

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Author’s Original version (preprint) of the following article. This
version is defined in the NISO recommended practice RP-8-2008
http://www.niso.org/publications/rp/

Suggested Reference

Zhu, H., Sun, J., Dong, J. S., & Lin, S. W. (2016). From verified model to
executable program: The PAT approach. Innovations in Systems and Software
Engineering, 12(1), 1-26. doi:10.1007/s11334-015-0269-z

Copyright

The final publication is available at Springer via

http://link.springer.com/article/10.1007/s11334-015-0269-z/fulltext.html

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/s11334-015-0269-z
http://link.springer.com/article/10.1007/s11334-015-0269-z/fulltext.html
http://webauthor.lbr.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.sherpa.ac.uk/romeo/issn/1614-5046/

Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

From Verified Model to Executable Program – the
PAT Approach

Huiquan Zhu · Jing Sun · Jin Song
Dong · Shang-Wei Lin

Received: date / Accepted: date

Abstract CSP# is a formal modeling language that emphases on the design
of communication in concurrent systems. PAT framework provides a model
checking environment for the simulation and verification of CSP# models. Al-
though the desired properties can be formally verified at the design level, it is
not always straightforward to ensure the correctness of the system’s implemen-
tation confirms to the behaviors of the formal design model. To avoid human
error and enhance productivity, it would be beneficial to have a tool support
to automatically generate the executable programs from their corresponding
formal models. In this paper, we propose such a solution for translating veri-
fied CSP# models into C# programs in the PAT framework. We encoded the
CSP# operators in a C# library – “PAT.Runtime”, where the event synchro-
nization is based on the “Monitor” class in C#. The precondition and choice
layers are built on top of the CSP event synchronization to support language
specific features. We further developed a code generation tool to automati-
cally transform CSP# models into multi-threaded C# programs. We proved
that the generated C# program and original CSP# model are equivalent on
the trace semantics. This equivalence guarantees that the verified properties
of the CSP# models are preserved in the generated C# programs. Further-

H. Zhu
Department of Computer Science, National University of Singapore, Singapore
E-mail: huiquanz@comp.nus.edu.sg

J. Sun
Department of Computer Science, University of Auckland, New Zealand
E-mail: jing.sun@auckland.ac.nz

J.S. Dong
Department of Computer Science, National University of Singapore, Singapore
E-mail: dcsdjs@nus.edu.sg

S.W. Lin
Temasek Laboratories, National University of Singapore, Singapore
E-mail: tsllsw@nus.edu.sg

2 Huiquan Zhu et al.

more, based on the existing implementation of choice operator, we improved
the synchronization mechanism by pruning the unnecessary communications
among the choice operators. The experiment results showed that the improved
mechanism notably outperforms the standard JCSP library.

Keywords Modeling Checking · CSP# · Multi-threaded Programming · C#

1 Introduction

A concurrent software system contains multiple computational processes run-
ning in parallel. Each process performs a number of operations sequentially
and they communicate among each other to collaborate on complex tasks.
At the design phase, it is useful to apply formal specification and verification
techniques to enhance the correctness. Building formal model of the concur-
rent system helps to avoid design faults in early stage, as these faults are much
more difficult to discover or fix after the system has been implemented [38].
The requirements on the system’s concurrency can be represented as proper-
ties of the models, which describe the kinds of communication sequences that
are allowed by the system [28]. These properties can be further formally veri-
fied with the help of the supporting tools, such as model checking [20,39] and
theorem proving [18].

Communicating Sequential Processes (CSP) [13] is one of the most popular
formal languages in specifying concurrent systems. CSP# [29] extends CSP
with programming features such as shared variables, event-attached code seg-
ments, etc. In CSP#, the concurrent system is modeled as several processes
communicating with each other via events and channels. The trace of a pro-
cess is the finite sequence of the event and channel operations that the process
has engaged. The system’s concurrent behavior is represented as the possible
traces that all the processes in the system can engage. Process Analysis Toolkit
(PAT) [24,32] is a model checking framework, which can simulate, verify and
analyze the concurrent properties that are specified and to be satisfied on the
CSP# models.

After the communication patterns have been verified in PAT, the CSP#
model will be implemented in the programming language used in the target
platform. The other parts of the system, which do not involve in the communi-
cation, will be added between the communications, or they will replace certain
events that represent non-communication functionalities. On the other hand,
the verified properties of the model shall be preserved in the implemented pro-
gram. We need to ensure under what situations the other parts of the system
do not violent properties of the system as a whole. Additionally, the data flow
of the CSP# model shall be maintained in the implemented program. Better
tools and environment supports are needed to facilitate the usage of CSP#
from designing phase to implementation phase.

At present, the developers have to manually implement the CSP# model
on the target platform. JCSP [33] uses the built-in Java concurrent features,
such as monitor, to implement CSP operators in Java. In [35] the authors

From Verified Model to Executable Program – the PAT Approach 3

proved that the operators of JCSP are equivalent to the ones in classic CSP.
Similar to JCSP, CSP.NET [19] implements CSP operators in .NET frame-
work. CSP++ [10] is a framework that generates C++ source code from CSP
models. It translates the validated CSPM model to C++ program as the con-
current control layer. The functionality code and the control layer are weaved
into the final program by the CSP++ framework. In [23], Lin et. al. introduced
a method to transform CSP# model to state machine models then software
code is generated from the translated state machines. However, the approach
cannot represent CSP# communication, as CSP# involves both message pass-
ing communication and shared memory communication. There is no intuitive
way to implement CSP# models in an object-oriented languages such as C#.

In this paper, we propose a solution to integrate CSP# into the develop-
ment process, from the design to implementation phas. We applied CSP# in
multi-threaded program design and generated its implementation in C# lan-
guage. Firstly, we define the traces equivalence encoding between the CSP#
model and its representation in C# program. Based on this equivalence, CSP#
operators are implemented in the “PAT.Runtime” C# library. We further de-
veloped a code generation tool to transform CSP# models into multi-threaded
C# programs, which makes use of the “PAT.Runtime” library for communica-
tions among threads. We proved that the generated C# program and original
CSP# model are equivalent based on the trace semantics. This equivalence
guarantees that the verified properties of the CSP# models are preserved in
the generated C# programs.

Fig. 1 Overall Approach to Translating CSP# Models into C# Programs

As shown in Figure 1, a typical system is modeled in two parts: the pro-
gram model represent all the communication that happen inside the software

4 Huiquan Zhu et al.

system; the external environment, the user activities, and their interaction
with the software system are modeled as the “user activities”. PAT verify the
whole system to ensure it fulfils the requirements related to concurrency. After
the verification, the code generation tool takes the formal model to generate
C# program that controls the communication of the system. From the user
validation perspective, we should also be able to generate the test program to
further test the whole system.

Developers can use CSP# to model the communication aspects of the con-
current system and verify them in the PAT framework. Our code generation
tool that is built in PAT framework can generate the C# program that has
the same communication behaviors as the CSP# model. On the other hand,
developers can implement other functionalities of the system in C#, where
these C# codes can be imported into the CSP# model before the code gener-
ation phase. Alternatively, they could be added to the generated C# program
as non-communication code, if they do not interfere with the inter-thread
communication of the target program. Furthermore, based on the existing im-
plementation of choice operator, we improved the synchronization mechanism
by pruning the unnecessary communications among the choice operators. The
experiment results showed that the improved mechanism notably outperforms
the standard JCSP library.

The reset of the paper is organized as follows. Section 2 presents the back-
ground knowledge related to the approach. In section 3, we present the encod-
ing of the CSP# notation into C# programs and its automated tool support
for code generation. Section 4 presents the proof of correctness based on the
trace equivalence on the proposed translation. In section 5, two case studies
were developed for demonstrating usage and effectiveness of the approach. Sec-
tion 6 presents the improvements on the code generation and its performance
evaluation. Section 7 discusses the related work. Finally, section 8 concludes
the paper and outlines the future work.

2 Background

2.1 CSP# and PAT

A CSP model is composed of a set of sequential processes communicating via
events and synchronized channels. CSP# [29, 30] extends CSP to allow high-
level modeling operators mixed with low-level sequential programs. It shares
the principle ideas as TCOZ [25] that integrates the state specifications of
the components with the interact operations between themselves. In addition,
CSP# supports the communication via shared variables and asynchronous
channels. A process in CSP# is defined as follows:

P = Stop | Skip | e → P | e{prog} → P | ch!x → P
| ch?x → P | [b]P | if (b){P}else{Q} | P ; Q | P []Q

| P ‖ Q | P ||| Q | P 4 Q

From Verified Model to Executable Program – the PAT Approach 5

Here P and Q are the processes. Stop and Skip are built-in primitive pro-
cesses. e is an event and ch is a channel. x is either a simple or a complex
expression (like .x .y .z). b is a boolean expression. prog is a block of C# code
attached on an event e.

Let X denote the special event of successful termination and αP denote
the alphabet set of process P . Here αP contains all the events in P excluding
X. The Stop communicates nothing and Skip = X → Stop. The event prefix
e → P performs event e and then performs as P . Likewise, the data operation
e{prog} → P first executes the C# code of prog then performs as P . The
channel output ch!x → P evaluates the expression x , if the channel ch is not
full, it sends the evaluated x to channel ch and behaves as P . Similarly, the
channel input ch?x → P evaluates x and reads the evaluated x from channel
ch then performs as P afterwards. The guarded process [b]P is blocked until
expression b becomes true and performs as P . It requires the expression b
being true and P ’s first event being engaged together happen atomically. The
conditional choice if (b) {P} else {Q} evaluates b first. If its value is true, the
process behaves as P ; Otherwise, it behaves as Q . The sequential composition
P ; Q behaves as P till its termination then behaves as Q . General choice P []Q
can perform as P or Q . If P performs an event first, P []Q will behave as P
afterwards, otherwise it will behave as Q . For the parallel composition P ‖ Q ,
P and Q run and synchronize on the events in αP∩αQ and they communicate
through shared variables and channels too. In the interleaving composition
P ||| Q , P and Q run independently and only communicate through shared
variables and channels. The interrupt P 4 Q behaves as P until the first event
of Q is engaged, then the process behaves as Q afterwards.

Shared variables in CSP# can be read by conditional expressions and they
can be read and written by event-attached code segments. Because both the
evaluations of expressions and the executions of event-attached programs are
atomic in CSP# models, the shared variables in the CSP# model do not suf-
fer the data race problem. The value changes on shared variables represent
the shared memory communication in the CSP# models. CSP# also supports
combinations of shared memory and message passing communications. Be-
sides the general conditional choice, CSP# has an atomic conditional choice
operator defined as ifa(b) {P} else {Q}. It requires b being true and the first
event of P being engaged occurring atomically, or b being false and the first
event of Q being engaged occurring atomically. On the contrary, the process
if (b) {P} else {Q} can go to the branch {P} at the time when b is true, but
later when the first event of P engages, b may have become false. The blocking
conditional choice operator ifb(b) {P} blocks the process until b becomes true,
but it does not require the first event of P to be engaged atomically. It is the
complement of the guarded process.

A trace of a process is a finite sequence of the events’ names that the
process has already engaged. The traces of a process is the set of all possible
traces that the process can perform, denoted as traces(P). Process Analysis
Toolkit (PAT) [24, 31] is a generic model checking framework that supports
the modeling, simulating and verification on the concurrent, real-time and

6 Huiquan Zhu et al.

probabilistic systems. PAT also supports full set of Linear Temporal Logic
(LTL) [1] properties being verified on CSP# model. A LTL formula F on
CSP# is defined as:

F = e | prop | �F | ♦F | X F | F1 U F2

Here e is an event or a channel input/output, prop is a proposition defined on
shared variables. �F means F holds for entire subsequent paths; ♦F means
F eventually has to hold in the subsequent paths; X F means F holds for the
next state; F1 U F2 means F1 will hold at least until F2 holds.

2.2 Use Monitor to Implement CSP Operators

Monitor [12,21] is a fundamental mechanism to synchronize between threads.
It can provide mutual exclusion, waiting and signaling operations between
threads. JCSP [33, 35] is a Java implementation of CSP operators. The au-
thors used the monitor objects in Java to implement the event and channel
communications. To verify their implementation, the authors model the mon-
itor as CSP process. Two CSP models are built: the processes in one model
use CSP channel to communicate and the ones in the other model use the
monitor’s CSP process to communicate. The equivalence of these two mod-
els was verified by a model checker. Similar proofs were applied to the event,
alternative and parallel operators in JCSP.

