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Possibilistic functional dependencies and their

relationship to possibility theory
Sebastian Link and Henri Prade

Abstract—This short paper introduces possibilistic functional

dependencies. These dependencies are associated with a partic-

ular possibility distribution over possible worlds of a classical

database. The possibility distribution reflects a layered view of

the database. The highest layer of the (classical) database consists

of those tuples which certainly belong to it, while the other

layers add tuples that only possibly belong to the database, with

different levels of possibility. The relation between the confidence

levels associated with the tuples and the possibility distribution

over possible database worlds is discussed in detail in the setting

of possibility theory. A possibilistic functional dependency is a

classical functional dependency associated with a certainty level

that reflects the highest confidence level where the functional

dependency no longer holds in the layered database. Moreover,

the relationship between possibilistic functional dependencies

and possibilistic logic formulas is established. Related work

is reviewed, and the intended use of possibilistic functional

dependencies is discussed in the conclusion.

Index Terms—uncertain data, possibility theory, possibilistic

logic, functional dependency.

I. INTRODUCTION

Functional dependencies (FDs for short) constitute a core

notion in database theory [1], for database decomposition, safe

updating, redundancy elimination, and query optimization. This

fact has led to a great number of works on fuzzy functional
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dependencies in the fuzzy set literature, especially in the nineties

and in the first half of the next decade (see [2], [3] and the related

work section of this paper for some overview discussions). This is

due to the existence of different views of fuzzy databases, as well

as different proposals for fuzzy functional dependencies (FFDs

for short). FFDs may be stronger or weaker than classical FDs.

They may extend classical FDs to fuzzy databases, or may already

differ from classical FDs on classical databases.

The view we investigate in this short note remains close to

the one of a classical database where classical FDs hold. We only

depart from it by admitting that some tuples may be uncertain, in

the sense that we are not sure if some tuple, as it is, belongs or not

to the database. This uncertainty may be due to several reasons,

for example when the database gathers tuples from different

sources with different confidence levels. The uncertainty of some

of the tuples will result in levels of certainty associated with

classical FDs. The proposal presented here has some similarity

in its basic features with an old one, published more than 20

years ago by Kiss [4], and which has had a limited impact in

the literature until now. However Kiss’ proposal was cast in the

setting of multiple-valued logic, while the approach in this short

note relies on a possibility theory [5], [6] view. Moreover, the

possibilistic view makes more precise the meaning of the weights

associated with the tuples and the FDs, respectively. It provides a

richer semantic characterization of the weighted FDs. We would

like to stress that the simple model we propose may be useful

for managing databases with uncertain tuples.

The short note is structured as follows. We start with a

motivating example in Section 2. We then discuss the relation

between a possibility distribution over possible database worlds

and the confidence in the tuples of a database. We make

clear that these confidence levels are degrees of possibility.
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However, the highest one is also associated with a full certainty

degree. The uncertain database is then viewed as a layered

database. Section 3 introduces possibilistic FDs in this setting

and establishes properties for them. It is shown that we can

reason with the weighted FDs that hold in an uncertain database

using possibilistic logic. We establish soundness and completeness

theorems for inference from the weighted FDs with respect to

the FDs that hold in the level cuts of the uncertain database,

or, in other words, with respect to the possibility distribution

over possible database worlds and the FDs that hold in each

world. Section 4 reviews related work that deals either with

fuzzy FDs, or with classical FDs in fuzzy tuple databases; it

also discusses classical FDs in possibilistic uncertain databases.

Section 5 concludes by outlining some potential uses and future

developments.

II. MOTIVATING EXAMPLE

There has been an increase in recognition over recent years

that a database may contain uncertain pieces of information,

although it has been a concern for a long time [7], [8], [9], [10].

This uncertainty may take different forms. Attribute values may

be imprecise or pervaded with uncertainty, or one may just be

uncertain about the fact that a tuple, as it is, should be considered

or not as belonging to a database. In the following, we take the

latter view. The tuples are standard tuples (without null values),

but we do not have full confidence in some of them.

To illustrate the idea, let us consider the database in Table I.

It consists of a unique relation r with attributes C (Course), T

(Time), L (Lecturer), and R (Room). As can be seen, each tuple is

associated with a weight αi. These weights αi belong to a linearly

ordered scale S = {α1, · · · , αn, αn+1} with α1 > · · · > αn >

αn+1. They may be encoded numerically, e.g., α1 = 1, α2 = 0.8,

· · · , αn = 0.2, αn+1 = 0, but this is not compulsory. Indeed, a

numerical encoding will have no particular meaning beyond the

ordering of the numbers. These levels may also receive a linguistic

reading. We shall come back to that in the next section.

