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Abstract Driven by the dominance of the relational

model and the requirements of modern applications,

we revisit the fundamental notion of a key in relational

databases with NULL. In SQL, primary key columns

are NOT NULL, and UNIQUE constraints guarantee

uniqueness only for tuples without NULL. We inves-

tigate the notions of possible and certain keys, which

are keys that hold in some or all possible worlds that

originate from an SQL table, respectively. Possible keys

coincide with UNIQUE, thus providing a semantics for

their syntactic definition in the SQL standard. Certain

keys extend primary keys to include NULL columns,

and can uniquely identify entities whenever feasible,

while primary keys may not. In addition to basic char-

acterization, axiomatization, discovery, and extremal

combinatorics problems, we investigate the existence
and construction of Armstrong tables, and describe an

indexing scheme for enforcing certain keys. Our exper-

iments show that certain keys with NULLs occur in

real-world data, and related computational problems

can be solved efficiently. Certain keys are therefore se-
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mantically well-founded and able to meet Codd’s entity

integrity rule while handling high volumes of incom-

plete data from different formats.
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1 Introduction

Keys have always been a core enabler for data man-

agement. They are fundamental for understanding the

structure and semantics of data. Given a collection of

entities, a key is a set of attributes whose values uniquely

identify an entity in the collection. For example, a key

for a relational table is a set of columns such that no two
different rows have matching values in each of the key

columns. Keys are essential for many other data models,

including semantic models, object models, XML and

RDF. They are fundamental in many classical areas of

data management, including data modeling, database

design, indexing, and query optimization. Knowledge

about keys enables us to i) uniquely reference enti-

ties across data repositories, ii) minimize data redun-

dancy at schema design time to process updates effi-

ciently at run time, iii) provide better selectivity esti-

mates in cost-based query optimization, iv) provide a

query optimizer with new access paths that can lead

to substantial speedups in query processing, v) allow

the database administrator (DBA) to improve the ef-

ficiency of data access via physical design techniques

such as data partitioning or the creation of indexes and

materialized views, and vi) provide new insights into

application data. Modern applications raise the impor-

tance of keys further. They can facilitate the data in-

tegration process, help with the detection of duplicates



and anomalies, provide guidance in repairing and clean-

ing data, and return consistent answers to queries over

dirty data. The discovery of keys from data is one of

the core activities in data profiling.

According to Gartner, the NoSQL market will be

worth 3.5 billion US dollars annually by 2018, but that

for relational database technology will be worth 40 bil-

lion US dollars annually [12]. This underlines that “re-

lational databases are here to stay, and that there is no

substitute for important data” [12]. For these reasons

relational databases must meet basic requirements of

modern applications, inclusive of big data. On the one

hand, relational technology must handle increases in

the volume, variety and velocity of data. On the other

hand, veracity and quality of the data must still be en-

forced, to support data-driven decision making. As a

consequence, it is imperative that relational databases

can acquire as much data as possible without sacrificing

reasonable levels of data quality. Nulls constitute a con-

venient relational tool to accommodate high volumes of

incomplete data from different formats. Unfortunately,

nulls oppose the current golden standard for data qual-

ity in terms of keys, that is, Codd’s rule of entity in-

tegrity. Entity integrity states that every table must

have a primary key and that the columns which form

the primary key must be unique and not null [10]. The

goal of entity integrity is to ensure that real-world en-

tities can be identified efficiently in database tables. In

SQL, entity integrity is enforced by adding a primary

key clause to a schema definition. UNIQUE constraints

cannot always uniquely identify entities in which null

markers occur in the columns involved. Nevertheless,

even UNIQUE can provide a great deal of conditional

logic to maintain patterns. These patterns are portable

across relational databases: The indexes they create can

be used by the optimizer to improve performance. But

the real advantage is that the UNIQUE constraint can

simply be evoked to enforce uniqueness for tuples with-

out NULL. This eliminates the need for procedural code

in the database and the application layers, and there-

fore a potential source of error. SQL systems enforce en-

tity integrity by not allowing operations, that is inserts

and updates, that produce an invalid primary key. Op-

erations that create a duplicate primary key or one con-

taining nulls are rejected. Hence, relational databases

exhibit a trade-off between their main mechanism to

accommodate the modern application requirements and

their main mechanism to guarantee entity integrity.

We illustrate this trade-off by the following example.

Consider the snapshot I of the literature references

table in the RFAM (RNA families) data set in Table

1. The table violates entity integrity as every poten-

tial primary key over the schema is violated by I. In

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R ⊥

Table 1 Snippet I of the literature references table

particular, column journal carries the null marker ⊥.

Nevertheless, every tuple in I can be uniquely identi-

fied by a combination of column pairs, such as (title,

journal) or (author, journal)1. Hence, the syntactic re-

quirements of primary keys prohibit the entry of some

data without good reason. The inability to insert im-

portant data into the database may force organizations

to abandon key validation, exposing their future data

to less quality, inefficiencies in data processing, waste of

resources, and poor data-driven decision making. Find-

ing a more liberal notion of keys will bring forward a

new technology that accommodates the requirements

of modern applications better than primary keys do.

These observations have motivated us to introduce

SQL keys with a well-founded semantics. For this pur-

pose, we interpret occurrences of ⊥ as no information

[36]. We use possible worlds that result from an SQL

table by replacing independently each occurrence of ⊥
by a value from the corresponding domain, and where

missing information is represented by the distinguished

domain ‘value’ N/A for not applicable. Our data model

therefore accommodates unknown and missing informa-

tion, and is the first to associate a possible world se-

mantics with the no information interpretation. In each

possible world, occurrences of N/A are handled just as

every other domain value. In particular, the equality

relation between two domain values extends to N/A.

That is, N/A equals the domain value v if and only if

v = N/A. This makes perfect sense as every unknown

information represented by ⊥ has already been replaced

by an actual domain value, different from N/A, in every

possible world. Nevertheless, all our results also hold if

we interpreted two different occurrences of N/A in a

possible world as unequal. In conclusion, each possible

world can be handled as a relation of total tuples in

which duplicate tuples may occur. As usual, a possible

world w satisfies a key X if and only if there are no

two tuples in w that have distinct tuple identities and

matching values on all the attributes in X. For exam-

ple, the possible world w1 of I in Table 2 satisfies keys

such as {journal}, {author,journal} and {title,journal},
and the possible world w2 of I in Table 3 satisfies the

keys {author,journal} and {title,journal} but violates

the key {journal}. In particular, world w1 models the

1 The similar journal values of the first and second row
are not different by mistake: Our keys deal with the integrity
dimension of data, and not the accuracy dimension.



title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R N/A

Table 2 Possible World w1 of snippet I in Table 1

title author journal
The uRNA database Zwieb C Nucleic Acids 1997
The uRNA database Zwieb C Nucleic Acids 1996
Genome wide detect. Ragh. R Nucleic Acids 1997

Table 3 Possible World w2 of snippet I in Table 1

case in which the paper Genom wide detect. by Ragh.

R has not been published in a journal. When required

we can also stipulate minimality requirements on keys.

Our approach naturally suggests two semantics of

SQL keys. A possible key p 〈X〉 is satisfied by an SQL

table I if there is some possible world of I in which

the key X is satisfied. A certain key c 〈X〉 is satisfied

by an SQL table I if the key X is satisfied in every

possible world of I. In particular, certain keys do not

prevent the entry of incomplete tuples that can still be

identified uniquely, independently of which information

⊥ occurrences represent. For example, the snapshot I

in Table 1 satisfies the possible key p 〈journal〉 as wit-

nessed by world w1 in Table 2, but violates the certain

key c 〈journal〉 as witnessed by world w2 in Table 3.

