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Abstract 

 

 

This Report presents a brief review of uniform continuous density functions, both un-truncated 

and truncated, which are well described in existing literature. Then the discrete density 

function is derived and expressed in terms of Dirac’s delta functions and related mean and 

variance are derived and analyzed. The necessity of having truncated discrete density function, 

from the application point of view in communication systems, for example, is explained and 

related density and distribution functions are derived. For these functions, the mean and 

variance are expressed as functions of the length of the defined truncation interval and 

compared with related moments of the continuous truncated density function. The important 

advancement is achieved by deriving the truncated discrete density functions and expressing 

them in terms of Dirac’s delta and unit step functions. In this way it became possible to solve 

integrals which contain these density and distribution functions. Analyses of density functions 

with zero mean are repeated in the Appendix 1 for the case when the mean has a finite value.  
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1. Continuous uniform density function 

 

1.1 Continuous density and distribution functions 

 

The density and distribution function of a uniform continuous random variable τ can be 

expressed as  
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and graphically presented, as shown in Fig. 1, for the mean value equal zero and the variance 

σc
2
. 
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Fig. 1 Continuous uniform density function. 

 

 

 

1.2 Moments of the uniform continuous distribution 

 

The mean value is zero and the variance can be obtained as follows 
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Now, we may express the density function in terms of the mean and variance values. The Tc 

interval is 

23 3c c cT             (6) 

and the density function is 
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Like in literature when the functions is defined in an arbitrary interval (a, b) 
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2. Truncated continuous uniform density function 

 

 

Suppose the uniform density function is truncated having the values inside the interval (-Tc +A  

≤ τ < Tc -A), as shown in Fig. 2.  
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Fig. 2 Continuous truncated uniform density function 

 

According to the definition of the truncated function the truncated uniform density and 

distribution function (1) can be expressed as 

( ) 1/ 2
( )

( ) [( ) ( )] / 2

1
, 01/ 2

2( )
(2 2 ) / 2

0

c c
ct

c c c c c

c cc
c

c c

f T
f

P T A T A T A T A T

T A T A AT
T A

T A T
otherwise








 
        

 
      

   
  

 

,    (9) 

 

1
( )1

2( )( )
2( )

0c

c c c

cct

cT A

T A T A T A
T AF dx

T A
otherwise

  


 

 
       

   
  

 

 . 

The mean value is zero and the variance, having in mind (9), can be obtained as follows 
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Now, we may express the density function in terms of the mean and variance values. We may 

have 
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The problem of relating and comparing this density and its variance with the densities and 

variance of discrete density functions will be addressed in the later Sections. 
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3. Derivations for the discrete density and distribution functions 

 

3.1 Discrete density and distribution functions 

 

Uniform discrete density: If a uniform continuous density function, expressed as  
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is discretised in respect to τ, as shown in Fig. 3 with the interval of discretisation of Ts. the 

probability value in the first interval around zero, n = 0, is 
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Fig. 3 Discretisation of an uniform density function. 
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These probabilities can be understood as the weights of Dirac’s delta functions that define the 

discrete density function, which can be expressed as 
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Therefore, the discrete density and distribution functions can be expressed as 
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and, for a unit interval Ts = 1,  it is  
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This function is presented in Fig. 4 for S =3. 
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Fig. 4 Discrete uniform density function presented using Dirac’s delta functions 
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Proposition: Function (21) fulfils condition to be a density function. The sum of terms in is 

one.The distribution function fulfils condition of a dis 

Proof: 

1 1
(2 1) 1

2 1 2 1

n S

n S

S
S S





  
 

  

 

 

3.2 Comments on the discretisation procedure  

 

The discretisation procedure applied in the previous Section was motivated by these reasons: 

1. Preservation of the symmetry: The discrete density function is obtained by assigning 

probability values as the weights of Dirac’s delta functions that are placed in the middle of the 

sampling interval. In this way the discrete density function preserved symmetry in respect to y-

axis and the mean value remained to be zero as in the case of the corresponding continuous 

function. 

2. Preservation of the value of the sampling interval Ts: Representing the density function in 

terms of Tc and Ts, and relating them to the discrete sampling interval (2S+1)Ts it is easy to 

reconstruct the sampling interval and relate it to the real values in practical application. For 

example, in the case of defining delay in communication systems these sampling intervals will 

be expressed in appropriate time units.   