3 Encoding CSP# Semantics in C# Language

Our overall goal is to transform a CSP# model to a multi-threaded C# pro-
gram that has the same concurrent behavior as the original CSP# model. The
communications between CSP# processes are represented as communications
between threads. All the processes, events and channels in the CSP# model
will have their corresponding classes in the generated C# programs. In this
section, we discuss and define the equivalence relation on the behavior between
the CSP# model and the C# program.

Let us start the discussion from event equivalence. Each event in the CSP#
model shall have a corresponding representation in the C# program. They can
be a source code statement, a block of statement, a method call etc. As the
event is considered “instantaneous or an atomic action without duration” [13],
we would make the event corresponding code as simple as possible. Suppose
each event corresponds to one statement, the concurrent behavior of the C#
program can be represented by the possible sequences that the program ex-
ecutes these statements. When a CSP# process performs an event, it needs
to synchronize the other processes that have the events with the same event
name. Therefore, in the statement corresponding to the event in CSP#, the
inter-thread synchronization shall be conducted internally. To make the gener-
ated C# program concise and readable, we choose to use a C# method call in

From Verified Model to Executable Program – the PAT Approach 7

one thread to represent a CSP# event synchronization on one process. Based
on this, we analyze the differences between the model checker running the
CSP# model and the C# program running on the operating system.

When we use a model checker to validate the CSP# model, the model
checker can access all the information of the processes. The model checker
takes control of the execution of all processes. Based on the current state of
each process, the model checker knows what events are enabled and it chooses
to perform an event in the enabled event set. When the CSP# model performs
the chosen event, all the processes that have this event in their alphabets
perform the same event and go to their next states. The model checker then
re-computes the enabled event set and makes its next move. In the multi-
threaded C# program, there is no central control to manage the current state
for the threads. Each thread only knows its alphabet and its current state.
They have to choose one in the enabled event set to execute. The operating
system’s scheduler decides which thread is executed next. Potential conflicts
may occur when different threads have chosen different events to engage.

In the CSP# model, it is assumed that after one event finished, the next
enabled event can be performed immediately. On the contrary, after the C#
program has finished executing an event method call, when it reaches the next
event method not only depends on the program itself, but also depends on
when the operating system schedules this thread to execute. Therefore, in the
C# program, there is always an interval between the end of the previous exe-
cuted event and the engagement of the next event. This is similar to how CSP
deals with the time-consuming operations. The duration of a time-consuming
operation is represented as the two sequential events: the start and the finish
of the operation.

We define the equivalence of model and program on trace of the model
and the trace of the program’s execution. The visible events include the event
engagements and the channel operations in the CSP# model. In the C# pro-
gram, there are specific critical sections corresponding to the visible events in
CSP# model. Each of these critical sections has one entrance and one exit. The
finish of a critical section means the engagement of the corresponding event
in CSP# model. For an execution of a C# program, the sequence of these
critical sections be executed is defined as the trace of this execution. These
critical sections are encapsulated as methods of the classes that are defined in
the concurrent library “PAT.Runtime”.

The transformed C# program shall also require multiple threads to engage
a synchronized event consecutively. Suppose threads {p1, p2, . . . , pn} are to en-
gage event e. Here we denote the engagement of thread pi on event e as pi .e.
In the trace of the C# program, when event e is engaged, all the n threads
shall engage e. The engagements of all these threads shall occur consecutively,
in any possible permutation of {p1.e, p2.e, . . . , pn .e}. In the traces of the C#
program we group these consecutive event engagements {p1.e, p2.e, . . . , pn .e}
from different threads and use a single event e to substitute them. After the
substitution, the possible traces of the C# program are the same as one pos-
sible trace in the traces of the original CSP# model.

8 Huiquan Zhu et al.

Based on the traces definition on C# program, the equivalence of the CSP#
model and its generated C# program is defined on their traces. A C# program
G is traces equivalent to its CSP# model M if traces(G) = traces(M). We
divide the source code in generated C# program into three kinds.

– The first kind is the message passing communications between threads.
They include the event synchronizations and channel communications in
CSP#. We use CSP# synchronization code to refer this kind of C# code.

– The second kind is the data operation codes that include the C# code that
access the shared variables or the channel buffers. These data are shared
globally in the program and they evoke the shared memory communication
in CSP#.

– The last kind of C# code does not come from CSP# model and they shall
not influence the communication code. We use non-communication code to
refer them. The non-communication code shall satisfy the following three
conditions:
1. They do not access the shared variables or channel buffers in CSP#;
2. They do not modify the control flow related to the communication code;
3. They need to finish in finite time.
The non-communicating code can be inserted in the intervals between two
critical sections of CSP# communication. As the non-communication code
only causes delay between two communications, the traces of the program
are not influenced by the inserted non-communication code.

The first two kinds of C# code come from CSP# model and they control
the communications between threads. We refer them as communication code
in the C# program. To ensure the atomicity of these communications between
threads, they are organized into individual critical sections. Each of these crit-
ical sections corresponds to one CSP# communication. Here we choose the
trace semantics of CSP# as it is well defined and observable. The CSP#
model lies in the communication codes and it only manages the event traces
and the variables that may influence the event traces of the program. For the
functionalities that do not go across processes, the programmers can imple-
ment them by adding more data and operations in the non-communication
codes.

3.1 Thread Communication on CSP# Operator Level

With the equivalence defined on traces, this subsection discusses the imple-
mentation of the CSP# operators in the C# programming language, where
the process level equivalence and the alphabet management are described in
the next section.

3.1.1 Synchronization Using the “PAT.Runtime” Library

In our approach, all the communications across threads are conducted by the
operator classes defined in library “PAT.Runtime”. The generated C# pro-

From Verified Model to Executable Program – the PAT Approach 9

grams interact with the object instances of these CSP# operator classes. We
use a simple event engagement to illustrate the relation between the generated
C# program and the objects of the CSP# operators.

As shown in Figure 2, the behaviors of process P = e → P are simulated
by the processes P ′ and L. Process L actually conducts the synchronization on
event e as process P does. Before and after the e’s synchronization, process L
synchronizes with process P ′ on events st .e and ed .e. Here {st .e, ed .e} only
occur locally in the alphabets of processes P ′ and L. After hiding these two
local events, it is easy to verify that process (P ′ ‖ L)\{st .e, ed .e} is equivalent
to the original process P .

���� �����

���� ����

�

��

�

�

Fig. 2 Event Engagement Equivalence

We take the process L as a method call to the object of event e in the
library. The process P ′ will be a thread in the generated C# program. The
interaction between P ′ and L are actually that the thread P ′ calls the event’s
method L. The st .e represents the C# instruction to call the event method and
ed .e represents the method’s return instruction. When the method returns, the
e has been engaged and process P ′ can execute the code after the event e. All
the behaviors of the origin process P engaging e are now happening in this
method call.

We encapsulate the process L as a method m of the CSP# operator object
Oe . The event synchronization on st .e represents the start of the method call
to m and ed .e represents the return of the method call. With this operator
object Oe managed in the generated C# program, the event synchronization
behavior of P is represented as the program calls the method Oe .m.

3.1.2 Shared Memory Communication

The shared memory communications in CSP# happen on the conditional op-
erators and the data operations. These communications start from a process P
that is performing data operation prog to the other processes that are waiting
on conditional expressions. We use a simple example to explain these communi-
cations. Two processes are in the model: a guarded process P = [b](ep → Skip)
and a data operation process Q = eq{b = true} → Skip. Suppose the boolean
variable b is false at start, process P will be blocked at the guarded con-
dition b. After process Q has engaged event eq and executed the attached

10 Huiquan Zhu et al.

program “b = true”, process P can engaged ep as the guarded condition b is
satisfied. The communication starts from process Q when it finishes executing
“b = true” to process P when it is waiting on condition b.

The above communications in CSP# are similar to the wait and notify in
multi-threaded C# programs. One typical example in C# is shown in Figure
3. Suppose thread A is running the “RunWait()” and thread B is running the
“RunPulse()”. The initial value of b is false. At first, thread A is blocked on
“Wait()” at line 7 before b becomes true. When thread B gets the lock and
changes the value of b, it uses “PulseAll()” at line 15 to notify the threads
that are waiting on the same “Comm” object. After getting the notification,
thread A resumes and gets out of the loop from line 6 to 8. At this point, b is
guaranteed to be true until A releases the lock at line 10.

1 : public class Comm
2 : {
3 : boolean b = false;
4 : public void RunWait() {
5 : lock(this){
6 : while(!b){
7 : Monitor .Wait(this);
8 : }
9 : //now b is true
10 : }
11 : }
12 : public void RunPulse() {
13 : lock(this){
14 : b = true;
15 : Monitor .PulseAll(this); //notify b changed
16 : }
17 : }
18 : . . .

Fig. 3 Wait and Notify Example

Comparing the above C# program and the CSP# communication exam-
ple, they have the same behaviors based on the boolean variable b. We can use
the wait and notify mechanism in C# to implement the communications from
the CSP# data operations to the conditional expressions. However, the atomic
conditional choice (e.g. P = ifa(b){e1 → Q}else{e2 → R}) requires the evalu-
ation of the branch’s conditional expression (e.g. b or !b) and the engagement
of the branch’s first event (e.g. e1 or e2) happen atomically. Therefore, the
message passing communication and the shared memory communication can-
not be detached into two steps. Waiting on the events to become enabled and
waiting the shared variables to be changed shall be represented in the same

From Verified Model to Executable Program – the PAT Approach 11

way in communication between threads. In the C# program, a special event
“dc” represents the notification that the shared variables have been changed.
This event has higher priority than any other events and channel operations
so that no other events can happen before the re-evaluations of the conditional
expressions. When a data operation prog finishes, it engages this “dc” event.
All the processes that are waiting on conditional expressions will engage “dc”
event immediately and re-evaluate the conditional expressions. With this “dc”
event, a process can wait on message passing and shared memory communi-
cations in one operator. It also enables the support for the atomic operators
with conditional expressions.

3.1.3 General Choice Operator in C#

To combine the message passing and shared memory communications, a gen-
eral choice operator is used in our concurrent library “PAT.Runtime”. It gen-
eralizes the event engagements (including channel communication), choice op-
erator and conditional operators in CSP#. The general choice includes a set of
alternative events with optional precondition and attached data operation on
each event. Based on the functionalities, the general choice operator is divided
into three layers as shown in Figure 4.

�����

���	
���
�

�
�����

�
�

�������������
�

�
���

�
������

�
������

��������
�

���������������
�

�
���

�
������

�
������

������������ �������
� ��

�
�!��������!���

��������������

����

�"��
��������
����������� ��

�

���������
#��$��������

�����

�����
�����

$!����
�����

Fig. 4 General Choice Structure

Each layer has two operations, one occurring before the event engagement
and the other occurring after it. The precondition layer is the lowest layer.
It evaluates the preconditions {b1, . . . , bn} for each branch before events en-
gagement. If the precondition is true, the branch’s first events will be put into
the event set sc for next layer. After the event engagement and other layers’
operations, the second operation in this layer sends “dc” notification if the
engaged event has attached program prog . In the middle is the choice layer. It
allows trying and waiting on an event set sc . If there are preconditions on the
branches, the data change event “dc” is also included in sc . After the event
engagement, at this layer the general choice operator removes itself from the
waiting list of each event in sc . The event layer is the uppermost layer. It

12 Huiquan Zhu et al.

engages the first enabled event ek in sc . The non-determinism and fairness
mechanism are based on the OS scheduler and the sequence to try the events
in sc . If presented, the data operations prog attached on event ek is executed
right after the event engagement. If the general choice operator engaged the
“dc” event, it return to the start of precondition layer, to re-evaluate the
preconditions {b1, . . . , bn}.

The general choice operator is the fundamental synchronization unit in our
“PAT.Runtime”. All the synchronizations in CSP# can be represented using
a general choice and a general conditional choice operator. For simplicity, we
define a general operator “G” to discuss the representations. This operator
can be represented as the CSP# model below.

G([b1]e1{prog1} | [b2]e2{prog2}){Q | R}
= ([b1]e1{prog1} → Q)[]([b2]e2{prog2} → R)

With the “G” operator, the event prefix process P = e → Q can be
represented as P = G(e){Q}. The atomic conditional choice P = ifa(b){e1 →
Q}else{e2 → R} is represented as P = G([b]e1 | [!b]e2){Q | R}.

When the parallel process P = (e1 → Q || e2 → R) is used as one of the
branches of the choice operator, the choice operator may choose one event in
the possible first event sets of the paralleled subprocesses. After the choice
operator performs the chosen event, the whole parallel process is started. This
can also be easily represented with “G” operator as

P = G(e1 | e2){(Q || (e2 → R)) | ((e1 → Q) || R)}

The representation of interleave process is similar to the parallel process. The
other representation of the CSP# operators using “G” operators are listed in
Table 1.