Clearly, this encoding suggests a layer-based view of the

relation r: we have first the tuples with the highest confidence

level α1, followed by those with a smaller confidence level (in the

example α3), and so on (in the example we have a third layer with

level α4). It also implicitly suggests a possibility distribution over

Course Time Lecturer Room Poss(t)
DB Mon, 9am Ann Aqua α1

IS Mon, 1pm Ann Aqua α1

CS Mon, 1pm Pete Buff α1

CS Tue, 2pm Pete Buff α1

AI Tue, 4pm Gill Buff α1

AI Wed, 3pm Gill Cyan α1

Math Thu, 4pm Mary Lava α3

Logic Thu, 4pm Mary Pink α3

HCI Fri, 9am Bob Tan α4

OR Fri, 9am Bob Tan α4

OR Fri, 9am Jack Tan α4
Table I

EXAMPLE OF AN UNCERTAIN DATABASE

possible database worlds. How this distribution can be related to

the weights αi is discussed in the following.

III. RELATING POSSIBLE DATABASE WORLDS AND

CONFIDENCE IN TUPLES

The problem we are facing is how to relate a possibility

distribution over a power set of tuples to a distribution over a set

of tuples. Although this kind of problem has not been considered

very often, it already received an answer many years ago in [11].

We first recall these results using the motivating example used

at that time [12], namely the representation of an imprecise and

uncertain information about a multiple-valued attribute, here,

the set of languages spoken by a person.

A. Possibility distribution on a power set and its upper and

lower approximations

For instance, we have the partial information that “John

speaks either English and French, or English and German, and

no other languages”. In that case, it can be described by a two-

valued possibility distribution π defined over the power set 2L of

the set of languages L, namely let A1 = {English,French}, and

let A2 = {English,German}, then we have π(A1) = π(A2) = 1

and π(Ak) = 0 for any k 6= 1, 2. Clearly, this information has

an upper approximation by the set of languages possibly spoken

by John, here A+ = {English,French,German}, and the set of

languages certainly spoken by John, here A− = {English} is a

lower approximation. Note that this is only an approximation

of the information conveyed by the original distribution π

over 2L, since we have lost the information that John speaks
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(only) two languages. However, the two approximations are now

distributions over L. This is simpler, namely, µA+(l) = 1 if

l ∈ {English,French,German} and µA+(l) = 0 otherwise, while

µA−(l) = 1 if l = English and µA−(l) = 0 otherwise.

This can be generalized to multiple-valued possibility distri-

butions [12]. Let π be a mapping from a power set 2L (we

keep the same notation, but L now denotes any set) to a linearly

ordered scale S where 1 and 0 continue to denote the top and the

bottom element, respectively. We assume that π is normalized,

i.e., supi∈I π(Ai) = 1 (where I is an index set for the subsets in

2L). The upper and lower approximations of the ill-known set

described by π are defined respectively by

µA+(l) = sup
i:l∈Ai

π(Ai) (1)

µA−(l) = 1− sup
i:l 6∈Ai

π(Ai) = inf
i:l 6∈Ai

(1− π(Ai)) (2)

where the complementation 1− (·) denotes a mapping from S =

{α1, · · · , αn, αn+1} with α1 = 1 > · · · > αn > αn+1 = 0

into scale S′ = {β1, · · · , βn, βn+1} with β1 = 1 > · · · > βn >

βn+1 = 0, such that β1 = 1 − (αn+1), · · · , βi = 1 − (αn+2−i),

· · · , βn+1 = 1 − (α1). When S is a subset of [0, 1], 1 − (·) is

just the complementation to 1, otherwise it is the order-reversing

map of the scale S (for S finite). Since S is a possibility scale, S′

is a certainty scale (the distinction between S and S′ is important

since the duality between possibility and certainty (necessity) is

essential in possibility theory).

Equation 2 means that we are all the more certain that l ∈ L

belongs to the ill-known set A described by π, i.e. µA−(l) is all

the higher, as it is impossible to find an Ai such that l 6∈ Ai.

Similarly, it is all the more possible that l ∈ L belongs to the

ill-known set A, i.e. µA+(l) is all the higher, as there exists an

Ai such that l ∈ Ai having a high possibility level. The quantity

1 − µA+(l) is called by Yager [13] “rebuff measure”, since it

expresses to what extent l is impossible to be an element of A.

B. Some linkage with evidence theory

The construction made here is reminiscent of Shafer’s [14]

setting for his evidence theory, where he starts with a mass

function m, called “basic probability assignment” defined over

the subsets Ai of some referential, say L, which is such thatP
im(Ai) = 1. Then m is nothing but the representation of

a random subset A of L. Then, a so-called contour function

can be defined as c(l) =
P
i:l∈Ai m(Ai), which represents the

plausibility that l belongs to A. Due to the probabilistic normal-

ization of m, note that we also have c(l) = 1 −
P
i:l 6∈Ai m(Ai).

