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CYCLIC COMPLEMENTS AND SKEW MORPHISMS OF GROUPS

MARSTON D.E. CONDER, ROBERT JAJCAY, AND THOMAS W. TUCKER

Abstract. A skew morphism of a group is a generalisation of an automorphism, which
arose from the study of regular Cayley maps, but occurs more generally in the context
of any group expressible as a product AB of subgroups A and B with B cyclic and
A ∩ B = {1}. Specifically, a skew morphism of a group A is a bijection ϕ : A → A
fixing the identity element of A and having the property that ϕ(xy) = ϕ(x)ϕπ(x)(y) for
all x, y ∈ A, where π(x) depends only on x. The kernel of ϕ is the subgroup of all x ∈ A
for which π(x) = 1.

In this paper, we present a number of previously unknown properties of skew morphisms,
one being that if A is any finite group, then the order of every skew morphism of A is less
than |A|, and another being that the kernel of every skew morphism of a non-trivial finite
group is non-trivial.

We also prove a number of theorems about skew morphisms of finite abelian groups, some
of which either simplify or extend recent theorems of Kovács and Nedela (2011). For
example, we determine all skew morphisms of the finite abelian groups whose order is
prime, or the square of a prime, or the product of two distinct primes. In addition, we
completely determine the finite abelian groups for which every skew morphism is an au-
tomorphism; these are precisely the cyclic groups Cn with n = 4 or gcd(n, φ(n)) = 1, and
the elementary abelian 2-groups C2 × · · · × C2.

1. Introduction

In the mid-1900s a number of papers were written about groups expressible as the product
of subgroups of various kinds. Perhaps the most famous is a paper by Itô [8], who proved
that if G = AB where the subgroups A and B are abelian, then G is metabelian (that is,
the commutator subgroup of G is abelian). Also Huppert proved that if G = AB where
A is dihedral and B is abelian or dihedral or a p-group, then G is soluble [6]. Other
contributions to this topic were made by Douglas, Ore, Rédei and Szép, for example.

Decades later, the concept of a skew morphism of a group was introduced, in the context
of regular Cayley maps, which are embeddings of graphs on surfaces that admit a group
of automorphisms acting regularly on the vertices of the embedded graph [11]. Skew
morphisms generalise the notion of an automorphism of a group, and have properties that
make them interesting in their own right.

In this paper we exploit a connection between these two topics, and develop the theory
of both of them further. Our initial motivation was to prove that the ‘kernel’ of a non-
trivial skew morphism is always non-trivial, but this work grew into something larger,
involving a systematic study of skew morphisms and their properties, both in general and
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for some specific kinds of groups, and the results have implications for the structure of
groups expressible as a product AB of complementary subgroups A and B where B is
cyclic. Every such product gives rise to a skew morphism of A, and vice versa, and the
language and theory of skew morphisms make it possible to say much more about such
group factorisations than appears to have been possible in the past.

Given a group A, a permutation ϕ : A→ A of the elements of A that fixes the identity of
A is said to be a skew morphism of A with associated power function π : A→ Z if

ϕ(ab) = ϕ(a)ϕπ(a)(b) for all a, b ∈ A.

Note that ϕ is an automorphism of A if the power function π takes constant value 1. More
generally, the kernel of ϕ is defined as the subset {a ∈ A | π(a) = 1} of A, and denoted by
kerϕ. In the case when A is finite, every skew morphism ϕ is necessarily of finite order,
say m, and then the power function π may be regarded as a function from A to Zm. It is
easy to show that K = kerϕ is a subgroup of A, and the values of π on two elements of A
coincide if and only if they lie in the same right coset of K, but until now, not much more
could be said about the order or the kernel of skew morphisms in general.

Next, let G be a group that is expressible as a product AY of two subgroups A and Y with
A∩Y = {1}. We may call such a group G a complementary product of A and Y . In the case
where Y is cyclic, let y be any generator of Y . Then left multiplication of elements of A by
y gives rise to a skew morphism ϕ of A, given by ya = ϕ(a)yπ(a) for all a ∈ A. Details are
given in the next section, but here we note that the fundamental property ya = ϕ(a)yπ(a)

that provides the connection between complementary products and skew morphisms was
observed as early as 1938, by Ore [16, p. 805].

The importance of skew morphisms in the study of regular maps is now well-established,
but relatively little has been written on the general theory of skew morphisms. In this
paper, we exploit the connection with complementary products and take things much
further, proving a number of new theorems — some about skew morphisms of finite groups
in general, and some for the special cases of abelian and dihedral groups. For example, we
generalise a theorem of Horoševskǐı [7] which says the order of every automorphism of a
finite group of order n > 1 is less than n, by proving the same thing for skew morphisms
in Theorem 4.2. Then as a corollary, we prove that the kernel of every skew morphism
of a non-trivial finite group is non-trivial, in Theorem 4.3. We recognised the latter as a
possibility after computing the skew morphisms of small finite groups (with the help of the
Magma system [1]), and this paper grew out of our attempts to prove it.

This paper also builds on another recent one by Kovács and Nedela [13], in which the
theory of Schur rings was used to prove various theorems about skew morphisms of cyclic
groups. We generalise some of the theorems of [13] and simplify the proofs of others, by
taking a different approach, and making use of our theorem about non-trivial kernel. In
particular, we prove a number of new theorems about skew morphisms of abelian groups. A
key to our approach comes from the fact (which we proved in [3]) that the kernel K of every
skew morphism ϕ of a finite abelian group A is preserved by ϕ. (That does not happen
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for other finite groups.) In the abelian case, if a subgroup N of K = kerϕ is preserved
by ϕ, then ϕ induces a skew morphism on A/N and restricts to an automorphism of N .
These observations prove very useful, and culminate in Theorem 7.5, where we completely
determine all finite abelian groups for which every skew morphism is an automorphism.

We begin by giving some further background on skew morphisms in Section 2, including
their relationship with regular Cayley maps. In Section 3 we explain the connection with
complementary subgroup factorisations G = AY (including the special case where Y has
trivial core in G, which we call a ‘skew product’), and also make some observations about
powers of a skew morphism. We prove our main general theorems about the order and
kernel of a skew morphism in Section 4. Then Sections 5 to 8 are devoted to skew morphisms
of abelian groups, cyclic groups, and dihedral groups; in particular, in Section 7 we consider
the question of which (abelian) groups admit skew morphisms that are not automorphisms.
Finally, in Section 9 we make some observations about the group generated by all skew
morphisms of a given group A.

2. Further background on skew morphisms

Although introduced for finite groups, the concept of skew morphisms can be easily ex-
tended to the case of infinite groups, and so some of the theory we present can be stated
in the context of both finite and infinite groups. Most of the properties in which we are in-
terested, however, depend on the order of the skew morphisms (or the order of the groups)
being finite, and hence we state the finiteness of the order of the groups involved whenever
that becomes an issue.

Even though the definition of a skew morphism seems to be quite a departure from that
of a group automorphism, there is still a strong interaction with group multiplication, and
so skew morphisms share many of the algebraic properties of group automorphisms. For
example, the following gives properties of skew morphisms that are well known to be true,
and were proved in [11]:

Lemma 2.1. Let A be a group, and let ϕ be a skew morphism of A with associated power
function π. Then :

(a) ϕj(ab) = ϕj(a)ϕσ(j,a)(b) where σ(j, a) =
∑
0≤i<j

π(ϕi(a)), for all a, b ∈ A and all j ∈ N,

(b) the kernel K = kerϕ is a subgroup of A,

(c) π(a) = π(b) if and only if a and b lie in the same right coset of K in A,

(d) the set Fix(ϕ) = {a ∈ A | ϕ(a) = a} is a subgroup of A,

(e) the intersection kerϕ ∩ Fix(ϕ) is a normal subgroup of A, and

(f) if A is finite, and ϕ has order m, then

π(ab) ≡
∑

0≤i<π(a)

π(ϕi(b)) ≡ σ(π(a), b) mod m, for all a, b ∈ A.
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Here we note that if the skew morphism ϕ has finite order m, then m is the least common
multiple (LCM) of the lengths of the cycles of ϕ on the group A. We also note that the
cycles of a skew morphism ϕ are often referred to as its orbits instead.

Next, we give the following general fact, which will be useful later:

Proposition 2.2. Let ϕ be any skew morphism of a group A, and let N be a subgroup of
K = kerϕ that is normal in A and is preserved by ϕ (so ϕ(N) = N). Then the mapping
ϕ∗ : A/N → A/N given by ϕ∗(Nx) = Nϕ(x) is a well-defined skew morphism of A/N .

Proof. First, if a ∈ N and x ∈ A then ϕ(ax) = ϕ(a)ϕ(x) ∈ Nϕ(x), since ϕ preserves
N , and so the mapping ϕ∗ is well-defined. Next, let π be the power function of ϕ. Then
we have ϕ∗((Nx)(Ny)) = ϕ∗(Nxy) = Nϕ(xy) = Nϕ(x)ϕπ(x)(y) = Nϕ(x)Nϕπ(x)(y) =
ϕ∗(Nx)(ϕ∗)π(x)(Ny) for all x, y ∈ A, and it follows that ϕ∗ is a skew morphism of A/N . �

Finally in this section, we explain some of the connections between skew morphisms and
regular Cayley maps.

A map is a 2-cell embedding of a connected graph or multigraph Γ on some closed surface,
where ‘2-cell embedding’ means that when Γ is removed from surface, it breaks it up into
regions which are simply-connected (and are called the faces of the map). Each edge of
Γ is associated with two opposite arcs or darts of the corresponding map M , which are
the incident vertex-edge pairs (v, e). An automorphism of a map M is any permutation
of its darts that preserves incidence with the vertices and faces. By connectedness, every
automorphism of M is uniquely determined by its effect on any incident vertex-edge-face
triple (v, e, f), and so the number of automorphisms of M is bounded above by the number
of such triples (which are sometimes called ‘flags’). A general map M is called regular if
this upper bound is attained, however, in the context of orientable maps (embeddings
into orientable surfaces), an orientable map is called regular if the group of all orientation-
preserving automorphisms of M is transitive on the darts of M .

If the underlying graph Γ of the regular map M is simple, and the automorphism group of
M contains a subgroup A that acts regularly (or in other words, sharply-transitively) on
the vertices of Γ, then Γ is a Cayley graph for A, and M is a regular Cayley map for A. In
that case, the subgroup A is complementary to the stabiliser Gv in the automorphism group
G = AutM of any vertex v. In the orientable situation, we can take G as the group of all
orientation-preserving automorphisms of M , and then G has a complementary factorisation
G = AGv, with Gv cyclic (generated by a ‘rotation’ of the darts of Γ emanating from v),
and left multiplication of A by a generator of Gv gives a skew morphism of A.

Another way to define regular Cayley maps is to start with the more general notion of a
Cayley map.

Let A be a group, let X be a generating set for A such that X is closed under inverses and
does not contain the identity element of A, and let ρ be a cyclic permutation of the elements
of X. Then the Cayley map M = CM(A,X, ρ) is a 2-cell embedding of the Cayley graph
Cay(A,X) on an orientable surface, with the property that the local counter-clockwise
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orientation of the set {(a, ax) : x ∈ X} of the darts emanating from every vertex a agree

with the cyclic order induced on X by ρ, namely ((a, ax), (a, axρ), (a, axρ
2
), . . . , (a, axρ

−1
)).

If M = CM(A,X, ρ) is regular (as an oriented map), then it is a regular Cayley map for A.
Moreover, in that case X is an orbit of the skew morphism ϕ described above, and ρ is the
cyclic order induced on X by ϕ; see [17]. Conversely, if ϕ is a skew morphism of A, and X
is an orbit of ϕ that is closed under inverses and generates A, then a regular Cayley map
M = CM(A,X, ρ) can be constructed for A in which ρ is the restriction of ϕ to X.

For more information on regular Cayley maps, see [2, 4, 11] and other references given
there.