CSP# model Model after transformation

Stop Stop Stop
Skip Skip Skip
Prefix e->Q G(e){Q}
Data Op e{prog}->Q G(e{prog}){Q}
Channel Out ch!x->Q G(ch!x){Q}
Channel In ch?x->Q G(ch?x){Q}
Guarded [b](e->Q) G([b]e){Q}
General If if(b){Q}else{R} G([b]tau | [!b]tau){Q — R}
Atomic If ifa(b){e1->Q}else{e2->R} G([b]e1 | [!b]e2) {Q — R}
Blocking If ifb(b){Q} G([b]tau){Q}
General Choice (e1->Q)[](e2->R) G(e1 | e2){Q | R}
Parallel (e1->Q) ‖ (e2->R) G(e1 | e2) {(Q ‖ (e2->R)) | ((e1->Q)

‖ R)}
Interleave (e1->Q) ||| (e2->R) G(e1 | e2) {(Q ||| (e2->R)) | ((e1->Q)

||| R)}

Table 1 CSP# Operators Represented with “G” Operators

From Verified Model to Executable Program – the PAT Approach 13

3.2 Process Level Implementation and Alphabet Management

3.2.1 Alphabet Management for the Processes

Processes are the basic units for composition in CSP# models. The process ex-
pression explicitly defines the behavior of the process. It also implicitly defines
the alphabet and first visible event set for the process. In the C# program,
process classes have to provide corresponding interfaces as in the model. For
a simple process P = e → Q , the alphabet αP contains e and αQ . The pro-
cess Q needs to provide its alphabet αQ to process P . For the choice process
P = Q []R, P uses the first visible event sets of two subprocesses Q and R
to decide which branch to perform. Therefore, in the C# program, each pro-
cess class provides two methods: one represents its alphabet set and the other
represents its first visible event set.

We use κP to denote the first visible event set of process P and ρ(e) to
denote the number of threads that e is synchronized on. With the alphabet
interface defined for process objects, the alphabet management in C# program
includes the following four scenarios.

– When a process calculates its alphabet, it adds all the events in process
expression (e.g. e in P = e → Q) and the alphabet of all its subprocesses
(e.g. αQ in P = e → Q) to its alphabet.

– When a process calculates its first visible event set, it adds the first visible
event set for each of its branches. For a process defined as P = (e → Q)[]R,
the κP contains e and κR.

– For a parallel process P = Q || R, if an event e is in the alphabets of both
Q and R (i.e. e ∈ αQ and e ∈ αR), it will be synchronized by one more
threads. Therefore, when P starts, ρ(e) is increased by 1 and after both Q
and R finish ρ(e) is decreased by 1.

– For a interleave process P = Q ||| R, if an event e is in the alphabets of
both Q and R, an extra event e ′ is used to represent e in process R. Event
e ′ does not synchronize with e, but the other processes which have e in
their alphabets now alternatively synchronize to e or e ′. When P starts,
process Q synchronizes e as usual and the e in process R is substituted by
e ′. For the other processes in the model, if they have e in their alphabets,
e[]e ′ is used to substitute the e in their alphabets. After both Q and R
finish, the event e ′ is removed from all the processes that have e ′ in their
alphabets.

3.2.2 Interface of the Process Class

To provide the alphabet management discussed above, we use an abstract class
“PatProc” in “PAT.Runtime” library to manage the process interface. All the
process classes need to inherit the “PatProc” class and implement its abstract
methods. There are several events and data operations containers defined in
the fields of “PatProc”. The process classes use these containers to store the
local events objects.

14 Huiquan Zhu et al.

As shown in Figure 5 shows, a process class will implement the five ab-
stract methods in “PatProc”. The “Alphabet()” will provide the alphabet of
process P given the parameters. The “FirstOpts()” method returns a set that
contains all possible first events with their preconditions. The “setParas()”
and “init()” methods are in charge of setting up the parameters and initialize
the subprocesses.

public class P : PatProc
{
. . .
static public HashSet〈string〉 Alphabet(. . .){. . . }
public ChoiOptSet FirstOpts(. . .){. . . }
constructor of process P
public void setParas(. . .){. . . }
public void init(){. . . }
public void run(){. . . }
}

Fig. 5 A Process Class Example

3.2.3 Transforming the Process Expressions

The “run()” method in the C# process class is directly transformed from the
process expression in CSP# model and it is structurally similar to the original
process expression. The operators and the alphabet for the process have been
properly managed in the process’ initialization methods, i.e. “setParas()” and
“init()”. In the “run()” method, the statements that perform the CSP# op-
erators are organized similar to the process expression. In the following, we
discuss the transformations of different operators.

Operator Initialization Execute

Skip evchs[“Skip”] = new PSkip(); evchs[“Skip”].exec();
Stop evchs[“Stop”] = new PStop(); evchs[“Stop”].exec();
→ e.i → evchs[“e.i”] = new PEvent(“e”,paras[“i”],..); evchs[“e.i”].exec();
→ ch!i → evchs[“ch!i”] = new PChannelOut-

put(“ch”,paras[“i”],..);
evchs[“ch!i”].exec();

→ ch?i → evchs[“ch?i”] = new PChannelIn-
put(“ch”,paras[“i”],..);

evchs[“ch?i”].exec();

Table 2 Generated C# Code for Simple Operators

For the Stop, Skip, event and channel operators, their corresponding C#
statements in the “run()” method are relative simple. Table 2 lists their ini-

From Verified Model to Executable Program – the PAT Approach 15

tialization code in the “setParas()” method in the column “Initialization”.
The column “execution” are the statements which will be put in the “run()”
method of the process class.

For the data operation operator e{prog}, in CSP#, the e no longer syn-
chronizes with other events even if they have the same name. Only the prog
will be put in the “run()” method. Before and after the prog , the thread need
to acquire and release the global data lock to prevent data race on shared
variables. The statements in prog are valid C# program so they do not need
much transformation. The only difference is about how to access the variables
and process parameters. In CSP# these variables are globally accessible, but
in C# program we use a “Glo” class to store the shared variables. The process
parameters are the fields of the process class. Appropriate prefixes are added
to the variables in prog before they are put in “run()” method.

“PAT.Runtime” provides a special class “TSeq” to sequentially executes
the “run()” methods of the processes in its internal stack. To perform a sub-
process in C# program, we only need to create the subprocess instance and
put it in the “TSeq” object that is attached to current thread. When the cur-
rent “run()” method returns, the “TSeq” object automatically executes the
“run()” of the subprocess. For a sequence process P = Q1; Q2; . . . ; Qn , in the
“run()” of P we add the subprocesses in reverse sequence to current thread’s
“TSeq” object. The last added process will be at top of the internal stack
of“TSeq”. Therefore, “TSeq” can execute these n subprocesses in the correct
sequence.

Both the parallel and interleave operators start multiple threads to execute
their subprocesses respectively. As discussed in the previous section, the al-
phabet sets shall be expanded before executing these subprocesses. After these
subprocesses finished, the alphabet sets will be contracted. With appropriate
expansion and contraction on the alphabet sets, the parallel and interleave op-
erators use the “run()” method of “PatParallel” class to start the subprocesses
simultaneously. This “run()” method returns only after all the subprocesses
have finished their own “run()”.

The choice operator is the only operator for which the structure in the
C# program is slightly different from its corresponding process expression in
CSP#. It uses the general choice operator “PChoice” to gather the first possi-
ble events and their preconditions for all the branches. After this initialization,
calling the “select()” of the “PChoice” object will start the operator. After the
method returns, the returned value indicates which event it has performed.
Base on the returned index, a switch..case statement takes the program to
the chosen branch. For an example P = (e1 → Q)[](e2 → R), the following
pseudocode is in the “run()” method of process P .

The conditional operators, including case, guarded, IF, IFA and IFB, share
the same code structure as choice in the “run()” method. The difference is
that for each branch, the conditional operators will insert the appropriate
conditional expression as the branch’s precondition. For the case, IF and IFB,
extra τ events are inserted at the beginning of each branch. The structures of

16 Huiquan Zhu et al.

the C# code of these operators follow the “general operator” representations
for CSP# operators in Table 1.

Event [] ev = new Event []{e1, e2};
PChoice pc = new PChoice(ev);
int sel = pc.select();
switch(sel) {

case 0 :
// go to branch Q
break ;

case 1 :
// go to branch R
break ;

}

3.2.4 Discussion on Atomic and Interrupt Operators

The atomic and interrupt operators are not supported in our tool by design.
In theory, they can be implemented as the other CSP# operators. In practice,
they may bring down the concurrent performance of the program. In this
subsection, we use an example to discuss how the performance is influenced.

The atomic operator is denoted as atomic{P}. It assigns the higher priority
to the process inside the atomic operator. When atomic{P} is performed as
one process in the model, if P is about to engage an enabled event, it will be
engaged before any other events from the non-atomic processes in the model.
When atomic{P} is blocked on some event e, other processes are allowed to
execute. But once event e becomes enabled, process atomic{P} regains its
higher priority and continue to execute until it finishes or is blocked again.

When there is one or more atomic processes are blocked in the model,
the corresponding C# program may need extra communication between the
threads corresponding to the non-atomic processes. Let us consider the model
as follows.

P() = atomic{e1→ e2→ e3→ Skip};
Q() = e4→ e5→ e2→ Skip;
R() = e6→ e5→ e7→ Skip;
Sys() = P() || Q() || R();

The process P is an atomic so the model Sys will first engage event e1
and P will be blocked on e2. At this point the processes Q and R are allowed
to execute. The generated C# program in this situation is shown in Figure 6.
The O symbol indicates the current PC position of the thread. When thread R
reaches the event e6 and thread Q is at the interval before event e4, R cannot
engaged e6 although it is enabled. The reason is that in the C# program,
thread R does not know whether Q will enable the atomic thread P , when Q
finishes running the program in the interval. In this case, the system cannot
allow any non-atomic threads to engage an event until all the threads finished

From Verified Model to Executable Program – the PAT Approach 17

their intervals. After one or more non-atomic threads engaged an event ei ,
the other threads still cannot engaged the enabled events. They have to wait
until the threads which engaged event ei to finish their intervals again. This
adds additional communication between the non-atomic threads although they
originally do not have to communicate.

�� ��

��

����	
��

� ��

��

��� ��

��

��

�� �����

��������
����������

���������
����	���	��

����� ����
���

����	
����
���

Fig. 6 Atomic Process Example

The interrupt operator P 4 Q behaves as P normally. Once the first
event of process Q is engaged, P is interrupted and the process behaves as
Q afterwards. Supposing the first event of Q happens when P is in one of its
intervals, i.e. running the non-communicating code between two event engage-
ments, there are two possible behaviors on P to stop itself. The first possible
behavior is that P do not stop immediately and it keeps on running until it is
about to engage the next event. The second possible behavior is that process
Q actively stop P right after Q engage its first event. Both cases produce
the same trace as the CSP# model. However, the second possible behavior
will add the communications between threads happen the critical section and
the non-communicating code. Currently, we retain the implement of interrupt
operator to avoid the ambiguity.

3.2.5 The State Space of Generated C# Programs

CSP# can model both terminating and non-terminating multi-threaded pro-
grams. For terminating programs, one execution traverses one route in its
state space. This route ends with either a success finish state or an error state.
There are two kinds of non-terminating programs. Programs in the first kind
will constantly visit their initial states. Programs of the other kind do not visit
the initial state anymore from some point in their executions.

When the model checking algorithm verifies a CSP# model, it traverse all
possible traces that the model can produce under certain fairness constraint.
For the generated program, its executions are different to what model checking
algorithm does. For example, the programs do not need to backtrack to a

18 Huiquan Zhu et al.

previous state, nor do it store the visited states. As stated previously, our
code-generation approach is based on the trace semantics. Given a model M
and its generated program G , traces(G) is equivalent to traces(M). This means
the generated program G can also traverse the state space as its model M does.
For a terminating program, repeatedly executing the program for infinite times
will traverse the state space of its corresponding model. For a non-terminating
program that constantly visit its initial state, one execution of the program
traverses its model’s state space. For a non-terminating program that does not
constantly visit initial state, we also need to repeatedly execute it for infinite
times to ensure it traverse the whole state space of the model.

