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Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics
including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example,
signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue
damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to
scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to:
1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites
that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were ob-
tained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex
and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that
undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less se-
verely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared.
We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions show-
ing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabo-
lites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism.
The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions in-
cluding the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on re-

gional brain metabolism.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Alzheimer's disease (AD) is the most common cause of dementia
and is clinically characterized by a progression from episodic memory
problems to a slow general decline of cognitive function [1]. In 2013,
~44 million of the world-wide population was estimated to be affected
by dementia and a steep rise to ~ 136 million has been predicted by 2050

* Corresponding author at: School of Biological Sciences, University of Auckland, Private
Bag 92019, Auckland, New Zealand.
E-mail addresses: g.cooper@auckland.ac.nz, garth.cooper@manchester.ac.uk
(GJ.S. Cooper).

http://dx.doi.org/10.1016/j.bbadis.2016.03.001

[2]. To date, there are no treatments with proven disease-modifying ef-
fects and AD remains the largest unmet medical need in neurology [1].

AD pathology presents a complex interplay between several bio-
chemical alterations, including changes in amyloid precursor protein
metabolism, phosphorylation of the tau protein, oxidative stress, im-
paired energetics, mitochondrial dysfunction, inflammation, mem-
brane lipid dysregulation and neurotransmitter pathway disruption
[3]. Most of these pathological features can be directly linked to met-
abolic abnormalities and it is now clear that metabolic dysfunction is
an important factor in AD [4]. For example, impaired cerebral glucose
uptake occurs decades prior to the onset of cognitive dysfunction
and is an invariant feature of AD [5]. The well-documented neuro-
toxicity associated with AR42 is thought to participate in impaired

0925-4439/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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neuronal energetics through initiating a cascade of pathological
events; interaction between AP42 and mitochondrial enzymes
leads to increased release of reactive oxygen species (ROS), affecting
glycolysis, the TCA cycle and mitochondrial respiratory-chain activi-
ty through the accumulation of deleterious intermediate metabolites
in the mitochondria [6,7].

As the brain performs diverse functions, ranging from motor-
sensory to behavioral and cognitive regulation [8], a systematic exami-
nation of metabolites is required to elucidate both the diversity and
specificity of metabolic processes, and their alterations in the brain dur-
ing disease processes such as in AD.

Gas-chromatography mass-spectrometry (GC-MS) is one of the
most frequently used metabolite profiling tools and has previously
been applied to serum samples from AD patients. Trimethylsilyl de-
rivatives [9] have seen widespread application in a range of biologi-
cal studies. The method applied here is based on an “untargeted
metabolomics” procedure which gives broad coverage of a range of
common metabolites; it generates reliable measures of relative me-
tabolite levels in groups under comparison.

To our knowledge, there has not been a global GC-MS based me-
tabolite profiling of the human AD-brain reported to date. This may
partly be due to technical challenges in optimizing a GC-MS platform
suitable for such analysis. Another likely reason is the substantial dif-
ficulties in acquiring high-quality human brain tissue required for
such studies. Researchers have suggested that lack of high-quality
translational research on human brain tissue is a major limiting fac-
tor in progressing drug design for disease-modification in AD [10].
Current FDA-approved drugs for AD are based on findings from
post-mortem human brain studies performed more than three de-
cades ago [10].

The Human Brain Bank (HBB) at the Centre of Brain Research
(New Zealand) provides high-quality, well-characterized brain tis-
sue collected under well-controlled conditions [11]. We here report
our systematic examination of changes in metabolites in post-
mortem brains from patients with AD compared to age- and sex-
matched controls with no clinical dementia, using a previously-
published, validated GC-MS-based methodology [12]. Since some
brain regions are more heavily affected by AD than others [13], we
compared and contrasted results from seven functionally-distinct
regions that are considered to be severely affected: hippocampus
(HP), entorhinal cortex (ENT), and middle-temporal gyrus (MTG)
[13,14]; moderately affected: sensory cortex (SCX), motor cortex
(MCX), and cingulate gyrus (CG); along with one control region, cer-
ebellum (CB), which is believed to be relatively spared [15,16].

Here we employed a global GC-MS-based metabolite-profiling
method using a validated approach [12] to measure levels of metab-
olites in the brain tissues of AD patients and controls. This study had
two well-defined goals: to assess AD-associated metabolic distur-
bances of the brain; and to identify metabolites that may be targeted
by new therapeutic approaches. A key outcome of this work resides
in the finding that there are disease-specific metabolomic profiles
that can be readily measured in the advanced stages of AD; it also
points to the existence of cross-regional differences in metabolomic
perturbations in advanced stages of the disease (Braak IV-VI).