Moreover, I satisfies the certain keys c 〈title, journal〉
and c 〈author, journal〉. The example illustrates that

primary keys are only sufficient to uniquely identify tu-

ples in SQL tables, while certain keys are also necessary.

That is, primary keys uniquely identify all tuples when

none of them feature ⊥ in all their key columns. How-

ever, there are SQL tables in which it is not necessary

to disallow null marker occurrences in key columns in

order to identify every tuple. The impact areas of keys

and uniqueness constraints, as mentioned before, apply

to certain and possible keys. It is therefore important

to investigate basic problems about possible and certain

keys, ranging from their semantic definition and syntac-

tic characterization, to the computational complexity

of their associated implication problem, the ability to

discover them from given SQL tables and to recognize

keys that are meaningful in a given application domain,

the description of the largest families of non-redundant

keys, and the identification of index designs that help

validate keys efficiently. Our contributions can be sum-

marized as follows:

1. We propose the first possible world semantics for

keys over SQL tables under the most basic interpreta-

tion of null marker occurrences ⊥ as no information.

Here, replacements of ⊥ by Codd’s null marker N/A

for inapplicable mean that this occurrence of ⊥ rep-

resents missing information, while replacements of ⊥
by actual domain values mean that this occurrence of

⊥ represents unknown information. Keys are possible

when they hold in some possible world, while keys are

certain when they hold in all possible worlds.

2. We establish simple syntactic characterizations to

validate the satisfaction of possible and certain keys

directly on the given SQL table. Permitting possible

worlds to be multisets means that possible keys provide

a semantics for UNIQUE constraints.

3. We characterize the implication problem for the com-

bination of possible and certain keys and NOT NULL con-

straints axiomatically, and by an algorithm that works

in linear time in the input. We can therefore efficiently

compute the minimal cover of our constraints to re-

duce the amount of integrity maintenance to a minimal

level necessary. Our algorithm requires only little time

to eliminate all future redundant enforcements of keys,

which saves more time when data sets become bigger.

4. We address the data-driven discovery of possible and

certain keys. Exploiting hypergraph transversals, we es-

tablish a compact algorithm to compute a cover for the

possible and certain keys that hold on a given table. We

applied the algorithm to real-world data, showing that

possible and certain keys occur frequently in practice.

5. We complement the data-driven discovery of pos-

sible and certain keys with a schema-driven approach

towards their discovery. For this purpose, we investigate

structural and computational aspects of Armstrong ta-

bles. Given some set of possible keys, certain keys and

NOT NULL constraints, an Armstrong table for this set

is an SQL table that satisfies the constraints in this

set but violates all possible keys, certain keys and NOT

NULL constraints that are not implied by the set. For ex-

ample, snapshot I of Table 1 is an Armstrong table for

p 〈journal〉, c 〈title, journal〉, c 〈author, journal〉 and

the NOT NULL constraints on title and author. Despite

much more involved challenges as encountered in the

idealized special case of relations, we characterize when

Armstrong tables exist and how to compute them in

these cases. While being, in theory, worst-case double

exponential in the input, experiments show that our al-

gorithm produces tables with less than ten rows within

a few milliseconds on average.

6. Meaningful keys rarely consist of attributes that all

have a small number of domain values. Nevertheless,

we investigate possible and certain keys under a small

domain requirement, such as boolean. While our syn-

tactic characterization of certain keys carries over, we

show that deciding the satisfaction of possible key sets

becomes NP-hard. Firstly, this means the notion of cer-

tain keys is robust. Secondly, the NP-hardness result

prompts us to adopt - for finite domains - the syntac-



tic notion of UNIQUE instead of the semantic notion of

a possible key. This ensures that our contributions to

reasoning and discovery are retained for finite domains.

Finally, our results also justify the syntactic notion of

UNIQUE from a computational point of view. In addi-

tion, we show how to construct Armstrong tables for

whenever every certain key contains some NOT NULL at-

tribute with an infinite domain and every possible key

contains some attribute with an infinite domain.

7. For a database designer it is a natural question to

ask how large non-redundant families of integrity con-

straints can potentially be. Answers to this question

provide the designer with upper bounds on how com-

plex integrity maintenance can become. This may re-

sult in the requirement to restrict the size of keys. One

may then ask how large non-redundant families for keys

of restricted size can become. Using extremal set the-

ory we identify the non-redundant families of possible

keys and certain keys that attain maximum cardinality

under given NOT NULL constraints, even when we limit

the keys to those that respect an upper bound on the

number of attributes. In other words, our results char-

acterize minimal covers of maximum cardinality.

8. We propose an indexing scheme for certain keys.

In comparison to enforcing keys on a data set with 100

million tuples and without indices, our scheme improves

the enforcement of certain keys on inserts by a factor

of 104. It works only marginally slower than the en-

forcement of primary keys, provided that the certain

keys have only a small number of columns in which null

markers can occur. Exploiting our data-driven discov-

ery algorithm from before, we have found only certain

keys in which at most two columns feature null markers.

Our findings show how certain keys attain the golden

standard of Codd’s principle of entity integrity under

the requirements of modern applications.

Organization. Section 2 discusses related work. Possi-

ble and certain keys are introduced in Section 3 where

we also establish their syntactic characterization and

solutions to their implication and discovery problems.

Structural and computational aspects of Armstrong ta-

bles are investigated in Section 4. All these results are

reviewed under a small domain assumption in Section 5.

Extremal problems are studied in Section 6. An efficient

indexing scheme for the enforcement of certain keys is

established in Section 7. Results of our experiments are

presented in Section 8. We conclude in Section 9. Sec-

tion 5 uses material from Section 4, which is based on

Section 3. Section 6 can be read after Section 3. Sec-

tion 7 can be read after Section 3. Finally, Section 8

refers to different results from Sections 3, 4, and 7.

2 Related Work

Integrity constraints enforce the semantics of applica-

tion domains in database systems. They form a cor-

nerstone of database technology [2]. Entity integrity is

one of the three inherent integrity rules proposed by

Codd [10]. Keys and foreign keys are the only ones

amongst around 100 classes of constraints [2] that enjoy

built-in support by SQL database systems. In particu-

lar, entity integrity is enforced by primary keys [40].

Core problems investigate reasoning [19,20,24], Arm-

strong databases [21], and discovery [25,37,38,49]. Ap-

plications include consistent query answers [33], data

cleaning [18], exchange [17], fusion [45], integration [7],

profiling [43], quality [47], and security [5], schema de-

sign [15], query optimization [26], and view mainte-

nance [46].

Surrogate keys (‘auto-increment’ fields) are often

seen as a practical solution to enforce entity integrity.

Frequent arguments are performance improvements and

robustness under schema changes. In reality, semantic

keys also contribute to that [3]. We illustrate how sur-

rogate keys can cause entity duplication. Table 4 shows

a real-world sample S of the ncbi taxonomy table from

the PFAM (protein families) data set. Here, ncbi taxid

is a surrogate primary key.

The first two rows of S illustrate that some entities,

a combination of a species and taxonomy, were dupli-

cated despite the presence of a surrogate key. If, instead,

the meaningful certain key c 〈species, taxonomy〉 had

been enforced, this violation of entity integrity would

have been avoided. Such cases are not an exception. In

New Zealand, hospital patients are identified by their

National Health Index (NHI) number. In a 12-month

duplicate-resolution programme in 2003, over 125,000

duplicate NHI numbers were resolved [44]. This means

there are people with more than one NHI number. Un-

availability of all NHI numbers for the same patient

means that the health history is incomplete, which may

lead to fatal incorrect decisions. Nevertheless, keys do

not aim at solving the duplicate detection problem. In-

tuitively, the violation of meaningful keys should cause

only a small fraction of tuples to duplicate entities.

