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Abstract—We present a scaling model for linear permanent
magnet synchronous motors applied to needle-free jet injection,
a drug delivery technique that requires the generation of high
fluid pressures. This model shows that either the motor stroke or
the motor constant can be increased to reduce the electrical power
required to perform an injection. We then present computation-
ally efficient semi-analytical field solutions for a tubular linear
synchronous motor, and use them to develop optimized motor
designs for minimal jet injection power. A finite-permeability
solution is developed and compared to both finite element
results and a simplified infinite-permeability solution to validate
the model and to establish criteria for choosing the back-iron
thickness. We find that optimal jet injector motor configurations
favor long stroke lengths, even at the expense of motor constant.
However, designs constrained to physically reasonable motor
lengths still offer an order of magnitude reduction in input power
as compared to existing voice-coil-driven injection systems.

I. INTRODUCTION

One technique for needle-free injection of drugs is jet
injection, which forms a high-velocity (> 100 m/s) stream of
liquid drug that can penetrate skin using nothing but its own
momentum [1]. Traditionally, jet injection systems have been
actuated by driving a piston using a spring or compressed
gas, but this approach offers limited control of injection depth
and results in a harsh injection accompanied by loud noise
and occasional bruising. These effects can be mitigated by
precisely regulating the jet velocity and duration under closed-
loop control, using a linear electric motor to instead drive the
system [2].

The actuation requirements for jet injection are very chal-
lenging for electric motors, with a pulse of high force required
to pressurize the drug under near-stall conditions, and device
usability considerations dictating minimization of the actuator
mass. We have previously reported [3] an approach to the
development of optimized voice coil actuators for this role,
based on a quasi-Halbach topology. In doing so, we found
that the coupling between voice coil stroke, size, and efficiency
interacts with the mechanics of pressurizing a fluid in a piston-
cylinder apparatus to give a scaling law for voice-coil-powered
jet injectors. For a given input power, the required voice
coil mass M grows faster than the injection volume V , with
M ∝ V 6/5. As a result, hand-held injectors delivering volumes
of over 0.5 mL are not practical using voice coil actuation.

In this paper, we explore the design of linear permanent
magnet synchronous motors (LPMSMs) optimized for jet
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Fig. 1. A basic schematic of a synchronous-motor-driven jet injector, illus-
trating a schematic LPMSM with an injector ampoule. The piston diameter
D and stroke L in the ampoule are illustrated.

injection applications. We demonstrate that the scaling laws
for LPMSMs break the coupling between motor stroke and
performance seen in voice coils, allowing the overall system
to operate with greater efficiency. We then describe a semi-
analytical electromagnetic model for tubular LPMSMs with
sufficient computational simplicity and numerical stability for
use in optimization, along with a dynamic model of injection
to constrain the range of usable motor designs. We use these
models to develop representative optimized motor designs for
jet injection.

II. SCALING MODEL

To review, in [3] we found the following relationship
between the key physical parameters of a jet injector powered
by a permanent magnet motor:

P =
ρ2V 2v4

4K2
mL

2
, (1)

where P is the power dissipated in the motor windings, ρ is
the density of the fluid to be delivered, v is the required jet
velocity, Km is the motor constant, and L is the length of
travel of the jet injector piston, as illustrated in Fig. 1. To
clarify the relationship between the motor size and the motor
constant, it can be non-dimensionalized as follows [4], [5]:

Km = BremK̂m

√
σM

ρc
, (2)

where Brem is the remanance of the permanent magnets in the
motor, σ is the electrical conductivity of the winding material,
ρc is the density of the winding material, and K̂m is the
dimensionless motor constant.



A C’ B B’ C A’ A’ 

r ̂ 

^ z 

rco 

rci 
rio 

rii 

… … 

2π/k rfo 

Fig. 2. This schematic illustrates the quasi-Halbach LPMSM with interior
magnets and exterior back iron. The radii of the magnet, coil, and back-
iron regions are shown, excluding the inner radius of the back iron rfi; the
structure has periodicity corresponding to a wavenumber k. (Arrows indicate
the direction of magnetization in the permanent magnets.)