It has been recently observed (in [10]) that every skew morphism ϕ preserves the subgroups
generated by its orbits. If an orbit X is closed under inverses, then X gives rise to a regular
Cayley map for the subgroup generated by X. On the other hand, if the orbit X is not
closed under inverses, then X is paired with another orbit X∗ consisting entirely of the
inverses of the elements of X, and then their union X ∪ X∗ gives rise to a Cayley map
M for the subgroup generated by X ∪ X∗, admitting an automorphism group that acts
transitively on vertices and edges of M but has exactly two orbits of equal size on the
darts. Such a Cayley map is called half-regular in [10].

It is important to emphasise here that all of the new theorems in this paper concern skew
morphisms in general, and not just those associated with regular Cayley maps. The class of
all skew morphisms is much larger than that of ‘map’ skew morphisms, and even contains
automorphisms that are not associated with maps. Also there are some facts that are
easy to prove for ‘map’ skew morphisms, or only for automorphisms, but are much more
challenging for arbitrary skew morphisms.

3. Skew product groups

In this section we describe the relationship between skew morphisms of finite groups, and
finite groups that have a factorisation of the form AY where A and Y are subgroups such
that Y is cyclic and A∩ Y = {1}, and then give some applications. The initial part of our
approach (leading up to Proposition 3.1) is similar to a small piece of the approach taken
by Kovács and Nedela in [13].

First let G be any finite group that has such a complementary subgroup factorisation
(with Y cyclic). Note that Y A = AY (= G), since AY is a subgroup of G. Also let y be a
generator of Y. Then for any a ∈ A, we know that ya ∈ Y A = AY , so ya = a′yj for some
a′ ∈ A and some j ∈ Z, both of which are uniquely determined by a. We can now define
functions ϕ : A→ A and π : A→ Z by setting

ϕ(a) = a′ and π(a) = j whenever ya = a′yj where a′ ∈ A and j ∈ Z.

Under this definition, ya = ϕ(a)yπ(a) for all a ∈ A, and it follows that ϕ is a bijection (for if
ϕ(a) = ϕ(b) then yay−π(a) = ϕ(a) = ϕ(b) = yby−π(b), so a−1b = (ya)−1yb = yπ(b)−π(a) ∈ Y
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and therefore a−1b = 1). Also it is easy to see from the identity ya = ϕ(a)yπ(a) that

y(ab) = (ya)b = ϕ(a)yπ(a)b = ϕ(a)ϕπ(a)(b)yj

for some j, which implies that ϕ(ab) = ϕ(a)ϕπ(a)(b), so that ϕ is a skew morphism of A.

Conversely, let ϕ be any skew morphism of a finite group A, with power function π. Then
ϕ is a bijection, and as such, generates a cyclic subgroup Y of Sym(A). We may consider
A as a group of permutations of A, in its action by left multiplication. On the other hand,
for clarity we will let y be the generator of Y induced by ϕ. Note that A is a regular
subgroup of Sym(A), while Y fixes the identity element, and so A ∩ Y = {1} in Sym(A).
Hence in particular, |AY | = |A||Y | = |Y A|. Now from the definition of skew morphism,
for each a ∈ A we have ya = ϕ(a)yπ(a) ∈ AY , and it follows that Y A ⊆ AY in Sym(A).
Then by finiteness (and the fact that |AY | = |Y A|), this gives AY = Y A, and so G = AY
is a subgroup of Sym(A), and hence a group, with a complementary subgroup factorisation
of the type considered earlier.

Note also that in both cases above, the element a lies in K = kerϕ if and only if ya = ϕ(a)y,
or equivalently, yay−1 ∈ A. Hence K is the largest subgroup B of A for which yBy−1 ⊆ A,
namely the intersection A ∩ y−1Ay. Thus we obtain the following:

Proposition 3.1. Let A be any finite group. Then

(a) if G is any finite group with a complementary subgroup factorisation G = AY where
Y is cyclic, and y is a generator of Y , then the rule ya = ϕ(a)yπ(a) (for a ∈ A) defines a
skew morphism ϕ of A with power function π; and conversely

(b) if ϕ is any skew morphism of A of order m, with power function π, then there exists a
finite group G with a complementary subgroup factorisation G = AY , where Y = 〈y〉 has
order m, and in this group ya = ϕ(a)yπ(a) for all a ∈ A.
Furthermore, in either case, kerϕ = A ∩ y−1Ay, and in particular, A is normal in G if
and only if ϕ is an automorphism of A.

In case (b), where the group G is constructed from the skew morphism ϕ, we call G = AY
a skew product group. An alternative construction for it was fore-shadowed in [9].

Here we note that in case (a), the order of the skew morphism ϕ coming from the fac-
torisation G = AY can be less than |Y |, and in that case G is not a skew product group.
For example, if yk is central in G then ϕk is trivial and so the order of ϕ divides k. More
generally, the order of ϕ is equal to the index in Y of its core in G, as we show in Lemma 4.1
below. On the other hand, the skew morphism ϕ of A given by case (a) above is the skew
morphism associated with a regular Cayley map for A if and only if ϕ has an orbit on A
that generates A and is closed under inverses.

Also we note that more than one skew morphism of A can be associated with a comple-
mentary subgroup factorisation AY for G, depending on the choice of generator for Y .
Specifically, if ϕ is the skew morphism associated with the generator y of Y, then for each
i ∈ N we have yia = ϕi(a)yσ(i,a), and in this sense yi is associated with ϕi. It is important
to note that ϕi need not be a skew morphism. We do, however, have the following:
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Lemma 3.2. If ϕ is a skew morphism of the finite group A, then so is ϕi whenever i is
coprime to the order |ϕ| of ϕ. Hence in particular, the inverse of every skew morphism is
a skew morphism.

Proof. If i is coprime to the order of ϕ, then yi generates Y , and so gives rise to a skew
morphism of A, which must be ϕi. �

Lemma 3.3. Let ϕ be a skew morphism of the finite group A, with power function π.
Then ϕi is a skew morphism of A if and only if for every a ∈ A there is some ki,a ∈ Z|ϕ|
such that σ(i, a) = π(ϕi−1(a)) + · · ·+ π(ϕ(a)) + π(a) ≡ iki,a mod |ϕ|. Moreover, when this
happens, the power function of ϕi takes a to ki,a for all a ∈ A, and if kerϕ is preserved by
ϕ, then ker(ϕi) contains kerϕ.

Proof. Most of this follows easily from the fact that ϕi(ab) = ϕi(a)ϕσ(i,a)(b) for all a, b ∈ A.
For the last part, note that if a ∈ kerϕ and kerϕ is preserved by ϕ, then ϕj(a) ∈ kerϕ
and so π(ϕj(a)) = 1 for all j, giving σ(i, a) = 1 + 1 + · · ·+ 1 = i, and then ki,a = 1, which
implies that a ∈ ker(ϕi). �

Finally in this section, we give an example of a skew morphism of the finite non-abelian
simple group A5, obtainable from another simple group PSL(2, 11).

Example 3.4. The group PSL(2, 11), of order 660, has a subgroup A of order 60 which
is isomorphic to A5, and complementary to a cyclic Sylow 11-subgroup Y. Also if y is any
generator of Y then A ∩ y−1Ay is dihedral of order 6. Thus A5 has a skew morphism ϕ of
order 11, with kernel K of index 10, and power function values 1, 2, . . . , 10.

4. Main theorems

The automorphism group of a simple regular Cayley map M = CM(A,X, ρ) for a group
A is a skew product group, obtainable from A and a skew morphism ϕ whose restriction
to X is equal to the rotation ρ ; see [11]. In particular, the order of ϕ is |X|, and the
automorphism group has order |A| · |X|. In this case |X| < |A| because X is a set of
non-trivial elements of A, and therefore the skew morphism ϕ has order less than |A|.
We now generalise this result to all skew morphisms of finite groups, by proving that the
order of every skew morphism of a finite group of order n > 1 is less than n. This also
generalises a theorem of Horoševskǐı [7] which says the same thing for automorphisms. To
prove it, we use this observation:

Lemma 4.1. If G is any finite group with a complementary subgroup factorisation G = AY
with Y cyclic, then for any generator y of Y , the order of the skew morphism ϕ of A is the
index in Y of its core in G, or equivalently, the smallest index in Y of a normal subgroup
of G. Moreover, in this case the quotient G = G/CoreG(Y ) is the skew product group
associated with the skew morphism ϕ, with complementary subgroup factorisation G = AY
where A = AY/Y ∼= A/(A ∩ Y ) ∼= A and Y = Y/CoreG(Y ).
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Proof. Suppose ϕi is trivial. Then yia = ϕi(a)yσ(i,a) = ayσ(i,a) and so a−1yia = yσ(i,a) ∈ Y
for all a ∈ A, and by finiteness it follows that a−1〈yi〉a = 〈yi〉 for all a ∈ A. Thus 〈yi〉 is
normalised by A, as well as by 〈y〉 = Y , and hence by AY = G. Conversely, suppose 〈yi〉
is normal in G. Then for all a ∈ A we have a−1yia ∈ Y , so ϕi(a)yσ(i,a) = yia ∈ aY , and it
follows from the fact that A ∩ Y = {1} that ϕi(a) = a (for all a ∈ A). Thus ϕi is trivial.
Hence the order of ϕ is the smallest positive integer i for which 〈yi〉 is normal in G, or in
other words, the index in Y of CoreG(Y ). The rest follows easily. �

This observation also sheds light on the case of a regular Cayley map M = CM(A,X, ρ)
whose underlying graph is not simple. It is known that such a map M has multiple edges if
and only if the stabiliser Y of the identity vertex in the full automorphism group of M has
non-trivial core; see [2]. In that case, the full automorphism group of the regular Cayley
map is not a skew product, and the order of the automorphism group of the map M can
exceed |A|2. The order of the associated skew morphism ϕ of A is equal to the number of
distinct neighbours of the identity vertex in the underlying Cayley graph (and is therefore
smaller than |A|), rather than the number of edges incident with the identity vertex.

Theorem 4.2. If ϕ is a skew morphism of the non-trivial finite group A, then the order
of ϕ is less than |A|.

Proof. Let G = AY be the skew product associated with ϕ. By the above Lemma, the
core of Y in G is trivial. We can can use a theorem of Lucchini [15] or similar theorem by
Herzog and Kaplan [5] to prove that |Y | < |A|, and the assertion follows.

Lucchini’s theorem states that if P is a transitive permutation group of degree n > 1 with
cyclic point-stabilisers, then |P | ≤ n(n−1). To apply this, we take P to be the permutation
group induced by our group G on right cosets of the subgroup Y , by right multiplication.
The degree is n = |G :Y | = |A|, and since the core of Y in G is trivial, P is isomorphic to
G, and hence Lucchini’s theorem gives |G| ≤ n(n− 1) ≤ |A|(|A| − 1). On the other hand,
|G| = |AY | = |A||Y |, so this implies |Y | ≤ |A| − 1 < |A|.
Similarly, the theorem of Herzog and Kaplan states that if G is a non-trivial finite group
with a cyclic subgroup B of order

√
|G| or more, then B has non-trivial core in G. Applying

this to our group G = AY with B = Y (which we know is core-free in G), we find that

|Y | <
√
|G|, so |Y |2 < |G| = |A||Y |, and again this gives |Y | < |A|. �

Our next main theorem is a consequence of the above:

Theorem 4.3. Every skew morphism of a non-trivial finite group has non-trivial kernel.

Proof. Let ϕ be a skew morphism of the finite group A, with kernel K and power function
π : A → Zm, where m is the order of ϕ. By Lemma 2.1, the number of distinct values
taken by π is equal to the index |A :K|, and therefore |A :K| ≤ m. But also Theorem 4.2
gives m < |A|, and so |A :K| ≤ m < |A|, which implies |K| > 1. �

As an immediate further consequence, we have the following, which extends an observation
made in [11] for skew morphisms associated with regular Cayley maps:



CYCLIC COMPLEMENTS AND SKEW MORPHISMS OF GROUPS 9

Corollary 4.4. Every skew morphism of a cyclic group of prime order is an automorphism.

5. Skew morphisms of abelian groups

We begin with some observations made by us in [3, Lemma 5.1], and we include a copy of
the proof for completeness.