One of the most important extensions of the rela-

tional model [10] is incomplete information, due to the

high demand for the correct handling of such informa-

tion in applications. A landmark paper for extending al-

gebra operators to incomplete information is [27]. The

two most prolific proposals for null marker interpre-

tations are “value unknown at present” [10] and “no

information” [36]. The former has a well-founded pos-

sible world semantics but missing information is not

covered; and while the latter can express unknown and



ncbi taxid species taxonomy
39378 Catenula sp. Eukaryota;Metazoa;Platyhelminthes;Turbellaria;Catenulida;Catenulidae;Catenula;
66404 Catenula sp. Eukaryota;Metazoa;Platyhelminthes;Turbellaria;Catenulida;Catenulidae;Catenula;
131567 cellular organisms ⊥

Table 4 Snippet S of the ncbi taxonomy data set

missing information, previous research did not associate

a possible world semantics with it. To the best of our

knowledge, our research is the first to combine the best

of both: SQL tables can feature “no information” nulls

to express unknown and missing information, and we

obtain possible worlds from SQL tables by replacing ⊥
with N/A to represents missing information, and re-

placing ⊥ with actual domain values to represent un-

known information.

Our data model therefore constitutes a principled

general approach to the semantics of constraints. Lev-

ene and Loizou introduced strong and weak functional

dependencies (FDs) [34]. A weak FD holds on some pos-

sible world, while a strong FD holds on every possible

world. Hence, strong/weak FDs and possible/certain

keys are closely related. However, neither are certain

keys special cases of strong FDs, nor are possible keys

special cases of weak FDs. The reason is that we permit

duplicate tuples in possible worlds, which is necessary

to obtain entity integrity. Consider I1 in Table 5: If we

prohibited duplicates, title would become a certain key

even though we have “no information” on title for the

second tuple in I1, which makes it impossible to dis-

tinguish the first and second tuple in I1 based on title.

Under multiset semantics, keys are no longer special

cases of FDs, since the former prohibit duplicate tu-

ples and the latter do not. Duplicates occur naturally

in applications, such as data integration, and should

be accommodated by the semantics of keys. For exam-

ple, the snippet I1 in Table 5 satisfies the strong FD

title → author, i.e., {title} is a strong key for I1, but

c 〈title〉 does not hold on I1. In fact, replacing ⊥ in I1
with ‘uRNA’ results in duplicates that violate the key

{title}. Similarly, the snippet I2 in Table 5 satisfies the

weak FD author→ journal, i.e., {author} is a weak key

for I2, but p 〈author〉 does not hold on I2. In fact, re-

placing ⊥ in I2 with ‘Acids’ results in duplicates that

violate the key {author}. The snippet I2 further illus-

trates the benefit of duplicates in possible worlds. This

guarantees that UNIQUE coincides with possible keys,

but not with weak keys: I2 violates UNIQUE(author) and

p 〈author〉, but satisfies the weak key {author}.

The focus in [34] is on axiomatization and implica-

tion of strong/weak FDs. While Armstrong tables were

claimed to always exist [34], we discovered a technical

I1
title author

uRNA Zwieb
⊥ Zwieb

I2
author journal

Zwieb C ⊥
Zwieb C Acids

Table 5 SQL tables I1 and I2

error in the proof. Section 4.5 presents a set of strong

and weak FDs for which no Armstrong table exists.

The principle of entity integrity has been challenged

before [51,35], both following the notion of a key set.

A relation satisfies a key set if, for each pair of dis-

tinct tuples, there is some key in the key set on which

the two tuples are total and distinct. A certain key is

equivalent to a key set consisting of all the singleton

subsets of the key attributes, e.g., c 〈title, journal〉 cor-

responds to the key set {{title}, {journal}}. However,

our work is different in that we study the interaction

with possible keys and NOT NULL attributes, establish a

possible world semantics, and study different problems.

The implication problem for the sole class of primary

keys is examined in [22]. As the key columns of primary

keys are NOT NULL, the class of primary keys behaves

differently from both possible and certain keys.

Our findings may be important for other data mod-

els such as XML [23] and RDF [8] where incomplete
information is inherent, probabilistic databases [6,28]

and also description logics [8].

Some of our results were announced in [32]. The

current paper contains proofs of all results. These are

fundamental for understanding our techniques and of-

ten contain useful constructions. We also showed how to

extend our results from [32] from only unknown to both

unknown and missing information. Section 5 is new and

establishes results for finite domains. Section 6 is also

new and investigates extremal set problems. Finally, we

present additional examples and experiments that fur-

ther motivate our research and illustrate our findings.

Summary. Certain keys are a natural approach to

identify entities in SQL tables. Surprisingly, they have

not received more attention yet. The combination of

certain and possible keys under NOT NULL constraints

is particularly relevant to SQL. The presence of certain

keys means that the problems studied here are substan-

tially different from previous work.



3 Possible and Certain Keys

After some preliminaries we introduce possible and cer-

tain keys. Subsequently, we characterize these notions

syntactically, and derive a simple axiomatic and linear

time algorithmic characterization of their implication

problem. We show that possible and certain keys enjoy

a unique minimal representation. Finally, we exploit hy-

pergraph transversals to discover possible and certain

keys from a given table.

3.1 Preliminaries

We begin with basic terminology. Let A = {A1, A2, . . .}
be a (countably) infinite set of distinct symbols, called

attributes. Attributes represent column names of ta-

bles. A table schema is a finite non-empty subset T of

A. Each attribute A is associated with an infinite do-

main dom(A) which represents the possible values that

can occur in column A. We assume that each domain

dom(A) contains the symbol ‘N/A’, which is short for

not applicable. We include ‘N/A’ in each domain out

of convenience, and stress that ‘N/A’ is not an actual

value, but rather a marker that represents missing infor-

mation in the form of Codd’s null marker inapplicable.

The marker ‘N/A’ will not feature in SQL tables, but

only in their possible worlds. In order to encompass

missing and unknown information in SQL tables, the

domain of each attribute also contains the no informa-

tion null marker, denoted by ⊥ [36]. As with ‘N/A’, ⊥ is

not a value, but we include ⊥ in attribute domains as a

convenience. In particular, the equality relation over the

domain of each attribute extends to ‘N/A’ and ⊥ as for

every other domain value. We define that ‘N/A’=‘N/A’

as it does not seem feasible to stipulate two occurrences

of ‘N/A’ as unequal. Nevertheless, all our results also

hold if we define ‘N/A’6=‘N/A’. Thus the semantics of

possible and certain keys is independent of whether we

stipulate equality or inequality between every two dif-

ferent occurrences of ‘N/A’ in possible worlds.

For attribute sets X and Y we may write XY for

their set union X ∪ Y . If X = {A1, . . . , Am}, then we

may write A1 · · ·Am for X. A tuple over T is a function

t : T →
⋃
A∈T dom(A) with t(A) ∈ dom(A) for all

A ∈ X. For X ⊆ T let t[X] denote the restriction of

the tuple t over T to X. We say that a tuple t is X-total

if t[A] 6= ⊥ for all A ∈ X. A tuple t over T is said to be

a total tuple if it is T -total. A table I over T is a finite

multiset of tuples over T . As SQL only features one

designated null marker that encompasses missing and

unknown information, we only allow occurrences of ⊥
in SQL tables, but not occurrences of ‘N/A’. A table I

over T is (X-)total if every tuple t ∈ I is (X-)total. Let

t, t′ be tuples over T . We define weak/strong similarity

of t, t′ on X ⊆ T as follows:

t[X] ∼w t′[X] :⇔ ∀A ∈ X.
(t[A] = t′[A] ∨ t[A] = ⊥ ∨ t′[A] = ⊥)

t[X] ∼s t′[X] :⇔ ∀A ∈ X.
(t[A] = t′[A] 6= ⊥)

Weak and strong similarity become identical for tuples

that are X-total. In such “classical” cases we denote

similarity by t[X] ∼ t′[X]. We will use the phrase t, t′

agree interchangeably for t, t′ are similar.