Here, the construct is similar, except that m is replaced by

a possibilistic mass function π, and
P

is replaced by sup to

agree with the idea of possibility. Such a qualitative counterpart

of Shafer evidence theory was first suggested in [15] (see [16]

for recent developments). Then the contour function splits into

upper and lower approximation functions, i.e., µA+ and µA− ,

respectively, which no longer coincide. Still, the following strong

inclusion of the fuzzy set A− in A+ can be checked:

∀l ∈ L, µA−(l) > 0⇒ µA+(l) = 1.

It can also be observed that if µA−(l) is interpreted as the

certainty that l belongs to A (the ill-known set represented by

π), namely µA−(l) = cert(l ∈ A), the expected duality between

possibility and certainty holds, namely, µA+(l) = 1−cert(l ∈ A).

Indeed, if the ill-known set A is represented by the possibility

distribution {(Ai, π(Ai))|i ∈ I} (where I is an index set)

over 2L, then its complement A should be represented by

{(Bi, π(Bi))|i ∈ I} where the possibility distribution π is defined

by ∀i ∈ I, π(Ai) = π(Ai), i.e., the possibility degrees are now

allocated to the complement subsets. Then 1− cert(l ∈ A) = 1−

µ
A
−(l) = 1− (1− supi:l 6∈Ai π(Ai)) = supi:l∈Ai π(Ai) = µA+(l).

C. Recovering the possibility distribution on the power set

We have shown how a normalized possibility distribution

π over 2L induces upper and lower approximation functions

over L for the information conveyed by π. Conversely, since

(A−, A+) is only an approximation of the information con-

tained in {(Ai, π(Ai))|i ∈ I}, there are several possibility

distributions over 2L in general that agree with (A−, A+)

in the sense of Equations 1 and 2. This can be easily

seen, using the example already considered at the begin-

ning of subsection III-A. Take again A− = {English} and

A+ = {English, French,German}, other examples of pos-

sibility distributions over 2L, distinct from π, the one al-

ready given, are π′({English}) = π′({English, French}) =

π′({English,German}) = π′({English, French,German}) =

1, while π′(B) = 0 for any other subset B of L, or

π′′({English}) = π′′({English, French,German}) = 1, while
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π′′(B) = 0 for any other B ⊆ L. Note that π′′ fully differs

from π given in III-A. However, it can be shown that there

exists a unique possibility distribution which is the largest

one in the sense of the fuzzy set inclusion defined on 2L

(π ⊆ π′ ⇐⇒ ∀i ∈ I, π(Ai) ≤ π′(Ai)). This is the least

committed one (since it does not arbitrarily weaken the possibility

level of any subset). This possibility distribution is defined by

π∗(B) = min(inf
l∈B

µA+(l), inf
l 6∈B

(1− µA−(l))) (3)

This equation is easy to understand, a subset B is all the more

possible, as both all its elements are possible, and no elements

outside B are certain. Entering π∗ in Equations 1 and 2, we

recover µA+ and µA− . In the previous example, it can be checked

that π∗ is nothing but the possibility distribution π′ given above.

D. Application to layered databases

We can now apply these results to our original problem. Here,

we consider subsets of tuples t ∈ T , so these subsets are in

2T , which plays the role of 2L in the previous subsections. The

possibility distribution πr associated with the relation r is now

defined as (denoting B a subset of tuples)

πr(B) = αi if ∃i, B = rαi ;πr(B) = 0 otherwise, (4)

where rαi = {t ∈ r|c(t) ≥ αi} is the cut of level αi of the

relation r and c(t) is the confidence level associated with tuple

t. Thus, the different possible database worlds are precisely the

level cuts of the fuzzy relation induced by the confidence weights.

Any other possible database world that would not coincide with

such level cuts has a possibility level equal to αn+1 = 0. Note

that the level cuts are nested, i.e. rαi ⊆ rαi+1 , and thus rα1

is included in any possible database world that has a non zero

possibility level.

Applying Equations 1 and 2 to the distribution defined by

Equation 4, we get

c+(t) = sup
t∈rαi

αi = sup
B:t∈B

πr(B) (= αi if t ∈ rαi but t 6∈ rαi−1)

(5)

c−(t) =

8<: infB:t6∈B(1− πr(B)) = α1 = 1 if t ∈ rα1

αn+1 = 0 otherwise
(6)

This means that with the exception of the tuples that are in

rα1 , which are certainly in the database, the other tuples are

only possibly in the database r, the possibility levels c+(t) then

corresponding exactly to the confidence levels, i.e. c+(t) = c(t).