3. Expression of density functions in closed form: By using Dirac’s delta functions, and 

possibly Kronecker’s functions, the obtained density function of a random variable can be 

easily used to calculate the mean values of the functions which have that variable as an 

argument. In those cases it is simple to solve the integral that defines the mean value of a 

function. 

Other possible discretisation can be used, as presented in Fig. 3, for example. Two cases can be 

distinguished: 

1. The calculated probability in Ts interval (for example shaded interval in Fig. 5) can be 

assigned as the weight of the left of the interval resulting in discrete values presented in 

black colour in Fig. 5. This procedure should be repeated 2S time and a stream of 

samples can be obtained that starts at –STs and finishes at (S-1)Ts. in this case two 

issues have to be mentioned. Firstly, a mean value will exist for the discrete random 

variable which is result of discretisation and does not exist in the continuous density 

function. Secondly, continuous random values inside particular interval will be 

assigned to the lowest value of the interval which will reduce statistical accuracy in 

generating random variates in the case of simulation.    
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2. This case is similar to the previous. In this case the calculated probability in Ts interval 

(for example shaded interval in Fig. 5) is assigned as the weight of the discrete value on 

the right of the interval, and the discrete values are shifted to the right (represented by 

arrows in Fig. 5). This procedure has the same characteristics as the previous one.    
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Fig. 5 Possible discretisation of a uniform density function. 
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3.3 Derivations of the moments for the discrete random variable 

 

Proposition: The mean, mean square and variance are expressed as 
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and the variance expression of the continuous density 
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4. Truncated discrete uniform density and distribution functions 

 

4.1 Derivation of the truncated density and distribution function 

 

In practical application the discrete delays are taking values in a limited interval defined as the 

truncated interval (-S + a, S - a), where a ≤ S is a positive whole number named truncation 

factor. Therefore, the function which describes the delay distribution is truncated and has the 

values in the truncated interval, as shown in Fig. 6. 
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Fig. 6 Discrete truncated uniform density function presented using Dirac’s delta 

functions. 
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The value P(S) can be calculated as 
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By inserting this expression into (41), the density function can be expressed in this closed 

form, as stated in the proposition, i.e., 
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4.2 Mean and variance of the truncated discrete uniform density function

  

 

Proposition: The mean of the discrete truncated random variable is zero.  

 

Proof: Based on the expression (38) for the discrete density function we may have  

1
( ) ( ) 0

2 2 1 2 2 1

S a S a
s

t s

n S a n S a

T
f d nT d n

S a S a
       

  

    

     
   

     (40) 
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The variance can be calculated form (41) and (42) as 
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which completes our proofs. For a unit sampling interval, Ts = 1, we can easily get expression 

for the variance. 

The variance (43) can be expressed in terms of the variance of the continuous density. By 

inserting the expression for Ts from (19) and then expression (5), we may have the truncated 

variance as a function of continuous in this form 

2
2 2 2 2 2

2 2

( )( 1) 4( )( 1) 4( )( 1)
{ }

3 3 (2 1) (2 1)

c
t t s c

TS a S a S a S a S a S a
E T

S S
   

        
    

 
. (44) 
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5. Comparison of variances 

 

We are interest in statistical characteristics of these distributions and their mutual 

interrelationship. For that purpose we will compare their variances. As a reference we will use 

the variance of continuous density. All other variances will be expressed in terms of this 

variance. The variances of the discrete density and truncated discrete density are already 

expressed as functions of the variance of continuous density, which is presented in (33) and (). 

and  of the continuous density. Having in mind 

(2 1) / 2 2 / (2 1)c s s cT S T T T S           (45) 

and the variance expression of continuous density, 

 

2
2 2 2{ }

3

c
c c

T
E     ,         (46) 

the variance of the discrete density can be found as 

2 2
2 2 2

2 2 2

4( 1) ( 1) 4 ( 1) 4 ( 1)

3 (2 1) 3 3 (2 1) (2 1)

c c
d s c

T TS S S S S S S S
T

S S S
 

   
   

  
   (47) 

2
2 2

2

2
2

2 2

4( )( 1) ( )( 1)

3 (2 1) 3

4( )( 1) 4( )( 1)

3 (2 1) (2 1)

c
t s

c
c

TS a S a S a S a
T

S

T S a S a S a S a

S S





     
 



     
 

 

    

 (48) 

The continuous truncated variance is  

2 2 2(1 / )ct c cA T   .         (49) 

In order to compare this variance with the variance of the truncated discrete density function, 

both of them need to be calculated the same truncation interval. Therefore, the ratio A/Tc, 

which would correspond to the truncated value of the discrete function, should be found. The 

corresponding truncation intervals for continuous and discrete density can be found from the 

truncating probabilities. If we take them from (36) –(37) and (9) and equate them we can get 

2 2 1 2 2

2 1 2

c

c

S a T A

S T

  



,         (50) 

as illustrated in Fig. 7. From (5) we may have 

2
(1 ) 1

2 1c

A a

T S
  


         (51) 
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which can be inserted in (49) to get the variance of truncated continuous density in this form 

2 2 22
(1 )

2 1
ct c

a

S
  


. 