A null-free subschema (NFS) over T is a set TS where

TS ⊆ T . The NFS TS over T is satisfied by a table if it

is TS-total. SQL attributes can be declared NOT NULL,

so the set of these attributes forms an NFS. We may

refer to the pair (T, TS) as table schema.

We say that X ⊆ T is a key for the total table I,

denoted by I ` X, if there are no two tuples t, t′ ∈
I that have distinct tuple identities and agree on X.

Given a table I, a possible world of I is obtained by

independently replacing every occurrence of ⊥ in I with

a domain value different from ⊥. If ⊥ represent missing

information, then it is replaced by ‘N/A’. Otherwise,

it represents unknown information and is replaced by

some actual domain value. We say that X ⊆ T is a

possible/certain key for I, denoted by p 〈X〉 and c 〈X〉
respectively, if the following hold:

I ` p 〈X〉 :⇔ X is a key for some possible world of I

I ` c 〈X〉 :⇔ X is a key for every possible world of I .

We illustrate this semantics on our running example.

Example 1 For T = {title, author, journal} and TS =

{title, author} let I denote the instance from Table 1.

Then I ` p 〈journal〉 as ⊥ can be replaced by a domain

value different from the journals in I. Furthermore, I `
c 〈title, journal〉 as the first two rows are unique on

journal, and the last row is unique on title. Finally,

I ` c 〈author, journal〉 as the first two rows are unique

on journal, and the last row is unique on author. ut

For a set Σ of constraints, such as possible and cer-

tain keys, table I over T satisfies Σ if I satisfies every

σ ∈ Σ. If for some σ ∈ Σ, I does not satisfy σ we

say that I violates σ (and violates Σ). A table I over

(T, TS) is a table I over T that satisfies TS . A table I

over (T, TS , Σ) is a table I over (T, TS) that satisfies Σ.

When discussing possible and certain keys, the fol-

lowing notions of strong and weak anti-keys are useful.

Let I be a table over (T, TS) and X ⊆ T . We say that

X is a strong/weak anti-key for I, denoted by ¬p〈X〉
and ¬c〈X〉 respectively, if p 〈X〉 and c 〈X〉, respectively,

do not hold on I. We may also say that ¬p〈X〉 and/or



¬c〈X〉 hold on I. We write ¬ 〈X〉 to denote an anti-key

which may be either strong or weak. A set Σ of con-

straints over (T, TS) permits a set Π of strong and weak

anti-keys if there is a table I over (T, TS , Σ) such that

every anti-key in Π holds on I. Permitting every single

anti-key in a set is not the same as permitting the set

of anti-keys as a whole. Checking whether Σ permits

a single anti-key can be done easily using Theorem 2,

while Proposition 4 shows that deciding whether Σ per-

mits a set of anti-keys is NP-complete. We illustrate the

semantics on our running example.

Example 2 Let T , TS , and I be as in Example 1. Then

I ` ¬p〈title, author〉 as the first two rows will agree on

title and author in every possible world. Furthermore,

I ` ¬c〈journal〉 as ⊥ could be replaced by either of

the two journals listed in I, resulting in possible worlds

that violate the key {journal}. ut

3.2 Syntactic Characterization

While possible worlds provide a well-founded semantics

to possible and certain keys, it is infeasible to explore

infinitely many possible worlds to validate if a given

possible or certain key holds on a given SQL table. The

following result characterizes the semantics of possible

and certain keys syntactically. This means we can di-

rectly validate our keys on the given SQL table.

Our characterization shows, in particular, that pos-

sible keys capture the UNIQUE constraint in SQL. There-

fore, we have established a first formal semantics for this

constraint. Moreover, Theorem 1 provides a foundation

for developing efficient algorithms that effectively ex-

ploit our keys in data processing.

Theorem 1 X ⊆ T is a possible (certain) key for I

iff no two tuples in I with distinct tuple identities are

strongly (weakly) similar on X.

Proof (possible key ⇒ not strongly similar) Let X be

a possible key for I and t, t′ ∈ I have distinct tuple

identities. Then there is a possible word ρ(I) of I for

which X is a key. Denote by ρ(t), ρ(t′) the copies of

t, t′ in ρ(I). Since X is a key for ρ(I), there is some

A ∈ X with ρ(t)[A] 6= ρ(t′)[A]. Since only ⊥ values get

replaced, t[A] 6= t′[A] or t[A] = ⊥ or t′[A] = ⊥ holds.

In either case t, t′ are not strongly similar.

(possible key ⇐ not strongly similar) Let no two

tuples with distinct identity in I be strongly similar

on X. We construct a possible world ρ(I) of I by re-

placing every ⊥ occurrence in I with a distinct domain

value that did not occur in I previously. Such a re-

placement exists since we assume, in line with previous

work, that domains are infinite and tables are finite.

Let again ρ(t), ρ(t′) ∈ ρ(I) be two distinct copies of

t, t′ ∈ I. Since t, t′ are not strongly similar on X, there

exists A ∈ X with t[A] 6= t′[A] or t[A] = ⊥ or t′[A] = ⊥.

As our replacement values are unique in ρ(I), we have

ρ(t)[A] 6= ρ(t′)[A] in all three cases. Thus ρ(t), ρ(t′) are

not similar on X, so X is a possible key for I.

(not certain key ⇒ weakly similar) Let X not be

a certain key for I. Then there exists a possible world

ρ(I) of I and tuples t, t′ ∈ I with distinct identities such

that ρ(t)[X] ∼ ρ(t′)[X]. Thus for every A ∈ X we have

ρ(t)[A] = ρ(t′)[A] and hence t[A] = t′[A] or t[A] = ⊥ or

t′[A] = ⊥, i.e., t[X] ∼w t′[X].

(not certain key ⇐ weakly similar) Let t, t′ ∈ I with

t[X] ∼w t′[X]. Then we can construct a possible world

ρ(I) of I which replaces ⊥ values on t, t′ as follows:

– If t[A] = t′[A] = ⊥ let ρ(t)[A] = ρ(t′)[A] be arbi-

trary.

– If t[A] = ⊥ ∧ t′[A] 6= ⊥ let ρ(t)[A] = t′[A].

– If t[A] 6= ⊥ ∧ t′[A] = ⊥ let ρ(t′)[A] = t[A].

In each case, ρ(t)[A] = ρ(t′)[A] and thus ρ(t)[X] ∼
ρ(t′)[X]. Hence, X is not a certain key for I. ut

We illustrate the syntactic characterization of our

key semantics from Theorem 1 on our running example.

Example 3 Let T , TS , and I be as in Example 1. Then

I ` p 〈journal〉 as no two I-tuples with different tu-

ple identities strongly agree on journal. Furthermore,

I ` c 〈title, journal〉 as no two I-tuples with different

tuple identity weakly agree on title and journal. Finally,

I ` c 〈author, journal〉 as no two I-tuples with different

tuple identity weakly agree on author and journal. ut

Theorem 1 implies that the satisfaction of keys can

also be characterized with SQL’s three-valued logic,

where ⊥ = v evaluates to unknown [9]. Given that,

for a certain key the default key criterion (i.e. pairwise

comparison of all tuples) always evaluates to true, for

possible keys to unknown, and for non-keys to false.

3.3 Implication

Many data management tasks benefit from the abil-

ity to decide the implication problem of semantic con-

straints. In our context, the implication problem can be

defined as follows. Let (T, TS) denote the schema un-

der consideration. For a set Σ ∪{ϕ} of constraints over

(T, TS) we say that Σ implies ϕ, denoted by Σ |= ϕ,

if and only if every table over (T, TS) that satisfies Σ

also satisfies ϕ. The implication problem for a class C
of constraints is to decide, for an arbitrary (T, TS) and

an arbitrary set Σ∪{ϕ} of constraints in C, whether Σ

implies ϕ. For possible and certain keys the implication

problem can be characterized as follows.



