 1 and 2. We consider the rule R5 only. Assume
that an atom X ⊥ Y U has been derived using rule R5 applied to atoms X ⊥ Y
and XY ⊥ U . By the induction hypothesis, it holds that

i) Σ∗ `I (X \ Z) ⊥ (Y \ Z) and Σ∗ `I (XY \ Z) ⊥ (U \ Z),

ii) Σ∗ `I (X ∩ Y) ⊥ (X ∩ Y) and Σ∗ `I (XY ∩ U) ⊥ (XY ∩ U).

Note first that since

X ∩ Y U = (X ∩ Y) ∪ (X ∩ U)

Σ∗ `I (X ∩ Y U) ⊥ (X ∩ Y U) can be easily showed using ii). Analogously, by
noting that XY \ Z = (X \ Z)(Y \ Z) one application of the rule R5 to the
atoms in i) allows us to show that Σ∗ `I (X \ Z) ⊥ (Y U \ Z).

28

Theorem 8.2. The general implication problems of keys and unary indepen-
dence atoms, and of unary keys and general independence atoms can be decided
in polynomial time.

Proof. We define an algorithm which for a given finite input consisting of a
relation schema R and a finite set Σ∪{φ} of R-keys and R-independence atoms
decides whether Σ |= φ holds in time polynomial in |(R,Σ∪{φ})|. By Theorems
4.2 and 6.2 it suffices to define a polynomial time algorithm for deciding whether
Σ `I φ. Let us first consider the case where φ is of the form X ⊥ Y . It suffices to
check whether conditions 1 and 2 of Lemma 8.1 hold. Note that both conditions
1 and 2 can be checked in polynomial time assuming the set Z can be computed
in polynomial time. For condition 1 this follows by Theorem 9 of [22]. Therefore,
in the remainder of the proof it suffices to show that the set Z can indeed be
computed in polynomial time.

Denote by Z0 ⊆ Z the maximal set of attributes such that Σ− `I Z0 ⊥ Z0,
where Σ− := {U ⊥ V : U ⊥ V ∈ Σ}. Note that the set Z0 can be computed
easily since it holds that

Z0 = ∪{X | XY ⊥ XZ ∈ Σ}.

A polynomial time algorithm for computing the set Z

Repeat the following two steps until no new attributes are added to Z.
First initialize Z to Z0.

Step 1 Extend Σ by K(X \ Z) for every K(X) ∈ Σ,

Step 2 Extend Σ by W ⊥ W and add the attributes of W to Z, for each subset
{V ⊥ W,K(V ′)} ⊆ Σ such that V ′ ⊆ V .

Note that the extensions of Σ in the above algorithm correspond to derivations
by the rules R8 and R9. In the derivations corresponding to Step 2 the upward
closure of keys (rule R7) is also needed. On the other hand, using Lemma 8.1
it is easy to see that the algorithm described above generates the maximal set
Z such that Σ `I Z ⊥ Z.

It is easy to see that the algorithm halts in at most |R\Z0| rounds, and that
in each round only polynomially many new atoms are added to Σ. The running
time of the algorithm is clearly polynomial in |(R,Σ ∪ {φ})|.

Let us then consider the case where φ is of the form K(X). By Lemma 8.1,
Σ `I K(X) if and only if Y \ Z ⊆ X for some K(Y) ∈ Σ. Since Z can be
constructed in polynomial time, it follows that Σ `I K(X) can be checked in
polynomial time.

The next example illustrates the execution of the above algorithm.

Example 8.3. Let R = {A1, . . . , A5} and

Σ := {K(A1),K(A2A3),K(A4A5), A1 ⊥ A2, A3 ⊥ A4}.

29

It is now straightforward to verify that three iterations of the algorithm are
needed to show that Σ `I K(A5). The first iteration of the algorithm generates
the atom A2 ⊥ A2. Then, in the first and the second step of the second iteration,
key K(A3) and independence atom A4 ⊥ A4 are generated, respectively. Finally,
the target key K(A5) is generated during the first step of the third iteration.