Additionally, to ensure the repeated executions traverse the state space of
the model, the program shall behave with the fairness constraint as in the
model checking algorithm. Our implementation of the CSP# operator sup-
ports the weak fairness. When the operator starts the “try and wait” operation
on an event set sc , the operator tries to chooses an enabled event ei in sc . If
none of the events is enabled in sc , the operator waits on all the events in sc . If
multiple events are enabled in sc , one of them is chosen non-deterministically.
Weak fairness guarantee if an event is enabled after some point in the execu-
tion, it will be engaged infinitely often [31]. To fulfill this constraints, we need
to ensure no continuous enabled event in sc is ignored forever.

The implementation of general choice operator keeps track of the index of
last engaged event ei in sc . On the next time this operator is executed, this
ei is given the lowest priority and the event ei+1 is given the highest priority.
Supposed the operator G has n events in sc , if an event e is continuously
enabled, the operator will eventually choose this event before its nth iterations.
This is because at most after n iteration on the operator, the event e will be set
to the highest priority in sc . As for at most every n iteration, the operator G
will engage event e once. To keep the event e enabled continuously, the model
will have constantly engage the operator G if the number of processes (i.e.
ρ(e)) that has e in their alphabet does not change. If ρ(e) decreases, another
operator G ′ that still has e in its s ′c will guarantee e be engaged before at
most n ′ iterations on G ′. When ρ(e) increases, if there is a upper bound on
ρ(e), the last operator G ′′ to “try and wait” on e in its s ′′c guarantee e be
engaged before at most n ′′ iterations. If there is no upper bound on ρ(e), the
model is an infinite model, which falls outside the scope of this thesis.

We discussed the fairness constraints on the model and the generated pro-
gram, however, in practices there are user activities in the non-communication
code. For the (repeated) execution(s) of the generated program to traverse the
state space as the original model, these user activities shall not violate the
fairness assumption on the model.

4 Correctness Proofs of the Translation

In this section, we prove that the generated C# program performs the same
possible traces set as the original CSP# model does. This trace equivalence

From Verified Model to Executable Program – the PAT Approach 19

guarantees that the validated properties of the model are preserved in the
generated C# program.

���������
	
������

����������������
�	
������

�������������������
	
�������

	����������������
������������

	
�������
�����������

Fig. 7 the Equivalence Hierarchy

The proof is discussed on different functionality layers as shown on Figure
7. The basic event synchronization is implemented on C# “Monitor” class.
For the shared memory and message passing communication, we use CSP#
to build the model of the general choice operator and validate this model
generates the same trace as the model of original CSP# operator. On the
process and model level, we prove that the “run()” methods in C# program
have the same structures as process expressions and executing the program
produces a valid instance in the traces of the original CSP# model.

4.1 CSP Operators Level Equivalence

For the implementation of CSP operator in program, The monitor [12,14,22]
is a fundamental mechanism to synchronize between threads in the program-
ming languages which adopt the shared memory communication. Languages
like Java and C# provide the built-in support for monitor. Monitors in these
languages usually at least provide mutual exclusion on specific objects and the
waiting and signaling between threads.

Common operations on a monitor object include enter, leave, wait, notify
and notifyall. The “enter(obj) ” operation allows a thread to “enter” the moni-
tor “obj” if no other thread has already entered, otherwise it blocks the thread
until other thread “leave” the monitor and the operating system’s scheduler
chooses this thread to run. If a thread has entered the monitor “obj”, the
“leave(obj) ” allow the thread to leave the monitor and other threads can
enter the monitor “obj” thereafter. The wait, notify and notifyall operations
require the thread has already entered the monitor “obj”. The “wait(obj)”
operation leaves “obj” and blocks the thread until some other thread calls
“notify(obj)” and the operating system chooses this thread to be unblocked,
or some other thread calls “notifyall(obj) ” which unblocks all the threads that
are waiting on “obj”.

20 Huiquan Zhu et al.

JCSP [33,35] is a Java implementation of classic CSP operators. The JCSP
library includes the event, channel, choice and parallel operators. For the con-
venience of development, JCSP also added some additional features on event
and channel, such as the bucket and poison structures, to better support ter-
minating programs. In [35], Welch et al. used CSP to build the models of the
Java implementation of the operators. These CSP models are checked in the
FDR tool to ensure they are equivalent to the ones defined in CSP.

Welch et al. modeled the monitor’s communication on 5 CSP channels:
claim, release, wait, notify and notifyall. The model of the monitor is composed
of two active processes: One ensures only one thread can entered the monitor
at any time. The other maintains the list of the threads that are waiting on
this monitor

To verify the implemented JCSP channel equivalence, Welch et al. used
a CSP model containing process A send a message via channel c to process
B . The JCSP implementation model is processes Aj and Bj paralleling with
JCSP’s channel model JCSPCHANNEL(c). The JCSPCHANNEL(c) is com-
posed with a monitor’s process (Monitor(c)), two variable processes (Hold(c)
and Empty(c)), process Read(c) and Write(c). The Read(c) is the abstracted
from the method “read()” of class “One2OneChannel” in JCSP. In the method
“Read()”, the statements to operate on the monitor will be represented as the
channel event on Monitor(c); the read and write operations on the variables
are represented as the channel events on Hold(c) and Empty(c).

���������	

�����	

������	

�
�
�
�
��
	

�
����
��
	

�� ��

�����
������	

Fig. 8 JCSP Channel Communication

Similar case is on process Write(c). The structure of the JCSPCHANNEL
model is shown in Figure 8. The Aj synchronizes with the Write(c) on the
beginning and ending of Write(c) to send the message, Bj synchronizes with
Read(c) at its beginning and ending. The synchronizations on the beginning
and ending represent a thread start calling the Java method “read()” and when
“read()” finishes, it returns to the program context which calls the method.

With the above models all in CSP, Welch et al.used FDR to check and
confirm the equivalence of these two models. Besides the channel, Welch et al.
also verified the equivalence of other JCSP operators including event, choice
and parallel [35].

From Verified Model to Executable Program – the PAT Approach 21

As the message passing communications in CSP# are equivalent to the
ones in CSP, they are implemented on C# “Monitor” class in the similar
way as in Welch’s approach. The trace equivalence of JCSP applies to the
message passing operators in CSP#. Next, we discuss the equivalence of CSP#
specific operators, which include both message passing and shared memory
communications.

4.2 CSP# Models of the Extended operators

We use atomic conditional choice as a typical CSP# extended operator to
prove the correctness. The other CSP# specific operators can be proved in
similar way.

First we build the CSP# model of “PChoice” working with data-operation
events. This model ensures that the evaluation of the condition expressions will
be mutually excluded from the data-operation and it can be notified when
shared variables have been changed. Based on the “PChoice” model, after
filled with the condition expressions and the branches of an IFA operator, we
got the process “G1” as follows.

DataChg() = (dc → G1());
G1() = (evstart →

if (b == TRUE) {
evend → (DataChg() [] CBranch(0))

} else if (!(b == TRUE)) {
evend → (DataChg() [] CBranch(1))

} else {
evend → DataChg()

}
) [] DataChg();

The “G1” do not accept dc between events “evstart” and “evend”. These
two events model that the precondition evaluation needs to acquire the global
data exclusive lock. The data operations and precondition evaluations are
mutual excluded to each other. This is modeled by the process “GMul” as
follows.

GMul() = dcstart → dcend → GMul() []
evstart → evend → GMul();

Each data operation synchronizes on “dcstart” before accessing shared vari-
ables and synchronizes on “dcend” after the operation ends. At the end of the
data operation, it sends out the dc notification. If the process “G1” has not
visited the “CBranch” branches, it synchronize the dc and restart the pre-
condition evaluation. We use a process “Alt” to model there are always some
processes trying to set the variable b to true and some others trying to set it

22 Huiquan Zhu et al.

to false. An “OutSys” process simulates at any time there may be some other
event happening.

AT () = dcstart → atomic{dt{b = TRUE} → dc → Skip};
(dcend → Skip);

AF () = dcstart → atomic{df {b = FALSE} → dc → Skip};
(dcend → Skip);

Alt() = (AT () [] AF ()); Alt();
OutSys() = os → OutSys();

With above four parts of model, the CSP# model of the C# implementa-
tion of IFA, denoted as M 1m, is presented in following.

M 1() = Alt() || GMul() || G1() || OutSys();
M 1m r() = start{b = FALSE} → M 1();
M 1m() = M 1m r()\{evstart , evend , dcstart , dcend};

The origin CSP# IFA model, “G0”, is straightforward. Only an extra
branch is added to allow the dc event to happen. With the same processes
“Alt”, “GMul” and “OutSys”, the process “M0m” is modeled as follows.

G0() = (ifa(b == TRUE) {CBranch(0)}
else {CBranch(1)}) [] (dc → G0());

M 0() = Alt() || GMul() || G0() || OutSys();
M 0m r() = start{b = FALSE} → M 0();
M 0m() = M 0m r()\{evstart , evend , dcstart , dcend};

Both “M0m” and “M1m” hide the events “evstart”, “evend”, “dcstart”
and “dcend”. These events are not in the trace of the IFA operator and they
are only used to avoid data race. Using the refinement checking in PAT tool,
we get the desired result that “M0m” and “M1m” are equivalent on their
traces.

#assert M 0m() refines M 1m();
#assert M 1m() refines M 0m();

4.3 The Model Level Equivalence

As we have proved that the operators in “PAT.Runtime” library generate
the equivalent visible trace as their corresponding CSP# operators. At the
process and model level, we will prove the generated C# program at runtime
is a bi-simulation of the Labelled Transition System of the CSP# model.

Definition 1 Given two LTS L0 = (S0, Σ,−→0, s0) and L1 = (S1, Σ,−→1

, s1), p and p′ are two states from S0 and S1. We say that p and p′ are bi-
simulation of each other (denoted as p ≈ p′) if and only if:

– For all e ∈ Σ if p
e−→0 q , then there exists p′ ∈ S1 such that p′

e−→1 q ′

and q ≈ q ′

From Verified Model to Executable Program – the PAT Approach 23

– For all e ∈ Σ if p′
e−→1 q ′, then there exists p ∈ S0 such that p

e−→0 q and
q ≈ q ′

Two LTS are bi-simulation L0 ≈ L1 if and only if s0 ≈ s1.

In the LTS of CSP# model, a state is represented as (P ,V ,C) and a

transition is represented as (P ,V ,C)
e−→ (P ′,V ′,C ′). Here the valuation V

contains all the globally shared variables in CSP# model. In the generated
C# program, these variables are put in the static fields of the “Glo” class.
The valuation C contains all the cached channel data on the model’s current
state. In the generated C# program, the cached channel data are stored in a
first-in-first-out queue. When the C# program starts, it initializes the values
of these variables and channels. As long as the operation on these variables
and channels are equivalent, the valuation of V and C are equivalent for the
CSP# model and its generated C# program.

The non-communication codes are not allowed to access the shared vari-
ables and channel buffers. Therefore, only the message passing communications
and data operation codes may change the values of V and C . In the generated
C# programs, these two kinds of codes come from our code generation tool.
And in CSP#, the embedded event-attached programs are in a subset of C#
language. In the supported C# statements, they share the same operation
semantics (except the remainder operator “%”). In this way, if the process ex-
pression P in the CSP# model and the generated C# program are equivalent,
and the operator level guarantee the atomicity of the message passing com-
munications and data operation codes, the state (P ,V ,C) will be equivalent.
In the rest of this section, we discuss the equivalence on process expression P .

In the generated C# program, the labeled transition
e−→ is one thread

running one or more statements but at most one of these statement is event

synchronization or channel read/write operation. The success transition
X−→

is a successful termination of a process or subprocess.
Given a process expression ε, the LTS with ε is denoted as Mε. We use η

to denote the generated C# program from ε. The LTS of the generated C#
program is denoted as Cη.

Theorem 1 The LTS of the η is bi-simulation of the LTS of origin process
ε. i.e. Mε ≈ Cη.

Proof: As the operator level equivalence is validated in CSP# models, the
proof focuses on the generated C# program have the same possible transitions
as in the CSP# model. We make a structural induction on the CSP# process
definitions. Currently, the code generation tool supports the following CSP#
operators in the process definition.

P = Stop | Skip | e → P | e{prog} → P

| ch!x → P | ch?x → P | [b]P

| if (b){P}else{Q} | P ; Q | P []Q

| P ‖ Q | P ||| Q

24 Huiquan Zhu et al.

ε = Stop: CSP# defines Stop to have no transition out. The implemen-
tation of Stop in “PAT.Runtime” is to block the thread forever. It will not
perform any transition, so MStop ≈ CStop

ε = Skip: In CSP# model, Skip = X → Stop. The implementation of
Skip in “PAT.Runtime” is to exit the “Skip.run()” method. Nothing will be
performed after the exit. Obviously, this means first successfully exit the Skip
and have no transition after that, i.e. CSkip = X→ CStop . As MStop ≈ CStop ,
so we have MSkip ≈ CSkip .