Theorem 2 Let Σ be a set of possible and certain keys.

Then i) Σ implies c 〈X〉 iff c 〈Y 〉 ∈ Σ for some Y ⊆ X
or p 〈Z〉 ∈ Σ for some Z ⊆ X ∩ TS, and ii) Σ implies

p 〈X〉 iff c 〈Y 〉 ∈ Σ or p 〈Y 〉 ∈ Σ for some Y ⊆ X.

Proof The “if” directions (⇐) follow from Theorem 1.

We show next the “only if” directions (⇒) by contra-

position.

i) Let c 〈Y 〉 6∈ Σ for every Y ⊆ X and p 〈Z〉 6∈ Σ for

every Z ⊆ X∩TS . We show that Σ does not imply

c 〈X〉 by constructing a table I over (T, TS , Σ) that

violates c 〈X〉. Consider a table I = {t, t′} over

(T, TS) with the following properties:

– t = (0, . . . , 0)

– t′[X ∩ TS ] = (0, . . . , 0)

– t′[X \ TS ] = (⊥, . . . ,⊥)

– t′[T \X] = (1, . . . , 1)

Now consider Theorem 1. Since t, t′ weekly agree

on X only, the only certain keys c 〈Y 〉 violated by

I are those with Y ⊆ X. Hence no certain keys in

Σ are violated by I. Since t, t′ strongly agree on

X ∩ TS only, the only possible keys p 〈Z〉 violated

by I are those with Z ⊆ X ∩TS . Hence no possible

keys in Σ are violated by I. Hence I satisfies Σ

but violates c 〈X〉, so Σ does not imply c 〈X〉.
ii) Analogous with t′[X] = (0, . . . , 0).

This concludes the proof. ut

Thus, a certain key is implied by Σ iff it contains a

certain key from Σ or its NOT NULL columns contain a

possible key from Σ. Similarly, a possible key is implied

by Σ iff it contains a possible or certain key from Σ.

We exemplify Theorem 2 on our running example.

Example 4 Let (T, TS) be as in Example 1 and define

Σ = {c 〈title, journal〉, c 〈author, journal〉, p 〈journal〉}.
By Theorem 2, Σ implies c 〈title, author, journal〉 and

p 〈title, journal〉, but Σ implies neither c 〈journal〉 nor

p 〈title, author〉. This is confirmed by Table 1, which

satisfies c 〈title, author, journal〉 and p 〈title, journal〉,
but violates c 〈journal〉 and p 〈title, author〉. ut

A consequence of Theorem 2 is that the implica-

tion of our keys can be decided with just one scan over

the input. The size of the input is defined as the total

number of attribute occurrences in the input.

Corollary 1 The implication problem for the class of

possible and certain keys can be decided in time linear

in the size of the input. ut

Corollary 1 indicates that the semantics of our keys

can be exploited efficiently in many data management

tasks. We illustrate this on the following example.

Example 5 Suppose we want to find all distinct com-

binations of authors and journals from the current in-

stance over (T, TS) from Example 1. As part of evalu-

ating the query

SELECT DISTINCT author, journal

FROM T WHERE journal IS NOT NULL;

an optimizer, that can reason about our keys, may check

if c 〈author, journal〉 is implied by the set Σ of speci-

fied constraints on (T, TS) together with the additional

NOT NULL constraint on journal, enforced by the WHERE

clause. In this case, as for the set Σ in Example 4, the

DISTINCT clause can be omitted, saving the expensive

operation of duplicate removal. ut

Similar techniques allow us to characterize the impli-

cation problem of strong and weak anti-keys as well.

Proposition 1 is the dual version of Theorem 2, see the

appendix for the proof.

Proposition 1 Let Π be a set of strong and weak anti-

keys. Then i) Π implies ¬p〈X〉 iff ¬p〈Y 〉 ∈ Π for some

Y ⊇ X, or ¬c〈Z〉 ∈ Π for some Z with X ⊆ Z ∩ TS,

and ii) Π implies ¬c〈X〉 iff ¬c〈Y 〉 ∈ Π or ¬p〈Y 〉 ∈ Π
for some Y ⊇ X.

Example 6 Let (T, TS) be as in Example 1, and define

Π = {¬p〈title, author〉,¬c〈journal〉}. Then Proposi-

tion 1 shows that Π implies ¬p〈author〉 and ¬c〈title〉,
but neither ¬p〈journal〉 nor ¬c〈author, journal〉. ut

3.4 Axiomatization

We now establish an axiomatic characterization of the

implication problem, which provides us with a tool to

understand and reason about the interaction of possible

keys, certain keys and NOT NULL constraints.

Let Σ∪{ϕ} denote a set of possible and certain keys

over (T, TS). Let Σ∗ = {ϕ | Σ |= ϕ} denote the seman-

tic closure of Σ. In order to determine the semantic

closure, one can utilize a syntactic approach by apply-

ing inference rules of the form
premise

conclusion
condition,

where rules without a premise are called axioms. For a

set R of inference rules let Σ `R ϕ denote the infer-

ence of ϕ from Σ by R. That is, there is some sequence

σ1, . . . , σn such that σn = ϕ and every σi is an element

of Σ or is the conclusion that results from an appli-

cation of an inference rule in R to some premises in

{σ1, . . . , σi−1}. Let Σ+
R = {ϕ | Σ `R ϕ} denote the

syntactic closure of Σ under inferences by R. The set

R is sound (complete) if for every table schema (T, TS)

and for every set Σ we have Σ+
R ⊆ Σ∗ (Σ∗ ⊆ Σ+

R). The

(finite) set R is said to be a (finite) axiomatization if

R is both sound and complete.



Corollary 2 The following axioms are sound and com-

plete for the implication of possible keys, certain keys

and NOT NULL constraints.

p-Extension:
p 〈X〉
p 〈XY 〉

c-Extension:
c 〈X〉
c 〈XY 〉

Weakening:
c 〈X〉
p 〈X〉

Strengthening:
p 〈X〉
c 〈X〉

X ⊆ TS

Proof Soundness follows from Theorem 1. Indeed, tu-

ples with distinct identities that are strongly (weakly)

similar on XY are also strongly (weakly) similar on X,

showing the soundness of the extension rules. Moreover,

tuples with distinct identities that are strongly similar

on X are also weakly similar on X, showing soundness

of the weakening rule. Soundness of the strengthening

rule follows from the fact that strong and weak similar-

ity coincide on every attribute declared NOT NULL.

For showing completeness let Σ � c 〈X〉. By The-

orem 2 there exist either c 〈Y 〉 ∈ Σ with Y ⊆ X or

p 〈Z〉 ∈ Σ with Z ⊆ X∩TS . In the former case c 〈X〉 can

be derived via c-Extension, in the latter via Strengthen-

ing and c-Extension. Finally let Σ � p 〈X〉. By Theorem

2 there exist Y ⊆ X with c 〈Y 〉 ∈ Σ or p 〈Y 〉 ∈ Σ. In

the former case p 〈X〉 can be derived via Weakening and

p-Extension, in the latter via p-Extension alone. ut

A simple application of the inference rules is shown

on our running example.

Example 7 Let (T, TS , Σ) be given as in Example 4.

Then p 〈author, journal〉 can be inferred from Σ by

applying p-Extension to p 〈journal〉, or by applying

Weakening to c 〈author, journal〉. ut

The axiomatization from Corollary 2 provides us

with means to effectively enumerate all keys implied

by a given key set. The algorithmic solution from The-

orem 2 provides us with means to decide for a given key

whether it is implied by a given key set.