Lemma 5.1. Let A be a finite abelian group, and ϕ be a skew morphism of A, with power
function π and kernel K. Then :

(a) ϕ preserves K setwise ;
(b) the restriction of ϕ to K is a group automorphism of K ; and
(c) for each b ∈ A, the difference π(b)−1 is divisible by the length of every non-trivial

orbit of ϕ on K.
Proof. Let a ∈ K and b ∈ A. Then since A is abelian,

ϕ(b)ϕ(a) = ϕ(a)ϕ(b) = ϕ(ab) = ϕ(ba) = ϕ(b)ϕπ(b)(a),

for all b ∈ A, and so ϕπ(b)(a) = ϕ(a). It follows that either ϕ(a) = a, or π(b) is congruent
to 1 modulo the length of the orbit of a. This proves part (c). Next, we note that the
elements a and ϕ(a) lie in the same orbit O of ϕ, and then since π(b) ≡ 1 mod |O| it
follows that ϕπ(b)(ϕ(a)) = ϕ(ϕ(a)) = ϕ2(a). In turn we find

ϕ(ϕ(a)b) = ϕ(bϕ(a)) = ϕ(b)ϕπ(b)(ϕ(a)) = ϕ(b)ϕ2(a) = ϕ2(a)ϕ(b),

and therefore ϕ(b) = ϕπ(ϕ(a))(b). As this holds for all b ∈ A, we conclude that π(ϕ(a)) = 1,
and therefore ϕ(a) ∈ kerϕ = K, proving part (a). Finally, since ϕ(ab) = ϕ(a)ϕ(b) for all
a, b ∈ K, we obtain (b), namely that the restriction ϕ�K is an automorphism of K. �

The above lemma and the resulting fact that every skew morphism ϕ of a finite abelian
group induces a skew morphism ϕ∗ of the quotient group A/K (see Proposition 2.2) can
be used to recursively determine all skew morphisms of small abelian groups.

For example, a short computation using Magma [1] shows the following:

• C2 has only one skew morphism (namely the identity);

• C3 has two skew morphisms, namely the two automorphisms of C3;

• C4 has two skew morphisms, namely the two automorphisms of C4;

• C2 × C2 (∼= V4) has six skew morphisms, namely the six automorphisms;

• C5 has four skew morphisms, namely the four automorphisms of C5;

• C6 has four skew morphisms: two automorphisms and two others with kernel C3;

• C7 has six skew morphisms, namely the six automorphisms of C7;

• C8 has six skew morphisms: four automorphisms and two others with kernel C4;

• C4×C2 has 16 skew morphisms: eight automorphisms and eight others with kernel C4;

• C2 × C2 × C2 has 168 skew morphisms, all of which are automorphisms.

We can use this to obtain a stronger version of Theorem 4.3:
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Theorem 5.2. If A is a finite abelian group of order greater than 2, then the kernel of
every skew morphism of A has order greater than 2. Equivalently, if the finite group G is a
complementary product AB where A is abelian and |A| > 2, and B is cyclic and core-free
in G, then A contains a normal subgroup K of G with |K| > 2.

Proof. We use induction on |A|. For 2 < |A| < 6, we know that every skew morphism of
A is an automorphism, so the kernel always has order |A|.
For the inductive step, we suppose |A| ≥ 6, and to prove the theorem, we suppose that the
kernel of some skew morphism ϕ of A has order 2. Let π be the power function, and let v
be the non-trivial element of K. Then ϕ(v) = v, since ϕ preserves K. Next let ϕ∗ be the
skew morphism of A/K induced by ϕ, with ϕ∗(Kx) = Kϕ(x) for all x ∈ A, and let L/K
be its kernel. By induction, we can suppose that |L/K| > 2 (since |A/K| ≥ 3).

Now if O∗ is any orbit of ϕ∗, then the length of the corresponding orbit O of ϕ is either the
same as the length ofO∗, or twice the length ofO∗, depending on whether or notO contains
two elements of the form x and vx (where v is the non-trivial element of K). Noting the
way in which power functions are determined by the orbits of the skew morphism, we
deduce that the number of values of the power function π is either the same as the number
of values of the power function of ϕ∗, or twice as many. Hence the index |A :K| is at most
twice the index in A/K of the kernel L/K of ϕ∗. But that implies |A :K| ≤ 2|A :L|, which
is impossible since |L :K| > 2. Thus no such counterexample ϕ exists. �

This can be used to speed up and hence extend the computation mentioned earlier. Again
with the help of Magma [1], we have completely determined the skew morphisms of all
cyclic groups of order up to 60, and all abelian groups of order up to 32. Details are
available from the first author on request.

Next we prove a highly technical lemma that is key to many subsequent theorems.

Lemma 5.3. Let ϕ be a skew morphism of the finite abelian group A, and suppose ϕ has
order m and power function π. Also suppose N is any non-trivial subgroup of K = kerϕ
preserved by ϕ, and let e be the exponent of N , and let ϕ∗ be the the skew morphism of the
quotient group A = A/N induced by ϕ. Then :

(a) if b is any element of A for which b = Nb lies in the kernel of ϕ∗,
then eπ(b) ≡ e mod m, and in particular, if gcd(e,m) = 1 then b ∈ K;

(b) if K 6= A (so that ϕ is not an automorphism of A), then m has a non-trivial
divisor in common with e; and

(c) if µ = ϕk, where k is the order of ϕ∗, then µ is a skew morphism of A,
with K = kerϕ ⊆ kerµ.

Furthermore, if N is cyclic of prime order p, then :
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(d) µ�N is exponentiation by some unit r mod p,

(e) if r has order j > 1, then µ has order j, while

(f) if r ≡ 1 mod p, then µ has order 1 or p, and

(g) if also A/K is cyclic, and µ is trivial on N but non-trivial on A, then µ has order p,
and the power function πµ of µ is a homomorphism from A to Z∗p, with
N ⊆ K = kerϕ ⊆ kerµ = kerπµ.

Proof. First let c be any element of A. Then since b lies in the kernel of ϕ∗, we have

Nϕ(bc) = ϕ∗(Nbc) = ϕ∗(bc) = ϕ∗(b)ϕ∗(c) = ϕ∗(Nb)ϕ∗(Nc) = Nϕ(b)Nϕ(c) = Nϕ(b)ϕ(c).

It follows that ϕ(b)ϕπ(b)(c) = ϕ(bc) = wϕ(b)ϕ(c) for some w ∈ N, and so ϕπ(b)(c) = vϕ(c)
for some v ∈ N. Then letting u = ϕ−1(v), which lies in N (since ϕ preserves N) and hence
in kerϕ, we find ϕπ(b)(c) = ϕ(u)ϕ(c) = ϕ(uc), and so ϕπ(b)−1(c) = uc.

Also since A is abelian, we have

ϕ(b)ϕ(u) = ϕ(u)ϕ(b) = ϕ(ub) = ϕ(bu) = ϕ(b)ϕπ(b)(u),

and therefore ϕπ(b)−1(u) = u. It follows that

ϕ2(π(b)−1)(c) = ϕπ(b)−1(ϕπ(b)−1(c)) = ϕπ(b)−1(uc) = ϕπ(b)−1(u)ϕπ(b)−1(c) = u(uc) = u2c,

and by induction ϕeπ(b)−e(c) = ϕe(π(b)−1)(c) = uec.

But N has exponent e, so ue = 1, and thus we obtain ϕeπ(b)−e(c) = c, which proves that
eπ(b)−e is divisible by the length of the orbit of c.

It follows that e(π(b)−1) = eπ(b)−e is divisible by the LCM of the lengths of the orbits of
ϕ, which is its order m. Finally, if e is coprime to m, then from eπ(b) ≡ e mod m it follows
that π(b) ≡ 1 mod m, so that b ∈ K. This proves part (a), and hence also part (b).

Next, let b, c ∈ A. Then µ(bc) = ϕk(bc) = ϕk(b)ϕσ(k,b)(c) = µ(b)ϕσ(k,b)(c) where σ(k, b)
is independent of c; see Lemma 2.1. This gives ϕσ(k,b)(c) = µ(b)−1µ(bc), which must lie
in the same coset of N as b−1bc = c, since µ is the identity on A/N . Thus we have
Nϕσ(k,b)(c) = Nc for all c ∈ A, so ϕσ(k,b) acts trivially on A/N . Hence σ(k, b) is divisible
by k, for all b ∈ A, and so Lemma 3.3 tells us that µ is a skew morphism of A, with
kerϕ ⊆ kerµ (by Lemmas 5.1 and 3.3). This proves part (c).

Now suppose N is cyclic of prime order p. Then ϕ �N is an automorphism, and hence is
exponentiation by some unit r mod p. For any c ∈ A, since µ is trivial on A/N we know
that µ(c) = ac for some a ∈ N , and then an easy induction gives

µi(c) = µi−1(a)µi−2(a) . . . µ(a)ac = ar
i−1+ri−2+···+r+1c for all i.

If c is not fixed by µ, then a 6= 1, so the length of the µ-orbit of c is the smallest i for which
ri−1 + · · ·+ r+ 1 ≡ 0 mod p. When r = 1, the smallest i (and hence the orbit length) is p,
while if r 6≡ 1 mod p, then since ri− 1 = (r− 1)(ri−1 + · · ·+ r+ 1) ≡ 0 mod p, the smallest
i is the order j of r as a unit mod p. This proves (d), (e) and (f).
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Finally, for (g) we suppose r = 1 but µ is non-trivial, and also suppose that A/K is cyclic.
Let c be any element of A for which the coset Kc generates A/K, and again suppose
µ(c) = ac where a ∈ N . Then µi(c) = aic for all i (since µ fixes a ∈ N). Next, let s = πµ(c),
where πµ is the power function of µ. Then µ(c2) = µ(cc) = µ(c)µs(c) = acasc = as+1c2.

More generally, if µ(cj) = as
j−1+ ···+s+1cj, then µs(cj) = as(s

j−1+ ···+s+1)cj, and so

µ(cj+1) = µ(ccj) = µ(c)µπµ(c)(cj) = acµs(cj) = acas(s
j−1+ ···+s+1)cj = as

j+ ···+s2+s+1cj+1,

and hence by induction this holds for all j. On the other hand, also

µ(cj+1) = µ(cj)µπµ(c
j)(c) = as

j−1+ ···+s+1cjaπµ(c
j)c = aπµ(c

j)+sj−1+ ···+s+1cj+1,

and therefore aπµ(c
j) = as

j
, so πµ(cj) ≡ sj mod p, for all j. But Kc generates A/K, so

every element of A is of the form bcj for some b ∈ K, and then since K ⊆ kerµ, we find
that πµ(bcj) ≡ πµ(cj) ≡ sj mod p as well. Thus πµ is a homomorphism from A to Z∗p (with
N ⊆ K = kerϕ ⊆ kerµ = kerπµ). �

As an immediate application we have the following:

Theorem 5.4. Let A be a finite abelian p-group, and let ϕ be a skew morphism of A that
is not an automorphism of A. Then the order of ϕ is divisible by p.

Proof. Let m be the order of ϕ. By Lemma 5.1, the kernel K of ϕ is preserved by ϕ, so
we can take N = K in Lemma 5.3. Since K 6= A and the exponent e of K is a power of p,
we find gcd(e,m) 6= 1 and therefore gcd(p,m) 6= 1. �

Corollary 5.5. If the finite group G is a complementary product AB where A is an abelian
p-group, and B is cyclic and core-free in G, then either A is normal in G (so G is a semi-
direct product AoB), or p divides |B|.

A corollary of the next application gives a stronger form of Theorem 5.2.

Theorem 5.6. Let ϕ be a skew morphism of the finite abelian group A, with kernel K,
and let L/K be the kernel of the skew morphism ϕ∗ of A/K induced by ϕ. If p is a prime
that divides |L| but not |K|, then p < q for every prime divisor q of |K|.

Proof. Suppose that such a prime p exists, and let q be any prime divisor of |K|. We know
that ϕ induces an automorphism of K, and as K is abelian, it follows that ϕ preserves the
subgroup N consisting of the identity and all elements of order q. In particular, N is a
subgroup of K of exponent q that is invariant under ϕ.