2. Materials and methods
2.1. Acquisition of human brains

Whole brains from patients and matched controls were obtained
from the New Zealand Neurological Foundation HBB, in the Centre
for Brain Research, Faculty of Medical and Health Sciences, Universi-
ty of Auckland, Auckland, New Zealand. All procedures were ap-
proved by the University of Auckland Human Participants Ethics
Committee with written informed consent from all families. The
quality of AD-brain tissue acquired by the HBB was uniformly high,

and only that with short post-mortem delay (~4-13 h) was used
for the current study.

2.2. Sampling of human-brain tissue

After receipt into the HBB, brains were dissected under the supervi-
sion of neuroanatomists [17], to ensure accurate identification of each of
the seven brain regions targeted in this study (HP, ENT, MTG, SCX, MCX,
CG, and CB). Tissue samples of 50 & 5 mg were dissected from each re-
gion and stored at — 80 °C until analysis.

2.3. Diagnosis and severity of AD

All AD patients had clinical dementia, whereas controls did not. Con-
trol brains were selected from the HBB by matching for age, sex and
post-mortem delay (Table 1).

Details of individual patients, including cause(s) of death as certified
by post-mortem examination, are summarized in Supplementary
Table 1. A consultant neuropathologist diagnosed or excluded AD by ap-
plying the Consortium to Establish a Registry for AD (CERAD) criteria
[18], and also determined the neuropathological severity by assigning
a Braak stage [16] to each brain (Supplementary Table 1).

24. Tissue extraction

Brain tissues were placed in “Safe-Lok” microfuge tubes (Eppendorf
AG; Hamburg, Germany) and held at — 80 °C until extraction. They then
underwent a Folch-style extraction using a TissueLyser batch bead ho-
mogenizer (Qiagen; Manchester, UK). Briefly, each sample containing
50 4+ 5 mg of brain tissue was extracted in 0.8 ml 50:50 (v/v)
methanol:chloroform, to which a solution of the labeled internal stan-
dards in methanol had been added to achieve a final concentration of
0.016 mg/ml of each internal standard in the extraction solvent (kept
at —20 °C until used). A set of seven isotopically-labeled standards
(citric acid-dg, 'Cg-p-fructose, L-tryptophan-ds, L-alanine-d-, stearic
acid-dss, benzoic acid-ds, and leucine-d,g), purchased from Cambridge
Isotopes Inc. (Tewksbury, MA), were used in this study. Extraction
was performed for 10 min at 25 Hz with a single 3-mm tungsten carbide
bead per tube. Samples corresponding to the same brain region were
handled as single separate batches for this and all subsequent proce-
dures. Separation of phases was achieved by addition of 0.4 ml of
water followed by vortex-mixing (10-15 s) and centrifugation
(2400 g, 15 min). After separation, tissue debris lay at the interface be-
tween the lower (non-polar, chloroform) phase and the upper (polar,
methanol:water) phase containing the target molecules for the current
study. For each batch, extraction blanks were prepared by processing
tubes containing solvent and bead, but no tissue sample. This procedure
produced clean polar extracts with low levels of lipid and protein con-
tent, which are known otherwise to cause response-instability in the
GC-MS method.

Table 1

Group characteristics.
Variable Control AD
Number 9 9
Age (£SD) 70.1 (+6.7) 703 (£7.1)
Male sex, n (%) 5 (55.6) 5(55.6)
PMD (h) 9 (5.5-13.0) 7 (4.0-12.0)
Brain weight (g) 1260 1062*

(1094-1461) (831-1355)

Values are: age, mean (SD); post-mortem delay (PMD) and brain weights, median (range):
*P = 0.005 compared with Control; all other differences were non-significant
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2.5. Sample preparation

Chloroform in extraction tubes was removed using a 500-ul HPLC
syringe (Sigma Aldrich, MO). Tubes were then centrifuged (16,000 g,
15 min) to encourage tissue debris to form a coherent pellet. From
the methanol:water supernatant, 200-ul aliquots were transferred
to pre-labeled tubes containing 600 pl of methanol, to precipitate re-
sidual protein. A quality-control (QC) pool was made by combining
200-pl aliquots from each extraction. The pooled samples were gent-
ly mixed and 200-pl portions dispensed into tubes containing 600 pl
of methanol. Both sample and QC tubes were centrifuged (16,000 g,
15 min) and 750-pl aliquots were transferred to a final set of pre-
labeled tubes which were processed to dryness in a Speedvac centrif-
ugal concentrator (~30 °C, 16-18 h: Savant; SPD331DDA, Thermo
Scientific). Dried residues were held in sealed tubes at 4 °C for up
to one week (shown to be stable for eight weeks for serum previous-
ly stored) until derivatization for GC-MS analysis.