Unlike in the case of voice coils, for LPMSMs the di-
mensionless motor constant is largely independent of external
motor parameters, such as mass or stroke length, instead
depending on the internal proportions of the magnets and coils
within each repeat unit [5], [6]. Combining (1) and (2) thus
yields a final scaling relation,

P ∝ V 2v4

ML2K̂2
m

, (3)

neglecting material properties. When designing the actuator,
our goal is to minimize the mass M while varying the internal
motor dimensions and the motor stroke L; all other parameters
are set by the application.

On the face of it, this scaling relationship implies that the
motor can be made arbitrarily small simply by using a very
long stroke with very small repeat units of magnet and coil. In
practice, the dimensionless motor constant is not completely
independent of the repeat unit size; the clearance gaps between
the magnets and coils do not scale, breaking scale invariance.
In order to determine the limits of scale invariance, we must
turn to electromagnetic modeling of the motor structure.

III. ELECTROMAGNETIC MODEL

We will consider one particular motor topology here, the
tubular LPMSM with quasi-Halbach interior magnets, slot-
less windings, and exterior back iron, as shown in Fig. 2.
Tubular slotless topologies offer the advantages of simple
mechanical construction and high copper utilization, at the
expense of computational difficulties in their modeling. Our
basic modeling approach is outlined in [5] and [3]: we use a
Fourier series solution, with exact analytical solutions to the
Poisson equation in cylindrical coordinates for the fields in
radially-oriented magnets and in the coils. This formulation
avoids the computational inefficiency of the standard integral
formulation [7], [8], as well as the cancellation error and
numerical instability exhibited by that and by other explicit
analytical solutions (e.g. [9], [10]).

A. General Formulation
We analyze a motor with the repeat unit dimensions illus-

trated in Fig. 2. The numbers of magnet and coil repeat units

employed are given by Nm and Nc, respectively. The stroke
L is then given by

L =
2π

k
|Nm −Nc| , (4)

with the motor overhung if Nc > Nm and underhung if
Nc < Nm. (Motors with the coil allowed to partially exit the
magnetic field region are not considered here.) The overall
length of the motor Lm is thus given by

Lm =
2π

k
max (Nc, Nm) . (5)

We describe the magnetization of the permanent magnets in
terms of its Fourier series decomposition,

M̂rn =
4Nseg

nπ2
sin

(
π

Nseg

)
sin

(
nπδ

2

)
, (6)

M̂zn = − 4

nπ
cos

(
nπδ

2

)
, (7)

where M̂rn and M̂zn are the dimensionless radial and axial
magnetizations, respectively, at odd harmonic order n, δ refers
to the fraction of the magnet array occupied by radially-
oriented magnets, and Nseg denotes the number of uniformly-
magnetized segments used to approximate true radial magne-
tization [11].

We describe our field solutions in terms of auxiliary func-
tions based on the modified Struve function Lν(x) and the
modified Bessel functions Iν(x) and Kν(x):

Λν(x) ≡ π

2

(
Iν(x)− Lν(x)

)
, (8)

LI(x) ≡ x (Λ1(x) I0(x)− Λ0(x) I1(x)) , (9)
LK(x) ≡ x (Λ1(x) K0(x) + Λ0(x) K1(x)) . (10)

The function Λν(x) has computationally efficient series rep-
resentations [12], and only takes on values between zero and
one for positive values of its argument.

The magnetic fields in free space are given by

Brn = Brem

(
ân I1(nkr) + b̂n K1(nkr)

)
and (11a)

Bzn = Brem

(
−ân I0(nkr) + b̂n K0(nkr)

)
(11b)

in the radial and axial directions, respectively. Determining
the force produced F by integrating the Lorentz force over
the coil, we find a dimensionless force constant F̂ , with

F =
2πBremJ1Nm

k3
F̂ , (12a)

F̂ ≡ π
(
â1cb̂1m + â1mb̂1c

)
. (12b)

Here, J1 is the magnitude of the first harmonic of the current
distribution, â1m and b̂1m are magnetic field coefficients deter-
mined by matching boundary conditions for the first harmonic,
and â1c and b̂1c are parameters based on the coil radii:

â1c = LK(krco)− LK(krci) , (13a)

b̂1c = LI(krco)− LI(krci) . (13b)



The length of the magnet structure is used as a reference scale
for the motor size.