Now applying Equation 3, we get

π∗(B) = min( inf
t∈B

c+(t), inf
t 6∈B

(1− c−(t))). (7)

The distribution π∗ coincides with the original distribution

πr for the subsets corresponding to the level cuts of r, i.e.,

∀B = rα, π
∗(B) = πr(B). Indeed, inft∈rα c

+(t) = α and

inft6∈B(1− c−(t)) = 0 for any B that fails to include some t in

rα1 , otherwise, inft6∈B(1− c−(t)) = 1. However, as in the spoken

language example, π∗ is larger than the possibilty distribution

we start with, namely here π∗ > πr . Indeed, for any B that

contains rα1 and that is a strict subpart of some level cut rαk ,

which is not itself a level cut of higher level (i.e., B 6= rαj for

any 1 ≤ j ≤ k), we have π∗(B) = αk while πr(B) = 0. Still we

have
S
B:π∗(B)=αB = rα.

Thus, the distribution πr over 2T can be recovered from the

pair (c+, c−) of upper and lower contour functions defined on

T , although πr is smaller than the least committed distribution

π∗ on 2T associated with this pair. In the perspective of studying

functional dependencies in an uncertain database, it is natural to

work with πr , and thus with the level cuts rα, since one should

consider the tuples having a level of possibility at least equal to α

altogether (for each α), which corresponds to the layer-based view

of the relation r introduced at the beginning. Viewed in terms

of the pair (c+, c−), the relation r has a fully certain subpart,

namely r1, which gathers all tuples t such that c+(t) = c−(t) = 1,

while the rest of the relation is partitioned into the subsets of

tuples t such that c+(t) = α and c−(t) = 0, for α2 ≤ α ≤ αn.

The αi’s may now receive a proper linguistic counterpart.

Since they are possibility levels, one may interpret them on a

linguistic scale such that (taking, e.g., n = 4) α1 = ‘fully possible’,

α2 = ‘quite possible’, α3 = ‘medium possible’, α4 = ‘somewhat

possible’, α5 = ‘not at all possible’.

Since a database whose tuples are associated with confidence

levels has now received a clear interpretation in the setting of

possibility theory, we are in a position to study what the concept

of a functional dependency means in this setting. This approach

promotes the idea to keep confidence levels fully qualitative in

practice.
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IV. POSSIBILISTIC FUNCTIONAL DEPENDENCIES

A functional dependency (FD for short) X → Y , where X

and Y are sets of attributes, is a constraint of the form ∀t, t′ ∈

r, t.X = t′.X ⇒ t.Y = t′.Y . It is obvious that if an FD holds in

a database, it also holds in any subpart of the original database.

Here our layered set of tuples results in a nested sequence of

possible database worlds. So, if an FD holds in rαi+1 , the FD

also holds in rαi . Conversely, if an FD does not hold in rαi then

the FD does not hold in rαi+1 .

Thus, if we examine the example of Table I, we can check,

that CT → R holds everywhere, namely in rα4 , C → L and

RT → C holds in rα3 , and LT → C in rα1 = rα2 only. This

suggests to attach a certainty level to an FD, such that the FD

is all the more certain as it holds in a larger database world

provided that it is possible to some extent.

A. Defining possibilistic FDs

The above discussion leads to the following definition for the

certainty level of an FD.

Certr(fd) = 1− sup{π(rαi)|fd does not hold in rαi} (8)

where fd denotes an FD, and we have π(rαi) = αi. Equation

8 is nothing but the necessity of the event “fd holds in r” with

respect to the possibility distribution πr , since by definition the

necessity N(p) of a statement p is equal to 1 − Π(¬p), which

corresponds to 1 minus the possibility, i.e., to the impossibility

of the opposite event “fd does not hold in r”. Thus, if fd fails

to hold in rαi+1 , but holds in rαi , Certr(fd) = 1− π(rαi+1) =

1 − αi+1 = βn+1−i (indeed the possibility that fd fails is the

greatest possibility to be in a database world where fd fails,

since possibility is maxitive [5], [6]). Thus, Certr(fd) = β1 =

1−αn+1 = 1 if fd holds for any level cut of r. Note also that in

particular, we get Certr(fd) = 0 if fd fails to hold in rα1 ; in fact

since the tuples in rα1 are not only fully possible, but also fully

certain, there is no possibility at all that fd holds in a database

world having a non-zero possibility level, and thus it is fully

certain that fd fails to hold. Besides, in case the scales S and S′

are included in [0, 1], we just have Certr(fd) = 1−αi+1 where

now 1−(·) is the usual complementation to 1, as soon as fd fails to

hold in rαi+1 , but holds in rαi . We call a classical FD associated

with a certainty level a possibilistic functional dependency.

Coming back to our example, it can be checked that the set Σ

made up of the previously mentioned FDs associated with their

certainty weights is:

Σ = {(CT → R, β1); (C → L, β2); (RT → C, β2);

(LT → C, β3)}.