2.6. GC-MS analysis

Methyloxime/trimethylsilyl derivatives were prepared by a two-
step procedure. GC-MS analysis was performed using an MPS2
autosampler (Gerstel; Miilheim an der Ruhr, Germany), a 7890A Gas
Chromatograph with Split/Splitless inlet (Agilent; Santa Clara, CA),
and a Pegasus HT time-of-flight mass spectrometer (LECO; Stockport,
UK). The approach was based on our previously described method [12].

Gas chromatography was performed using an Agilent/J&W DB-
17MS column (30 m x 0.25 mm x 0.25 um; Agilent: #122-4732)
with a 3-m deactivated Fused Silica retention gap (0.25 mm; Agilent:
#No 160-2256-10), and helium carrier gas (1.4 ml/min, constant
flow mode). 1-pl sample injections were made in Pulse Splitless
mode at an inlet temperature of 270 °C, using an “empty, hot-
needle” technique. The initial column temperature (50 °C) was
held for 6 min and then increased to 300 °C at 10 °C/min and held
for a further 4 min. This resulted in a total cycle time of 42 min between
injections. After an initial 450-s solvent delay (to allow solvent and re-
agents to elute without damaging the detector), mass-spectral data
were acquired at 10 spectra/s for the range 45-800 Da, detecting a
range of amino acids, sugars, sugar alcohols and organic acids as their
TMS derivatives. Standard 70 eV electron energy was employed, at a
source temperature of 220 °C. Prior to sample analysis, the GC-MS
was prepared for use as previously described [19].

The study was performed in a series of single-batch experiments,
where each specific brain region constituted a batch. Within each
batch, individual cases and controls were randomized, and run in a se-
quence interleaved with injections of the pooled QC samples (one per
four study samples) and extraction blanks (two per batch). A lead-in se-
quence of six QC injections at the start of each batch was used to condi-
tion the chromatographic system. Extraction blanks were inspected
visually to confirm absence of carryover, but not included in subsequent
data analysis.

2.7. Data reduction

Data were prepared using the ‘Reference Compare’ method within
ChromaTOF 4.5 (LECO). Briefly, the software was used to perform a
global peak deconvolution of representative QC samples based on pre-
defined parameters to compile a list of nominated ‘metabolites’, and
search mass-spectral libraries to generate putative identities. Databases
we employed were: the NIST Mass Spectral Reference Library (NIST08/
2008; National Institute of Standards and Technology/Environmental
Protection Agency/National Institutes of Health Spectral Library; NIST,
Gaithersburg, MD); the Golm Metabolome Database (Max Planck Insti-
tute of Molecular Plant Physiology, Potsdam-Golm, Germany); and an
in-house library developed at the University of Manchester [19]. Chro-
matographic retention-time data were available from reference-

standard compounds for a subset of the identities. Within this subset,
matching of both mass spectra and expected retention time(s) was
interpreted to constitute a definitive (D) molecular identification.
Matching of mass spectra and retention time with reported data was
interpreted as confident (C) identification. Matching of mass spectra
only was interpreted as a putative (P) identification.

From the list of nominations, we compiled reference tables compris-
ing expected mass spectra and retention-time windows. These were
then applied as target lists of features to be searched across all the
study samples. As the pooled QC samples should contain all metabolite
features encountered in the experiment, these were suitable candidates
for compilation of reference tables. To provide a robust reference table,
the initial list of nominations was edited to remove ambiguous and low-
quality spectra prior to application. Global deconvolution was per-
formed on several pooled QC injections across the entire experiment
to improve identifications. By displaying these overlaid while editing
the list, reproducible spectra were more readily distinguished from
lower-quality candidates. The same target list was used for all brain re-
gions. A representative chromatogram from the current experiment is
shown in Fig. 1.

2.8. Metabolite abundance reporting

In order to use the edited reference table as a reporting tool, appro-
priate parameters such as mass-spectral match thresholds and tolerable
retention-time deviations (6 s) were specified, and the table initialized
using a pooled QC sample to provide reference m/z peak areas. Im-
proved reproducibility was achieved by the use of internal standard ra-
tios rather than raw peak areas. The most suitable standard was
assigned to each metabolite by determining which internal standard
yielded the lowest variance for a given metabolite across all the QC
injections.

The resulting data for each experiment were compiled into a matrix
of metabolite-intensity data, which was merged with experimental
metadata for visualization and statistical analysis. Although the auto-
mated procedure was highly reliable (estimated return of correct peak
areas for >95% of features measured), data sets were also curated man-
ually to remove possible integration errors which were mostly associat-
ed with metabolites showing non-ideal peak shape.

Analytical data for all the metabolites measured in this study have
been included in Supplementary Table 2. Supplementary Table 3 pre-
sents data concerning metabolites which showed no statistically signif-
icant change in abundance in AD-brain.