It is worth noting that the algorithm of Theorem 8.2 does not completely
solve the implication problem of keys and non-unary independence atoms. In
Example 4.3 it was noted that

{A⊥BC,K(AB), B⊥D} |= BC⊥D,

but the algorithm fails to identify the atom BC⊥D as a logical consequence of
{A⊥BC,K(AB), B⊥D}.

9. Conditions for no interaction between keys and independence atoms

In this section we formulate conditions guaranteeing no interaction between
keys and independence atoms. The next definition formalizes this notion.

Definition 9.1. Let R be a relation schema and ΣK and ΣI be sets of R-
keys and R-independence atoms, respectively. We say that ΣI and ΣK have no
interaction if the following holds:

1. for any R-key φ, if ΣI ∪ ΣK |= φ, then ΣK |= φ.

2. for any R-independence atom φ, if ΣI ∪ ΣK |= φ, then ΣI |= φ.

In general, the decidability of the problem of determining whether given
finite sets ΣI and ΣK have no interaction is open. However, as an application
of Theorem 4.2 the following result can be obtained. The analogous result
obviously holds also for unary keys and arbitrary independence atoms.

Theorem 9.2. Let R be a relation schema and let ΣK and ΣI be sets of R-keys
and unary R-independence atoms such that the following conditions hold:

1. for all K(X) ∈ ΣK, and A ∈ R \ X, the atom X ⊥ A cannot be derived
from ΣI using rules R1−R5,

2. for all K(X) ∈ ΣK, Z0 ∩ X = ∅, where Z0 consists of the attributes Y
such that Y ⊥Y can be derived from ΣI using rule R4.

Then ΣI and ΣK have no interaction. Futhermore, the question whether ΣI and
ΣK satisfy conditions 1 and 2 can be decided in polynomial time.

Proof. Conditions 1 and 2 imply that Rules R8 and R9 cannot be instantiated
using the atoms of ΣI ∪ ΣK. By Theorem 4.2, the claim follows.

The next example illustrate the use of Theorem 9.2.

30

Example 9.3. Let R = {A1, . . . , A5} and

Σ := {K(A2A3),K(A4A5), A1 ⊥ A2, A3 ⊥ A4}.

It is now easy to check that Σ satisfies conditions 1 and 2 of Theorem 9.2. Define
Σ∗ := Σ ∪ {K(A1)}. Note that Σ∗ does not satisfy condition 1 of Theorem 9.2.
Furthermore, by Example 8.3, the atoms of Σ∗ have non-trivial interaction since
Σ∗ |= K(A5) but clearly {K(A1),K(A2A3),K(A4A5)} 6|= K(A5).

Next we turn to keys and arbitrary independence atoms. Recall that in this
case the decidability of the general implication problem is open.

Theorem 9.4. Let R be a relation schema and let ΣK and ΣI sets of R-keys
and R-independence atoms such that the following conditions hold:

1. for all keys K(X) ∈ ΣK and independence atoms Y ⊥ Z ∈ ΣI: X ∩ (Y ∪
Z) = ∅.

Then ΣI and ΣK have no interaction.

Proof. Let us first consider the case φ := X ⊥ Y . Assume that ΣI 6|= φ. We
need to show

ΣI ∪ ΣK 6|= φ. (5)

Let r be a finite relation over the attributes RI ⊆ R of ΣI such that r |= ΣI but
r 6|= φ. Since all keys K(U) ∈ ΣK satisfy U ⊆ R \ R0, it follows that r can be
trivially extended to a relation r′ over R satisfying all keys over R \R0. Now r′

witnesses (5).
The case φ := K(X) is proved analogously.

We end this section with two examples illustrating the use of Theorem 9.4.

Example 9.5. Let R = {A,B,C,D} and define ΣI := {A⊥B,AB⊥D} and
ΣK := {K(C)}. Now the sets ΣI and ΣK have no interaction by Theorem 9.4.

Example 9.6. Let R = {A,B,C,D} and define ΣI := {A⊥BC,B⊥D} and
ΣK := {K(AB)}. Now ΣI and ΣK do not satisfy the condition of Theorem
9.4. Furthermore, as pointed out in Example 4.3, ΣI ∪ ΣK |= BC⊥D but the
relation r := {t0, t1}, where

• t0(X) = 0 for X ∈ R

• t1(A) = t1(B) = 0, and t1(C) = t1(D) = 1

witnesses that ΣI 6|= BC⊥D. Therefore, the sets ΣI and ΣK indeed have non-
trivial interaction.