Then the following proposition can be stated

�r (X → Y, c)⇔ �r1−c X → Y (9)

where �r (X → Y, c) means that Certr(X → Y ) ≥ c and where

rα denotes the strict α-level cut of r, namely rα = {t|c(t) > α}.

This proposition is easy to prove. First observe that �r (X →

Y, c) entails �r (X → Y, c′) as soon as c ≥ c′. If Certr(X →

Y ) ≥ c, it follows from definition 8 that X → Y may be violated

at most in r1−c, but certainly not in r1−c. Conversely, if X → Y

holds for any level cut of r of level strictly greater than 1 − c,

Certr(X → Y ) cannot be less than 1− (1− c)) = c.

The careful definition of the concept of a possibilistic FD which

is fully justifiable in terms of possibility theory is also of great

potential in database practice. In particular, it allows us to take

full advantage of previous results on classical dependencies, which

we will explore in future work. For example, if a relation satisfies

a classical FD, then that relation can be decomposed into two

of its projections without loss of information [17], [18]. More

generally, if a possibilistic relation satisfies a possibilistic FD with

certainty c, then the strict level cut of the possibilistic relation

with level 1− c can be decomposed into two of their projections

without loss of information.

B. Relation with possibilistic propositional logic

It is well known [19], [20], [21] that FDs in classical databases

have a simple propositional logic counterpart in terms of Horn

clauses. In fact, the following holds

�r {A1, · · · , Ak} → B ⇔ ∀t, t′ ∈ r,�ω{t,t′} ¬A
′
1∨· · ·∨¬A′k∨B′

(10)

where A′1, · · · , A′k, B′ are propositional variables associated with

attributes A1, · · · , Ak, B, respectively, and ω{t,t′}(A
′) = True

if ∀i, t.Ai = t′.Ai and ω{t,t′}(A
′) = False otherwise. Equation

(10) expresses that a given relation satisfies a given functional

dependency if and only if for all pairs of tuples in the relation,

the special truth assignment derived from that pair is a Boolean

model for the propositional Horn clause associated with the
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functional dependency. Indeed, Equation (10) can be seen as

a semantic justification for the definition of the special truth

assignment ωt,t′ that assigns to each propositional variable A′

the value True iff tuples t, t′ have the same instantiation on

attribute A. This semantically relates the identity of tuples to

propositional variable formulas expressing the counterparts of

functional dependencies. Moreover Equation (10) can be used

to prove that a dependency statement is a consequence of a

set of dependency statements if and only if the corresponding

implicational statement is a consequence of the corresponding

set of implicational statements [19].

This result extends to our setting, just as propositional logic

extends to possibilistic logic [22]. Let us first have a brief refresher

on possibilistic logic. A (standard) propositional possibilistic logic

formula is a pair (p, β) where p is proposition and β is a certainty

level. At the semantic level it corresponds to the semantic

constraint N(p) ≥ β, where N is a necessity measure, associated

with a possibility distribution π on the set of interpretations

Ω in the following way N(p) = infω 6�p 1 − π(ω). The lower

the possibility of an interpretation that makes p False, the

higher the necessity degree of p. So, given a formula (p, β), an

interpretation ω that makes p True is possible at the maximal

level in the scale S, say 1, while an interpretation ω that makes

p False is at most possible at level 1 − β. A possibilistic logic

knowledge base K is a collection of possibilistic logic formulas,

namely K = {(pi, βi)|i = 1, · · · , n}, whose semantic counterpart

is πK(ω) = mini=1,··· ,n max(1− βi, [pi](ω)) where [p](ω) = 1 if

ω � p and where [p](ω) = 0 otherwise. Then in possibilistic logic,

the following soundness and completeness theorem holds

�K (p, β) ⇔ `K (p, β)⇔ `Kβ p⇔ �Kβ p

where �K (p, β) means ∀ω, πK(ω) ≤ π{(p,β)}(ω), and Kβ =

{pi|(pi, βi) ∈ K and βi ≥ β}. So the last half of the above

expression reduces to the soundness and completeness theorem

of propositional logic, applied to each level cut of K, which is an

ordinary propositional logic knowledge base. Lastly, `K (p, β)

refers to the syntactic part of possibilistic logic, which relies on

the repeated use of the resolution rule (¬p ∨ q, β), (p ∨ r, γ) `

(q ∨ r,min(β, γ)). It is also interesting to notice that, due to the

characteristic property of necessity measures, i.e., N(p ∧ q) =

min(N(p), N(q)), a possibilistic logic base can be easily put in

clausal form.