 

  τ  

fd (τ) 

-STs …             -Ts/2 0   S-a=(Tc-A)/Ts 

  A  
  a  

 

Fig. 7 Relations between truncation intervals of the discrete and continuous truncated 

uniform density function. 

Calculated expressions for the variances as functions of the variance of continuous uniform 

variable are presented in Table 1 in the form to clearly see relationship between truncated and 

non-truncated variances. Namelly, the variance of truncated density function should be les tha 

or equal to the variance of continuous random variable. 

 

Table 1 Variance expressions 

Uniform 

distributions 

Variances 

Continuous  2
2

3

c
c

T
   

continuous 

truncated  

2 2

2 2 22 2 1 2
1

2 1 2 1
ct c c

S a a

S S
  

    
     

    
 

Discrete  
2 2 2

2 2

4 ( 1) 1
1

(2 1) (2 1)
d c c

S S

S S
  

 
   

  
= 

Discrete 

truncated  
2 2 2

2 2

4( )( 1) 1 4 (2 1)
1

(2 1) (2 1)
t c c

S a S a a S a

S S
  

      
   

  
 

 

The graphs for the variances of the continuous, continuous truncated, discrete and discrete 

truncated random variables as functions of the variance of the continuous random variable, for 

the truncation factor a and sampling interval 2S as parameters, are presented in Fig. 8.  The 

non-truncated continuous and discrete random variables have very similar, nearly the same 

variance, as we can expect, because they are calculated on the same interval of possible values 

of random variable. The small difference occurs due to that the variances of continuous density 
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are calculated on the continuum of random variable values while the variance of discrete 

density are calculated for a finite number of discrete values.  

 

The variances of the truncated density functions are smaller than the variances of the non-

truncated functions due to the truncation of the function which is defined by truncation factors 

A and a. The higher these factors are the smaller gradients of these curves are and higher the 

difference is between variances of truncated and non-truncated densities.  
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0 
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20 

Varc 

Varc 
Varct 
Vard 
Vart 

Variances vs Variance Continuous 

  

  
Disc Trunc, S=40, a=10 
Disc Non-Trunc S=40 
Cont Non-Trunc 
Cont Trunc 

  
Fig. 8  Continuous, continuous truncated, discrete and discrete truncated variances 

versus continuous variance. 

 

The variances of the continuous and discrete random variable are nearly the same, because the 

interval of their existence is nearly the same. In contrast to that, the truncation values are inside 

a narrower interval and consequently the variance of the truncated density functions is smaller 

than those of non-truncated.  
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6. Conclusions 

 

In this Report a uniform discrete truncated density function is derived and investigated. The 

function is expressed in closed form in terms of Dirac’s delta functions. Expressions for the 

first and second moments are derived. If complete discretisation is necessary, it is possible to 

express the density and distribution function in terms of Kronecker’s delta function and 

discrete unit step functions.  
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APENDIX 1  Density and distribution functions for a finite 

value of the mean 

 

 

 

1. Continuous uniform density function 

 

1.1 Continuous density and distribution functions 

 

The density and distribution function of a uniform continuous random variable τ with a finite 

mean can be expressed as  
 

1

2( )

0

c c

cc

T T
Tf

otherwise

  


 
    

  
 
 

,        (1) 

 

1
( )1

2( )
2

0c

c c c

cc

cT

T T T
TF dx

T
otherwise





    




 
      

   
 
 

      (2) 

 

and graphically presented, as shown in Fig. 1, for the mean value equal zero and the variance 

σc
2
. 

 

  τ  
 

fc (τ) 

    η-Tc        η           η+Tc

  

1/2Tc  

 

Fig. 1 Continuous uniform density function. 