Next let b be any element of order p in L, and let m and π be the order and power function
of ϕ. Since L/K is the kernel of ϕ∗, we know by Lemma 5.3 that q(π(b) − 1) ≡ 0 mod
m. If q is coprime to m, then π(b) ≡ 1 mod m and so b ∈ K, which is impossible since K
has no element of order p. Thus q divides m, and π(b) − 1 ≡ 0 mod m/q. In particular,
π(b) = 1 + i(m/q) where 1 ≤ i ≤ q−1, so there are at most q−1 possibilities for π(b).

The same holds for every non-trivial power of b. So now if p > q, then by the pigeon-hole
principle two different powers of b will have the same value under π, in which case they lie
in the same coset of K. But that cannot happen since K ∩ 〈b〉 is trivial. Thus p < q. �
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Corollary 5.7. Let A be a non-trivial finite abelian group. If K is the kernel of any skew
morphism of A, then every prime divisor of |K| is larger than every prime that divides
|A| but not |K|. In particular if q is the largest prime divisor of |A|, then the order of the
kernel of every skew morphism of A is divisible by q when q is odd, or by 4 when q = 2.

Proof. We use induction on |A| to prove the first part. Let ϕ be any skew morphism of
A, with kernel K, and suppose that p is any prime divisor of |A| that does not divide |K|.
Also let L/K be the kernel of the skew morphism ϕ∗ of A/K induced by ϕ. If p divides
|L/K|, then by Theorem 5.6, we know that p is smaller than every prime divisor of |K|.
On the other hand, if p does not divide |L/K|, then by induction p is smaller than every
prime divisor of |L/K|, and hence smaller than every prime divisor of |K|.
For the second part, we observe that if q = 2, then A is a 2-group, and then by Theorem 5.2
we know that |K| > 2, and hence that |K| is divisible by 4. �

A consequence of Corollary 5.7 is that if ϕ is a skew morphism of an abelian group A, and
ϕ has an orbit O on A that is larger than |A| − q where q is the largest prime divisor of
|A|, then ϕ must be an automorphism of A. To see this, note that the kernel K of ϕ is
preserved by ϕ but now also q divides |K|, and so the given orbit O is contained in K, and
therefore A = 〈O〉 ⊆ K. This is an improvement over Corollary 5.3 in [3], which showed
the same thing holds for the smallest prime dividing |A|.
Note also that Corollary 5.7 does not always hold when A is non-abelian. For example, the
dihedral group D3 of order 6 has skew morphisms of order 4 with kernel of order 2, and
in Example 3.4 we saw that A5 (of order 60) has a skew morphism with kernel of order 6,
which is not divisible by 5.

Another application of Lemma 5.3 is the following:

Theorem 5.8. Every skew morphism of an elementary abelian 2-group is an automor-
phism. Hence if the finite group G is a complementary product of an elementary abelian
2-subgroup A and a cyclic subgroup B, then either A is normal in G (so that G is a semi-
direct product A o B), or B has non-trivial core in G, say J , and then AJ/J (∼= A) is
normal in G/J (so that G/J is isomorphic to semi-direct product AoB/J).

Proof. Let A be the elementary abelian 2-group C n
2 , of order 2n, and let ϕ be a skew

morphism of A, of order m, with kernel K. We use induction on n to prove that ϕ is an
automorphism, or equivalently, K = A. This is easily seen to be true when |A| = 2 or 4,
so for the inductive step, we can assume that n ≥ 3.

We know that K is preserved by ϕ, and that ϕ induces a skew morphism ϕ∗ of A/K, which
by induction is an automorphism. Now the kernel of ϕ∗ on A/K is A/K itself, and so we
can take N = K (and e = 2) in Lemma 5.3, and find that 2π(b) ≡ 2 mod m for all b ∈ A.

If m is odd then π(b) ≡ 1 mod m for all b ∈ A, so every element of A lies in K, as required.

On the other hand, suppose m is even. Then the congruence 2π(b) ≡ 2 mod m implies that
π(b) ≡ 1 or m

2
+1 mod m, for all b ∈ A. Thus π has at most two values in Zm, so |A :K| = 1
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or 2. If |A :K| = 1 then K = A, so we will now assume |A :K| = 2. If x is any element
of A \K, then ϕ is completely determined by the automorphism ξ = ϕ �K of K and the
element y = ϕ(x), since ϕ(ax) = ϕ(a)ϕ(x) = ξ(a)y for every element ax ∈ Kx = A \K.
But A is elementary abelian (and so is like a vector space of rank n over Z2), and hence
there is a unique automorphism θ of A restricting to ξ on K and taking x to y. Then θ
takes the same values as ϕ, so ϕ = θ, and therefore ϕ is an automorphism.

The rest follows easily. �

There is no analogue of this theorem for skew morphisms of elementary abelian groups
of odd order; even the smallest such group (namely C3 × C3) has skew morphisms that
are not automorphisms. In fact, it is easy to show that for every odd prime p, the group
Cp × Cp has a skew morphism with kernel of order (and index) p:

Example 5.9. Let V = Cp × Cp, and let {u, v} be generating pair for V . Also let r be
a primitive element in Z∗p, of order p − 1, and let α be the automorphism of V of order

p(p− 1) associated with the matrix

(
r 1
0 r

)
, taking u to ur, and v to uvr. Next let G be

the semi-direct product V oα Y , where Y is a cyclic group of order p(p − 1) generated by
y, and ywy−1 = wα for each w ∈ V . Then G has complementary factorisation G = V Y,
with V normal in G, corresponding to the automorphism α of V = Cp × Cp. Now let
A be the subgroup generated by u and vyp−1. It is an easy exercise to verify that vyp−1

has order p and commutes with u, so that A ∼= Cp × Cp, but also y(vyp−1)y−1 6∈ A,
so that A is not normal in G. Also A ∩ Y = {1}, and therefore G = AY is another
complementary subgroup factorisation for G, giving a skew morphism for A ∼= Cp × Cp
with kernel K = A ∩ y−1Ay = 〈u〉 of order p.

With a little more work, however, we can prove something much stronger:

Theorem 5.10. Let A be the elementary abelian p group Cp×Cp (of order p2), where p is an
odd prime, and let K be any cyclic subgroup of order p, and let a be a generator for K and
let x be any element of A\K. Then for any given triple (d, n, r) with d, n ∈ {1, 2, . . . , p−1}
and r ∈ {2, . . . , p−1}, if k is the order of r as a unit mod p, then there exists a unique

element b ∈ K such that the mapping ϕ : A→ A given by ϕ(aixj) = ari+
dj(j−1)rn

2 (bxr)j is a
skew morphism of A with ϕk(x) = adx. This skew morphism has order pk (where k is the
order of r as a unit mod p), and the power function π of ϕ is given by π(aixj) = 1 + jnk
mod pk for all i and j. Conversely, every skew morphism of Cp × Cp that is not an
automorphism arises this way. In particular, there are (p−1)2(p−2) such skew morphisms
for each K, and the total number of skew morphisms of Cp × Cp is 2(p+1)(p−1)3.

Proof. First, let ϕ be any skew morphism of A such that ϕ is not an automorphism, and
suppose ϕ has order m and power function π. Then the kernel K of ϕ must be one of the
p+ 1 subgroups of order p in A, and ϕ induces a skew morphism ϕ∗ of A/K.
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Since A/K ∼= Cp, we know that ϕ∗ is an automorphism, and it follows from part (b) of
Lemma 5.3 that m is divisible by p (since kerϕ 6= A). On the other hand, ϕ∗ must be
exponentiation by r for some unit r mod p. If k is the multiplicative order of r mod p, then
k is coprime to p, and so by parts (e) and (f) of Lemma 5.3, we find that µ has order p,
and µ = ϕk acts trivially on K. Hence in particular, m = kp. Also by part (g) of Lemma
5.3, the power function πµ of µ is a homomorphism from A to Z∗p, with K ⊆ kerµ = ker πµ.
But |A :K| = p is coprime to p−1 = |Z∗p|, and it follows that |A : kerµ| = 1, so µ is an
automorphism of A. In particular, µ 6= ϕ, so k 6= 1 and therefore r ∈ {2, 3, . . . , p−1}.
Moreover, since ϕk = µ has order p and acts trivially on both K and A/K, it must fix a
and take x to cx for some non-trivial c ∈ K, and then µ(xi) = (cx)i = cixi for all i, and
by induction, µj(xi) = cijxi for all j > 0. Also we know that ϕ(x) = bxr for some b ∈ K,
and then since µ = ϕk commutes with ϕ, we find that

ϕ(c)bxr = ϕ(c)ϕ(x) = ϕ(cx) = ϕ(µ(x)) = µ(ϕ(x)) = µ(bxr) = µ(b)µ(xr) = bcrxr,

and so ϕ(c) = cr. Then since c is non-trivial, it follows that ϕ induces exponentiation by
r on K (the same as it does on on A/K).

Next, by Lemma 5.3 we know that p(π(x)−1) ≡ 0 mod kp, and therefore π(x) ≡ 1 mod k,
say π(x) = 1 + nk where 1 ≤ n < p. Hence for all i > 0 we have

ϕπ(x)(xi) = ϕ1+nk(xi) = ϕ(ϕnk(xi)) = ϕ(µn(xi)) = ϕ(cinxi) = ϕ(cin)ϕ(xi) = cirnϕ(xi).

In particular, ϕ(x2) = ϕ(x)ϕπ(x)(x) = ϕ(x)crnϕ(x) = crnϕ(x)2, and then by induction,

ϕ(xj) = ϕ(x)ϕπ(x)(xj−1) = ϕ(x)c(j−1)rnϕ(xj−1) = ϕ(x)c(j−1)rnc
(j−1)(j−2)rn

2 ϕ(x)j−1

= c(j−1)rn+
(j−1)(j−2)rn

2 ϕ(x)j = c
j(j−1)rn

2 ϕ(x)j for all j ≥ 0.

Note that if c = ad and ϕ(x) = bxr, then this gives ϕ(xj) = a
dj(j−1)rn

2 (bxr)j for all j, and it
follows that ϕ is as given in the statement of the theorem.

Also by Lemma 5.3 we know that π(xj)−1 is divisible by k, so π(xj) = 1+qk for some q,
and therefore

ϕ(xj+1) = ϕ(xj)ϕπ(x
j)(x) = ϕ(xj)ϕqk+1(x) = ϕ(xj)µq(ϕ(x)) = ϕ(xj)µq(bxr) = ϕ(xj)bcrqxr.

Substituting c
j(j−1)rn

2 ϕ(x)j for ϕ(xj) and the analogous expression for ϕ(xj+1), we find

c
(j+1)jrn

2 ϕ(x)j+1 = bcrqc
j(j−1)rn

2 ϕ(x)jxr = crqc
j(j−1)rn

2 ϕ(x)j+1,

and therefore rq ≡ (j+1)jrn
2

− j(j−1)rn
2

≡ jrn mod p, which gives q ≡ jn mod p. Thus
π(xj) = 1 + jnk, and hence π(uxj) = 1 + jnk, for all u ∈ K and all j.

For uniqueness of b (for given values of d, r and n), we show that for each i there exists

an integer qi independent of b for which ϕi(x) = bir
i−1
aqixr

i
. This is clearly true for i = 1

(with q1 = 0), and we can prove it for all i > 1 by induction, since

ϕi+1(x) = ϕ(ϕi(x)) = ϕ(bir
i−1

aqixr
i

) = bir
i

aqira
dri(ri−1)rn

2 ϕ(x)r
i

= bir
i

aqira
dri(ri−1)rn

2 (bxr)r
i

,
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which implies that we can take qi+1 = qir + dri(ri−1)rn
2

.

In particular, we find that cx = ϕk(x) = bkr
k−1
aqkxr

k
= bkr

k−1
aqkx, so bkr

k−1
aqk = c, and

then since k and r are units mod p and b is non-trivial, it follows that there is just just
one possibility for b.

Finally, we show that given any triple (d, n, r) of the required form, there exists a skew
morphism ϕ of A with the required properties.

To do this, again we let k be the order of r as a unit mod p, and let c = ad, and then let b
be the unique element of K for which bkr

k−1
aqk = c.

(Note that qk can be found recursively from qi+1 = qir + dri(ri−1)rn
2

, starting with q1 = 0.)