To find the dimensionless motor constant, we also need
to non-dimensionalize the power dissipation and mass of the
motor:

P̂ ≡ σk3

2πNmJ2
1

P =
π

2

(
(krci)

2 − (krco)
2
)
, (14)

M̂ ≡ k3

2πρcNm
M. (15)

(In calculating the motor mass, the back-iron is assumed to
extend for the length of the magnet structure; i.e. a moving-coil
arrangment.) In addition, we need to account for the different
lengths of the coil and magnets, via a stroke length parameter
y [5],

y ≡ max

(
Nc
Nm

,
Nm
Nc

)
, (16)

as well as the coil fill factor x. The first-harmonic winding
factor w for the simple block winding illustrated in Fig. 2 is
given by

w =
2Nφ
π

sin
π

2Nφ
, (17)

where Nφ is the number of winding phases. The dimensionless
motor constant can then be determined via

K̂m = wF̂

√
x

yP̂ M̂
. (18)

B. Infinite Permeability

The field solution for infinitely-permeable back iron has
been derived in [3] in the context of voice coils:

bnm = M̂r1

(
LI(nkrio)− LI(nkrii)

)
− M̂z1

(
nkrio I1(nkrio)− nkrii I1(nkrii)

)
, (19a)

anm = bnm
K0(nkrfi)

I0(nkrfi)
, (19b)

for any harmonic order n.
In order to constrain the thickness of the back iron, its

thickness can be set to yield a desired maximum flux density
within it. Neglecting the magnetic field produced by the

applied current, the maximum flux density Bsat can be found
by integrating the field (including all harmonics) at the iron’s
inner surface in the axial direction over a length equal to one
quarter of the period, then dividing by the cross-sectional area
of the back iron:

Bsat =
rfiBrem

r2fo − r2fi

∞∑
n=1

2 sin
(
nπ
2

)
nk

(
anm I1(nkrfi)

+ bnm K1(nkrfi)
)
. (20)

This equation can be readily inverted to find the required
outside diameter for a particular inside diameter and flux
density.

C. Finite Permeability

Semi-analytical modeling of finite-permeability effects in
slotless tubular LPMSMs does not appear to have been ex-
plored extensively. Wang and Howe [13] describe an iterative
technique for slotted motors based on the discrete reluctances
of the teeth and back-iron, wherein a fictitious air gap is added
between the magnets and stator to account for saturation.
Meessen et al. [14] describe a more complex model that
accounts for finite permeability in uniform layers, but is too
computationally expensive to use with nonlinear materials.

Here, we solve for the fields in a tubular LPMSM with
saturable iron, subject to the assumption that the relative
permeability µ is uniform within the iron. The field coefficients
can be found by matching boundary conditions in the usual
manner, with some effort, and are given in (21). The quantities
â′nm and b̂′nm are the field coefficients within the iron itself.
We then assume that the point of maximum flux density Bmax
within the iron lies on its inner surface, one quarter period
from the center of a radial magnet:

Bmax = Brem

∞∑
n=1

(
−â′nm I0(nkrfi)

+ b̂′nm K0(nkrfi)
)

sin
(nπ

2

)
. (22)

Using the formula for Bmax, and a curve fit describing
the nonlinear behavior of the iron, iteration is performed via
Brent’s method until the permeability converges. The field
coefficients can then be used with (12b) to determine the motor
performance.

b̂nm = M̂rn (LI(nkrio)− LI(nkrii))− M̂zn (nkrio I1(nkrio)− nkrii I1(nkrii)) (21a)

b̂′nm ≡
µb̂nm
nkrfi

[
I1(nkrfi) K0(nkrfi) + µ I0(nkrfi) K1(nkrfi)

− (µ− 1)
2

I1(nkrfi) I0(nkrfi) K1(nkrfo) K0(nkrfo)

µ I1(nkrfo) K0(nkrfo) + I0(nkrfo) K1(nkrfo)

]−1 (21b)

â′nm ≡ −b̂′nm
(µ− 1) K0(nkrfo) K1(nkrfo)

µ I1(nkrfo) K0(nkrfo) + I0(nkrfo) K1(nkrfo)
(21c)

ânm =
nkrfi
µ

[
â′nm (µ I1(nkrfi) K0(nkrfi) + I0(nkrfi) K1(nkrfi)) + b̂′nm (µ− 1) K1(nkrfi) K0(nkrfi)