2.9. Statistics

The merged metadata were used for data analysis. A principal-
components analysis (PCA) was performed for visualization to confirm
overall data integrity, using SIMCA-P software (UMetrics AB, Umea,
Sweden). Calculation of relative fold-change and statistical analysis
were performed in log space using multiple t-tests (GraphPad Prism
6). Data were considered for multiple-comparison analysis by applying
an FDR (10%) correction. The fold-changes were converted to linear
space for presentation and metabolites identified in =5 samples in
each group have been reported.

3. Results

This study compared results from cases and controls with compara-
ble age, sex, and post-mortem delay between study-groups. Median
brain weight was ~16% lower in AD: median (range) brain weight was
1062 g (831-1355) in AD and 1260 g (1094-1461; P<0.005) in controls
(Table 1). PCA of GC-MS data revealed: 1) excellent class separation in
all brain regions between AD and control samples; 2) greater biological
than technical variation; and 3) absence of run-order effects (Fig. 2).
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Fig. 1. Shown is a GC-MS study of human-brain tissue showing a representative mass chromatogram of an extract of pooled entorhinal cortex. The y-axis has been expanded to allow
visualization of lower-intensity peaks corresponding to the most abundant metabolites (hence the truncated off-scale peaks for lactate and myo-inositol). * Pyroglutamic acid is

known to form from both glutamic acid and glutamine during derivatization for GC-MS.

One control sample (green in Fig. 2) clustered more closely to the AD
samples. The brain from which this sample originated had the lowest
brain-weight (1094 g) among the controls and was assessed as Braak
Stage Il by neuropathological examination (individual No. 6, Supple-
mentary Table 1). On this basis, this control sample was reclassified as
a case of preclinical AD and has been excluded from the subsequent
analysis for reasons of clarity.

Untargeted GC-MS analysis enabled us to categorize 69 metabolite
features per brain region (Table 2 and Supplementary Table 3). 55 fea-
tures were shown to change in at least one brain region (FDR- corrected
multiple t-test, P < 0.05), with individual regions showing between 16
and 33 metabolites identified as significantly changed (Fig. 3).

Those regions thought to be most heavily affected by AD according
to neuropathological examination (HP, ENT, and MTG) and CG showed
more metabolites to be significantly altered (28-33) compared to MCX
and SCX (16-18). This observation may suggest a gradient of metabolic
dysfunction associated with severity of damage. Surprisingly, CB (con-
sidered to be relatively spared in AD) exhibited similar levels of metab-
olite change to MCX and SCX (Fig. 3).

Specific findings of this study identify metabolites from several key
biological pathways, including glucose utilization/clearance and brain
energetics, and urea and amino-acid metabolism (Table 2).

Glycolysis begins with the conversion of glucose to glucose-6-
phosphate (glucose-6P), followed by glucose-6P to fructose-6P. We
found consistent elevation in both glucose and glucose-6P in all brain
regions. Consistent with increased intracellular glucose levels, we also
observed increased amounts of metabolites involved in alternative
pathways for glucose metabolism: namely, the polyol pathway and
the pentose-phosphate pathway. Glucose elevations trended higher in
more severely-affected regions and were generally less marked, al-
though still clearly elevated, in CB.

To cope with its high energy demands, the brain is capable of
switching to alternative fuel sources, including butanediol, (-
hydroxybutyrate and lactic acid. These three metabolites were also
significantly elevated in AD-brain, consistent with alternative fuel
use. We also found increased levels of certain sugars (threitol, xylitol,
and disaccharide not-otherwise-specified) and derivatives (N-
acetylglucosamine, myo-inositol, and myo-inositol-1P). Glycerol
levels were decreased, whereas the phosphate derivative, glycerol-
3P, was increased (Table 2). Increases in fuels other than carbohy-
drates were less apparent in SCX and MCX. We found increased

levels of two TCA cycle intermediates, citric acid and malic acid, in
the heavily-affected regions of AD-brain. While the levels of urea
were dramatically elevated in all brain regions (Fig. 4), the urea
cycle metabolites ornithine and N-acetylglutamic acid were appar-
ently decreased (Table 2).

Amino acids comprised the largest group of metabolites identified
by this study to be altered in AD compared to control brain. There
were no evident changes in the levels of branched-chain amino acids
(Supplementary Table 3). Overall, there tended to be more significant
alterations in the amino-acid levels in more severely affected brain re-
gions. With respect to neurotransmitters and their precursors, 4-
aminobutyric acid (GABA) was decreased in general while the aromatic
amino acids (phenylalanine and tryptophan) were increased in AD-
brain, most consistently in the ENT and MTG (Table 2).

Other significant findings include major decreases in levels of the
nucleobases uracil and hypoxanthine, as well as ethanolamine in AD-
brain. We also found increased levels of 2-hydroxyglutaric acid in AD-
brain.