We conclude this section by noting that Theorems 9.2 and 9.4 cover many
cases of constraint sets that occur in practice. Each theorem establishes con-
ditions of no interaction that are more liberal than simply saying that a given
constraint set does not imply any constancy atom. The latter condition, how-
ever, seems to be very realistic as any constraint set that occurs in practice is
unlikely to imply any constancy atom. If it did, then why store a column in
which at most one value can occur.

31

10. Conclusion and Future Work

We have initiated research on the interaction between independence atoms
and keys. We showed that the finite and general implication problems for the
combined class of independence atoms and keys differ from one another. For
the combined class of keys and unary independence atoms we established a fi-
nite axiomatization I for the general implication problem, and showed that the
finite implication problem for this class has no finite axiomatization. The non-
axiomatizability result holds also in the case where the arity of independence
atoms is not restricted to one. For the combined class of independence atoms
and unary keys we showed that the finite and general implication problems
coincide, and that I also forms a finite axiomatization for this class. As an ap-
plication of our axiomatization we further showed that i) the general implication
problem for the combined class of keys and unary independence atoms, and ii)
the finite and general implication problems for the combined class of indepen-
dence atoms and unary keys can all be decided in polynomial time. We also
showed how to construct i) infinite Armstrong relations for the general implica-
tion of keys and unary independence atoms, and ii) finite Armstrong relations
for the finite and general implication of independence atoms and unary keys. As
a final application we established two conditions which guarantee that there is
no interaction between keys and independence atoms. Either of the conditions
can be verified in polynomial time, which means that instances of the combined
implication problem that satisfy one of our conditions can be solved efficiently
by using tools to decide implication for either keys or independence atoms alone.

Despite our negative results there is still hope for a general practical solution
as the general implication problem for arbitrary independence atoms and keys
might enjoy a finite axiomatization, or the finite implication problem may be
decidable. In fact, there are showcases in the literature for positive and negative
results. On the one hand, join dependencies are not axiomatizable by a finite
set of Horn rules [59], but efficiently decidable by the Chase [53]. On the other
hand, functional and inclusion dependencies are not axiomatizable by a finite
set of Horn rules and also undecidable [9, 54]. Also, the lack of a finite axioma-
tization may not apply if one permits other intermediate results in a derivation.
This approach of finding axioms by allowing the use of an extended language is
traditionally taken after the non-axiomatizability of the non-extended language
has been established [54]. The same applies to undecidability results. As an
alternative it is also interesting to consider inference systems that are complete,
but not necessarily sound. An important recent and very related example is
the work by Niepert, Gyssens, and Van Gucht [56]. In that paper, the authors
present a system that is complete for the implication problem of probabilistic
conditional independence statements. One may use this result in the contra-
positive: if a given statement ϕ cannot be inferred from the given set Σ of
statements in the complete system, then ϕ is not implied by Σ, either. This
type of result can be useful in practice. Yet another alternative pathway for
future work is to explore different sub-classes for the combined class of indepen-
dence atoms and keys, and possibly other constraints. As pointed out before,

32

an important class are inclusion dependencies [8, 39]. While the implication
problem is already undecidable for keys and foreign keys [19] it is interesting to
consider fragments of keys and independence atoms together with unary inclu-
sion dependencies [10]. Our research should thus be seen as a driver for future
investigations on the interaction of keys and independence atoms, similar to
what has been done for other classes of dependencies, such as functional and
inclusion dependencies. Modern real-world requirements often demand more
flexible data formats, for which more sophisticated notions of keys and indepen-
dence atoms must be developed. As far as we know there are various proposals
for keys in SQL [40], possibilistic [27, 38] or probabilistic data models [5, 61],
RDF [44] and XML [31, 33], for example, but independence atoms have not
been studied yet in advanced data formats.

Acknowledgements

The authors would like to thank Henning Köhler for a number of useful cor-
rections and suggestions, especially for pointing out simpler proofs for Theorem
4.2 and Lemma 5.5. We would like to thank the anonymous referees for helping
us improve the final presentation of our results.