3.5 Minimal Covers

A cover of Σ is a set Σ′ where every element is implied

by Σ and which implies every element of Σ. Hence, a

cover is just a representation. Minimal representations

limit the validation of constraints to those necessary.

People also find minimal representations easier to work

with. For possible and certain keys, a unique minimal

representation exists.

We say that i) p 〈X〉 ∈ Σ is non-minimal if Σ �
p 〈Y 〉 for some Y ⊂ X or Σ � c 〈X〉, and ii) c 〈X〉 ∈ Σ
is non-minimal if Σ � c 〈Y 〉 for some Y ⊂ X. We call a

key σ with Σ � σ minimal iff σ is not non-minimal. We

call σ ∈ Σ redundant iff Σ\{σ} � σ, and non-redundant

otherwise. We call Σ minimal (non-redundant) iff all

keys in Σ are minimal (non-redundant), and non-mini-

mal (redundant) otherwise.

Due to the logical equivalence of p 〈X〉 and c 〈X〉
for X ⊆ TS , certain keys can be both minimal and

redundant while possible keys can be both non-minimal

and non-redundant. For example, given T = A = TS
andΣ = {p 〈A〉, c 〈A〉}, c 〈A〉 is minimal becauseΣ does

not imply c 〈∅〉, and c 〈A〉 ∈ Σ is also redundant because

{p 〈A〉} implies c 〈A〉 since A ∈ TS . Given T = A = TS
and Σ = {p 〈A〉}, p 〈A〉 is non-minimal because c 〈A〉 is

implied by Σ since A ∈ TS , and p 〈A〉 is non-redundant

because it is not implied by the set Σ′ = Σ \ {p 〈A〉}.

Proposition 2 The set Σmin of all minimal possible

and certain keys for Σ is a non-redundant cover of Σ.

Indeed, Σmin is the only minimal cover of Σ.

Proof For every key σ ∈ Σ there is a minimal key σ′

with Σ � σ′ � σ, found by application of the definition

for minimal keys. Hence Σmin is a cover of Σ.

Now assume σ ∈ Σmin is redundant. Then Σmin \
{σ} � σ, and by application of the definition for mini-

mal keys, there must exist σ′ ∈ Σmin \ {σ} with σ′ �
σ. Since σ is minimal this can only happen for σ =

c 〈X〉, σ′ = p 〈X〉 for some X ⊆ TS . But then σ′ is not

minimal, which contradicts σ′ ∈ Σmin. Hence Σmin is

non-redundant. ut

We may hence talk about the minimal cover of Σ,

and illustrate this concept on our running example.

Example 8 Let (T, TS) be as in Example 1 and Σ′ con-

sist of p 〈journal〉, p 〈author, journal〉, c 〈title, journal〉,
c 〈author, journal〉, and c 〈title, author, journal〉. Then

Σ′min = Σ from Example 4. ut

A strong anti-key ¬p〈X〉 is non-maximal if ¬ 〈Y 〉
with X ⊂ Y is an anti-key implying ¬p〈X〉 on (T, TS).

A weak anti-key ¬c〈X〉 is non-maximal if ¬ 〈Y 〉 with

X ⊂ Y is an anti-key or ¬p〈X〉 is a strong anti-key.

Anti-keys are maximal unless they are non-maximal.

We denote the set of maximal strong anti-keys byAsmax,

the set of maximal weak anti-keys by Awmax and their

disjoint union by Amax.

3.6 Key Discovery

Our next goal is to discover all certain and possible

keys that hold in a given table I over (T, TS). If TS is

not given it is trivial to find a maximum TS . The dis-

covery of constraints from data reveals semantic infor-

mation useful for database administration and appli-

cations. Combined with human expertise, meaningful



constraints that are not specified or meaningless con-

straints that hold accidentally may be revealed.

Keys can be discovered from total tables by comput-

ing the agree sets of all pairs of distinct tuples, and then

computing the transversals for their complements [13].

On general tables we distinguish between strong and

weak agree sets, motivated by strong and weak simi-

larity. Given two tuples t, t′ over T , the weak (strong)

agree set of t, t′ is the (unique) maximal subset X ⊆ T
such that t, t′ are weakly (strongly) similar on X. Given

a table I over T , we denote by AGw(I),AGs(I) the set

of all maximal agree sets of distinct tuples in I:

AGw(I) := max{X | ∃t 6= t′ ∈ I.t[X] ∼w t′[X]}
AGs(I) := max{X | ∃t 6= t′ ∈ I.t[X] ∼s t′[X]} .

We shall write AGw,AGs when I is clear from the con-

text. It follows from Theorem 1 that c 〈X〉 does not

hold on I (and ¬c〈X〉 holds on I) if and only if there is

some Y ∈ AGw(I) with X ⊆ Y . Similarly, p 〈X〉 does

not hold on I (and ¬p〈X〉 holds on I) if and only if

there is some Y ∈ AGs(I) with X ⊆ Y .

Complements and transversals are standard notions

for which we now introduce notation [13]. Let X be a

subset of T and S a set of subsets of T . The transversal

set of S consists of all minimal attribute subsets of T ,

minimal under set inclusion, that have non-empty inter-

section with all elements of S. We denote complements

of attribute sets by X = T \ X, complements of sets

of attribute sets by S = {X | X ∈ S}, and transversal

sets by Tr(S) = min⊆ {Y ⊆ T | ∀X ∈ S.Y ∩X 6= ∅}.
Our main result on key discovery is that the certain

(possible) keys that hold in I are the transversals of

the complements for all weak (strong) agree sets in I.

Corollary 3 Let I be a table over (T, TS), and ΣI the

set of all certain and/or possible keys that hold on I.

Then

Σ := {c 〈X〉 | X ∈ Tr(AGw)}∪{p 〈X〉 | X ∈ Tr(AGs)}

is a cover of ΣI .

Proof By Theorem 1 X is a certain (possible) key for I

iff no distinct tuples t, t′ ∈ I weakly (strongly) agree

on X

iff X is not a subset of any weak (strong) agree set

iff X intersects with Y for every weak (strong) agree

set Y

iff X is a transversal of AGw (AGs)

Due to the extension rules of Corollary 2 the minimal

transversals are sufficient to form a cover. ut

Our goal was to show that hypergraph transversals

can be used to discover our keys in real-world data. Re-

sults of those experiments are presented in Section 8.

Optimizations and scalability of our method to big data

are left for future research [1,43]. We illustrate the dis-

covery method on our running example.

Example 9 Let I denote Table 1 over (T, TS) from Ex-

ample 1. Then

– AGw(I) = {{title, author}, {journal}},
– AGw = {{journal}, {title, author}},
– Tr(AGw) = {{title, journal}, {author, journal},
– AGs(I) = {{title, author}},
– AGs = {{journal}}, and

– Tr(AGs) = {{journal}}.

Therefore, the set Σ from Example 4 is a cover of the

set of possible and certain keys that hold on I. ut

4 Armstrong Tables

Armstrong tables are widely regarded as user-friendly,

exact representations of constraint sets [4,16,21,38]. For

a class C of constraints and a set Σ of constraints in C,
a C-Armstrong table I for Σ satisfies Σ and violates all

the constraints in C not implied by Σ. Therefore, given

an Armstrong table I for Σ the problem of deciding for

an arbitrary constraint ϕ in C whether Σ implies ϕ re-

duces to the problem of verifying whether ϕ holds on I.

The ability to compute an Armstrong table for Σ pro-

vides us with a data sample that is a perfect semantic

summary of Σ. Unfortunately, classes C may not enjoy
Armstrong tables. That is, there are sets Σ for which no

C-Armstrong table exists [16]. Classically, the classes of

keys and functional dependencies do enjoy Armstrong

relations [4,38]. However, the combined class of possi-

ble keys, certain keys, and NOT NULL constraints does

not enjoy Armstrong tables. Even though the situation

is involved, we will characterize when Armstrong tables

do exist, and compute them in these cases.