4. Discussion

This study has identified an extensive range of metabolic perturba-
tions in AD-brain, which lead to a number of interesting possibilities.
Metabolites are not only the building-blocks for biological components
such as proteins and DNA, but are also central to intermediary metabo-
lism which provides energy for cellular process, and for maintenance of
structural integrity of tissues. Furthermore, metabolites can act as sig-
naling molecules with regulatory functions in biological systems [19].
Therefore, systematic study of metabolites can provide important func-
tional information concerning the status of a biological system. To the
best of our knowledge, systematic multi-regional metabolite profiling
of amino acids/neurotransmitters, sugars, sugar alcohols and organic
acids has previously only been performed in biofluids in AD (for exam-
ple, see references [20-24]) and this is the first GC-MS-based metabo-
lite profiling carried out in human brain tissue in multiple brain
regions from AD-cases and controls. The examination and comparison
of seven functionally-distinct brain regions using this metabolic profil-
ing approach is also unprecedented in the field of AD research.

Here, the close case-control matching and short post-mortem delays
have contributed to the quality of our data (Table 1). The observed de-
crease in brain weight in AD is generally consistent with histological
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Fig. 2. PCA-score biplots for seven brain regions showing class separations between
control (blue) and AD (red) cases as demonstrated for each brain region. One control
patient (green) had premanifest disease (Braak Stage II). Tight QC-clustering (crosses) in
each brain region confirms low levels of technical variation throughout these
measurements.

severity [16]. The included cases all had ‘classical’ or ‘usual’ AD as diag-
nosed clinically and by application of the CERAD and Braak criteria and
are therefore representative of the sporadic form of the disease. Apart
from the premanifest sample, which was excluded here from the final
analysis, there were two AD samples (#14 and #16, see Supplementary
Table 1) that appeared as outliers in the PCA plots (Fig. 1). However, no
legitimate reasons for exclusion of the corresponding data were present
in the patient history, and inclusion of these data did not result in qual-
itative change in the outcomes of this study: for example, neither the
significance of the statistical analyses nor the fold-changes were
affected.

Defective energy metabolism is a core component of AD pathology
[25] and impaired brain-glucose uptake, known to manifest decades be-
fore the onset of clinical symptoms of AD, is believed to lie at the centre
of this defect. AD-brains show impaired glucose uptake [26] and

Table 2

Metabolites with altered abundance in AD-brain tissue. Numbers indicate fold-changes
(AD/controls). Changes with P < 0.05 (10% FDR) were considered significant and are
shown here in bold italic font.

Metabolite HP ENT MTG SCX MCX CG CB

Glucose and related metabolites & pentose phosphate pathway components

Glucose (D) 123 93 169 108 80 99 638
Glucose-6-phosphate (D) 59 49 85 48 60 48 38
Sorbitol (D) 34 38 39 50 53 50 46
Fructose (D) 46 48 70 68 70 70 71

Fructose-6-phosphate (D) 1.2 06 53 16 25 77 23

Pentonic acid A (P) 1.1 13 13 12 14 14 13

Pentonic acid B (P) 21 20 19 1.7 17 19 1.7
Arabinose (P) 35 NM 36 35 68 39 NM
Ribose-5-phosphate (D) 08 06 038 1.1 1.1 1.0 09
Erythronic acid (P) 16 18 1.1 1.2 1.2 14 15
Alternative fuel sources

Butanediol (D) 42 43 16 42 93 41 41

B-Hydroxybutyric acid (D) 16 25 1.5 34 18 25 16
Lactic acid (D) 26 05 13 34 73 1.7 06
2-hydroxy-3-methylbutyric acid (P) 7.7 2.3 28 43 25 47 34
Threitol (D) 20 23 18 24 23 24 32
Xylitol (D) 1.7 13 12 12 11 14 1.7
Disaccharide (D) 48 23 32 36 18 1.8 09
N-acetylglucosamine (C) 12 1.1 1.7 14 14 16 28
Myo-inositol (D) 1.1 19 1.1 12 08 07 09
Myo-inositol-1-phosphate (P) 23 20 4.1 1.7 22 39 35
Glycerol (D) 06 07 08 08 07 09 09
Glycerol-2-phosphate (P) 19 16 15 1.7 18 1.6 16
Glycerol-3-phosphate (D) 23 27 14 25 26 18 16
Glyceric acid (P) 13 1.1 28 15 11 26 18
TCA cycle & urea cycle

Citric acid (D) 1.7 21 1.7 1.9 11 1.1 11

Malic acid (C) 1.6 19 24 1 08 1.7 09
Fumaric acid (C) 1.8 13 1.7 1.2 08 14 13
Ornithine (D) 06 06 1.0 07 07 09 03
Urea (D) 65 56 4.7 49 50 53 49
N-acetylglutamic acid (D) 04 08 09 08 07 08 1.0
Creatinine (D) 1.1 1.0 15 10 1.0 12 12
Amino acids