[1] M. Arenas. Normalization theory for XML. SIGMOD Record, 35(4):57–64,
2006.

[2] M. Arenas, C. Gutierrez, D. P. Miranker, J. Pérez, and J. Sequeda. Query-
ing semantic data on the web? SIGMOD Record, 41(4):6–17, 2012.

[3] C. Beeri, R. Fagin, and J. H. Howard. A complete axiomatization for func-
tional and multivalued dependencies in database relations. In D. C. P.
Smith, editor, Proceedings of the 1977 ACM SIGMOD International Con-
ference on Management of Data, Toronto, Canada, August 3-5, 1977.,
pages 47–61, 1977.

[4] R. R. Bouckaert, R. Hemmecke, S. Lindner, and M. Studený. Efficient
algorithms for conditional independence inference. Journal of Machine
Learning Research, 11:3453–3479, 2010.

[5] P. Brown and S. Link. Probabilistic keys for data quality management. In
J. Zdravkovic, editor, Advanced Information Systems Engineering - 27th
European Conference, CAiSE 2015, Stockholm, Sweden, June 8-12, 2015.
Proceedings, volume 9097 of Lecture Notes in Computer Science, pages
118–132. Springer, 2015.

[6] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration
under integrity constraints. Inf. Syst., 29(2):147–163, 2004.

[7] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In PODS,
pages 260–271. ACM, 2003.

33

[8] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion dependencies
and their interaction with functional dependencies. J. Comput. Syst. Sci.,
28(1):29–59, 1984.

[9] A. K. Chandra and M. Y. Vardi. The implication problem for functional
and inclusion dependencies is undecidable. SIAM Journal on Computing,
14(3):671–677, 1985.

[10] S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi. Polynomial-time
implication problems for unary inclusion dependencies. J. ACM, 37(1):15–
46, 1990.

[11] A. P. Dawid. Conditional independence in statistical theory. Journal of
the Royal Statistical Society. Series B (Methodological), 41(1):1–31, 1979.

[12] C. Delobel. Normalization and hierarchical dependencies in the relational
data model. ACM Trans. Database Syst., 3(3):201–222, 1978.

[13] J. Demetrovics. On the number of candidate keys. Inf. Process. Lett.,
7(6):266–269, 1978.

[14] J. Demetrovics, G. O. H. Katona, D. Miklós, O. Seleznjev, and B. Thal-
heim. Asymptotic properties of keys and functional dependencies in random
databases. Theor. Comput. Sci., 190(2):151–166, 1998.

[15] G. V. den Broeck and M. Niepert. Lifted probabilistic inference for asym-
metric graphical models. In B. Bonet and S. Koenig, editors, AAAI, pages
3599–3605. AAAI Press, 2015.

[16] R. Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst., 2(3):262–278, 1977.

[17] R. Fagin. A normal form for relational databases that is based on domains
and keys. ACM Trans. Database Syst., 6(3):387–415, 1981.

[18] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985,
1982.

[19] W. Fan and L. Libkin. On XML integrity constraints in the presence of
dtds. J. ACM, 49(3):368–406, 2002.

[20] Z. Galil. An almost linear-time algorithm for computing a dependency
basis in a relational database. J. ACM, 29(1):96–102, 1982.

[21] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava. Building a highlevel dataflow
system on top of mapreduce: The pig experience. PVLDB, 2(2):1414–1425,
2009.

34

[22] D. Geiger, A. Paz, and J. Pearl. Axioms and algorithms for infer-
ences involving probabilistic independence. Information and Computation,
91(1):128–141, 1991.

[23] D. Geiger and J. Pearl. Logical and algorithmic properties of conditional
independence and graphical models. The Annals of Statistics, 21(4):2001–
2021, 12 1993.

[24] E. Grädel and J. Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013.

[25] J. Grant and J. Minker. Inferences for numerical dependencies. Theor.
Comput. Sci., 41:271–287, 1985.

[26] M. Gyssens, M. Niepert, and D. V. Gucht. On the completeness of the
semigraphoid axioms for deriving arbitrary from saturated conditional in-
dependence statements. Inf. Process. Lett., 114(11):628–633, 2014.