4.1 Acquisition Framework

Applications benefit from the ability of data engineers

to acquire the keys that are semantically meaningful in

the domain of the application. As engineers do usually

not know much about the domain they communicate

with domain experts. However, domain experts do usu-

ally not know much about databases, which leads to

a communication problem between engineers and do-

main experts. We establish two major tools to improve



Fig. 1 Acquisition Framework for SQL Keys

communication, as shown in the agile framework of Fig-

ure 1. Here, data engineers use our algorithm to visual-

ize an abstract set Σ of keys as an Armstrong table IΣ ,

which is inspected jointly with domain experts. During

inspection of IΣ the experts may simply notice flaws

in the current perception of the meaningful constraint

set Σ. They may also change IΣ or provide new data

samples. Our discovery algorithm from Corollary 3 is

then applied to discover the keys that hold in the given

sample. This alternating process of visualization and

discovery is continued until consensus is reached.

4.2 Definition and Motivating Examples

An instance I over (T, TS) is a pre-Armstrong table for

(T, TS , Σ) if for every key ϕ over T , ϕ holds on I iff Σ �
ϕ. We call I an Armstrong table iff it is pre-Armstrong

and for every attribute A ∈ T \TS there is a tuple t ∈ I
with t[A] = ⊥. There are cases where a pre-Armstrong

table but no Armstrong table exists.

Example 10 Let (T, TS , Σ) = (AB,A, {c 〈B〉}). The

following is easily seen to be a pre-Armstrong table:

A B

0 0
0 1

Now let I be an instance over (T, TS , Σ) with t ∈ I

such that t[B] = ⊥. The existence of some tuple t′ ∈ I
with t′ 6= t would violate c 〈B〉, so I = {t}. That means

c 〈A〉 holds on I even though Σ 2 c 〈A〉, so I is not

Armstrong. ut

There are cases where no pre-Armstrong table exists.

Example 11 Let (T, TS) = (ABCD, ∅) and

Σ = {c 〈AB〉, c 〈CD〉, p 〈AC〉, p 〈AD〉, p 〈BC〉, p 〈BD〉}

Then a pre-Armstrong table I must disprove the cer-

tain keys c 〈AC〉, c 〈AD〉, c 〈BC〉, c 〈BD〉 while respect-

ing the possible keys p 〈AC〉, p 〈AD〉, p 〈BC〉, p 〈BD〉.
In each of these four cases, we require two tuples t, t′

which are weakly but not strongly similar on the corre-

sponding key sets (e.g. t[AC] ∼w t′[AC] but t[AC] 6∼s
t′[AC]). This is only possible when t or t′ are ⊥ on

one of the key attributes. This ensures the existence of

tuples tAC , tAD, tBC , tBD with

tAC [A] = ⊥ ∨ tAC [C] = ⊥, tAD[A] = ⊥ ∨ tAD[D] = ⊥,
tBC [B] = ⊥ ∨ tBC [C] = ⊥, tBD[B] = ⊥ ∨ tBD[D] = ⊥

These tuples are pairwise different because the certain

keys c 〈AB〉, c 〈CD〉 must hold. If tAC [A] 6= ⊥ and

tAD[A] 6= ⊥ it follows that tAC [C] = ⊥ and tAD[D] =

⊥. This means tAC [CD] ∼w tAD[CD], contradicting

c 〈CD〉. Hence, there has to be some tA ∈ {tAC , tAD}
with tA[A] = ⊥. Similarly we get tB ∈ {tBC , tBD}
with tB [B] = ⊥. Then tA[AB] ∼w tB [AB] contradict-

ing c 〈AB〉. Consequently, it is impossible to satisfy Σ

and violate all p-keys and c-keys not implied by Σ. ut

4.3 Structural Characterization

We will now characterize when Armstrong tables ex-

ist, and show how to construct them whenever possi-

ble. Overcoming the technical challenges has rewards

in theory and practice. In practice, Armstrong tables

facilitate the acquisition of requirements, see Figure 1.

This is particularly appealing to our keys since the ex-

periments in Section 8 confirm that i) key sets for which

Armstrong tables do not exist are rare, and ii) keys that

represent real application semantics can be enforced ef-

ficiently in SQL database systems. Our findings illus-

trate the impact of nulls on the theory of Armstrong

databases, and have revealed a technical error in previ-

ous research [34], as shown in Section 4.5.

We will now begin to develop a structural character-

ization of (pre-)Armstrong tables, i.e., to provide suffi-

cient and necessary conditions that allow us to decide

whether a given table I is (pre-)Armstrong for a given

set Σ of possible and certain keys over a given schema

(T, TS). We start with a lemma that characterizes when

a given table that satisfies Σ is pre-Armstrong for Σ.

A (pre-)Armstrong table must violate all possible and

certain keys not implied by Σ. In other words, it must

satisfy all strong and weak anti-keys implied by Σ. For

this purpose, the table must contain for each strong

(weak) anti-key, a pair of distinct tuples that strongly

(weakly) agrees on the strong (weak) anti-key. However,

it suffices when the table exhibits these strong (weak)

agree sets for the maximal strong (weak) anti-keys be-

cause every pair of tuples that strongly (weakly) agrees

on some attribute set also strongly (weakly) agrees on

each of its subsets. We thus obtain the following result.

Lemma 1 Let I be an instance over (T, TS) such that

Σ holds on I. Then I is a pre-Armstrong table of Σ iff

i) for every strong anti-key ¬p〈X〉 ∈ Asmax there exist

distinct tuples t, t′ ∈ I with t[X] ∼s t′[X], and



ii) for every weak anti-key ¬c〈X〉 ∈ Awmax there exist

distinct tuples t, t′ ∈ I with t[X] ∼w t′[X].

Proof Keys implied by Σ hold on I by assumption, so

we only need to examine keys on T that are not implied.

(⇒) Clear by Theorem 1.

(⇐) Assume i) and ii) hold. Let c 〈X〉, X ⊆ T be a cer-

tain key with Σ 2 c 〈X〉. Then ¬c〈X〉 is a weak

anti-key and there exists a maximal (weak or strong)

anti-key ¬ 〈Y 〉 with X ⊆ Y . In either case (by i) or

ii)) there exist t, t′ ∈ I, t 6= t′ with t[Y ] ∼w t′[Y ]

and hence t[X] ∼w t′[X]. Thus c 〈X〉 is violated by

I.

Let p 〈X〉, X ⊆ T be a possible key with Σ 2 p 〈X〉.
Then ¬p〈X〉 is a strong anti-key and there exists a

maximal strong anti-key ¬p〈Y 〉 with X ⊆ Y . By ii)

there exist t, t′ ∈ I, t 6= t′ with t[Y ] ∼s t′[Y ] and

hence t[X] ∼s t′[X]. Thus p 〈X〉 is violated by I.

This concludes the proof. ut

Example 11 presented a case in which every table

that satisfies the conditions of Lemma 1 must violate

Σ. Hence, no pre-Armstrong table can exist for Σ.

We are now moving on to the challenging structural

characterization of (pre-)Armstrong tables. Firstly, we

describe the (academic) case in which Σ implies every

possible and certain key. This happens precisely when

Σ implies the empty key c 〈∅〉. The empty key holds

on an instance I iff it contains at most one tuple. An

Armstrong table for such Σ is given by a single tuple

that features ⊥ on those columns outside of TS , and

actual domain values on columns in TS .

In all other cases, a (pre-)Armstrong table must vi-
olate the empty key and contain at least two tuples.