 

 

 

1.2 Moments of the uniform continuous distribution 
 

The mean value is zero and the variance can be obtained as follows 
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2 21 1 ( ) ( ) 1
{ } ( ) 2

2 2 2 2 2

c

c

T

c c
c d c

c c cT

T T
E f d d T

T T T



  

 
        



  

  
        

 
   (3) 

3 3 3 3
2 2

3 2 2 3 3 2 2 3 2 3

2 2 2 2 2
2

1 1 ( ) ( ) 1 ( ) ( )
{ }

2 2 3 3 2 3 3

1 3 3 3 3 1 6 2

2 3 3 2 3

1 2 (3 ) 3

2 3 3 3

c

c

T

c c c c

c c cT

c c c c c c c c

c c

c c c c

c

T T T T
E d

T T T

T T T T T T T T

T T

T T T T

T



 

   
  

      

 




 

      
       

   

       
   

 

 
   



 (4) 

 

2 2
2 2 2 2 2{ }

3 3

c c
c c c

T T
E                 (5) 

 

Now, we may express the density function in terms of the mean and variance values. The Tc 

interval is 

23 3c c cT             (6) 

and the density function is 

1

2 3( )

0

c c

cc

T T
f

otherwise

  


 
    

  
 
 

       (7) 
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2. Truncated continuous uniform density function 
 

 

Suppose the uniform density function is truncated having the values inside the interval (η -Tc 

+A  ≤ τ < η +Tc -A), as shown in Fig. 2.  

 

  τ  

ft (τ) 

η-Tc  η-Tc+A                η       η+Tc-A  η+Tc 

  A  

 

Fig. 2 Continuous truncated uniform density function 

 

According to the definition of the truncated function the truncated uniform density and 

distribution function (1) can be expressed as 

( ) 1 / 2
( )

( ) [( ) ( )] / 2

1
, 01 / 2

2( )
(2 2 ) / 2

0

c c
ct

c c c c c

c cc
c

c c

f T
f

P T A T A T A T A T

T A T A AT
T A

T A T
otherwise




    

  

 
          

 
       

   
  

 

,    (8) 

 

1
( )1

2( )( )
2( )

0c

c c c

cct

cT A

T A T A T A
T AF dx

T A
otherwise





    


 

 
         

   
  

 

 . 

The mean value is zero and the variance, having in mind (9), can be obtained as follows 

3 3
2 2 2

3 2 2 3 3 2 2 3

2 3

1 1 ( ( )) ( ( ))
{ } ( )

2( ) 2( ) 3 3

1 3 ( ) 3 ( ) ( ) 3 ( ) 3 ( ) ( )

2( ) 3 3

1 6 ( ) 2( )

2( ) 3

c

c

T A

c c
d

c cT A

c c c c c c

c

c c

c

T A T A
E f d d

T A T A

T A T A T A T A T A T A

T A

T A T A

T A



  

 
     

     



 

   

    
     

   

            
  

  

   
 

 

 

2 2 2
23 ( ) ( )

3 3

c cT A T A


  
  



(9) 

Now, we may express the density function in terms of the mean and variance values. We may 

have 
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2
2 2( )

3 3
3

c
ct c ct ct

T A
T A  


     ,      (10) 

And the density function is 

1
, 0

2 3( )

0

c c

ctct

T A T A A
f

otherwise

  


 
       

  
 
 

.     (11) 

The problem of relating and comparing this density and its variance with the densities and 

variance of discrete density functions will be addressed in the later Sections.  
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3. Derivations for the discrete density and distribution functions 
 

3.1 Discrete density and distribution functions 
 

Uniform discrete density: If a uniform continuous density function, expressed as  

 

1

2( )

0

c c

cc

T T
Tf

otherwise

  


 
    

  
 
 

,       (12) 

is discretised in respect to τ, as shown in Fig. 3 with the interval of discretisation of Ts. the 

probability value in the first interval around the mean value, n = 0, is 

1
{ / 2 / 2}

2
s s s

c

P T T T
T

       .       (13) 

For the first positive value n = 1 the probability is  

 
1

{ / 2 / 2}
2

s s s s s

c

P T T T T T
T

         ,      (14) 

and for the first negative value n = -1 is 

 
1

{ / 2 / 2}
2

s s s s s

c

P T T T T T
T

         .      (15) 

For any interval defined by n the probability can be calculated as 

1
{ (2 1) / 2 (2 1) / 2}

2
s s s

c

P n T n T T
T

         .     (16)

      

 

{ / 2 / 2}s sP T T       

  τ  

fd (τ) 

η-Tc  η-STs …       η-Ts/2 η η+Ts/2     …   η+STs η+Tc

  
 