Thus, we have seen that the semantics for the possibilistic logic

formula (p, β) amounts to rank-order interpretations according

to the possibility distribution π{(p,β)}, where π{(p,β)}(ω) = 1 if

ω � p (i.e., ω makes p True) and π{(p,β)}(ω) = 1 − β if ω

is an interpretation that makes p False (i.e., ω 6� p). Going

back to possibilistic FDs, interpretations now refer to pairs of

tuples, but one may have a similar construct. The counterpart

of Equivalence (10) can be stated in the following way:

�r({A1,· · ·,Ak}→B, β)⇔∀t,t′∈ r∗,�π{t,t′}(¬A
′
1∨· · ·∨¬A′k∨B′, β)

(11)

where r denotes a possibilistic database (in the sense of this

paper), r∗ is the same database without the levels. The notation

�π{t,t′} in (11) reminds us that the semantics of a possibilistic

propositional logic base is no longer in terms of truth assignment

as in propositional logic, but in terms of a possibility distribution

induced by the possible failure of the certainty-qualified propo-

sitions in the base, as recalled above; the index {t, t′} points out

that the semantics of propositional variables pertains to pairs of

tuples here. Thus, the possibility distribution π{t,t′} over logical

interpretations accounts for the possible failure of the FD in the

possibilistic database. Indeed, the distribution π{t,t′} is defined

in the following way

• π{t,t′}(ω
∗
{t,t′}) = min(α, α′), with c(t) = α, c(t′) = α′, if

(t, t′) violates {A1, · · · , Ak} → B in rmin(α,α′)

• π{t,t′}(ω
∗
{t,t′})=0, if (t, t′) satisfies {A1,· · ·, Ak}→B in r∗

• π{t,t′}(ω) = 1 for all ω 6= ω∗{t,t′}.

Here, the interpretations ω are the ones induced by the literals

A′1, · · · , A′k, B′ (where A′i is True iff t.Ai = t′.Ai, and B′ is

True iff t.B = t′.B), and ω∗{t,t′} is the particular interpretation

A′1 · · ·A′k¬B′ (where A′1 · · ·A′k are True and B′ is False) that

falsifies ¬A′1 ∨ · · · ∨ ¬A′k ∨B′.

Proof of (11). Let ϕ = {A1,· · ·, Ak} → B, and ϕ′ = ¬A′1 ∨

· · ·∨¬A′k∨B′. When (t, t′) violates ϕ it means that min(α, α′) ≤

1 − β assuming �r (ϕ, β). Since π{(ϕ′,β)}(ω{t,t′}) = 1 − β and

π{(ϕ′,β)}(ω) = 1 for all ω 6= ω{t,t′}, it is clear that we have

∀ω, π{t,t′}(ω) ≤ π{(ϕ′,β)}(ω). Conversely, if this later inequality

holds, there cannot exist t, t′ such that min(α, α′) > 1− β, and

thus Certr(ϕ) ≥ β, i.e., �r (ϕ, β). Q.E.D.

The above result indicates Horn clauses in possibilistic propo-

sitional logic are the counterparts of possibilistic FDs, just as
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Horn clauses in Boolean propositional logic are the counterparts

of FDs.

V. RELATED WORK

The literature on fuzzy FDs is quite abundant. It is not the

place here to survey it in detail, and some overview papers exist

[23], [2], [3] for the first decade of literature on the topic. We

first briefly mention the main existing types of fuzzy FDs, and

then compare in detail the proposed approach to a somewhat

similar proposal, which originates from a different perspective.

In the second part of this section, we discuss FDs in the context

of the possible world semantics of another type of possibilistic

databases.

A. Fuzzy functional dependencies

Fuzzy FDs may refer to a quite large variety of situations.

First, we may consider classical databases (where one mines FDs

with satisfaction degrees [24], or fuzzy approximate dependencies

[25]), or databases with precise attribute values but weighted

tuples, or databases with fuzzy attribute values, or still fuzzy

similarity-based relational databases (moreover the database may

have null values [26]). Then we may either study classical FDs on

weighted tuple databases or on fuzzy attribute value databases

[27] or even fuzzy values with imprecise membership functions

[28], or we may consider fuzzy FDs on classical databases [29] as

well as on more general databases allowing for weighted tuples,

fuzzy attribute values, or fuzzy values defined by means of fuzzy

similarity relations [30], [31], [32], [33], [34], [35], [36], [37],

[38], [39], [40], [41]. For instance, the authors in [36] use fuzzy

closeness relations between ill-known attribute values represented

by possibility distributions, and relate closeness degrees in the

condition part of the FD’s to closeness degrees in their conclusion

part by means of Gödel implication (i.e. a →G b = 1 if a ≤ b,

and a →G b = b otherwise). Such a generalized view of an FD

X → Y may express not only that equal Y -values follow from

equal X-values, but also that close Y -values follow from close X-

values, for different closeness levels. Such a concern, discussed in

[2], has nothing to do with the possibilistic FD’s discussed here.