Then we can define ϕ by ϕ(aixj) = airc
j(j−1)rn

2 (bxr)j for all i and j, and by using some of
the above arguments it is an easy exercise to verify that ϕ is a skew morphism of A of
order pk with ϕk(x) = cx = adx, and with power function π given by π(aixj) = 1 + jnk
mod pk for all i and j.

Thus for each of the p + 1 possibilities for K, the number of skew morphisms with kernel
K is equal to the number of triples (d, n, r), namely (p−1)2(p−2). Also the number of
automorphisms is (p2−1)(p2−p), and so the total number of skew morphisms of Cp × Cp
is (p2−1)(p2−p) + (p+1)(p−1)2(p−2) = (p+1)(p−1)2(2p−2) = 2(p+1)(p−1)3. �

6. Skew morphisms of cyclic groups

We begin this section with two theorems, parts of which were proved by Kovács and Nedela,
but we take a different approach. The first is a stronger version of Corollary 3.4 in [13].

Theorem 6.1. Let ϕ be a skew morphism of Cn. Then the order m of ϕ divides nφ(n).
Moreover, if gcd(m,n) = 1 or gcd(φ(n), n) = 1, then ϕ is an automorphism of Cn.

Proof. We will use induction on n. We know that for all n ≤ 5, every skew morphism of
Cn is an automorphism, and of course if ϕ is an automorphism of Cn (for any n), then its
order divides |Aut(Cn)| = φ(n); hence the claims are true for all n ≤ 5. From now on we
let A = Cn, and suppose that ϕ is not an automorphism of A.

The kernel K of ϕ is non-trivial (by Theorem 4.3), and since A is abelian we know that K
is preserved by ϕ; indeed the restriction ϕ�K is an automorphism of K (by Theorem 5.1).
Then because K is cyclic, K has a subgroup N of prime order p, invariant under ϕ. By
induction, the order k of the skew morphism ϕ∗ induced by ϕ on G/N divides (n/p)φ(n/p).
The latter divides nφ(n), but if we define d = gcd(k, φ(p)), then we can divide by φ(p)/d
and find that k divides ndφ(n)/φ(p).

Also by parts (e) and (f) of Lemma 5.3, we know that µ = ϕk has order 1, p or j, where j
divides φ(p) and is the order of µ�N if µ acts non-trivially on N . If µ has order 1 or p, then
ϕ has order k or kp, both of which divide nφ(n/p) and hence divide nφ(n). On the other
hand, if µ has order j, so that ϕ has order jk, let us suppose that ϕ�N is exponentiation by



CYCLIC COMPLEMENTS AND SKEW MORPHISMS OF GROUPS 17

r. Then rk has the same multiplicative order in Z∗p as rd, and hence ϕ�N must have order
jd. But of course ϕ�N is an automorphism of N ∼= Cp, so jd divides φ(p), and therefore j
divides φ(p)/d. It follows that jk divides (φ(p)/d)(ndφ(n)/φ(p)) = nφ(n), as required.

Next, K 6= A since ϕ is not an automorphism, so by Lemma 5.3, we know that p divides
m, and therefore gcd(n,m) 6= 1. Equivalently, this proves that if gcd(m,n) = 1 then ϕ is
an automorphism of A.

Finally, suppose gcd(φ(n), n) = 1 but gcd(m,n) 6= 1. Then gcd(φ(n/p), n/p) = 1, so
by induction ϕ∗ is an automorphism of A/N , which in turn implies that its order k di-
vides φ(n/p) and hence is coprime to n. On the other hand, since we have assumed that
gcd(m,n) 6= 1, the order of µ = ϕk must have a prime divisor in common with n. By
Lemma 5.3 the order of µ = ϕk must be equal to p or j, but j is the order of µ �N , so
j divides φ(p) and hence is coprime to n, and therefore the order of µ = ϕk must be p.
In particular, r ≡ 1 mod p, and µ is trivial on N . Moreover, by part (g) of Lemma 5.3,
the power function πµ of µ is a homomorphism from A to Z∗p. This implies that |A :kerµ|
divides φ(p), and since gcd(n, φ(p)) = 1, it follows that kerµ = A and therefore µ is an
automorphism of A. Hence its order p divides φ(n), so gcd(φ(n), n) 6= 1, a contradiction.
Equivalently, this proves that if gcd(φ(n), n) = 1 then ϕ is an automorphism of A. �

Theorem 6.2. Let p and q be primes with p < q, let A be the cyclic group Cpq, and let x
be a generator of A. Then :

(a) if gcd(p, q−1) = 1, then every skew morphism of A is an automorphism, while

(b) if gcd(p, q−1) 6= 1, then if ϕ is a skew morphism of A that is not an automorphism,
then K = kerϕ ∼= Cq, and ϕ acts trivially on both K and A/K, and there exists a
unit s ∈ Z∗q of order p and some a ∈ K \ {1} such that ϕ(x) = ax and π(x) = s,
and conversely, for any unit s ∈ Z∗q of order p and any element a ∈ K of order q,
there is a unique skew morphism ϕ of A such that ϕ(x) = ax and π(x) = s.

Hence in particular, the number of skew morphisms of Cpq is{
(p−1)(q−1) if gcd(p, q−1) = 1

2(p−1)(q−1) if gcd(p, q−1) 6= 1.

Proof. First let A = Cpq, and suppose ϕ is a skew morphism of A that is not an auto-
morphism. Then K = kerϕ is a non-trivial proper subgroup of A, and |K| is divisible
by q (by Corollary 5.7), so |K| = q and |A/K| = p. Also ϕ preserves K, and ϕ �K is an
automorphism of K, and the skew morphism ϕ∗ induced by ϕ on A/K is an automorphism.

Let m and k be the orders of ϕ and ϕ∗ respectively. By Lemma 5.3, we find that m has
a prime divisor in common with the exponent q of K, and as q is prime, it follows that q
divides m. Also k divides φ(p) = p−1 and so is coprime to q (because p < q). On the other
hand, since q divides m, we find that q divides the order of µ = ϕk. By Lemma 5.3, we
find that µ is trivial on K, and the power function πµ is a homomorphism from A to Z∗q,
with kernel containing K. If the kernel is A, then µ is an automorphism of A and so its
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order divides |Aut(A)| = |Aut(Cpq)| = φ(p)φ(q) = (p−1)(q−1), but in that case it cannot
be divisible by q, contradiction. Hence the kernel of µ (and of πµ) must be K itself, and
from this we find that the homomorphism πµ gives an isomorphism from A/K ∼= Cp to a
subgroup of Z∗q. Hence in particular, p divides q−1. This proves (a).

Continuing, we know that p divides q−1, and the order of µ = ϕk is divisible by q, so µ is
trivial on K. In fact, by Lemma 5.3, we find that µ has order q exactly, so ϕ has order kq.
Letting τ = πµ for simplification, on one hand we have

ϕk+1(bc) = µ(ϕ(bc)) = µ(ϕ(b)ϕπ(b)(c)) = µ(ϕ(b))µτ(ϕ(b))(ϕπ(b)(c)) = ϕk+1(b)ϕkτ(ϕ(b))+π(b)(c),

while on the other hand,

ϕk+1(bc) = ϕ(µ(bc)) = ϕ(µ(b)µτ(b)(c)) = ϕ(µ(b))ϕπ(µ(b))(µτ(b)(c)) = ϕk+1(b)ϕπ(µ(b))+kτ(b)(c),

for all b, c ∈ A. It follows that kτ(ϕ(b)) + π(b) ≡ π(µ(b)) + kτ(b) mod kq for all b ∈ A.
But also π(µ(b)) ≡ π(b) mod kq, since b and µ(b) = ϕk(b) always lie in the same coset of
K = kerϕ, and so we find that kτ(ϕ(b)) ≡ kτ(b) mod kq for all b ∈ A. Hence we have
τ(ϕ(b)) ≡ τ(b) mod q, or equivalently, πµ(ϕ(b)) ≡ πµ(b) mod q for all b ∈ A. This implies
that ϕ(b) and b lie in the same coset of kerµ = K, for all b ∈ A. Thus every coset of K is
preserved by ϕ, or in other words, ϕ is trivial on A/K. In turn, this gives k = 1, so µ = ϕ,
and ϕ is trivial on K as well.

Now ϕ(x) lies in Kx and so ϕ(x) = ax for some a ∈ K. Also ϕ(x) 6= x, for otherwise
ϕ(x2) = ϕ(x)ϕπ(x)(x) = xx = x2 and by induction ϕ(xi) = xi for all i, so ϕ is the identity
automorphism on A, contradiction. Hence a is non-trivial, and so has order q. Similarly, in
the last part of the proof of Lemma 5.3 we can take c = x, and then s = πµ(c) = π(c) = π(x)
generates the image of the multiplicative power function π, so s has order p in Z∗q. This
proves the first part of (b).

Note that ϕi(x) = aix for all i, and then ϕ(x2) = ϕ(x)ϕs(x) = axasx = a1+sx2, so

ϕi(x2) = a(1+s)ix2 for all i, and an easy induction gives ϕ(xj) = a1+s+s
2+ ···+sj−1

xj for all j.

Conversely, suppose s is any unit in Z∗q of order p, and a is any element in K of order q.

Then it is a straightforward exercise to show that defining ϕ(xj) = a1+s+s
2+ ···+sj−1

xj for
all j gives a skew morphism of A with ϕ(x) = ax and π(x) = s. This proves the second
part of (b). Finally, there are (p−1)(q−1) skew morphisms that are not automorphisms
in case (b), and (p−1)(q−1) automorphisms in both cases, so the total number of skew
morphisms of Cpq is as given. �

A similar theorem holds when q = p (or in other words, for Cp2), for every odd prime p.
This was also proved in [13, Proposition 4.9], but here we take a quite different approach,
similar to the one in our proof of Theorem 5.10.

We will use the following, which gives properties of certain sums of ascending powers of an
integer mod p or p2 when p is an odd prime.
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Lemma 6.3. Let tn0 = 0 and tni = 1+ tn+ t2n+ . . .+ t(i−1)n for positive integers t, i and n.
Then tni+j = tni + tnj t

in for all i and j. Also if p is an odd prime, and t ≡ 1 + dp mod p2

for some non-negative integer d, then

(a) tni ≡ i mod p, (b) tni ≡ i+ i(i−1)
2
dnp mod p2,

(c) tnip ≡ ip mod p2, (d) tni ≡ tnj mod p2 if and only if i ≡ j mod p2.

Proof. First, tni+j = 1 + tn + . . .+ t(i−1)n + tin(1 + tn + . . .+ t(j−1)n) = tni + tintnj if i, j > 0,
and it is easy to see that the same thing holds if i or j is 0. Also part (a) is easy, since
t ≡ 1 mod p. For part (b), a binomial expansion gives tjn ≡ (1 + dp)jn ≡ 1 + jdnp mod
p2 for all j, and so

tni ≡ 1 + (1+dnp) + (1+2dnp) + (1+3dnp) + . . .+ (1+(i−1)dnp) ≡ i+ i(i−1)
2
dnp mod p2

for all i > 0, and part (c) follows from this. For part (d), we note that by part (b) we have

2(tni − tnj ) ≡ 2i+ i(i−1)dnp− (2j + j(j−1)dnp) ≡ (i− j)(2 + (i+j−1)dnp) mod p2.

Then since 2 and 2 + (i+j−1)dnp are coprime to p2, it follows that tni − tnj ≡ 0 mod p2 if

and only if i− j ≡ 0 mod p2. �

Theorem 6.4. Let A be the cyclic group of order p2, where p is an odd prime, and let x
be a generator for A, and let N be the subgroup generated by xp. Then for any given triple
(d, n, r) with d, n ∈ {1, 2, . . . , p−1} and r ∈ {2, . . . , p−1}, if we let k be the order of r
as a unit mod p, and let t = 1 + dp and define tni for all i as in Lemma 6.3, then there
exists a unique element a ∈ N such that the mapping ϕ : A → A given by ϕ(xi) = (axr)t

n
i

for 0 ≤ i < p2 is a skew morphism of A with ϕk(x) = xt. This skew morphism has order
pk, where k is the order of r as a unit mod p, and the power function π of ϕ is given by
π(xi) = 1 + ink mod pk for all i. Conversely, every skew morphism of Cp2 that is not
an automorphism arises this way. In particular, there are exactly (p−1)2(p−2) such skew
morphisms, and the total number of skew morphisms of Cp2 is (p−1)(p2−2p+2).