]
(21d)
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Fig. 3. The unloaded radial flux density at the mean coil radius (kr =
3.45) is shown for motors with krii = 0.86, krio = 3.0, krci = 3.03,
krco = 3.87, krfi = krfi = 3.91, and δ = 0.41, for three different iron
thicknesses, krfo = 4.19, krfo = 4.10, and krfo = 4.05. The dashed
lines represent the field in the absence of iron, the dotted lines show the field
with infinitely-permeable iron, the solid lines indicate the field according to
the finite-permeability model using 1018 steel, and the circles show the field
according to an ANSYS finite element model. (Only one half-period is shown,
due to symmetry.)

TABLE I
COMPARISON OF IRON MODELS.

Bsat K̂∞ K̂finite K̂FEA F̂∞ F̂finite F̂FEA

2 T 0.274 0.270 0.260 6.384 6.278 6.215
3 T 0.282 0.262 0.254 6.384 5.928 5.919
4 T 0.286 0.255 0.246 6.384 5.677 5.652
No Iron N/A 0.230 N/A N/A 4.880 N/A

D. Model Validation

The results from the finite-permeability model were com-
pared to results from the infinite-permeability model as well
as those from a unity-permeability (ironless) model. Matching
geometries were also examined in ANSYS using identical
nonlinear material properties for 1018 steel [15]. (In both
cases, the radial magnets were assumed to behave ideally,
rather than as segmented uniform magnets.) For simplicity,
the fill factor x and the stroke length parameter y were both
set equal to 1.

Fig. 3 shows a comparison of the model and FEA results for
three different requested iron flux densities in a representative
motor configuration; krfo = 4.19 corresponds to Bsat = 2 T,
krfo = 4.10 to Bsat = 3 T, and krfo = 4.05 to Bsat = 4 T.
While the designs requesting saturation fluxes well in excess
of the real saturation flux density of iron do not match the
infinite-permeability model, as would be expected, the fully-
saturated iron still contributes strongly to the performance.
The magnetic field profile predicted by the analytical model
matches the FEA result closely, though it possesses a slightly
broader and lower peak.

Table I gives the dimensionless motor constant and di-
mensionless force constant predicted by each of the models;
the dimensionless motor constant is calculated from the first
harmonic of the current and field, while calculation of the
dimensionless force constant uses the full field and current
waveform (to the 99th harmonic), with a single-phase wind-
ing. For this motor configuration, the best performance is
obtained when the iron is not saturated, unlike the situation for
voice coils [3]. With unsaturated iron, the infinite-permeability
model closely matches the results from the finite-permeability
model, while exhibiting significantly faster computation.

IV. DESIGN OPTIMIZATION

Using the infinite-permeability electromagnetic model, we
optimized the motor design by minimizing the power dissipa-
tion P , calculated via (1), (2), and (18), while holding motor
mass M fixed. The value for Bsat was chosen as 2 T based
on the results from the finite permeability model. A fill factor
of 62 % was assumed for the coil, the radial magnets were
presumed to be made from 4 segments, and the back iron
was assumed to be made from plain 1018 steel. The back-iron
thickness was calculated using 11 harmonics of the magnetic
field, while the force constant was calculated from the first
harmonic alone.

To avoid cogging force problems and to reduce the moving
mass, we examined a moving-coil configuration, with the
back-iron extending the full length of the magnet array. A
small number of geometric constraints were therefore applied
to reflect practical design issues: clearance gaps of 0.5 mm
between the magnet and coils and 0.1 mm between the coils
and back iron were required to allow for coil support and
movement, and the minimum iron thickness was restricted to
0.25 mm to leave it with sufficient mechanical strength.

To reduce coupling between the radial dimensions during
optimization, the radial thicknesses of the coil tc = rco − rci
and of the magnets tm = rio − rii were used rather than rio
and rco. The wavenumber k was used to non-dimensionalize
all other parameters, leaving a total of seven free parameters
for optimization: Nc, Nm, krii, ktm, ktc, δ, and k. Note that
Nc and Nm are also subject to integer constraints, as only
half-integer multiples of the pole pitch make sense as motor
lengths.