ε = e → Q : In LTS of CSP# model there is only one transition
e−→from

Mε to MQ . The generated C# program η is shown in Figure 9(a). The “run()”
method will first run to the method call to engage event operator e. Executing
the “exec()” method of the operator will either block the thread till the event
becomes enabled, or engaged e if it turns to enabled by this call. As the non-
communicating code cannot change the control flow of the “run()” method to
skip this method call, we get the generated C# program η always executes
the engagement of e before it goes to call the “Q.run()”. Because “exec()”
of e is the corresponding critical section of e in the CSP# model, assuming
“Q.run()” is bi-simulate to MQ (by the induction base), we get the Mε ≈ Cη.

���

���

������������	

����	��

����
������

�
��
�
��������	

�
���	��

������	���

�
���	��

�����������������	

���
�

���
�

����	�� ����	��

���
�

���
�

�����������	

���

���

����	��

����	��

Fig. 9 Structure of the Generated “run()” Mehtods

From Verified Model to Executable Program – the PAT Approach 25

Similar results apply to ε = e{prog} → Q , ε = ch!x → Q and ε = ch?x →
Q . Each of them only has one transition from Mε to MQ and this transition
has corresponding single branch C# statements from Cη to CQ ≈ MQ .

ε = Q ; R: The CSP# model behaves like Q until Q ’s successful termi-

nation and behaves as R afterwards. So in Mε, there is one transition
X−→

from the MQ to MR. The generated C# program η is shown in Figure 9(b).
η first executes “Q.run()” and after “Q.run()” successfully returns, it exe-
cutes“R.run()”. The successful return of the “Q.run()” is simulated to X, thus
Cη ≈ Mε.

ε = Q []R: Suppose Q and R each has only one possible first visible event,
denoted as eq and er respectively. According to the CSP# operational se-

mantics, two transitions start from Q []R: (Q []R,V ,C)
eq−→ (Q ′,V ,C) and

(Q []R,V ,C)
er−→ (R′,V ,C). Here Q ′ and R′ are the Q and R processes with

their first events being skipped. The generated C# program for Q []R is a two-
step program, shown in Figure 9(c). The first part is running “select()” on
the choice operator which contains the first event of Q and R. Here eq and er
are the first events of Q and R respectively. The choice operator may engage
eq and return 0 or engage er and return 1, depending on the environment.
The second part is based on this return value, switching to “Q’.run()” if it re-
turns 0, or to “R’.run()” if it returns 1. The “Q’.run()” is starting the “run()”
method of Q but skip the first event of it, so it is bi-simulated to the Q ′ in the
original CSP# model. Same relation holds for the “R’.run()” and the R′. Now
we have two transitions from Cη: one engages eq and goes to CQ′ ≈ MQ′ , the
other engages er and goes to CR′ ≈ MR′ . So Cη ≈ Mε. When Q and R contain
more than one first event, the transition number will be the total number of
the first events of Q and R. The bi-simulation relation holds for the Cη and
Mε.

Similar results apply to ε = [b]Q , ε = if b {Q}else{R} and other ex-
tended conditional operators. They are different on the branch number and
transition number, but all of them are sharing the same structure in their
“run()” method.

ε = Q ‖ R: According to the CSP# operational semantics, Mε has three
sets of transitions {eq , er , eqr}. Here eq is the first events of Q and eq ∈
αQ , eq 6∈ αR; er is the first events of R and er ∈ αR, er 6∈ αQ ; eqr is the
common first events of Q and R, eqr ∈ αQ∩αR. The C# program for Q ‖ R is
shown in Figure 9(d). It first creates new threads and manage the alphabets for
Q and R. The events E = {e | e ∈ αQ∩αR} are expanded and each event in E
will be synchronized by one more process. After the alphabet management, the
threads of Q and R synchronize on the invisible “start” event, then execute
their own “run()” methods. Based on the operator level equivalence, if e ∈
αQ ∩αR and it is the first event of both Q and R, e is enabled. For the cases
that e ∈ αQ and e 6∈ αR, or e ∈ αR and e 6∈ αQ , event e is also enabled.
As for each transition in Mε there are corresponding transition in Cη and vice
versa, we have Mε ≈ Cη.

26 Huiquan Zhu et al.

Similar results apply to ε = Q ||| R as the only difference is on how
to expand the alphabets in “DistributeEvent()”. For the interleave process,
the “DistributeEvent()” will created an alternative event e ′ for each event
e ∈ αQ ∩ αR. The other processes in the model will synchronize to e[]e ′ if
they originally synchronize to e. Subprocess Q will synchronize on original
event e and R will synchronize the alternative one e ′.

Above we have proved that for each case in the supported process defini-
tion, the generated C# program at runtime is bi-simulated to the original LTS
of the CSP# model. �

With this equivalence proved above, the properties on CSP# model will
preserve on the generated C# program. The properties include deadlock-
freeness, reachability on the event, and LTL properties. For the CSP# model
it also allows the formula F defined on the proposition on the global variables.
Currently the generated C# program does not preservation on these formu-
las. The preserved LTL formula F is defined as F = e | �F | ♦F | X F |
F1 U F2 | F1 R F2 .

5 Case Studies

We demonstrate the C# code generation form CSP# model with two case
studies. In the first example, the Turn-Based Game, we demonstrate directly
using the CSP# operators of “PAT.Runtime.dll” in C# program. In the second
example, the Concurrent Accumulator, we first design the concurrent system
model in CSP# then combine the model with user-defined data structures to
generate the C# program.

5.1 Turn-Based Game

The concurrency library “PAT.Runtime” provides the CSP# operators as C#
classes to communicate between threads. From a CSP# model, the program-
mer can use these operators to implement the model with ease. In this section,
we demonstrate the usage of “PAT.Runtime” using a turn-based game pro-
gram as example. In a turn-based game as illustrated in Figure 10, there are
n players connecting to a game server. The server starts the game after all n
players joined. At the beginning of each turn, each player submits his action
to the server. After all players have submitted their actions, the server sends
all the players’ actions to every player in the second half of the turn.

For the responsiveness, there is one client serving one player. A client has
a “send” thread that sends the action to server on each turn. It also has a
“receive” thread that only waits to receive other players’ actions from server.
The server has one “send” thread and one “receive” thread for each client.
The server side “receive” thread receives the action from the client-side “send”
thread while the server-side “send” thread sends the actions to the client-side
“receive” thread. At server-side, a “control” thread checks whether all the

From Verified Model to Executable Program – the PAT Approach 27

�����������

	
���

�����������

����
�
�����

	����

������

	�����

����������

�����������

��
����

���������	��
���

Fig. 10 Turn-based Game Server-client Hierarchy

players have submitted their actions. After all the players have submitted,
this thread will inform all the “send” threads to reveal the actions.

Each pair of “send” and “receive” threads use channel to transmit the
messages. Inside the server or the client, the threads use the event to synchro-
nize the beginning and the ending of each turn. A thread needs to use the
data operation to access the action queue. The “control” thread use the guard
operator to track the number of received action. For example, the server-side
“receive” thread is designed as the following process TbServerReceiveRd .

TbServerReceiveRd(i) =
ctos[i]?i → enqueue.i{num = num + 1}
→ edHalfRound → TbServerReceiveRd(i);

The C# program implements the communication of this process in the “run()”
method of class “TbServerReceiveRd” as follows.

1 : string str = (string)chReceive.read();
2 : GloBase.DataOpBegin();
3 : server .RoundQueue.Enqueue(str);
4 : GloBase.DataOpEnd();
5 : edCanReceive.sync();

The “chReceive” in line 1 is the channel object which links to the client. Af-
ter reading from channel, at line 2 to 4, the program uses the data operation to
put the action to queue “RoundQueue”. At line 5, the thread synchronizes on
the object “edCanReceive”. This event object is synchronized by the “control”
thread and all the “receive” thread at server side.

The major part of the “run()” method of the “control” thread is as follows.

28 Huiquan Zhu et al.

6 : int res = choices.select();
7 : GloBase.DataOpBegin();
8 : output the actions of the current round
9 : GloBase.DataOpEnd();
10 : edHalfRound .sync();
11 : edRoundEnd .sync();

The line 6 represents the waiting on all the player actions to be submitted.
When the “select()” returns, the “RoundQueue” has already contained all the
actions. After the data operation that processes the actions of the current
round (line 7 to 9), the “control” thread synchronizes on “edHalfRound” (line
10) to inform the server-side “send” threads to send all the actions to each
players. The “edRoundEnd” event (line 11) represents all the operations for
this round have finished. It is synchronized by the “control” threads and all
the “send” thread at server-side.

After the implementation of client and server threads, they are organized
in the program’s “Main()” method. The program first creates the event and
channel objects, initializes them with the capacity based on the number of
client. The server and client objects are created and linked via these event and
channel objects. At last the “Main()” method use a Parallel object to start
them as follows.

12 : new Parallel(new CSProcess[]
{server , client1, .., clientn})).run();

Compile and run the C# program, the client and server communicate
correctly as desired. In this case study, we can see that with a designed model
in CSP#, it is convenient to implement the model using the CSP# operators
in “PAT.Runtime” library. After initializing the events and channel objects,
the threads can communicate via these objects the same way as those in the
original CSP# model.

5.2 Concurrent Accumulator Development

In the previous turn-based game example, the event objects are manually
created and linked between multiple threads and objects. The developers have
to ensure the control flow do not skip the CSP# operators related statement
in the program. Our code generation tool helps to ease these tedious works
with automatic alphabet management. The generated C# program has a clean
structure that is similar to the origin CSP# model. In this second case study,
we demonstrate the development of a multi-threaded accumulator to calculate
the summation of array concurrently.

The array has n integer elements {d0, d1, .., dn−1}. The elements {d0, .., dn−2}
contain the numbers need to be added to dn−1. The result of the summa-
tion will be stored in dn−1. The program will start m threads to sequen-
tially read the array and add the result to dn−1. After all m threads finished,

From Verified Model to Executable Program – the PAT Approach 29

dn−1 = m

n−2∑
i=0

di . Supposing each of these m threads has a read cache limit

ki , when it finishes reading ki elements, it adds the summation of the ki ele-
ments to the shared array’s n−1 elements and starts a new round on the next
element until it has added all the n − 2 elements.

The program is divided into three parts, each focuses on one aspect of the
program. To avoid data race on the shared array, we use CSP# to model a
reader-writer lock to protect the shared array. To access the data in the array
and output result on screen, a user-defined class “Ldata” is implemented as
a dynamic class library “ldata.dll”. The CSP# model can import this library
and use the “Ldata” object in event-attached programs.

The m threads are modeled as m “adder” processes and their subprocesses
in CSP#. They synchronizes with the reader-writer lock model and access the
“ldata” objects via the data-operation events. The variables in the condition
expression, which control the flow of the model, are stored as the global shared
variables. The startup process “prog” initializes the “ldata” object and the
control variables, then start m “adder” processes and the reader-writer lock
process in parallel. After the m “adder” processes terminate, the model calls
the “print()” method of “ldata” to output the result on screen. The structure
of the design is show in figure 11.

����������	��

����

�����
������

�����

����	
�		�����
����

���	���

����
������
��������

�� ����

��

������

������

����
����

Fig. 11 Concurrent Accumulator Model Overview

The development starts on implementing the “Ldata” class without con-
cerning the concurrency, then uses the reader-writer model to add concurrent
protection to the shared array, the program-wide functionalities are provided
by the “Adder” model. The “Ldata” implementation is quite intuitive so we
start from discussing the development of the reader-writer lock model and the
“Adder” model.

30 Huiquan Zhu et al.

5.2.1 Reader-writer Lock Model

In the reader-writer lock model, we use an integer “noOfReading” to track
how many threads are in reading status and a boolean variable “writing” to
track whether the writing lock is already acquired by some thread. Whether a
thread can enter the lock is protected by a Guarded condition. The prerequisite
for entering reader lock is “noOfReading >M && !writing” and the one for
entering writer lock is “noOfReading == 0 && !writing”. The “Controller”
process ensures once a thread has been chosen to enter the lock, it atomically
tests the prerequisites and set control variables without being interrupted by
other threads.