Proline (D) 05 04 05 07 08 08 05

Lysine (D) 05 07 1.1 08 1.1 1.1 03

Glycine (D) 09 07 08 08 07 09 09

Serine (D) 07 06 1.0 07 038 1.0 07
Threonine (D) 08 13 15 1.1 22 14 1.7

Cysteine (D) 20 14 07 10 10 14 09

beta-Alanine (D) 1.2 10 13 1.1 11 1.3 09

Aspartic acid (D) 06 06 0.8 1.0 09 09 038

N-acetylaspartic acid (D) 0.7 0.8 0.7 1.0 09 09 1.0
Glutamic acid (P) 13 1.0 1.0 13 13 13 26
GABA (D) 13 06 05 07 07 09 08

4-hydroxybutyric acid (C) 06 06 1.1 0.8 0.8 0.7 0.7

Phenylalanine (D) 13 12 21 16 18 20 13

Tryptophan (D) 25 22 47 18 32 40 1.1

Nucleosides

Adenine (D) 1.0 1.0 09 10 09 09 17
Uracil (C) 06 05 06 06 05 06 07
Adenosine-5-monophosphate (P) 16 21 1.9 14 NM 24 13

Guanosine (D) 0.7 0.8 28 09 NM 25 16
Hypoxanthine (D) 07 07 07 07 07 08 07
Miscellaneous

Ethanolamine (D) 06 04 05 05 05 06 06
Methyl-phosphate (C) 0.7 04 04 07 06 05 08

Phosphoric acid (D) 1.2 1.1 0.5 08 07 06 09
2-Hydroxyglutaric acid (D) 19 22 19 16 16 18 14
Ascorbic acid (P) 20 17 1.1 1.8 22 16 15

Abbreviations: D, definitive; C, confident; P, putative.

regional impairment of cerebral perfusion [15], which are thought to
be consistent with low brain-glucose levels and cerebral
hypometabolism being responsible for cognitive decline in AD [27].
Here, by contrast, we found robust evidence for marked, pan-
cerebral elevation of free glucose in the AD-brain (Table 2), along with
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Fig. 3. Number of metabolites altered in seven brain regions in AD cases compared with
controls.

ubiquitous elevations in the levels of glucose-6P, sorbitol and fructose:
these findings are consistent with impaired glucose utilization via gly-
colysis coupled to enhancement of alternate pathways of carbohydrate
metabolism, for example the polyol pathway and the pentose-phos-
phate pathway. The localized accumulation of fructose-6P in MTG and
CG points to a block in glycolysis distal to this metabolite in these tis-
sues. Concomitant elevations in both free fructose and fructose-6P
could possibly be linked via the action of ketohexokinase (fructokinase;
E.C. 2.7.1.4) which is known to be expressed in nervous tissue, but this
hypothesis will require experimental testing. The elevations in free
glucose and fructose in the AD-brain tissues measured here have the
potential to exert toxigenic effects, consistent with their actions in dia-
betes mellitus, where they are clearly responsible for organ damage
(for example, in the heart, arteries, kidneys, peripheral nerves, and ret-
ina). These observations are also consistent with reports of decreased
gene expression of glycolytic enzymes in the HP of AD-brain [28,29].

Elevated erythronic acid, previously identified as a major hallmark of
pentose-phosphate pathway defects [30], is further consistent with
abnormal pentose-phosphate pathway function in certain regions of
AD-brain. This finding is consistent with previously reported up-
regulation of the pentose-phosphate pathway in mild cognitive impair-
ment (MCI) that later progressed to AD [22].

The use of alternative fuel sources (other than glucose) is critical
for energy production in the brain during starvation, or when glu-
cose utilization is impaired, as in AD [31]. Apart from the principal
energy-generating substrate, glucose, the brain is also capable of
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Fig. 4. Urea levels in seven brain regions of AD and control brain as measured by GC/MS.
The levels of urea were significantly higher (p < 0.05 in all studied regions) in AD cases
(n = 9) compared to controls (n = 8). The tight grouping of QC values (blue, n = 7)
indicate excellent reproducibility in the methodology. Points represent individual
analyses.

utilizing alternative substrates such as fatty acids and ketone bodies
[32]. Elevated levels of the principal ketone body and its precursor
(p-hydroxybutyrate and butanediol) are consistent with a general
elevation in the availability of these substrates in the AD-brain.
Marked elevation in 2-hydroxy-3-methylbutyric acid, a marker for
lactic acidosis and diabetic keto-acidosis [33], is further consistent
with increased metabolism of ketone bodies in AD. The elevation of
numerous sugars other than glucose, and their derivatives, most sig-
nificantly threitol and myo-inositol-1P, may represent either a com-
pensatory mechanism for defective energetics (as in the case of
ketone bodies) or occur as a result of defective metabolism of these
substrates in the AD-brain, as suggested to be the case for glucose.