Optimization was carried out separately for all combinations
of Nc and Nm up to 50 pole pitches. At each combination,
the remaining parameters were optimized via constrained
nonlinear minimization, using the interior point algorithm. In
all cases, the motor mass was constrained to a fixed value
of 250 g; optimization was also performed with an additional
constraint on the overall length of the motor L, fixing it to
20 cm. To provide a relevant scale for the objective function
P , it was calculated for an ampoule volume V of 1 mL and a
jet velocity v of 200 m/s, delivering a fluid with a density of
1000 kg/m3.
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Fig. 4. A map of the performance of the optimum motor geometry at each
possible combination of Nc and Nm; overhung motors lie to the lower right,
while underhung motors lie on the upper left.

A. Unconstrained Optimization

The outcome of optimizing the infinite-permeability model
for jet injection, with Bsat = 2 T, is shown in Fig. 4.
Each individual design optimization took under one second
to complete, with all 9900 combinations of magnet and coil
lengths analyzed in two hours using one core of a 2.67 GHz
Intel Xeon W3520 processor. The results show that underhung
motors offer superior performance to overhung motors, despite
the greater mass per unit length of the magnet array and back
iron, and likely due to full utilization of the copper.

The optimum configuration lies outside the search space
in Nc and Nm, indicating that the penalty carried by the
finite, fixed clearance gaps does not outweigh the performance
improvement offered by lengthening the stroke, even for
extreme aspect ratios. The optimum design within the search
space has an impractical length of 1.27 m, with Nm = 50,
Nc = 11, 2π/k = 25.5 mm, solid magnets with outside diam-
eter 5.0 mm, a coil 1.5 mm thick, back-iron 0.4 mm thick, and
δ = 0.115; however, the objective function reaches a meager
30 W. (While true radial magnets are impossible to fabricate
as solid disks, pseudo-radial magnets composed of uniformly-
magnetized wedges can be built in this configuration without
major difficulties.) According to the model in [3], a voice coil
of the same mass would instead reach an objective function
value of 56 kW, three orders of magnitude higher.

B. Additional Constraints

Given that the overall optimization problem proved to be
underconstrained, we also explored the parameter space with
an additional constraint on the overall motor length, restricting
the longer of the magnet or coil arrays to be 200 mm long.
The result of this process is shown in Fig. 5; the shape
of the performance landscape has radically changed, now
with optimal overhung and underhung designs. The global
optimum, at 470 W, is the underhung motor with Nm = 8.5
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Fig. 5. A map of the performance of the optimum motor geometry at each
possible combination of Nc and Nm, with the total motor length limited to
20 cm.

Fig. 6. A cartoon view of the optimized 200 mm motor design, illustrating
the relative lengths and diameters of the coil and magnet array. (The back
iron is omitted for clarity.)

and Nc = 2.5, which has 2π/k = 23.5 mm, solid magnets
with an outside diameter of 13.4 mm, tc = 2.1mm, back-iron
0.9 mm thick, and δ = 0.277. The aspect ratio of the optimized
motor is illustrated in Fig. 6, with its electromagnetic repeat
unit illustrated in Fig. 7. Despite the performance penalty from
the constrained length, this motor still requires two orders
of magnitude less power than a voice coil of similar mass.
There is some freedom to choose designs near this optimum;
for instance, motors with Nc ranging between 2 and 3.5 pole
pitches and Nm from 7 to 11 pole pitches require within 5 %
of the optimal power.

We investigated a variety of more natural constraints and
possible alternative objective functions, but none were suffi-
cient to create an optimum configuration of reasonable size.
Piston friction serves to make power proportional to L−1

for longer motors, rather than L−2, but does not dominate
until meter-scale lengths. Including an estimate of the mass
of the support structures connecting the coil to the piston
of the ampoule in the motor mass reduces the advantage of
extreme stroke lengths, but does not change the shape of the
optimization landscape.

C. Discussion

This optimization process focused strongly on the minimiza-
tion of copper losses for high-level system design. Because
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Fig. 7. A diagram of a cross-section of one pole pitch of the optimized
200 mm motor design. (The magnets extend up to the centerline.)

the windings were treated as regions of constant current den-
sity, terminal parameters (e.g. resistance, inductance, or force
constant) were not directly considered. Jet injection requires a
bespoke motor drive for safety, control, and packaging reasons,
and there is thus considerable latitude for choosing the coil
winding and drive voltage to work together.