Proof. First, suppose ϕ is any skew morphism of A such that ϕ is not an automorphism,
and suppose ϕ has order m and power function π. Then the kernel of ϕ must be N , of
order p, and ϕ induces a skew morphism ϕ∗ of A/N .

Since A/N ∼= Cp, we know that ϕ∗ is an automorphism, and it follows from Lemma 5.3
that m is divisible by p (since kerϕ 6= A). On the other hand, ϕ∗ must be exponentiation
by r for some unit r mod p, and if k is the multiplicative order of r mod p, then k is
coprime to p, and so by parts (e) and (f) of Lemma 5.3, we find that µ has order p, and
µ = ϕk acts trivially on N . Hence in particular, m = kp. Also by part (g) of Lemma 5.3,
the power function πµ of µ is a homomorphism from A to Z∗p, with N ⊆ kerµ = kerπµ.
But |A :N | = p is coprime to p−1 = |Z∗p|, and it follows that |A : kerµ| = 1, so µ is an
automorphism of A. In particular, µ 6= ϕ, so k 6= 1 and therefore r ∈ {2, 3, . . . , p−1}.
Moreover, since µ has order p, it must be exponentiation by t for some t ≡ 1 mod p, say
t = 1 + dp where 1 ≤ d < p.
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Now let x be any generator of A. Then by Lemma 5.3 we have p(π(x)−1) ≡ 0 mod kp,
and so π(x) ≡ 1 mod k, say π(x) = 1 + nk where 1 ≤ n < p. Also since µ = ϕk commutes
with ϕ, we find that ϕ(xit) = ϕ(µ(xi)) = µϕ(xi) = (ϕ(xi))t for all i, and therefore

ϕπ(x)(xi) = ϕ1+nk(xi) = ϕ(ϕnk(xi)) = ϕ((xi)t
n

) = ϕ(xi)t
n

for all i > 0.

We now find that ϕ(x2) = ϕ(x)ϕπ(x)(x) = ϕ(x)ϕ(x)t
n

= ϕ(x)1+t
n

= ϕ(x)t
n
2 , and indeed by

induction, we have ϕ(xi) = ϕ(x)t
n
i for all i:

ϕ(xi) = ϕ(x)ϕπ(x)(xi−1) = ϕ(x)ϕ(xi−1)t
n

= ϕ(x)(ϕ(x)t
n
i−1)t

n

= ϕ(x)1+t
ntni−1 = ϕ(x)t

n
i ,

since 1 + (tni−1)t
n = tni (as in the first assertion of Lemma 6.3).

Next, by Lemma 5.3 we know that π(xi)−1 is divisible by k, so π(xi) = 1+qk for some q,
and therefore

ϕ(x)t
n
i+1 = ϕ(xi+1) = ϕ(xi)ϕπ(x

i)(x) = ϕ(x)t
n
i ϕqk+1(x) = ϕ(x)t

n
i µq(ϕ(x)) = ϕ(x)t

n
i +t

q

.

Hence tq ≡ tni+1 − tni ≡ tin mod p2, again by the first assertion of Lemma 6.3, and so we
can take q = in, and find that π(xi) = 1 + ink, for all i.

Also we note that since ϕ∗ induces exponentiation by r on A/N , we have ϕ(x) ∈ (Nx)r

and therefore ϕ(x) = axr for some a ∈ N , and thus every such skew morphism of A ∼= Cp2
has the required form.

For uniqueness of a, we suppose that a = xjp and then ϕ(x) = axr = xjp+r = xs, say, and

show that for all i > 0 there is some integer qi independent of j such that ϕi(x) = xs
i+qip.

The latter is true for i = 1 with q1 = 0, and we can prove it for all i > 1 by induction:

we have ϕi+1(x) = ϕ(ϕi(x)) = ϕ(xs
i+qip) = (xs)

tn
si+qip = x

s tn
si+qip , and then by part (b) of

Lemma 6.3 and the fact that s ≡ r mod p we find that

s tnsi+qip ≡ s(si + qip+ si(si−1)
2

dnp) ≡ si+1 + r(qi + ri(ri−1)
2

dn)p mod p2.

Thus we can take qi+1 = rqi + ri+1(ri−1)
2

dn, which is again independent of j.

In particular, we find xt = ϕk(x) = xs
k+qkp. But sk = (r + jp)k ≡ rk + krk−1jp mod p2,

and so there is just one value of j for which this can occur. Hence a is unique.

Finally, we show that given any triple (d, n, r) of the required form, there exists a skew
morphism ϕ of A with the required properties.

To do this, again we let k be the order of r as a unit mod p, and let t = 1 + dp and define
tni for all i as in Lemma 6.3, then take a = xjp where j satisfies (jp+ r)k + qkp ≡ t mod p2.

(Note that qk can be found recursively from qi+1 = rqi +
ri+1(ri−1)

2
dn, starting with q1 = 0.)

Then we can define ϕ by ϕ(xi) = (axr)t
n
i for all i, and by using some of the above arguments

it is an easy exercise to verify that ϕ is a skew morphism of A of order pk with ϕk(x) = xt,
and with power function π given by π(xi) = 1 + ink mod pk for all i.
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Hence the number of skew morphisms that are not automorphisms is equal to the number
of triples (d, n, r), namely (p−1)2(p−2), and the total number of skew morphisms of Cp2
is φ(p2) + (p−1)2(p−2) = p(p−1) + (p−1)2(p−2) = (p−1)(p2−2p+2). �

We now give two more theorems about skew morphisms of cyclic groups, which will be
useful later.

Theorem 6.5. For every even integer n > 4, the cyclic group Cn has a skew morphism
with kernel of index 2.

Proof. This follows from a construction given by the authors in their classification of all
anti-balanced regular Cayley maps for finite abelian groups in [3, §7]. (A regular Cayley
map of a group A is anti-balanced if the power function of the associated skew morphism
takes the two values ±1.) It is also easy to give a direct construction, as follows:

Let A = Cn, let x be any generator of A, and let B be the index 2 subgroup generated by
x2. Now define ϕ : A→ A by setting

ϕ(xj) =

{
xj if j is even

xj+2 if j is odd.

Then clearly ϕ is a bijection, and it is an easy exercise to verify that it is a skew morphism,
with power function values 1 on B and −1 on Bx. In particular, B is the kernel of ϕ. �

Theorem 6.6. For every odd prime-power q = pe with e > 1, the cyclic group Cq has a
skew morphism with kernel of index p.

Proof. Let V = Cq, and let v be any generator of V . Also let r = pe−1−1, which is a unit
of order 2p in Z∗q (with rp ≡ −1 mod q) and a unit of order 2p2 in Z∗pq = Z∗pe+1 . Now let
G be the semi-direct product V or Y , where Y is a cyclic group of order 2p generated by
y, and yvy−1 = vr. Then G has complementary subgroup factorisation G = V Y, with V
normal in G, corresponding to the automorphism of V = Cq = 〈v〉 determined by v 7→ vr.

Next let t = r2, which is congruent to 1 mod pe−1 and has order p in Z∗q, and let a be the

element vy2 in G. Then

ap = (vy2)p = v1+t+ ···+t
p−1

y2p = vs,

where s = 1 + t+ · · ·+ tp−1 in Zq. Since (1− t)s = (1− t)(1 + t+ · · ·+ tp−1) = 1− tp, which
is congruent to 0 mod pe but not mod pe+1, we find that s ≡ 0 mod p but s 6≡ 0 mod p2.
Thus ap = vs has order pe−1 = q/p, so A = 〈a〉 has order q. Also A ∩ Y = {1}, because
the largest cyclic subgroup of A ∼= Cq of order dividing 2p is 〈vq/p〉. Hence G has another
complementary subgroup factorisation G = AY . In this one, however, the subgroup A is
not normal, because if it were, than it would contain yay−1 = yvy2−1 = vry2 and hence
contain yay−1a−1 = vr−1, which is impossible since vr−1 generates V . On the other hand,
the subgroup of order q/p generated by ap = vs is normal in G, and so must be A∩ y−1Ay.
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Also the core of Y in G is trivial, and so the factorisation G = AY gives rise to a skew
morphism ϕ of A ∼= Cq with kernel K = A ∩ y−1Ay of index p. �

Note: In the terminology of [4], the pair (q, r) in the above proof is ‘admissible’, and gives
a regular Cayley map for Cq with a balanced representation with regard to V = 〈v〉, and
a non-balanced representation with regard to A = 〈vy2〉.

7. Skew morphisms that are not automorphisms

Every group automorphism is a skew morphism, but the converse is not true. A skew
morphism of a finite group A is an automorphism of A if and only if its power function
takes constant value 1, or equivalently, its kernel is A. Hence for example, we have Corollary
4.4, stating that every skew morphism of a cyclic group of prime order is an automorphism.

In [13, Theorem 6.3] it was shown that the same holds for the cyclic group of order n if
and only if n = 4 or gcd(n, φ(n)) = 1, where φ is Euler’s function. We will generalise this
to the case of all finite abelian groups in Theorem 7.5.

Before doing that, we need to introduce and prove some other things.

Definition 7.1. If ϕ : A → A and ν : B → B are permutations on the sets A and B,
then their direct product ϕ × ν is the permutation of the Cartesian product A × B given
by (ϕ× ν)(a, b) = (ϕ(a), ν(b)) for all (a, b) ∈ A×B.

If ϕ and ν are skew morphisms of the groups A and B, then it is not always the case that
ϕ× ν is a skew morphism of A× B, but there are some important and helpful situations
where it is.

Lemma 7.2. Let ϕ be any skew morphism of a finite group A, and let B be any finite
group. Then ϕ can be extended to a skew morphism θ of the direct product A × B, such
that θ �A= ϕ and ker θ = kerϕ×B. In particular, if ϕ is not an automorphism of A, then
θ is not an automorphism of A×B.

Proof. Take θ = ϕ × ι, where ι is the identity permutation on B, and let π be the power
function associated with ϕ. Then for any a, a′ ∈ A and any b, b′ ∈ B we have

θ((a, b)(a′, b′)) = θ(aa′, bb′) = (ϕ(aa′), bb′) = (ϕ(a)ϕπ(a)(a′), bb′)

= (ϕ(a), b)(ϕπ(a)(a′), b′) = θ(a, b)θπ(a)(a′, b′),

and it follows that θ is a skew morphism of A × B, with power function ψ given by
ψ(a, b) = π(a) for all (a, b). Clearly ker θ = kerϕ×B, and so in particular, ker θ 6= A×B
if and only if kerϕ 6= A. �

In the other direction, we have the following generalisation of an easily-proved property of
automorphisms of direct products of groups of coprime orders. This is originally due to
Kovács and Nedela [13, Theorem 1.1], but we give a different (and much shorter) proof.
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Theorem 7.3. Let m and n be positive integers such that gcd(m,n) = gcd(m,φ(n)) =
gcd(φ(m), n) = 1. Then every skew morphism of the direct product group Cm×Cn (∼= Cmn)
is of the form ϕ× ν, where ϕ and ν are skew morphisms of Cm and Cn.

Proof. We use induction on mn. If m = 1 or n = 1 the claim is trivial, so now suppose
m,n > 1. Let θ be any skew morphism of A × B, where A = Cm and B = Cn, which we
will identify with the subgroups A×{1} and {1}×B. Then the kernel K of θ is non-trivial
(by Theorem 4.3), and since A × B is abelian we know that K is preserved by θ; indeed
the restriction θ �K is an automorphism of K (by Theorem 5.1). Also K is cyclic, since
A × B ∼= Cmn, and so K contains a subgroup N of prime order p that is preserved by θ.
Moreover, since gcd(m,n) = 1, we can assume without loss of generality that N ⊆ A.

By induction, the skew morphism θ∗ induced by θ on G/N ∼= A/N ×B is of the form ξ×ν
where ξ and ν are skew morphisms of A/N and B, and in particular, θ∗ preserves A/N
and B. It follows that θ preserves A and C = N ×B.