Degradation of phospholipids and triglycerides releases fatty
acids and glycerol, the latter of which can be converted to glucose
via the intermediate, glycerol-3P. Decreased glycerol with concomi-
tantly increased glycerol-3P (as well as glucose) in the HP and ENT
may suggest that conversion of glycerol to glucose is favored in
these regions of the AD-brain (perhaps again associated with the
need for extra energy sources).

Glycolysis coupled with the TCA cycle constitutes the major pathway
of energy generation in the brain [34]. As the final common pathway for
substrates such as carbohydrates and fatty acids, which can be trans-
formed into acetyl groups, the TCA cycle is critical for ATP production.
The observed accumulation of TCA-cycle intermediates in heavily af-
fected brain regions (HP, ENT, and MTG) in this study is in line with re-
ported TCA-cycle abnormalities, characterized by decreased activity of
key enzymes, in AD [35].

The urea cycle is critical for maintaining ammonia and amine-
nitrogen homeostasis through its role in amino-acid metabolism, and
impaired urea-cycle activity can lead to hyperammonemia, a major
component of certain classes of acute neurological disturbances [36].

It has been asserted that there is no functional urea cycle in the
brain, and little available evidence for the existence of a functional
urea cycle in the brain has been published to date. However, we re-
cently ascertained by data-base searching, that there is substantive
evidence that all the enzyme-components of the urea cycle are tran-
scribed in the brain tissue, and that all but two of these are also translat-
ed into protein there (data not shown). Data-bases employed for these
studies were as follows: mRNA: BioGPS, GTEx, CGAP, and TAG; and pro-
teomics: Proteomics DB, Pax Db, MOPED, and MaxQB. Urea-cycle en-
zymes for which proteome-level evidence for brain expression is
currently lacking to our knowledge are ornithine carbamoyltransferase
(EC 2.1.3.3) and arginase 2 (EC 3.5.3.1): this lack of evidence could re-
flect low expression levels and may not constitute evidence of absence.
We conclude that the potential presence of urea cycle activity in brain
tissue seems not to have been systematically excluded to date and
that, accordingly, the potential exists that a functional urea cycle, capa-
ble of generating urea from suitable substrates, could be operative in
brain tissue, for example in astrocytes. Further direct experimental evi-
dence for the potential presence of the urea cycle in brain tissue and in
astrocytes, will need to be sought in future experiments.

Here, one of the most striking changes observed in AD-brain was the
marked elevation of urea levels across all regions examined (Table 2,
Fig. 4). By contrast, systemic over-production of urea, leading to elevat-
ed urea levels, for example, in the plasma, is not known to occur in AD.
Urea is generally regarded as a detoxification product formed from am-
monia/ammonium ion and/or amine-nitrogen moieties. However, urea
itself can also be toxic at sufficiently elevated levels, according to sys-
tematic studies of the impact of elevated urea levels in cell-culture
and in vivo rodent models [37]. Our current findings are consistent
with impaired local urea regulation in brain in AD, by up-regulation of
its synthesis and/or defective clearance.

We hypothesize that defective urea metabolism could play a sub-
stantive role in the pathogenesis of neurodegeneration in AD, perhaps
via defects in osmoregulation or nitrogen metabolism that lead to or
cause toxigenic accumulation of urea in the brain. This finding is of
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potential importance, since it indicates that intervention aimed at low-
ering of brain-urea levels, possibly in combination with interventions
targeted at improving cerebral carbohydrate metabolism, could provide
a potential new therapeutic strategy for AD.

Nitrogen derived from amino-acid catabolism can enter the urea cycle
in the form of ammonium ions or glutamate, via transdeamination or
transamination routes. In the transdeamination route, a-ketoglutarate
accepts an amino group from the donor amino acid to form glutamate,
the deamination of which in turn generates ammonium ion for incorpo-
ration into carbamoyl phosphate, which then reacts with ornithine to
enter the urea cycle as citrulline. The formation of carbamoyl phosphate
is catalyzed by carbamoyl-phosphate synthase 1 (EC 6.3.4.16) in the pres-
ence of its allosteric effector, N-acetylglutamic acid.

Here, the observed decrease in both ornithine and N-acetylglutamic
acid and concomitant increase in urea, suggests that mechanisms
other than altered urea cycle activity could also contribute to the ob-
served brain-urea build-up. Other sources of urea may be from de-
toxification of ammonia through the glutamine cycle in astrocytes,
and by transaminase-catalyzed reactions in neurons and astrocytes
involving alanine, aspartate and glutamate. These reactions could
alter the glutamate/glutamine balance, which could help explain
the elevated glutamate levels seen in CG in this study. We note that
other reports of changes in glutamate levels in the AD-brain are con-
tradictory, possibly due to general differences in the measurements
performed in ante-mortem and post-mortem tissue [38,39].