For example, consider the constrained 200 mm motor, acting
upon an ampoule with an orifice 200µm in diameter to
generate a 200 m/s jet. The motor is thus required to supply a
force of 140 N at a speed of 0.9 m/s to perform an injection.
Neglecting reactive impedance, winding each coil group with
3 layers of 22.5 AWG wire yields a phase resistance of 0.23 Ω,
a fill factor of 53 %, and a line-line voltage during injection of
20 V, including 4 V of back-EMF. This might be suitable for a
device powered directly from a lithium-ion battery. If 11 layers
of 33.5 AWG wire are used instead, an improved fill factor of
58 % is possible, and the phase resistance of 41 Ω and line-
line voltage of 254 V (including 51 V of back-EMF) might
be suitable for a system powered from photoflash capacitors.
The synchronous frequency for this motor during an injection
is 38 Hz, so the effects of the unmodeled reactive impedance
should be small.

While it would be impractical to build or operate the uncon-
strained motor design, it is instructive to examine its terminal
parameters for an example winding. The unconstrained motor
would need to supply 20 N at 6.2 m/s during an injection.
If wound with 3 layers of 25.5 AWG wire, it would have a
fill factor of 54 % and require a line-line voltage of 46 V, of
which 36 V would be the back-EMF. The reactive impedance
and dynamic losses of this motor would be expected to be
significant, given its synchronous frequency of 240 Hz.

An additional consideration for very long motors is the
effort required to accelerate the coil to injection velocity. To
avoid waste of drug at the onset of the injection, the system
should reach the target velocity within 10 ms. Assuming a
constant acceleration, the unconstrained motor requires three
times the force demanded by the fluid pressure during the
injection to reach a target velocity of 200 m/s in time. The
200 mm motor, in contrast, instead only requires 4 % of the
injection force for acceleration. However, the injection lasts
considerably longer than 10 ms: a typical profile might call
for 10 ms at a jet velocity of 200 m/s followed by 600 ms

at 50 m/s. The contribution of the acceleration to the overall
energy consumed by the motor thus remains relatively small.

Cost is also an important consideration, especially for
devices used in home health care. For motors in this size
range, the cost of the magnet material itself is almost incon-
sequential, but the cost of manufacture will scale with the
number of individual magnet segments required to build the
array. The 200 mm motor proposed here requires 17 axially-
magnetized disc magnets and 68 radially-magnetized sector
magnets, for a total of 85 individual magnets. By comparison,
a voice coil motor with the same magnetic topology [3] uses
only 6 magnet segments. Roughly speaking, then, a practical
synchronous motor of comparable mass to a voice coil will
have a manufacturing cost one order of magnitude higher,
but consume two orders of magnitude less power during an
injection. While the price is high, controlled jet injection of
milliliter-scale volumes using a hand-held device is impractical
at the power required for a voice coil, and the combined
force, linear speed, and control bandwidth requirements are
incompatible with conventional rotary drive solutions.

V. CONCLUSION

By optimizing the design of a LPMSM for use in jet
injection, we have shown that its use allows for drastic
reductions in the power required compared to a voice coil
actuator. The next step will be the construction of a prototype
motor and its incorporation into an injection system to validate
this approach and exploit the efficiency gain. Particularly large
efficiency gains are possible if the motor is allowed to be very
long, but the hand-held nature of jet injection devices makes
this impractical. It may be the case that there are creative
packaging strategies for the motor to allow the use of long
stroke lengths; the benefits of doing so are large enough that
this should be an avenue for further investigation.

The performance objective for jet injection can also be more
broadly construed as the objective for any low-speed fluid
pumping application. These results are thus also applicable
to the design of actuators for free-piston refrigeration com-
pressors and hydraulic pumps, particularly if the model can
be extended to describe dynamic performance.

This optimization was enabled by a computationally-
efficient, exact semi-analytical magnetic field solution. This
formulation of the field solution can also be used to develop
tractable models for the dynamic performance of this class of
LPMSM, including loaded and unloaded losses due to eddy
currents and (more approximately) hysteresis. Future modeling
efforts will be aimed at analyzing these dynamic effects, as
well as end effects and at the application of this method to
other tubular motor configurations.
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