ReaderHead(i) = [noOfReading < M &&!writing]startR.i
→ startreadop.i{noOfReading = noOfReading + 1; }
→ startRout .i → Skip;

ReaderTail(i) = [noOfReading > 0]endR.i
→ stopreadop.i{noOfReading = noOfReading − 1; }
→ endRout .i → Skip;

Reader(i) = ReaderHead(i); ReaderTail(i); Reader(i);

Writer(i) = [noOfReading == 0&&!writing]startW .i
→ startwriteop.i{writing = true; } → startWout .i
→ endW .i → stopwriteop.i{writing = false; }
→ endWout .i →Writer(i);

Controller() = (startR.0→ startRout .0→ Controller())
[](endR.0→ endRout .0→ Controller())
[](startW .0→ startWout .0→ Controller())
[](endW .0→ endWout .0→ Controller())

...

The process “ReadersWriters” is the parallel of processes “Readers”, “Writ-
ers”, and “Controller”. They form an autonomous component in the system.
The requirement related to the reader-writer lock can be verified on process
“ReadersWriters”. For example, the requirement “when the data is being writ-
ten, no thread shall hold the reader lock. ” is represented as “!(writing ==
true && noOfReading >0)”.

RWReaders() = Reader(0) || Reader(1) || Reader(2);
RWWriters() = Writer(0) ||Writer(1) ||Writer(2);
ReadersWriters() = RWReaders() || RWWriters() ||

Controller();

#defineexclusive!(writing == true&&noOfReading > 0);
#assertReadersWriters() |= []exclusive;
#definesomeonereadingnoOfReading > 0;
#assertReadersWriters() |= [] <> someonereading ;

From Verified Model to Executable Program – the PAT Approach 31

#definesomeonewritingwriting == true;
#assertReadersWriters() |= [] <> someonewriting ;

5.2.2 The Adder Process

The high-level functionalities are added to the program by the “Adder” pro-
cess. Each “Adder” process represents one of the m threads. They use the
“Ldata” object to read and write on the shared array.

As the design, when a thread wants to read the array, it shall synchronize
with the “ReadersWriters” process on startR.i and endR.i events before and
after the read operation respectively. Similarly, before and after the write
operation, the thread’s model shall synchronize the startW .i and endW .i
events as shown following.

startR.i → (read operation)→ endR.i
startW .i → (write operation)→ endW .i

The “Adder” process uses global shared variables to control the flow of the
threads and to store the summation of already read elements. They include
the cur, cnt, gap and accu. The cur indicates which element the thread is
reading; cnt counts how many elements have been read at this round; The gap
is the capacity that the thread can read at one round; The accu stores the
summation of the previous read data from the shared array.

To decide whether the “Adder” process shall terminate, the IF operator
tests the condition “cur[i] <len”, where len equals to n − 1 defined above.

GAdder(i) = if (cur [i] < len&&cnt [i] < gap[i]){
startR.i → s1{accu[i] = accu[i] + ldata.get(cur [i])}
→ s2{cur [i] = cur [i] + 1; cnt [i] = cnt [i] + 1}
→ endR.i → GAdder(i)

};

GWrite(i) = startW .i
→ s3{accu[i] = accu[i] + ldata.get(len); }
→ s4{ldata.set(len, accu[i]); }
→ s5{accu[i] = 0; cnt [i] = 0; }
→ endW .i → Skip;

LAdder(i) = if (cur [i] < len){GAdder(i);
GWrite(i); LAdder(i)};

Adder(i) = addstart{cur [i] = 0; cnt [i] = 0; }
→ LAdder(i);

Using predefined input data, the safety properties can be checked on the
“Adder” process. For example, the “exclusive” property can be checked on a
specific array {d0, d1, .., dn−1}.

32 Huiquan Zhu et al.

5.2.3 Generating the Program

Above we have implemented the user-defined data structure “Ldata”and de-
signed the “ReadersWriters” process and the “Adder” process. Lastly, a “Prog”
process is added to do the initialization of the data, and start the “Reader-
sWriters” process and the “Adder” process in parallel. Choose the “Prog”
as the start-up process, the code generation tool creates the C# project
from the CSP# model. There is one class for each process definition, and
one extra class “Glo” is generated to hold the global shared variables. The
project references to the dynamic libraries “Ldata.dll”, “PAT.Common.dll”
and “PAT.Runtime.dll”. The generated project is ready to be built in Visual
Studio for execution. The “ReadersWriters” part is non-terminating, so the
program does not exit. The “Adder” part performs the calculation, prints
out the results and exit. Examine the source code of each process class, the
“run()” methods have the same structures as the process definition in CSP#
model. The event name can be read on the event synchronization statement.
For example, the statement “evchs[“endRout .i”].exec(); ” represents the event
“endRout.i”. The event name of data-operation is displayed in the comment
right after the entering of data-operation.

// event stopreadop.i
Glo.DataOpBegin();
Glo.noOfReading = (Glo.noOfReading − 1);
Glo.DataOpEnd();

Debugging the program is convenient as the statements in the “run()”
methods can trace back to the operators in the process expression. Other meth-
ods of the process classes are used to manipulate the alphabets and process
parameters. These methods are usually executed before or after the process’
running. The initialization of the program can be substituted to read the real
data in practice. C# code can be added in the “run()” methods of the pro-
cesses. The inserted code shall not have side effect on the shared variables of
the CSP# model. For example, we can insert the C# code to print a message
if the summation in one round is greater than 10 as follows.

public void run()
{

...
// event s1
...
Glo.DataOpEnd();
if(Glo.accu[parai] >10)

{Console.WriteLine(“accu >10”);}
// event s2
Glo.DataOpBegin();
...

}

From Verified Model to Executable Program – the PAT Approach 33

6 Performance Improvement and Evaluation

In this section, we discuss the performance of the implementations of the
CSP# operators in programming languages. Here the CSP# operators are
used to represent inter-thread communications based on monitor. To improve
the performance of the multi-thread programs that implement the CSP# mod-
els, we modify the mechanism of event synchronization for CSP# operators.

In the programming languages like Java and C#, the monitor provides
“mutual exclusion” and “waiting and signaling” between threads. It is a concise
and convenient synchronization tool in shared memory concurrent system. For
the popular CSP libraries, such as JCSP [33], CSP.NET [19] and CTJ [26] etc.,
they use monitor to implement the message passing communication in Java or
C#.

More specific, the CSP processes are represented as threads in the program.
When a process is blocked by an event in the model, the corresponding threads
will be waiting on a monitor object. When the event becomes enabled, the
thread will be notified via that monitor. However, the monitor objects in
program and the events in model are not one-to-one correspondence. A choice
process can nondeterministically wait on multiple events. In the program, the
choice operator corresponds to the monitor that the thread is waiting on. The
first visible events on each branch of the choice operator compose the condition
variable for this monitor to be notified. Suppose a CSP# choice operator is
represented as follows.

P = (e1 → Q1())
[] (e2 → Q2())
. . .
[] (en → Qn());

The process P is waiting on a monitor object and the event set {e1, e2, . . . , en}
is the condition variable of this monitor object.

As the threads in the program are running concurrently, two sets of threads
can engage two events at the same time. This violates the event atomicity
in CSP. To prevent this violation, a global lock is added to ensure that an
event engagement can only happen after the previous event has finished its
engagement. Here the engagement includes the maintenance of the related
monitors and condition variables, which are done by different threads.

Optimizing the cooperation among the global lock, the monitors and the
condition variables shall improve the performance of the inter-thread commu-
nication via CSP operators. In this chapter we investigate the synchronization
of the CSP# operators in the “PAT.Runtime” library. With rearrange the
cooperation between locks and monitors, the duration of the event synchro-
nization is decreased and the communication to signal “the end of the event”
is removed. With the optimization, the running time of the programs using
“PAT.Runtime” are decreased about 40%. It helps the concurrency library

34 Huiquan Zhu et al.

“PAT.Runtime” be more practical for software development with CSP# as
the designing tool.

6.1 Current Synchronization Mechanism

Let us first focus on the current implementation of the CSP event synchro-
nization. This implementation is proposed by Welch et al in [35]. The choice
operator is the basic unit for synchronization. It contains the event set as its
internal variables. A choice operator object has a “choice monitor” that can
be waited and notified. When it starts engagement, it actively acquires or re-
leases the global lock. The major activities of the choice engagement are shown
in Figure 12. For a thread to engage a choice operator, it may go into the 9
activities that are marked as “S1” to “S9” in Figure 12.

�����������
�	
��	�
��

������������

��

�
���

�
������

�
�

����������
� ���!���

�
"

����#�	����
�	
��	�
��

����$�����		
� ���!���

�

���������

�	��%����
������ &���

�
�%�
 ����

��

�
���

�
������

�
�

���#�������
������!����&��

��� '
��!�

 ����
��
�������
��

�

�������

�����������
�	
��	�
��

������������

��

�
���

�
������

�
�

����������
� ���!���

�
"

����#�	����
�	
��	�
��

����$�����		
� ���!���

�

���������

�	��%����
������ &���

�
�%�
 ����

��

�
���

�
������

�
�

���#�������
������!����&��

��� '
��!�

 ����
��
�������
��

�

�������

(��

'

(��

'

Fig. 12 CSP Choice Operator Communication

From Verified Model to Executable Program – the PAT Approach 35

The “S1”, “S4”, “S6” and “S9” are related to the global lock. The global
lock has 3 states: available, enabling and releasing. When the global lock is in
“available” state, any choice operator can get the lock and change it to the
“enabling” state. After the choice finishes trying all the events in its event set,
if a specific event is chosen to be engage, the choice operator can change the
global lock to “releasing” state; if none event is enabled, the choice operator
leaves the lock and the state of it changes back to “available”.

After an event is chosen to engage, the global lock enters the “releasing”
state and the program starts an “ending phase” for the threads related to
this event. In this “ending phase”, the active thread that starts the event
engagement will notify every thread that are waiting on this event. In Figure
12, thread “T2” successfully starts the event engagement and notifies “T1”
to resume its choice engagement. Each thread that is resumed to finish the
engagement needs to conduct two steps, i.e. “S8” and “S9”. On step “S8” the
choice operator removes itself on the events’ waiting list and on step “S9” it
registers on the global lock, informing that it has finished the maintenance.
When all these threads register the finish of the maintenance, the global lock
set itself back to “available” state. This is actually conducted by the last thread
that registers to the global lock.

The event objects work as condition variables in the choice operators. It
has internal management on how many threads this event has to synchronize.
A choice can have two operations on the event object: “enable” and “disable”.

Suppose event e is synchronizing n threads. Let us discuss the event’s
behavior when a choice tries to “enable” event e, if this is not the nth thread
to synchronize e, the event object put the monitor object of the choice in the
waiting list of e, and return false to inform the choice operator that it needs to
wait. If this is the last (nth) thread to synchronize e, the event will be enabled
by this thread. After notifying the previous n−1 threads to resume, the event
return true so this thread knows it can start the “ending phase” and do the
maintenance on remove itself from the waiting list of the other events objects.

The event’s “disable” operation is the only way that the choice operator
remove itself from the event’s waiting list. When the choice calls this operation
on each event in its event set, only the chosen event that is being engaged
returns true, all the other events return false. Based on this return value, the
choice operator knows which event has been engaged.

6.2 Improving the Cooperation among events, choices and global lock

We have discussed the synchronization mechanism of CSP operators in last
section. To improve the performance of this mechanism, we first analyze the
communication in it. Based on the analysis, we propose a simplified coop-
eration mechanism among events, choices and global lock. This cooperation
mechanism is also adapted to support the CSP# operators in “PAT.Runtime”
library.

36 Huiquan Zhu et al.

6.2.1 Analysis the Functionalities in CSP Operator Synchronization

For the cooperation among the events, choices and global lock, we try to
list the functionalities of them and to see whether they need inter-thread
communications.

The event object has a waiting list containing the monitors of choice op-
erators that are waiting on this event. This waiting list may be accessed by
multiple threads concurrently. Therefore, a “mutex” lock is attached to each
event object to protect the waiting list. The “enable” and “disable” operations
on the event object need to acquire this “mutex” lock. Usually they do not
send notification to other threads. Only when the choice operator acts as the
last thread to “enable” the event, it actively notifies other threads that are in
the waiting list of this event.

The global lock ensures no two events can occur simultaneously. When one
event is engaging, it also ensure all the choice operators involved in this event
synchronization will finish their maintenance in the “ending phase”. Different
from the mutual exclusion on event, which happens between different threads
when they want to access the same event, the mutual exclusion enforced by
the global lock happens between any two threads in the program.