Fig. 3 Discretisation of uniform density function.  
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These probabilities can be understood as the weights of Dirac’s delta functions that define the 

discrete density function, which can be expressed as 

  ( ) ( )
2

S
s

d s

n S c

T
f nT

T
   



    .        (17) 

In the case the number of positive and negative discrete intervals is S, the whole interval is 

 2 2c s sT ST T  ,         (18) 

And the relations between the values Tc, Ts and S, which will be used later, can be found in 

these forms  

2
2 1c

s

T
S

T
  , (2 1) / 2c sT S T  , 2 1

2 2

c s c

s s

T T T
S

T T


   .     (19) 

Now, based on (16) and (19) the probability that the random variable is in the n-th interval can 

be expressed as 

 1
{ (2 1) / 2 (2 1) / 2}

2 (2 1)

s
s s

c

T
P n T n T

T S
         


     (20) 

Therefore, the discrete density and distribution functions can be expressed as 

 1
( ) ( )

2 1

n S

d s

n S

f nT
S

   




   


 ,       (20) 

 
/

1
( ) ( )

2 1

sT

d s

n S

F U nT
S



  


   


        (21) 

and, for a unit interval Ts = 1,  it is  

 1
( ) ( )

2 1

n S

d

n S

f n
S

   




   


         (22) 

This function is presented in Fig. 4 for S =3. 

 

  τ  

fd (τ) 

η-3Ts         η   η+3Ts    
    

1/7 

 

Fig. 4 Discrete uniform density function presented using Dirac’s delta functions 
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3.2 Comments on the discretisation procedure  

 

The discretisation procedure applied in the previous Section was motivated by these reasons: 

1. Preservation of the symmetry: The discrete density function is obtained by assigning 

probability values as the weights of Dirac’s delta functions that are placed in the middle of the 

sampling interval. In this way the discrete density function preserved symmetry in respect to 

the mean value as in the case of the corresponding continuous function. 

2. Preservation of the value of the sampling interval Ts: Representing the density function in 

terms of Tc and Ts, and relating them to the discrete sampling interval (2S+1)Ts it is easy to 

reconstruct the sampling interval and relate it to the real values in practical application. For 

example, in the case of defining delay in communication systems these sampling intervals will 

be expressed in appropriate time units.   

3. Expression of density functions in closed form: By using Dirac’s delta functions, and 

possibly Kronecker’s functions, the obtained density function of a random variable can be 

easily used to calculate the mean values of the functions which have that variable as an 

argument. In those cases it is simple to solve the integral that defines the mean value of a 

function. 

Other possible discretisation can be used, as presented in Fig. 3, for example. Two cases can be 

distinguished: 

3. The calculated probability in Ts interval (for example shaded interval in Fig. 5) can be 

assigned as the weight of the left of the interval resulting in discrete values presented in 

black colour in Fig. 5. This procedure should be repeated 2S times and a stream of 

samples can be obtained that starts at –STs and finishes at (S-1)Ts. In this case two 

issues have to be mentioned. Firstly, the mean value will be different from the mean of 

continuous density which is the result of discretisation. Secondly, continuous random 

values inside particular interval will be assigned to the lowest value of the interval 

which will reduce statistical accuracy in generating random variates in the case of 

simulation.    

4. This case is similar to the previous. In this case the calculated probability in Ts interval 

(for example shaded interval in Fig. 5) is assigned as the weight of the discrete value on 

the right of the interval, and the discrete values are shifted to the right (represented by 

arrows in Fig. 5). This procedure has the same characteristics as the previous one.    
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{ }sP T      

  τ  

fd (τ) 

η-STs …          η-Ts      η    η+Ts     … η+STs

  
 

Fig. 5 Possible discretisation of a uniform density function. 

 

3.3 Derivations of the moments for the discrete random variable 
 

Proposition: The mean, mean square and variance are expressed as 

d  ,           (23) 
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and for the unit interval Ts = 1, they are 
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Proofs: The mean of the discrete density function is 
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The mean square value is 
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The variance is 
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 2 2 2 2 2 ( 1)
{ } { }
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d d s
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E E T   


    ,      (29) 

which, for a unit sampling interval, Ts = 1, becomes 

 2 ( 1)

3
d

S S



 .          (30) 

The variance can be expressed in terms of the variance of the continuous density. Having in 

mind that 

(2 1) / 2 2 / (2 1)c s s cT S T T T S     ,      (31) 

and the variance expression of the continuous density 
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the variance of the discrete density is 
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4. Truncated discrete uniform density and distribution functions 
 

4.1 Derivation of the truncated density and distribution function 
 

In practical application the discrete delays are taking values in a limited interval defined as the 

truncated interval (η-S + a, η+S - a), where a ≤ S is a positive whole number named truncation 

factor. Therefore, the function which describes the delay distribution is truncated and has the 

values in the truncated interval, as shown in Fig. 6. 