[27] N. Hall, H. Koehler, S. Link, H. Prade, and X. Zhou. Cardinality con-
straints on qualitatively uncertain data. Data & Knowledge Engineering,
99:126–150, 2015.

[28] M. Hannula and J. Kontinen. A finite axiomatization of conditional in-
dependence and inclusion dependencies. In C. Beierle and C. Meghini,
editors, Foundations of Information and Knowledge Systems - 8th Inter-
national Symposium, FoIKS 2014, Bordeaux, France, March 3-7, 2014.
Proceedings, volume 8367 of Lecture Notes in Computer Science, pages
211–229. Springer, 2014.

[29] M. Hannula, J. Kontinen, and S. Link. On independence atoms and keys.
In J. Li, X. S. Wang, M. N. Garofalakis, I. Soboroff, T. Suel, and M. Wang,
editors, Proceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, pages 1229–1238. ACM, 2014.

[30] S. Hartmann, U. Leck, and S. Link. On Codd families of keys over incom-
plete relations. Comput. J., 54(7):1166–1180, 2011.

[31] S. Hartmann and S. Link. Efficient reasoning about a robust XML key
fragment. ACM Trans. Database Syst., 34(2), 2009.

[32] S. Hartmann and S. Link. The implication problem of data dependencies
over SQL table definitions: Axiomatic, algorithmic and logical characteri-
zations. ACM Trans. Database Syst., 37(2):13, 2012.

[33] S. Hartmann, S. Link, and T. Trinh. Solving the implication problem for
XML functional dependencies with properties. In A. Dawar and R. J. G. B.
de Queiroz, editors, Logic, Language, Information and Computation, 17th
International Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010.
Proceedings, volume 6188 of Lecture Notes in Computer Science, pages
161–175. Springer, 2010.

35

[34] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann.
Scalable discovery of unique column combinations. PVLDB, 7(4):301–312,
2013.

[35] C. Herrmann. On the undecidability of implications between embed-
ded multivalued database dependencies. Information and Computation,
122(2):221 – 235, 1995.

[36] C. Herrmann. Corrigendum to ”on the undecidability of implications be-
tween embedded multivalued database dependencies” [inform. and comput.
122(1995) 221-235]. Inf. Comput., 204(12):1847–1851, 2006.

[37] D. S. Johnson and A. C. Klug. Testing containment of conjunctive
queries under functional and inclusion dependencies. J. Comput. Syst. Sci.,
28(1):167–189, 1984.

[38] H. Köhler, U. Leck, S. Link, and H. Prade. Logical foundations of possi-
bilistic keys. In E. Fermé and J. Leite, editors, Logics in Artificial Intelli-
gence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portu-
gal, September 24-26, 2014. Proceedings, volume 8761 of Lecture Notes in
Computer Science, pages 181–195. Springer, 2014.

[39] H. Köhler and S. Link. Inclusion dependencies reloaded. In CIKM, pages
1361–1370. ACM, 2015.

[40] H. Köhler, S. Link, and X. Zhou. Possible and certain SQL keys. PVLDB,
8(11), 2015.

[41] S. Kolahi. Dependency-preserving normalization of relational and XML
data. J. Comput. Syst. Sci., 73(4):636–647, 2007.

[42] J. Kontinen, S. Link, and J. A. Väänänen. Independence in database re-
lations. In L. Libkin, U. Kohlenbach, and R. J. G. B. de Queiroz, editors,
WoLLIC, volume 8071 of Lecture Notes in Computer Science, pages 179–
193. Springer, 2013.

[43] W. Langeveldt and S. Link. Empirical evidence for the usefulness of Arm-
strong relations in the acquisition of meaningful functional dependencies.
Inf. Syst., 35(3):352–374, 2010.

[44] G. Lausen. Relational databases in RDF: Keys and foreign keys. In
V. Christophides, M. Collard, and C. Gutierrez, editors, Semantic Web,
Ontologies and Databases, VLDB Workshop, SWDB-ODBIS 2007, Vienna,
Austria, September 24, 2007, Revised Selected Papers, volume 5005 of Lec-
ture Notes in Computer Science, pages 43–56. Springer, 2008.