We can now apply Lemma 5.3 to C and its θ-invariant subgroup N . If the kernel of θ �C
is not C itself, then the order of θ �C is divisible by p = |N |. On the other hand, since p
divides |A| = m, we know that p is coprime to nφ(n) and hence to the order of every skew
morphism of B, by Theorem 6.1. In particular, p is coprime to the order k of the skew
morphism of C/N induced by θ, and therefore p must divide the order of (θ �C)k, which
means that (θ �N)k = ((θ �C)k) �N is trivial. By part (g) of Theorem 5.3, we find that the
power function of the skew morphism (θ �C)k is a non-trivial homomorphism from C to Z∗p,
the kernel of which contains N . But that is impossible, since |C :N | = |B| = n is coprime
to φ(m) and hence to φ(p). Thus ker(θ �C) = C, so θ �C is an automorphism of C. In
particular, θ preserves all subgroups of C (since C is cyclic), and therefore preserves B.

We can now define ϕ = θ �A and ν = θ �B. If π is the power function of θ, then for each
element (a, b) ∈ A×B we have

θ(a, b) = θ((a, 1)(1, b)) = θ(a, 1)θπ(a,1)(1, b) = (ϕ(a), 1)(1, νπ(a,1)(b)) = (ϕ(a), νπ(a,1)(b))

while on the other hand,

θ(a, b) = θ((1, b)(a, 1)) = θ(1, b)θπ(1,b)(a, 1) = (1, ν(b))(ϕπ(1,b)(a), 1) = (ϕπ(1,b)(a), ν(b)).

Hence νπ(a,1)(b) = ν(b) and ϕ(a) = ϕπ(1,b)(a), and more importantly, θ(a, b) = (ϕ(a), ν(b))
for all (a, b). Thus we have θ = ϕ× ν, as claimed. �

Next, we consider two specific cases, before giving our main theorem on abelian groups.

Lemma 7.4. The groups C2 ×C4 and C4 ×C4 both have a skew morphism with kernel of
index 2.

Proof. Again we note that such skew morphisms can be found using constructions given
by the authors in [3], but we can give examples directly, as follows:
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Let {a, b} be generating pair for V = C2 × C4, with a of order 2 and b of order 4, and let
ϕ be the permutation (a, ab, ab2, ab3). Then ϕ is a skew morphism of order 4, with power
function values 1 on K = 〈b〉, and 3 on Ka; in particular, K = kerϕ has order 4.

Similarly, let {u, v} be generating pair for V = C4×C4, and take ϕ to be the permutation
(v, uv, u2v, u3v)(v3, uv3, u2v3, u3v3). Then ϕ is a skew morphism of order 4, with power
function values 1 on K = 〈u, v2〉, and 3 on Kv; in particular, K = kerϕ has order 8. �

We complete this section with a generalisation of [13, Theorem 6.3], from finite cyclic
groups to all finite abelian groups.

Theorem 7.5. Let A be any finite abelian group. Then every skew morphism of A is an
automorphism of A if and only if A is is cyclic of order n where n = 4 or gcd(n, φ(n)) = 1,
or A is an elementary abelian 2-group.

Proof. First, for notational convenience, we will say that a finite group has property N if
all of its skew morphisms are automorphisms, or (otherwise) property S if it has a skew
morphism that is not an automorphism.

We now confirm that the abelian groups mentioned have property N .

The group C4 has just two skew morphisms, both of which are automorphisms, and we
proved in Theorem 5.8 that every elementary abelian 2-group has property N . Next sup-
pose gcd(n, φ(n)) = 1. Then n is square-free, with prime factorisation n = p1p2 . . . pk where
the pi are distinct primes such that gcd(pi, φ(pj)) = 1 whenever i 6= j. By Theorem 7.3
(and induction on k), every skew morphism of Cn is a direct product of skew morphisms of
the cyclic groups Cp1 , Cp2 , . . . , Cpk . Each Cpi has property N , so all these skew morphisms
are automorphisms, and hence their direct product is too. Thus Cn has property N .

To prove the converse, namely that these are the only such groups, suppose A is a direct
product Cq1 × Cq2 × · · · × Cqs of cyclic groups of prime-power order, and let n = |A|.
If any one of the cyclic factors Cqi has a skew morphism that is not an automorphism, then
the construction in Lemma 7.2 will give a skew morphism of A that is not an automorphism,
so we may suppose that none of the Cqi has property S. Then by Theorems 6.5 and 6.6,
we know that each qi is 2 or 4 or an odd prime.

Similarly, we may suppose the same holds for the direct product of each subset of the Cqi .

If n is divisible by an odd prime p, then since C2 × Cp ∼= C2p and C4 × Cp ∼= C4p both
have property S (by Theorem 6.5), we may suppose n is odd, and the qi are odd primes.
Similarly, because Cp ×Cp has property S when p is an odd prime (by Theorem 5.10), we
may suppose that no two of the qi can be the same odd prime. Also by Theorem 6.2 we
know that Cp × Cq ∼= Cpq has property S whenever p and q are primes with p < q and
gcd(p, q − 1) 6= 1, and hence we may suppose gcd(qi, φ(qj)) = gcd(qi, qj − 1) = 1 whenever
i and j are distinct. Thus gcd(n, φ(n)) = 1 in this case.

The only remaining possibility is that each qi is 2 or 4. Since C2 × C4 and C4 × C4 both
have property S (by Lemma 7.4), we conclude that A ∼= C4 or (C2)

s in this case. �
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Corollary 7.6. Let G be any finite group expressible as a complementary product AB
where A is abelian, and B is cyclic and core-free in G. If A is cyclic of order n where
n = 4 or gcd(n, φ(n)) = 1, or if A is an elementary abelian 2-group, then A is normal
in G. Moreover, if A is any other finite abelian group, then there exists at least one such
complementary product G = AB in which A is not normal in G.

8. Skew morphisms of dihedral groups

In this section, we consider the properties of a skew morphism ϕ of a dihedral group Dn (of
order 2n), with kernel K = kerϕ. Here we will take u and v as generators of Dn satisfying
u2 = vn = (uv)2 = 1, and use Cn to denote the maximal cyclic subgroup of order n and
index 2, generated by v.

The first observation we make (below) grew out of some work in 2009 by the first author
with Young Soo Kwon, motivated by the results of some early computations on skew
morphisms of dihedral groups, which showed it is true for Dn for small n. It has also been
observed more recently (but with a longer proof) by Zhang and Du [18].

Theorem 8.1. If ϕ is a skew morphism of the dihedral group Dn, where n ≥ 3, and
K = kerϕ is contained in Cn, then ϕ preserves K.

Proof. First, we will assume that n > 9, because it can easily be shown with the help of
Magma [1] that the theorem holds for 3 ≤ n ≤ 9.

Next, we note that the restriction ϕ �K of ϕ to K is an isomorphism from K to ϕ(K).
Also if |K| > 2, then K is the unique cyclic subgroup of its order in Dn, and so must be
preserved by ϕ�K , and thus ϕ preserves K.

Hence from now on we may suppose |K| = 2, but that K is not preserved by ϕ. Then n is
even, and K is generated by z = vn/2, but ϕ(z) 6= z. Also z′ = ϕ(z) is an involution (since
ϕ�K is an isomorphism from K to ϕ(K)), and therefore z′ = ϕ(z) = vju for some j.

Let O be the orbit of z under ϕ. For any g ∈ Dn we have ϕ(zg) = ϕ(z)ϕ(g) = z′ϕ(g),
while on the other hand, since z is central, ϕ(zg) = ϕ(gz) = ϕ(g)ϕπ(g)(z), and therefore
ϕπ(g)(z) = ϕ(g)−1z′ϕ(g). As g runs through the elements of Dn, so does ϕ(g), and accord-
ingly, the right hand side of the last equation runs through all conjugates of the non-central
involution z′ in Dn. It follows that the ϕ-orbit O of z contains all involutions of the form
viu where i ≡ j mod 2, and in particular, |O| ≥ 1+n/2. Also the order m of ϕ is a multiple
of |O|, and must be less than |Dn| = 2n. Since 4|O| ≥ 4(1 + n/2) > 2n, we conclude that
m = |O|, 2|O| or 3|O|.
Next, let x be any involution in the orbit O for which ϕ(x) is also an involution. Then
1 = ϕ(x2) = ϕ(x)ϕπ(x)(x), so ϕπ(x)(x) = ϕ(x)−1 = ϕ(x), and therefore π(x) ≡ 1 mod |O|.
Moreover, since m ≤ 3|O| it follows that π(x) = r|O|+ 1 where r ∈ {0, 1, 2}, and so x lies
in one of at most three cosets of K = kerϕ. One of those cosets is K itself, containing 1
and z, while the others contain at most two possibilities for x, and so there are at most 5
possibilities for x. The ϕ-image of every other involution y in O must be a non-involution.
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Now suppose O contains s possibilities for x, and t other involutions, so that s ≤ 5 and
s+t ≥ 1+n/2. Then O contains at least t non-involutions (the ϕ-images of the possibilities
for y above), and so |O| ≥ s + 2t = 2(s + t)− s ≥ 2 + n− s ≥ n− 3. Hence if m = 3|O|,
we have m ≥ 3(n− 3) = 2n+ n− 9 > 2n = |Dn|, which is impossible, so m = |O| or 2|O|.
On the other hand, if m = |O|, then the only possibility for x is z itself, in which case the
ϕ-image of each of the n/2 conjugates of z′ = ϕ(z) is a non-involution, and we find that
|O| ≥ 1 + 2(n/2) = n+ 1. Moreover, if y is a conjugate of z′ then zy is also an involution,
but ϕ(y) is not, so ϕ(zy) = ϕ(z)ϕ(y) = z′ϕ(y) is an involution, and therefore zy cannot lie
in O. Hence vn/2y = zy is not conjugate to y, so n/2 is odd. Also z′ϕ(y) = ϕ(zy) cannot
lie in O, so ϕ(y) = vt where t is odd, but t 6= n/2 (for otherwise ϕ(y) = vn/2 = z ∈ O). It
follows that there are only n/2 − 1 possibilities for vt = ϕ(y), but n/2 possibilities for y,
contradiction.

Thus m = 2|O|, and s ≤ 3. Accordingly, we have m = 2|O| ≥ 2(2 + n − s) ≥ 2(n − 1),
and this forces m = 2|O| = 2n − 2 and |O| = n − 1. Indeed s = 3 (because if s ≤ 2 then
m = 2|O| ≥ 2(2 + n − s) ≥ 2n = |Dn|), and it follows that O consists of z, plus the n/2
non-central involutions conjugate to z′, and the ϕ-images of n/2− 2 of the latter elements.
The three possibilities for x must be z, w and zw for some non-central involution w.

If y is any involution in O \ {z, w, zw}, then as above, zy is also an involution, but ϕ(y)
is not, so ϕ(zy) = ϕ(z)ϕ(y) = z′ϕ(y) is an involution, and therefore zy cannot lie in O.
Hence zy is not conjugate to y, so n/2 is odd, and also z′ϕ(y) = ϕ(zy) 6∈ O, and so
ϕ(y) = vt where t is odd. Again there are n/2 − 1 possibilities for vt (= ϕ(y) 6= z), but
only n/2 − 2 of them lie in O, so exactly one of them lies outside O, say vi ( 6= z). The
inverse v−i of this element must lie in O, and be the ϕ-image of some involution y ∈ O,
but then 1 = ϕ(yy) = ϕ(y)ϕπ(y)(y) = v−iϕπ(y)(y), and so vi = ϕπ(y)(y) ∈ O, contradiction.

Thus ϕ preserves the kernel K, as claimed. �

Theorem 8.2. If ϕ is a skew morphism of Dn, where n ≥ 3, then kerϕ 6= Cn.