Fuzzy FDs have been also considered in relation with a fuzzy

Entity-Relationship model [42]. Fuzzy FDs may be stronger or

weaker than classical FDs depending on whether they are adding

further constraints to the one conveyed by a classical FD (such

as ordered FDs that agree with orderings existing in attribute

domains [43], or gradual FDs [44]), or whether they weaken

the constraint associated with a classical FD. Clearly, all these

different options may serve different goals [2], which may depart

from the role of classical FDs for database design in classical

databases (such as data summarization [45], building of linguistic

summaries [46], or a Bayesian network [47]).

However, in this short note, we are not dealing with any fuzzy

FDs of any kind. The proposal made here is motivated by the

idea that FDs may fail to hold in the presence of some tuples in

which we have not full confidence. This might be related to the

idea of partial FDs [48], where FDs hold up to exceptions whose

number may be quantified. However, here, we take advantage

of the confidence levels of the tuples for accommodating the

exceptions. There has been another proposal made more than

two decades ago, by Kiss [4] for dealing with classical FDs in a

weighted tuple database, viewed as a fuzzy relation r. The author

computes the degree of truth with which an FD X → Y holds,

in the following way (where µ denotes membership functions):

Truth(X → Y ) =

min{t,t′}(min(µr(t), µr(t
′), µ=(t.X, t′.X)) ⇒L µ=(t.Y, t′.Y ))

where µ= denotes the exact equality relation, and ⇒L is

Łukasiewicz implication. An easy computation leads to

Truth(X → Y ) = 1− sup
t,t′:t.X=t.X and t.Y 6=t′.Y

min(µr(t), µr(t
′)).

Reorganizing the weighted tuples into layers of decreasing de-

grees, we see that the above formula coincides with our definition

of Certr(X → Y ), and indeed X → Y holds in any level cut

rα of r such that α > 1 − Truth(X → Y ). However, this

simple multiple-valued logic view has no clear interpretation

from an uncertainty modeling point of view, while a possible

database world perspective also enables us to get a possibilistic

logic counterpart. Moreover, interestingly enough, the author

wrote about his proposal some years after: “The so defined

fuzzy relations can be handled mathematically well, but they

have less practical importance” [49]. On the point of usefulness,

we disagree with this view. Indeed, just as possibilistic logic is

a valuable extension of propositional logic, one may expect that

certainty-based FDs with a layer-based view of databases can

help to control the normalization of the decomposition process

of uncertain relations.
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B. FDs in possibilistic databases. Discussing the meaning of

the levels

In this short note, we have emphasized the relationship

between the levels attached to the tuples and the associated

possibility distribution over possible database worlds. Several

authors have pointed out the interest of seeing a possibilistic

database as a set of classical databases associated with possibility

degrees. When the possibilistic database is a database where

attribute values are fuzzy (i.e., for each tuple and each attribute,

we have a possibility distribution restricting the possible values),

the possibility degrees associated with database worlds can be

computed from the possibility degrees attached to the possible

attribute values chosen for building each classical database com-

patible with the possibilistic database. One may then precisely

define the possibility degree and the necessity degree with which

a particular FD holds in the possibilistic database [50].

As can be seen, we have not used here this view of a possibilistic

database. However, let us consider the particular case where all

the attribute values of each tuple t would be precise but uncertain,

with the same certainty level βt, which would correspond to

particular possibility distributions equal to 1 for the precise value,

and equal to 1 − βt everywhere else. Then, the database would

contain only certainty-qualified values in the sense studied in

[51], [52]. Since here the certainty of all the attribute values is

the same for a given tuple, one can associate this certainty level

to the whole tuple (without losing any information), in agreement

with the min-decomposability of necessity measures. Thus, what

is obtained looks a bit like the possibilistic database considered

in this note, except that tuples are now associated with certainty

levels rather with possibility levels. So, one may wonder, if an

approach similar to the one presented here, but with certainty

levels would not be interesting as well. The answer is negative.

This is because as soon as an FD is violated in r∗ (the database

without the certainty levels here), there would be a fully possible

world where the FD is violated, and then the FD would have no

certainty, and one cannot reason in a possibilistic logic manner

with FDs that are just possible to some extent. Besides, if we

only consider relations r where the FDs are not violated in r∗,

we would be in a position to associate a certainty level with the

FDs, but it would always be the same, namely the minimal value

of all the certainty values attached to tuples in r, which is not

very interesting. This confirms that the approach taken here with

possibility levels is the right one if one does not want to trivialize

the approach.