[45] V. Le, S. Link, and F. Ferrarotti. Empirical evidence for the usefulness
of Armstrong tables in the acquisition of semantically meaningful SQL
constraints. Data & Knowledge Engineering, 98:74–103, 2015.

36

[46] M. Levene and G. Loizou. How to prevent interaction of functional and
inclusion dependencies. Inf. Process. Lett., 71(3-4):115–125, 1999.

[47] M. Levene and G. Loizou. Guaranteeing no interaction between functional
dependencies and tree-like inclusion dependencies. Theor. Comput. Sci.,
254(1-2):683–690, 2001.

[48] M. Levene and M. W. Vincent. Justification for inclusion dependency nor-
mal form. IEEE Trans. Knowl. Data Eng., 12(2):281–291, 2000.

[49] S. Link. Charting the completeness frontier of inference systems for multi-
valued dependencies. Acta Inf., 45(7-8):565–591, 2008.

[50] S. Link. Characterisations of multivalued dependency implication over un-
determined universes. J. Comput. Syst. Sci., 78(4):1026–1044, 2012.

[51] S. Link. Frontiers for propositional reasoning about fragments of proba-
bilistic conditional independence and hierarchical database decompositions.
Theor. Comput. Sci., 603:111–131, 2015.

[52] C. L. Lucchesi and S. L. Osborn. Candidate keys for relations. J. Comput.
Syst. Sci., 17(2):270–279, 1978.

[53] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data
dependencies. ACM Trans. Database Syst., 4:455–469, December 1979.

[54] J. C. Mitchell. The implication problem for functional and inclusion de-
pendencies. Information and Control, 56(3):154–173, 1983.

[55] M. Niepert, D. V. Gucht, and M. Gyssens. Logical and algorithmic
properties of stable conditional independence. Int. J. Approx. Reasoning,
51(5):531–543, 2010.

[56] M. Niepert, M. Gyssens, B. Sayrafi, and D. V. Gucht. On the conditional
independence implication problem: A lattice-theoretic approach. Artif.
Intell., 202:29–51, 2013.

[57] G. Paolini and J. Väänänen. Dependence Logic in Pregeometries and
ω-Stable Theories. ArXiv e-prints, Oct. 2013.

[58] J. Paredaens. The interaction of integrity constraints in an information
system. J. Comput. Syst. Sci., 20(3):310–329, 1980.

[59] S. V. Petrov. Finite axiomatisation of languages for representation of sys-
tem properties. Inf. Sci., 47(3):339–372, 1989.

[60] J. Rissanen. Independent components of relations. ACM Trans. Database
Syst., 2(4):317–325, 1977.

37

[61] T. Roblot and S. Link. Probabilistic cardinality constraints. In P. Jo-
hannesson, M. Lee, S. W. Liddle, A. L. Opdahl, and O. P. López, editors,
Conceptual Modeling - 34th International Conference, ER 2015, Stockholm,
Sweden, October 19-22, 2015, Proceedings, volume 9381 of Lecture Notes
in Computer Science, pages 214–228. Springer, 2015.

[62] D. Stott Parker Jr. and K. Parsaye-Ghomi. Inferences involving embed-
ded multivalued dependencies and transitive dependencies. In P. P. Chen
and R. C. Sprowls, editors, Proceedings of the 1980 ACM SIGMOD Inter-
national Conference on Management of Data, Santa Monica, California,
May 14-16, 1980, pages 52–57. ACM Press, 1980.

[63] M. Studený. Conditional independence relations have no finite complete
characterization. In S. Kubik and J. Visek, editors, Transactions of the 11th
Prague Conference on Information Theory, Statistical Decision Functions
and Random Processes, pages 377–396. Kluwer, 1992.

[64] M. Studený. Probabilistic Conditional Independence Structures. Springer-
Verlag, 2005.

[65] B. Thalheim. Dependencies in relational databases. Teubner, 1991.

[66] J. Väänänen. Dependence Logic. Cambridge University Press, 2007.

[67] M. W. Vincent. Semantic foundations of 4nf in relational database design.
Acta Inf., 36(3):173–213, 1999.

38