Proof. Assume the contrary, and let K = kerϕ = Cn. Then by Theorem 8.1, we know
that ϕ(K) = K, and therefore ϕ induces an automorphism of K. In particular, there
exists some unit r mod n such that ϕ(y) = yr for every y ∈ K. But now let x = ϕ(u).
Then x ∈ Dn \ Cn, so x is an involution in Dn lying outside K = Cn; and then since
y ∈ kerϕ = K, it follows that for all y ∈ K we have ϕ(yu) = ϕ(y)ϕ(u) = yrx. Hence
ϕ(vi) = vir and ϕ(viu) = virx for 0 ≤ i < n. This, however, makes ϕ coincide with the
automorphism of Dn that takes v 7→ vr and u 7→ x. In particular, ϕ is an automorphism
(with kernel Dn), contradiction. Thus kerϕ 6= Cn. �

The above theorem has an immediate consequence for the theory of t-balanced skew mor-
phisms, as considered in [3]. For t 6= 1, the kernel of any t-balanced skew morphism of a
group A is a subgroup of index 2 in A, and Theorem 8.2 implies that if A is dihedral (of
order 6 or more), then the kernel is not the maximal cyclic subgroup, so must be a dihedral
subgroup of half the order of A. This observation, together with the classification in [14] of
all t-balanced skew morphisms of the dihedral groups giving rise to regular Cayley maps,



CYCLIC COMPLEMENTS AND SKEW MORPHISMS OF GROUPS 27

could lead to a classification of all t-balanced skew morphisms of the dihedral groups (not
just those giving rise to regular Cayley maps).

Before writing this paper, our computations for skew morphisms of the dihedral groups of
small order led us to think that the kernel of a skew morphism of Dn (for n ≥ 3) might
never be a subgroup of Cn. This, however, is not the case. It was shown by Zhang and Du
[18] that for every odd integer m > 1, the dihedral group D8m (of order 16m) has a skew
morphism of order 4m with kernel a subgroup of index 2 in C8m.

We noted earlier that the dihedral group D3 of order 6 has skew morphisms of order 4 with
kernel of order 2. In fact, there is a skew morphism of D3 = 〈u, v | u2 = v3 = (uv)2 = 1 〉
acting as the 4-cycle (u, v, v2, uv), with kernel 〈uv〉. Somewhat surprisingly, this kind of
skew morphism does not occur for dihedral groups of larger prime degree:

Theorem 8.3. For every prime p > 3, every skew morphism of the dihedral group Dp is
an automorphism.

We have two proofs of this theorem. The first uses a theorem of Huppert on factorisations
of groups as a product of an abelian subgroup and a dihedral subgroup, and the second is
based on recent work on regular Cayley maps for dihedral groups by Kovács, Marušič and
Muzychuk [12] (which uses a related theorem of Huppert and Itô).

Proof. Suppose ϕ is a skew morphism of A = Dp = 〈u, v | u2 = vp = (uv)2 = 1 〉 that is
not an automorphism. We know that the kernel K = kerϕ is non-trivial, and that K 6= A
since ϕ is not an automorphism, and also by Theorem 8.2 (indeed by the first paragraph
of its proof) that |K| 6= p. Thus |K| = 2. Without loss of generality we can now assume
that K is generated by u, and again ϕ(K) is a subgroup isomorphic to K, so x = ϕ(u) is
an involution. Moreover, the power function must take |A : K| = p distinct values, so the
order of ϕ is at least p+ 1.

Next, let G be the skew product AY , where Y is a cyclic subgroup generated by y, rep-
resenting the skew morphism ϕ (as described in Section 3). By a theorem of Huppert [6,
Satz 1], any product of a dihedral group with an abelian group is soluble, and therefore
G = AY is soluble. Also by above, we know that |Y | > p, and on the other hand, by
our Theorem 4.2, we know that |Y | < |A| = 2p, and so p < |Y | < 2p. In particular, |Y |
is not divisible by p, and it follows that the cyclic subgroup P generated by v is a Sylow
p-subgroup of G = AY . The normaliser NG(P ) contains A = Dp, so |G : NG(P )| divides
|Y |, which is at most 2p. On the other hand, |G : NG(P )| is the number np of Sylow
p-subgroups of G, and by Sylow’s third theorem, this is congruent to 1 mod p, and hence
must be 1 or p+ 1. But np cannot be 1, for otherwise P would be normal in G, and then
P would be normalised by y, so P would lie in the kernel of ϕ, which is not the case. Thus
|G : NG(P )| = np = p + 1. Moreover, since |G : NG(P )| divides |Y |, which is at most 2p,
we find |Y | = p+ 1 as well.

Thus ϕ has order p+ 1, and the values of its power function on A = Dp are 1, 2, . . . , p, in
some order. Also |G| = |A||Y | = 2p(p+ 1).
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Now let N be a minimal normal subgroup of G. Then N is characteristically simple, and
as G is soluble, N is elementary abelian. If N intersects A non-trivially, then A ∩ N is a
non-trivial normal subgroup of A and hence has order p, and since gcd(p, 2(p + 1)) = 1 it
follows that N = P , which is impossible since P is not normal in G. Thus A∩N is trivial.
In particular, |AN/N | = |A/(A∩N)| = |A|. Also the fact that |AN/N | = |A| = 2p implies
that the normaliser of PN/N in G/N has order divisible by 2p, and hence its index in G/N
is at most the index of AN/N in G/N , which is |G/N |/(2p) = (p+ 1)/|N |. In particular,
this implies that |N | divides p+ 1.

This also implies that in the quotient G/N, the index of the normaliser of the cyclic Sylow
p-subgroup PN/N is at most (p + 1)/2. It follows that G/N has a unique normal Sylow
p-subgroup, which must be PN/N . In particular, PN is normal in G. On the other
hand, P cannot be normal in PN , for otherwise P would be the unique Sylow p-subgroup
of PN , and would then be characteristic in PN and therefore normal in G, which is a
contradiction. Thus |N | > p, and it follows that |N | = p + 1 (since we already know that
|N | divides p + 1). In particular, p + 1 is a prime-power, and since p is odd, p + 1 must
be a power of 2, so N is an elementary abelian 2-group. Since Y is cyclic, this implies
|Y ∩ N | ≤ 2, and hence the subgroup Y N has order |Y N | = |Y ||N |/|Y ∩ N | = (p + 1)2

or (p + 1)2/2. Since this is coprime to p, but has to divide |G| = 2p(p + 1), we find that
(p+ 1)2/2 divides 2(p+ 1), and hence p+ 1 divides 4. Thus p = 3.

In other words, if p > 3 then no such skew morphism exists. �

Alternative proof. Let ϕ be any non-trivial skew morphism of Dp, with power function π.
Now if ϕ fixes every involution in Dp, then ϕ(vi) = ϕ(uuvi) = ϕ(u)ϕπ(u)(uvi) = u(uvi) = vi

for 1 ≤ i < p, and so ϕ fixes all elements of Dp, contradiction. Hence there is at least
one orbit X of ϕ on Dp of length greater than 1 containing an involution. If this orbit X
contains an element of order p, then these two elements generate Dp, so X generates Dp.
Similarly, if X contains another involution, then the product of these two involutions is an
element of order p, and hence X generates Dp. Also by a standard argument, X is closed
under taking inverses, since it contains an involution x: if y = ϕi(x), then by Lemma 2.1(a),
we have 1 = ϕi(1) = ϕi(xx) = ϕi(x)ϕσ(i,x)(x) and so y−1 = (ϕi(x))−1 = ϕσ(i,x)(x) ∈ X.

Thus X generated Dp and is closed under inverses, and by the theory described briefly in
Section 2, it follows that there exists a regular Cayley map M = CM(Dp, X, ρ) for Dp in
which ρ is the restriction of ϕ to X.

Finally, the regular Cayley maps for dihedral groups of odd degree have been classified,
by Kovács, Marušič and Muzychuk. In particular, it follows from [12, Theorem 3.2 and
Corollary 3.3] that for each odd integer n > 1 not divisible by 3, every regular Cayley
map for Dn is balanced, which means that the corresponding skew morphism of Dn is an
automorphism. Thus ϕ is an automorphism of Dp, as required. �

We believe Theorem 8.3 can be generalised. It might even be true that every skew morphism
of Dn is an automorphism, whenever n is an odd integer not divisible by 3. We leave this
as an open question.
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9. The skew morphism group of a group

Let us define Skew(A) as the set of all skew morphisms of A, and SkewGroup(A) as the
group generated by these, considered as a subgroup of Sym(A). We may call SkewGroup(A)
the skew morphism group of A.

We have already seen that in some cases, SkewGroup(A) = Skew(A) = Aut(A). For
example, this happens for the abelian groups given in Theorem 7.5, and for dihedral groups
of prime degree p > 3. In other cases, however, |SkewGroup(A)| > |Skew(A)| > |Aut(A)|.
The group C6 has four skew morphisms, only two of which are automorphisms, and they
generate a subgroup of Sym(C6) of order 6, isomorphic to D3. On the other hand, D3 has
12 skew morphisms, only 6 of which are automorphisms, and the skew morphisms generate
a subgroup of Sym(D3) of order 120, isomorphic to S5. Similarly, C8 has 4 automorphisms
but 6 skew morphisms, generating a group of order 8, isomorphic to D4, while C4×C2 has
8 automorphisms but 16 skew morphisms, generating a group of order 5040, isomorphic
to S7. Also C9 has 10 skew morphisms, of which 6 are automorphisms, and the skew
morphisms generate a group of order 18, and C3 × C3 has 48 automorphisms but 64 skew
morphisms, which generate a group of order 40320, isomorphic to S8.

Remarkably, we have not found an example of a finite group A for which the set Skew(A)
itself is a group, when Skew(A) is larger than Aut(A). In other words, the only A for which
we know Skew(A) is a group are those for which Skew(A) = Aut(A). This creates another
open question worth further investigation.

Finally, we prove the following analogue of the fact that the automorphism group of every
cyclic group is abelian.

Theorem 9.1. If A is a finite cyclic group, then SkewGroup(A) is soluble.

Proof. We let S = SkewGroup(A), and use induction on |A|. If |A| is prime, then by
Corollary 4.4 we know that S = Skew(A) = Aut(A), which is cyclic, and so we may
suppose that A has composite order.

Let q be the largest prime divisor of |A|, and let J be the unique subgroup of A of order q.
If ϕ is any skew morphism of A, then by Corollary 5.7, the order of K = kerϕ is divisible
by q, and so K contains J . Moreover, since ϕ preserves K, it follows that ϕ preserves J .

Now let N be the subgroup of S generated by all skew morphisms of A that fix J element-
wise. This is the kernel of the action of S on J (which takes every skew morphism ϕ of A
to the automorphism it induces on J), and so N is normal in S. Also S/N is isomorphic
to a subgroup of Aut(J), and therefore S/N is abelian.

Next, we show N is soluble.

To do this, we first note that every skew morphism ϕ of A preserves the partition of A
into cosets of J (for if ϕ(x) = y then ϕ(ax) = ϕ(a)ϕ(x) = ϕ(a)y ∈ Jy for all a ∈ J), and
induces a skew morphism of A/J . It follows that S can be regarded as a subgroup of the
wreath product of Sym(J) by T = SkewGroup(A/J). Since the latter can be regarded as
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a permutation group on the set of |A :J | cosets of J in A, we find that S is an imprimitive
subgroup of Sym(A), with |A :J | blocks of imprimitivity, each of size |J |.
Also let R be the regular group of permutations of J induced by J on itself by multipli-
cation, and let G be the wreath product RwrT . This is isomorphic to the semi-direct
product of R|A:J | (= R×R× · · · ×R) by T . We claim that N is isomorphic to a subgroup
of G. For suppose that ϕ and ν are two elements of N that induce the same permutation
on the cosets of J . For any such coset Jx, let Jy be its image under ϕ. Then without loss
of generality ϕ takes x to y, and so takes ax to ϕ(a)ϕ(x) = ay (since ϕ ∈ N fixes J), for all
a in J . Similarly, ν takes x to cy for some c ∈ J , and so ν takes ax to acy = c(ay) for all
a ∈ J . It follows that (νϕ−1)(ay) = ν(ax) = c(ay), and thus νϕ−1 induces multiplication
by c on the coset Jy. This proves the claim.

But now since |R| = |J | = q, the base group R|A:J | = R × R × · · · × R is an elementary
abelian q-group. Also by induction, T = SkewGroup(A/J) is soluble. It follows that
G = RwrT is soluble, and hence N is soluble.

Thus N is soluble, and S/N is abelian, and therefore S is soluble. �
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