VI. CONCLUDING REMARKS

This short note has introduced the notion of possibilistic

functional dependencies based on the idea of a classical database,

layered according to possibility levels attached to tuples, and

where the first layer is the only certain one. We have shown that

in such a case the associated possibility distribution over possible

database worlds is uniquely determined by the possibility levels

attached to tuples, and vice versa. This has led us to associate

certainty levels with FDs in a natural way. Furthermore, this

definition allows us to extend the well-known propositional logic

counterpart of FDs in the setting of possibilistic logic.

The notion of possibilistic functional dependencies proposed

here seems particularly appealing for use in database practice.

Indeed, the layered view of the database together with the

different levels of certainty of the FDs suggest their use in

the control of the decomposition process of relations in Third

normal forms, or in Boyce-Codd normal forms, which can then

be layered. The full investigation of these issues, with the study

of the weighted counterpart of Armstrong’s system of axioms,

is the topic of a companion paper [53] and patent application

[54]. Moreover, possibilistic keys [55] have been investigated as

an important special case of possibilistic functional dependencies,

and correspond to goal Horn clauses via equation (11). Besides,

rather than starting with a layered database, and computing the

certainty levels associated with FDs, one may also think of doing

the converse, namely starting with a set of more or less certain

FDs that should hold in a classical database, and looking for

a stratification of the database which agrees with the certainty

levels of the FDs.
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[41] R. Belohlávek and V. Vychodil, “Data tables with similarity rela-

tions: Functional dependencies, complete rules and non-redundant

bases,” in Proc. 11th Int. Conf. on Database Systems for Advanced

Applications, (DASFAA’06), Singapore, Apr. 12-15, ser. LNCS, M.-L.

Lee, K.-L. Tan, and V. Wuwongse, Eds., vol. 3882. Springer, 2006,

pp. 644–658.

[42] N. A. Chaudhry, J. R. Moyne, and E. A. Rundensteiner, “An

extended database design methodology for uncertain data manage-

ment,” Inf. Sci., vol. 121, no. 1-2, pp. 83–112, 1999.

[43] W. Ng, “Ordered functional dependencies in relational databases,”

Information Systems, vol. 24, no. 7, pp. 535–554, 1999.

[44] D. Rasmussen and R. R. Yager, “Finding fuzzy and gradual

functional dependencies with summarysql,” Fuzzy Sets and Systems,

vol. 106, no. 2, pp. 131–142, Sept. 1999.

[45] J. C. Cubero, J. M. Medina, O. Pons, and M. A. V. Miranda, “Data

summarization in relational databases through fuzzy dependencies,”

Information Science, vol. 121, no. 3-4, pp. 233–270, 1999.

[46] P. Bosc, L. Liétard, and O. Pivert, “Extended functional dependen-

cies as a basis for linguistic summaries,” in Proc. 2nd Europ. Symp.

on Principles of Data Mining and Knowledge Discovery (PKDD’98),

Nantes, Sept. 23-26, ser. LNCS, J. M. Zytkow and M. Quafafou,

Eds., vol. 1510. Springer, 1998, pp. 255–263.

[47] W. Y. Liu and N. Song, “Fuzzy functional dependencies and

Bayesian networks,” J. Comput. Sci. Technol., vol. 18, no. 1, pp.

56–66, 2003.

[48] F. B. Galiano, J. C. Cubero, F. Cuenca, and J. M. Medina, “Rela-

tional decomposition through partial functional dependencies,” Data

Knowl. Eng., vol. 43, no. 2, pp. 207–234, 2002.

[49] T. Nikovits, A. Kiss, and D. Chretien, “Representation and query

languages of fuzzy relational databases,” Annales Univ. Budapest,

Sec. Comp., vol. 17, pp. 293–306, 1998.

[50] P. Bosc and O. Pivert, “Functional dependencies over possibilistic

databases: An interpretation based on the possible worlds seman-

tics,” in Proc. 3rd VLDB workshop on Management of Uncertain

Data (MUD’09), Lyon, Aug. 28, A. de Keijzer and M. van Keulen,

Eds. CTIT, Univ. of Twente, 2009, pp. 1–16.

[51] P. Bosc, O. Pivert, and H. Prade, “A model based on possibilistic

certainty levels for incomplete databases,” in Proc. 3rd Int. Conf.

on Scalable Uncertainty Management (SUM’09), Washington, DC,

Sept. 28-30, ser. LNCS, L. Godo and A. Pugliese, Eds., vol. 5785.

Springer, 2009, pp. 80–94.

[52] O. Pivert and H. Prade, “A certainty-based model for uncertain

databases,” IEEE Trans. Fuzzy Syst., p. to appear, 2015.

[53] S. Link and H. Prade, “Relational database schema design for

uncertain data,” The University of Auckland, Tech. Rep. CDMTCS-

469, 2014.

[54] ——, “Database schema design generation system and method,”

Patent application, Number: 14 57862, France, Filed on 18 August

2014.
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