In most cases, the choice operator uses the global lock and the event objects
to communicate. As shown in the Figure 12, if it is not the active thread to start
the event engagement, it has to acquire global lock at “S1” and release it at
“S6”. The activities “S2” and “S3” is protected by the global lock. If the choice
is the last one to synchronize on the event object1, the choice operator follows
the route “〈S1,S2,S3,S4,S5,S8,S9〉” and this whole route of activities are
protected by the global lock. On step “S5” it notifies all other choices that are
waiting on the same event ei . As at this moment it has already changed the
state of the global lock to “releasing” on step “S4”, all the other choices are
also protected by the global lock. In other word, when the threads of the other
choices resumes, they equivalently hold the global lock until the lock exit the
“ending phase”.

The choice operator only gives out the global lock between activity “S6”
and “S7”. When the choice operator gets the global lock on “S7”, the global
lock is already in the “releasing” state. Therefore, two kinds of communication
happen on the choice operators. The first case, the choice notifies the other
choices that are waiting on the same event when it successfully starts an event
engagement. This communication happens is not global as it only evolves
the operators that are waiting on the same event. The second case, the choice
registers itself to the global lock in the “ending phase”. This register operation
blocks any other choice operators that want to access the global lock.

1 I.e. the thread running the choice operator is the nth thread to synchronize on the event
object that require n threads to synchronize.

From Verified Model to Executable Program – the PAT Approach 37

6.2.2 Improved Synchronization Mechanism

For a multi-threaded program that uses the CSP operators, the communica-
tions are represented as that when a thread of the program tries to engage a
CSP operator, it waits on other threads, or it actively resumes other threads.
The waiting can occur on two levels. The “global” level waiting occurs be-
tween any two threads that want to access the engagements of operators. The
“local” level waiting occurs between any two threads that want to access the
same event.

The “global” level waiting occurs between operators’ engagements. For con-
venience, we define two routes of steps “〈S1,S2,S3,S4〉” and “〈S1,S2,S3,S6〉”
as “trying phase”. Not like the “ending phase” that includes the operations
from multiple threads, only one operator can be in “trying phase” at any time.
When one operator tries to enter “trying phase”, it may need to wait till an-
other thread to exit its “trying phase”, or wait till multiple threads to finish
their “ending phases”. If the “trying phase” and the “ending phase” can run
concurrently, the waiting between threads will be decreased considerably. Here
the “ending phase” is to ensure the operators to remove themselves from the
waiting lists and the waiting lists are stored in different event objects. We will
investigate the “local” level waiting and the internal data of event objects to
see whether they can make the “ending phase” more efficient.

Before an event object is engaged, the operators can put itself in the waiting
list of the event, or remove itself from it. These operations are at “local” level
and they have already been protected by the “mutex” lock of the event object.
When an operator successfully starts the engagement of an event that needs to
synchronize n operator, the program will be in the “ending phase” on this event
and this block any other operators that want to enter “trying phase”. This
event object will first notify the other n − 1 operators and the “ending phase”
does not finished until all these n−1 operators have done their maintenances.
The maintenances include the operations on this engaged events and the other
unengaged events. That is the main reason that the “ending phase” needs the
protection of the global lock.

To minimize the waiting between the “ending phase” and other operators
that are not evolved in this event engagement, all the operators’ maintenances
are shifted from the individual operators to the operator which is the active
one to start the engagement. After this change, the maintenances previously
in the “ending phase” have already done, thus the “ending phase” can be
removed. To cooperate with this change, the maintenance of the operator is
merged with the step that the operator is notified. The global lock does not
have the “releasing” state any more. The maintenances in previous “ending
phase” will be protected in the “enabling” state of the global lock.

The improved mechanism of the operator activities is shown in Figure
13. Compared to Figure 12, step “S9” is no longer necessary and has been
removed. Step “S8” is not on the route if the choice operator is the passive one
to be notified by another operator. The step is moved to the route when this
choice operator starts the event engagement and becomes the active operator

38 Huiquan Zhu et al.

�����������
�	
��	�
��

������������

��

�
���

�
������

�
�

����������
� ���!���

�
"

����#�	����
�	
��	�
��

����$�����		
� ���!���

�

���������

�	��%�
 ����
!
��		
 ����
��
�������
��

�

�
�&
��!�

 ����
��
�������
��

�

�����#�	����
�	
��	�
��

'��

&

Fig. 13 Improved Choice Operator Communication

to notify other operators that synchronize the same event. The step “S8” now
precedes the step “S5” that sends the notification. It is under the protection of
the global lock. As the step “S5” happens after “S8”, when the other operators
are notified and resumed, the maintenances are already done. They no longer
need to acquire the global lock again.

6.2.3 Adapting the Improved Mechanism to the CSP# Operators

An improved cooperation between event objects, choice operators and global
lock has been introduced on CSP operator implementation. CSP# bases on
classic CSP and provides the shared memory communication in the model. In
Section 3.1.3, we have described the solution to combine the shared memory
communication can message passing communication in the “general choice”
operator. We apply the improved cooperation mechanism CSP# operators to
work with the shared memory communications.

Compared the choice operator in classic CSP, the “general choice” operator
in CSP# has two extra routes related to the “data-change” event dc. The

From Verified Model to Executable Program – the PAT Approach 39

�����������
�	
��	�
��

������������

��

�
���

�
������

�
����

����������
� ���!���

�
"

����#�	����
�	
��	�
��

����$�����		
� ���!���

�

���������

�	��%�
 ����
!
��		
 ����
��
�������
��

�

�
�&
��!�

 ����
��
�������
��

�

��
��#�	����
�	
��	�
��

�����������
��"

����'��
�����'��
 �
�"

�����%�
 ����
!
��		
 ����
��
�������
���

����&
��!�

 ����
��

�������
���

�����#�	����
�	
��	�
��

(��

&

(��

&

(��

&

Fig. 14 Improved CSP# Choice Operator Communication

improved cooperation mechanism of the “general choice” operator is shown in
Figure 14. When the operator has notified the other operators that synchronize
to ei , it checks whether ei has event-attached program. If it has, the operator
does the same maintenances and notifications for the “data-change” event dc.
The two sets of maintenances and notifications, for the event ei and dc, are
safe under the same protection of the global lock.

On the passive route, when the operator is notified by other operator, it
checks whether it has engaged a regular event ei or the “data-change” event
dc. If it engaged dc, the operator needs to go back to beginning, acquiring the
global lock before it proceeds.

40 Huiquan Zhu et al.

Other changes on the CSP# operators are on the buffer management.
The general choice operator needs to have a local buffer if it contains channel
operations in its event set. When the OS schedules the choice operator that
has engaged channel operation, the channel reads the value in the local buffer
instead of the channel buffer. As the local buffer interacts with the channel
buffer in the protection of the global lock, the behavior of the channel is still
consistent with the CSP# semantics.

6.3 Experiment and Performance

We implemented the improved version of the CSP# operators in “PAT.Runtime”
library. To compare the performance, we used the common dining philosopher
model as the benchmark example. Performance of the CSP operators from the
JCSP, the original “PAT.Runtime” and the improved “PAT.Runtime” libraries
are compared. The experiments are performed on a PC running Windows 8
Pro 64 bit edition. It has Intel i7-2670QM CPU and 8 GB RAM. The JCSP
library version is “jcsp-1.1-rc4”. The Java programs are running on JVM of ver-
sion “1.7.0.21”. The C# programs are running on .NET Framework 3.5. The
JCSP library and the original “PAT.Runtime” library are using the synchro-
nization mechanism described in Section 6.1. The operators in the improved
“PAT.Runtime” library use our improved mechanism in Section 6.2.2.

For the forks and philosophers in the example, each of them is running
as a thread in the programs. They synchronize on the “get” and “put” event
objects. These event objects are initialized in the “Main()” methods and dis-
tributed to the fork and philosopher threads. The “Main()” method starts all
the fork and philosopher threads and waits the ends of all these threads. The
running time is the duration (in milliseconds) from these threads’ starts to the
ends of them, as shown in Table 3.

Loop
2-philosopher 3-philosopher 4-philosopher

JCSP CSP# Improved JCSP CSP# Improved JCSP CSP# Improved

1,000 136 188 85 212 256 118 275 650 265

10,000 1207 1041 665 1988 2021 977 2650 6637 2347

100,000 12144 9818 5814 19566 20842 9985 26734 62339 20654

Table 3 Performance Comparison between JCSP, CSP# Operator and Improved Operator

The program using JCSP has comparable running time as the one using
original “PAT.Runtime” library. When there are fewer threads, the program
using of original “PAT.Runtime” runs faster than the one using JCSP. But
when the number of threads increases, the program using JCSP has better
performance. This may related to the differences between thread scheduling
mechanism in Java virtual machine and .NET Framework. The program using
improved “PAT.Runtime” library has the best performance among the three
programs. On the 2-philosopher case, it saves about 44% running time as the
one using original “PAT.Runtime” library. When the number of threads goes

From Verified Model to Executable Program – the PAT Approach 41

up, the saved time on the communication between threads for the improved
mechanism also increases. On the 4-philosopher case, the program using im-
proved library save about 64% running time on average. Compared to the
program using JCSP library, the one using improved “PAT.Runtime” shows
better performance even when the number of threads is increased. On average,
it saves about 45%, 48% and 13% of running time to the one using JCSP for
the 2, 3 and 4-philosopher cases.

Loop
Two-Thread Three-Thread Four-Thread

Coded CSP# Improved Coded CSP# Improved Coded CSP# Improved

1,000 29 60 36 18 39 24 30 93 67

10,000 138 251 160 161 355 207 351 929 787

100,000 1299 2475 1586 1522 3520 1972 3417 9480 7993

Table 4 Performance Comparison between Hand-Coded, CSP# Operator and Improved
Operator

Table 4 compares the performances among the hand-coded program, the
program using the “PAT.Runtime” and the one using improved “PAT.Runtime”.
All three programs implement the multiple threads in synchronizing with each
other on a single event. Only when all the threads wait on this event can they
finish the synchronization and go to next loop. On each loop these programs
synchronize on the event once. The hand-coded program uses the “monitor” to
communicate between threads. The CSP# and the improved CSP# programs
use the CSP# event to synchronize.

From the table we could observe that the program using the improved
“PAT.Runtime” library saves much running time compared to the one using
the original “PAT.Runtime” library. The percentage of the saved time does
not increase but drop in this case. The reason is that the choice operators
in this experiment only contains one event, while the choice operators of the
“fork” in previous example have more events in the event set. The hand-
coded program still has the best performance. Compared to the one using
the original “PAT.Runtime” library, the running time of the program using
improved library is much closer to the hand-coded one.

For the popular programming languages such as Java and C#, the inter-
thread communications are based on shared memory communication. We an-
alyzed the classic solution that implements CSP message passing communica-
tion on the shared memory communication in these languages. Based on the
synchronization mechanism in this solution, we proposed our improved CSP
operators’ synchronization mechanism.

In the improved synchronization, the data maintenances on related oper-
ators are merged to one operation and it is carried out by the operator that
activates the event engagement. With related modifications on the operations
of the events and global lock, the original “ending phase” of the engagement
is removed to avoid unnecessary mutual exclusions. This improved mecha-
nism is adapted to support the CSP# operator and is implemented in the

42 Huiquan Zhu et al.

“PAT.Runtime” library. The experiment results show that the performance of
the improved mechanism is much better than the original mechanism.

The improved mechanism uses the active operator to access the data of
other operators. This requires the operators’ data be shared by the whole
program. As the alphabets of the CSP and CSP# models are global already,
they can also be safely shared in C# programs. The improved mechanism only
needs the operators have one extra variable to caching the data being commu-
nicated. Hence, this can be regarded as space-time tradeoff. Similar technique
may be extended to apply on the multi-process and network situations.

7 Related Work

JCSP [33, 34] provides CSP operators in Java. It hides the built-in Java con-
current features, such as mutex and monitor. Instead of using the explicit
synchronizations, the Java program shall only rely on the JCSP library to
communication between different components. JCSP supports nondetermin-
ism and fairness concepts via the “Alternative” class. Furthermore, JCSP adds
two concepts, poison and immunity, to channel. The Java programs can use the
poison operation to chain-terminate the components that have communication
with an already terminated component. The program can also assign different
immunity levels on different channels to control how the poison spread in the
program. The poison only spreads when the immunity level of the channel is
less than the poison strength.

In [35] the authors proved that the operators of JCSP are equivalent to the
ones in classic CSP. With these CSP operators, the developer can implement
a CSP model in Java with ease. However, when these operators are used in the
program, the operation atomicities of the program are hidden in the program
structures, making it difficult to check whether the properties of the CSP
model are preserved in the implemented program.