 

  τ  

ft (τ) 

η-(-S+a)Ts    η    η +(S-a)Ts    
     

Fig. 6 Discrete truncated uniform density function presented using Dirac’s delta 

functions. 

 

Proposition: The density and distribution functions are given in closed by these expressions 

form 
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Proof: Based on the definition of a truncated density function as a conditional density 

function, the truncated discrete uniform density function can be expressed as 
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The value P(S) can be calculated as 

1 1 1 2 2 1
( ) ( 1)
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    (37) 

By inserting this expression into (36), the density function can be expressed in this closed 

form, as stated in the proposition, i.e., 
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and the related distribution function can be obtained by integration the last expression as 
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as it was stated. 

 

 

4.2 Mean and variance of the truncated discrete uniform density 

function  
 

Proposition: The mean of the discrete truncated random variable is η.  

 

Proof: Based on the expression (38) for the discrete density function we may have  
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Proposition: The mean squared value of the discrete truncated random variable is  
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Proof: Based on the expression (38) for the discrete density function we may have  
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The variance can be calculated form (41) and (42) as 
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which completes our proofs. For a unit sampling interval, Ts = 1, we can easily get expression 

for the variance. 

The variance (43) can be expressed in terms of the variance of the continuous density. By 

inserting the expression for Ts from (19) and then expression (5), we may have the truncated 

variance as a function of continuous in this form 
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5. Comparison of variances 
 

We are interest in statistical characteristics of these distributions and their mutual 

interrelationship. For that purpose we will compare their variances. As a reference we will use 

the variance of continuous density. All other variances will be expressed in terms of this 

variance. The variances of the discrete density and truncated discrete density are already 

expressed as functions of the variance of continuous density, which is presented in (33) and (). 

and  of the continuous density. Having in mind 

(2 1) / 2 2 / (2 1)c s s cT S T T T S           (45) 

and the variance expression of continuous density, 
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the variance of the discrete density can be found as 
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     (48) 

The continuous truncated variance is  

2 2 2(1 / )ct c cA T   .         (49) 

In order to compare this variance with the variance of the truncated discrete density function, 

both of them need to be calculated the same truncation interval. Therefore, the ratio A/Tc, 

which would correspond to the truncated value of the discrete function, should be found. The 

corresponding truncation intervals for continuous and discrete density can be found from the 

truncating probabilities. If we take them from (36) –(37) and (10) and equate them we can get 
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as illustrated in Fig. 7. From (5) we may have 

2
(1 ) 1

2 1c

A a

T S
  


         (51) 

which can be inserted in (49) to get the variance of truncated continuous density in this form 
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Calculated expressions for the variances as functions of the variance of continuous uniform 

variable are presented in Table 1 in the form to clearly see relationship between truncated and 

non-truncated variances. Namely, the variance of truncated density function should be less 

than or equal to the variance of continuous random variable. 
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Fig. 7 Relations between truncation intervals of the discrete and continuous truncated 

uniform density function. 

 

Table 1 Variance expressions 

Uniform 

distributions 

Variances 
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The graphs for the variances of the continuous, continuous truncated, discrete and discrete 

truncated random variables as functions of the variance of the continuous random variable, for 

the truncation factor a and sampling interval 2S as parameters, are presented in Fig. 8.  The 

non-truncated continuous and discrete random variables have very similar, nearly the same 

variance, as we can expect, because they are calculated on the same interval of possible values 

of random variable. The small difference occurs due to that the variances of continuous density 
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are calculated on the continuum of random variable values while the variance of discrete 

density are calculated for a finite number of discrete values.  

 

The variances of the truncated density functions are smaller than the variances of the non-

truncated functions due to the truncation of the function which is defined by truncation factors 

A and a. The higher these factors are the smaller gradients of these curves are and higher the 

difference is between variances of truncated and non-truncated densities.  
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Fig. 8  Continuous, continuous truncated, discrete and discrete truncated variances 

versus continuous variance. 

 

The variances of the continuous and discrete random variable are nearly the same, because the 

interval of their existence is nearly the same. In contrast to that, the truncation values are inside 

a narrower interval and consequently the variance of the truncated density functions is smaller 

than those of non-truncated.  

 

 

 