An alternative route of glutamate metabolism is via transamination,
which involves two linked transamination reactions. The first step is
identical to the transdeamination route and the second step involves
oxaloacetate, the oxidized derivative of malate (increased in HP),
which accepts an amino group from glutamate to form aspartate. Ele-
vated ammonia concentrations can impair the malate-aspartate shuttle
[40,41] so the significant decrease in aspartate (here observed in HP and
ENT) is consistent with impairment of the transamination route, possi-
bly as a result of hyperammonemia in the HP. Consistent with our find-
ing, elevated urea and ammonia levels have previously been reported in
CSF from AD patients [42].

The change in amino-acid levels in the AD-brain appeared to be
more closely localized to heavily-affected brain regions. While this
finding is consistent with a previously-proposed association be-
tween impaired metabolic status and amino-acid levels in AD-brain
[43], our findings are further consistent with a gradient of severity
across different brain regions.

Amino acids also play a critical role in the brain through their role as
neurotransmitters and their precursors. Glutamate is not only the main
excitatory neurotransmitter; it is also the precursor of GABA, an inhibi-
tory neurotransmitter. Our current findings of increased glutamate and
decreased GABA levels are consistent with a previously-reported de-
crease in glutamate decarboxylase 1 (GAD1 brain; EC 4.1.1.15), the en-
zyme responsible for conversion of glutamate to GABA in the AD-brain
[44], and increased glutamate in the CSF of patients with AD [42,45].
Gamma-hydroxybutyrate (GHB) is formed primarily from GABA by ce-
rebral neurons [46] and hence decreased GHB is likely a consequence of
decreased GABA.

Aromatic amino acids are precursors for the monoamine (seroto-
nin) and catecholamine (dopamine, norepinephrine, and epineph-
rine) cerebral neurotransmitters, whose biosynthesis is sensitive to
local substrate concentrations [47]. The observed increase in the
levels of aromatic amino acids (phenylalanine and tryptophan)
may be associated with previously-reported neurotransmitter im-
balance, as exemplified by lowered levels of serotonin [48,49], dopa-
mine [49], and norepinephrine [50] in AD-brain. These findings are
also in line with the proposed effect of hyperammonemia (resulting
from urea cycle impairment) on the supply of neurotransmitter pre-
cursors (e.g. tryptophan) across the blood-brain barrier, which al-
ters the cerebral synthesis and catabolism of neurotransmitters
(e.g. serotonin) [36].

Previously, increased levels of phenylalanine have been reported in
the CSF of AD patients [51]. The altered levels of neurotransmitter pre-
cursors found in this study are consistent with either defective neuro-
transmitter synthesis or elevated neurotransmitter degradation in the
AD-brain.

Genomic stability is particularly important in the brain, as neurons
are terminally differentiated and have high metabolic activity resulting
in the generation of large amounts of reactive oxygen species [52]. A
balance in the level of nucleobases/nucleosides is critical for genomic
stability. In this study, levels of the nucleobase adenine, the nucleoside
guanosine, and the nucleotide adenosine-5-monophosphate were
increased (where statistically significant) in regions of the AD-
brain. Interestingly, the catabolic intermediate of purine metabo-
lism, hypoxanthine was decreased significantly in the AD-brain.
Another marked change observed in this study was the decrease in
the nucleobase uracil. The direct effect of lowered uracil levels in
the brain is unknown. However, impaired repair of uracil residues in-
duced by folate deficiency has been suggested to participate in neu-
rodegeneration [53].

Additional changes in metabolites that may also play important roles
in the pathology of AD include ethanolamine, the second-most abun-
dant head group in phospholipids, whose levels were decreased in all
brain regions in this study. This finding could be associated with altered
phospholipid levels in the AD-brain. Elevated 2-hydroxyglutaric acid
levels may also be highly relevant in AD, considering its potential detri-
mental role in the central nervous system, for example as reported in a
patient with hydroxyglutaric aciduria [54].

In summary, the present study has identified widespread metabolic
perturbations in the human AD-brain, including those regions that have
hitherto been considered to be less affected or relatively spared in the
disease process. These metabolic perturbations are of particular interest
as they represent molecular changes that can occur prior to the volu-
metric loss, for example in brain regions such as sensory and motor cor-
tices, and CB, and are therefore likely to comprise an important part of
the early pathogenesis of AD. Several of the identified perturbations
have the potential to exert toxic functions (for example, elevated
brain-urea and brain-glucose levels) and could therefore contribute in-
dividually or in sum to the pathogenesis of neurodegeneration and de-
mentia in patients. One or more of these perturbations could serve as
a potential target for novel therapeutic interventions in AD.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2016.03.001.
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