Similar to JCSP, CTJ [11,26] provides the CSP operators in multi-threaded
Java programs. It replaces the OS scheduler to provide more flexibility. JC-
SProB [36, 37] apply JCSP’s idea to provide the operators for the B+CSP
model. JACK [7] is another CSP framework for Java program. C++CSP [3–5]
provides CSP operators in C++ language. CSP.NET [19] implements the
JCSP like operators in .NET framework.

Some modern program languages integrate CSP concepts, in the language
itself or by external libraries. For example, Occam [15] provides named chan-
nels, parallel and choice operators for process communication. PyCSP [2]
brings CSP to Python via external library. The Go language [27] also uses
CSP style channels for synchronization.

In [16,17] the author proposed an approach which assigns the user-defined
functions to CSP events. Different from other approaches, it uses explicit simu-
lator to manage the concurrent model. As the concurrency are separated from
the program’s sequential part, this approach allow the model be verified on
the concurrent aspect of the program.

From Verified Model to Executable Program – the PAT Approach 43

CSP++ [8–10] is a framework that uses CSPm in design phase and gen-
erates C++ source code from the CSPm model. The properties of the CSPm
model are verified by FDR model checker. The validated CSPm models can
be automatically translated to C++ program as the concurrent control layer.
After the functionality codes are implemented in C++, CSP++ framework
weaves the control layer and the functionality codes into the final program.
CSP++ implements a subset of CSPM , but the validated properties of the
CSPM model preserves in the weaved program. However, the properties are
based on the concurrent CSPM model and do not access the functionality
codes.

In [11], Hilderink proposed a graphical notation of CSP. Based on this no-
tation, gCSP [6] provides a graphical tool to design model in CSP diagram.
The design model in gCSP can also generate code in Occam and C languages.
However, there is no formal guarantee between the generated C program and
its CSP diagrams. Our approach integrates the code generation with the PAT
model checking framework by providing formal semantics of the CSP# lan-
guage into the runtime library of the model checker. A code generation tool
was built on top of PAT to automatically transform verified CSP# models
into executable multi-threaded C# programs. This approach further extends
the already-popular PAT model checking framework with code generation fa-
cilities.

8 Conclusion

In this paper, we tackled the problem of automatic generation of executable
programs from verified formal models. We applied our approach to the CSP#
language in the PAT framework into corresponding C# programs. We first
investigated the differences between the CSP# specifications verified by the
model checker and the C# program running in the target platform. With these
concerns in mind, we chose to emphasize on the trace semantic to define the
equivalence between CSP# model and the C# program. Based on the trace
equivalence, we designed the “PAT.Runtime” library to provide the CSP#
operators in C# programs. The basic event synchronization in the library
makes use of the monitor class in C#. On top of the event synchronization, we
added the choice layer and precondition layer to implement the general choice
operator of CSP#. The shared memory and message passing communications
are combined in the general choice operator to ensure the C# programs have
the same atomicity as the CSP# models. With the CSP# operators from
“PAT.Runtime” library, the developers can implement the CSP# model in a
similar structure in C#.

By introducing the alphabet as well as shared variable management to
the “PAT.Runtime” library, our code generation tool in PAT automatically
generates C# programs from verified CSP# models. Executing the generated
C# program produces the same possible traces set as the original CSP# model
does. From the operator to the model level, we proved the trace equivalence of

44 Huiquan Zhu et al.

the CSP# model and the C# program. The generated C# program preserves
the verified properties on traces of the original CSP# model.

Two case studies are performed to demonstrate the use of the “PAT.Runtime”
library and the code generation tool. In the turn-based game example, the
CSP# operators and the alphabets are manually managed by developers. In
the concurrent accumulator example, the C# project is automatically gener-
ated from the original CSP# model. The process classes and their alphabets
are managed automatically. In addition, based on the existing implementation
of choice operator, we further improved the synchronization mechanism to
remove the unnecessary communications among these choice operators. The
experiment results show the improved mechanism notably outperforms the
standard JCSP library.

With the “PAT.Runtime” library and the code generation tool, CSP# can
be easily used in the concurrent software development, from the design to the
implementation phases. The representations of the requirement specification,
design and implementation are consistent. Our approach help improve the
efficiency and reliability of software development with formal CSP# modeling.

For the limitation, under the current implementation, the developers need
to manually ensure the non-communication codes do not interfere with the
flow of the communication codes. A better cooperation between our tool and
other development tools is preferable. Fit the current semantics equivalence
with the whole development process shall further improve the consistency and
efficiency of the concurrent software development.

Acknowledgements This work was partially supported by the TRF project “Research
and Development in the Formal Verification of System Design and Implementation”.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press (2008)
2. Bjørndalen, J.M., Vinter, B., Anshus, O.J.: PyCSP - Communicating Sequential Pro-

cesses for Python. In: A.A. McEwan, S.A. Schneider, W. Ifill, P.H. Welch (eds.) The
30th Communicating Process Architectures Conference, CPA 2007, pp. 229–248 (2007)

3. Brown, N.: C++CSP2: A Many-to-Many Threading Model for Multicore Architectures.
Communicating Process Architectures 2007: WoTUG-30 pp. 183–205 (2007)

4. Brown, N., Welch, P.: An introduction to the Kent C++ CSP Library. Communicating
Process Architectures 2003, 139–156 (2003)

5. Brown, N.C.: C++ CSP networked. Communicating Process Architectures 2004, 185–
200 (2004)

6. East, I., Martin, J., Welch, P., Duce, D., Green, M.: gCSP: a graphical tool for designing
CSP systems. Communicating Process Architectures 2004 27, 233 (2004)

7. Freitas, L.: JACK: A process algebra implementation in Java. Ph.D. thesis, Centro de
Informatica, Universidade Federal de Pernambuco (2002)

8. Gardner, W.: CSP++: An object-oriented application framework for software synthesis
from CSP specifications. Ph.D. thesis, Politecnico di Milano, Italy (2000)

9. Gardner, W.: Bridging csp and c++ with selective formalism and executable specifica-
tions. In: Formal Methods and Models for Co-Design, 2003. MEMOCODE’03. Proceed-
ings. First ACM and IEEE International Conference on, pp. 237–245. IEEE (2003)

10. Gardner, W.: CSP++: How Faithful to CSPm. Proc. Communicating Process Archi-
tectures 2005 (WoTUG-27) pp. 129–146 (2005)

From Verified Model to Executable Program – the PAT Approach 45

11. Hilderink, G., Bakkers, A., Broenink, J.: A distributed Real-Time Java system based
on CSP. In: Object-Oriented Real-Time Distributed Computing, 2000.(ISORC 2000)
Proceedings. Third IEEE International Symposium on, pp. 400–407. IEEE (2000)

12. Hoare, C.: Monitors: An Operating System Structuring Concept. Communications of
the ACM 17(10), 549–557 (1974)

13. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International Series in
Computer Science. Prentice/Hall International (1985)

14. Howard, J.H.: Proving monitors. Commun. ACM 19(5), 273–279 (1976). DOI 10.1145/
360051.360079. URL http://doi.acm.org/10.1145/360051.360079

15. Jones, G.: Programming in Occam. Prentice-Hall International London (1986)
16. Kleine, M.: Using CSP for Software Verification. In: Proceedings of Formal Methods

2009 Doctoral Symposium, Eindhoven University of Technology, pp. 8–13 (2009)
17. Kleine, M.: CSP as a Coordination Language. In: Coordination Models and Languages,

pp. 65–79. Springer (2011)
18. Lee, S.J., Dobbie, G., Sun, J., Groves, L.: Theorem prover approach to semistructured

data design. Formal Methods in System Design 37(1), 1–60 (2010). DOI 10.1007/
s10703-010-0099-4. URL http://dx.doi.org/10.1007/s10703-010-0099-4

19. Lehmberg, A., Olsen, M.: An introduction to CSP.NET. Communicating Process Ar-
chitectures 2006, 13–30 (2006)

20. Li, Y., Dong, J.S., Sun, J., Liu, Y., Sun, J.: Model checking approach to automated
planning. Formal Methods in System Design 44(2), 176–202 (2014). DOI 10.1007/
s10703-013-0197-1. URL http://dx.doi.org/10.1007/s10703-013-0197-1

21. Liang, H., Dong, J.S., Sun, J.: Evolution and Runtime Monitoring of Software Systems.
In: SEKE ’07: Proceedings of the 19th International Conference on Software Engineer-
ing and Knowledge Engineering, pp. 343–348. Knowledge Systems Institute Graduate
School, Skokie, Illinois, USA (2007)

22. Liang, H., Dong, J.S., Sun, J., Duke, R., Seviora, R.E.: Formal Specification-based
Online Monitoring. In: ICECCS ’06: Proceedings of the 11th IEEE International Con-
ference on Engineering of Complex Computer Systems, pp. 152–160. IEEE Computer
Society, Washington, DC, USA (2006). DOI http://dx.doi.org/10.1109/ICECCS.2006.
1690364

23. Lin, S.W., Liu, Y., Hsiung, P.A., Sun, J., Dong, J.S.: Automatic generation of provably
correct embedded systems. In: Formal Methods and Software Engineering, pp. 214–229.
Springer (2012)

24. Liu, Y., Sun, J., Dong, J.S.: PAT 3: An Extensible Architecture for Building Multi-
domain Model Checkers. In: ISSRE, pp. 190–199 (2011)

25. Mahony, B., Dong, J.S.: Blending Object-Z and Timed CSP: an introduction to TCOZ.
In: Proceedings of the 20th international conference on Software engineering(ICSE’98),
pp. 95–104. IEEE Computer Society (1998)

26. Schaller, N., Hilderink, G., Welch, P.: Using Java for Parallel Computing: JCSP versus
CTJ, a Comparison. Communicating Process Architectures pp. 205–226 (2000)

27. Summerfield, M.: Programming in Go: Creating Applications for the 21st Century.
Addison-Wesley Professional (2012)

28. Sun, J., Dong, J.S., Jarzabek, S., Wang, H.: Computer-Aided Dispatch System Fam-
ily Architecture and Verification: An Integrated Formal Approach. IEE Proceedings
- Software 153(3), 102–112 (2006). URL http://ieeexplore.ieee.org/iel5/5658/

34486/01645517.pdf?isnumber=34486&arnumber=1645517

29. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and Programs for System
Modeling and Verification. In: Proceedings of the third IEEE International Symposium
on Theoretical Aspects of Software Engineering (TASE’09), pp. 127–135 (2009)

30. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., Étienne André: Modeling and verifying
hierarchical real-time systems using stateful timed csp. ACM Transactions on Software
Engineering and Methodology 22(1), 3:1–3:29 (2013). DOI 10.1145/2430536.2430537.
URL http://doi.acm.org/10.1145/2430536.2430537

31. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Proceedings of the 21th International Conference on Computer Aided Verification
(CAV’09), Lecture Notes in Computer Science, vol. 5643, pp. 709–714. Springer (2009)

46 Huiquan Zhu et al.

32. Sun, J., Liu, Y., Dong, J.S., Sun, J.: Compositional encoding for bounded model
checking. Frontiers of Computer Science in China 2(4), 368–379 (2008). DOI
10.1007/s11704-008-0035-6. URL http://dx.doi.org/10.1007/s11704-008-0035-6

33. Welch, P., Brown, N., Moores, J., Chalmers, K., Sputh, B.: Integrating and extending
JCSP. Communicating Process Architectures 2007 65, 349–370 (2007)

34. Welch, P., Martin, J.: A CSP Model for Java Threads (and Vice-Versa)
35. Welch, P., Martin, J.: Formal analysis of concurrent java systems. Communicating

Process Architectures 58, 275–301 (2000)
36. Yang, L., Poppleton, M.: JCSProB: Implementing Integrated Formal Specifications in

Concurrent Java. Communicating Process Architectures 65, 67–88 (2007)
37. Yang, L., Poppleton, M.: Java implementation platform for the integrated state-and

event-based specification in PROB. Concurrency and Computation: Practice and Ex-
perience 22(8), 1007–1022 (2010)

38. Yuan, L., Dong, J.S., Sun, J., Basit, H.A.: Generic Fault Tolerant Software Architec-
ture Reasoning and Customization. IEEE Transactions on Reliability 55(3), 421–435
(2006). URL http://ieeexplore.ieee.org/iel5/24/35614/01688078.pdf?isnumber=

35614&arnumber=1688078

39. Zhang, J., Liu, Y., Sun, J., Dong, J.S., Sun, J.: Model checking software architecture
design. In: High-Assurance Systems Engineering (HASE), 2012 IEEE 14th International
Symposium on, pp. 193–200 (2012). DOI 10.1109/HASE.2012.12