We show now that every such instance violates every

certain key c 〈X〉 for which two tuples exist such that

for every attribute A of X, at least one of the tuples is

⊥ on A. More generally, we define the ⊥-base of tuples

t1, . . . , tn over T as the set of all attributes where some

tuple is ⊥:

⊥-base(t1, . . . , tn) := {A ∈ T |
t1[A] = ⊥ ∨ . . . ∨ tn[A] = ⊥} .

Lemma 2 Let I be an instance over (T, TS) with |I| ≥
2. Then I violates c 〈⊥-base(t, t′)〉 for every t, t′ ∈ I.

Proof Let X := ⊥-base(t, t′). If t 6= t′ then t[X] ∼w
t′[X] so c 〈X〉 is violated. Otherwise t = t′ and t[X] =

(⊥, . . . ,⊥). Since I contains at least two tuples, there

must exist t′′ ∈ I with t 6= t′′, and we have t[X] ∼w
t′′[X] so c 〈X〉 is again violated. ut

The core challenge towards a structural character-

ization of (pre-)Armstrong tables is to identify recon-

cilable situations between the given possible keys, the

implied maximal weak anti-keys, and the null-free sub-

schema. In fact, possible keys require some possible

world in which all tuples disagree on some key attribute

while weak anti-keys require some possible world in

which some tuples agree on all key attributes. So, when-

ever a weak anti-key contains a possible key, the situa-

tion is only reconcilable by the use of ⊥. However, such

occurrences of ⊥ can cause unintended weak similar-

ity between tuple pairs, as seen in Example 11. Conse-

quently, standard Armstrong table construction tech-

niques [4,21,38], which essentially deal with each anti-

constraint in isolation, cannot be applied here.

The main structure we require in our characteri-

zation is a set W that consists of sets of attributes

A ∈ T − TS . Intuitively, each of these sets consists of

the attributes on which some tuple is ⊥, i.e., W con-

sists of the sets ⊥-base(t) for tuples t in the given table.

For two tuples t and t′ of the table let V = ⊥-base(t)

and W = ⊥-base(t′). Then t and t′ are weakly simi-

lar on V ∪ W , i.e., V ∪ W must be a weak anti-key

in order for the table to satisfy all given certain keys.

Therefore, the set system W describes a structure of

sub-schemata on which null markers co-occur in tu-

ple pairs. More generally, let V,W ⊆ P(T ) be two

sets of sets. The cross-union of V and W is defined as

V∪×W := {V ∪W | V ∈ V,W ∈ W}. We abbreviate the

cross-union of a set W with itself by W×2 := W ∪×W.

The condition that the union of elements fromW must

form a weak anti-key can be stated by saying that every

element of W×2 forms a weak anti-key, see condition i)

below. In addition, a pre-Armstrong table must also

satisfy all given possible keys. In particular, whenever

such a possible key p 〈X ′〉 is contained in some maxi-

mal weak anti-key X, then there must be some tuple

pair in the table whose set Y ∈ W×2 of co-occurring

null markers must non-trivially intersect with X ′, see

condition ii) below. Finally, for every Armstrong table

it must also hold that for every nullable attribute in

T − TS there is some tuple that is ⊥ on that attribute,

see property iii) below. In what follows we first show

that the three conditions are all necessary for a given

table to be Armstrong. Subsequently, we will show how

the existence of a set systemW with these three condi-

tions is also sufficient to construct an Armstrong table.

This will establish the following structural characteri-

zation of (pre-)Armstrong tables.

Theorem 3 Let Σ 2 c 〈∅〉. There exists some pre-Arm-

strong table for (T, TS , Σ) iff there exists a set W ⊆
P(T \ TS) with the following properties:



i) Every element of W×2 forms a weak anti-key.

ii) For every maximal weak anti-key ¬c〈X〉 ∈ Awmax,

there exists Y ∈ W×2, such that for every possible

key p 〈X ′〉 ∈ Σ with X ′ ⊆ X, we have Y ∩X ′ 6= ∅.

There exists an Armstrong table for (T, TS , Σ) iff i) and

ii) hold as well as

iii)
⋃
W = T \ TS.

Proof Let I be a pre-Armstrong table for (T, TS , Σ)

and Σ 2 c 〈∅〉. Define W ⊆ P(T \ TS) as

W := {⊥-base(t) | t ∈ I}

We will show that conditions i) and ii) hold.

i) Let Y1, Y2 ∈ W. Then there must exist tY1 , tY2 ∈ I
with ⊥-base(tY1

, tY2
) = Y1Y2, so I violates c 〈Y1Y2〉

by Lemma 2. As I respects Σ, Σ permits ¬c〈Y1Y2〉.
ii) For every maximal weak anti-key ¬c〈X〉 ∈ Awmax

there exist two distinct tuples t, t′ ∈ I such that

t[X] ∼w t′[X]. Now let p 〈X ′〉 ∈ Σ with X ′ ⊆ X.

As I respects Σ we cannot have t[X ′] ∼s t′[X ′],
i.e., t, t′ are weakly but not strongly similar on X ′.

This is only possible for t[A] = ⊥ or t′[A] = ⊥ for

some A ∈ X ′. But that means A ∈ X ′ ∩ Y1Y2 with

Y1 := ⊥-base(t), Y2 := ⊥-base(t′).

If I is an Armstrong table, then there exists a tuple

tA ∈ I with tA[A] = ⊥ for every A ∈ T \ TS . Hence

iii) T \ TS ⊆
⋃
{⊥-base(tA) | A ∈ T \ TS} ⊆

⋃
W

The remaining ”if” direction (⇐) will be shown in The-

orem 4. ut

We will now exploit Theorem 3 to devise a gen-

eral construction of (pre-)Armstrong tables whenever

they exist. In the construction, every maximal anti-key

is represented by two new tuples. Strong anti-keys are

represented by two tuples that strongly agree on the

anti-key, while weak anti-keys are represented by two

tuples that weakly agree on some suitable attributes of

the anti-key as determined by the set W from Theo-

rem 3. Finally, the set W permits us to introduce ⊥ in

nullable columns that do not yet feature an occurrence

of ⊥. For the construction we assume without loss of

generality that all attributes have integer domains.

Construction 1 (Armstrong Table)

LetW ⊆ P(T \ TS) satisfy conditions i) and ii) of The-

orem 3. We construct an instance I over (T, TS) as fol-

lows.

I) For every strong anti-key ¬p〈X〉 ∈ Asmax add tu-

ples tsX , t
s′
X to I with

tsX [X] = (i, . . . , i) ts′X [X] = (i, . . . , i)

tsX [T \X] = (j, . . . , j) ts′X [T \X] = (k, . . . , k)

where i, j, k are distinct integers not used before.

II) For every weak anti-key ¬c〈X〉 ∈ Awmax we add

tuples twX , t
w′
X to I with

twX [X \ Y1] = (i, . . . , i) tw′X [X \ Y2] = (i, . . . , i)
twX [X ∩ Y1] = (⊥, . . . ,⊥) tw′X [X ∩ Y2] = (⊥, . . . ,⊥)
twX [T \X] = (j, . . . , j) tw′X [T \X] = (k, . . . , k)

where Y1, Y2 ∈ W meet the condition for Y =

Y1∪Y2 in ii) of Theorem 3, and i, j, k are distinct

integers not used previously.

III) If condition iii) of Theorem 3 also holds for W,

then for every A ∈ T \ TS for which there is no t

in I with t[A] = ⊥, we add a tuple tA to I with

tA[T \A] = (i, . . . , i) tA[A] = ⊥
where i is an integer not used previously. ut

Indeed, Construction 1 yields a (pre-)Armstrong ta-

ble whenever one exists.

Theorem 4 Let Σ 2 c 〈∅〉 and I a table generated by

Construction 1. Then I is a pre-Armstrong table over

(T, TS , Σ). If condition iii) of Theorem 3 holds for W,

then I is an Armstrong table.

Proof We first show the conditions of Lemma 1 are met.

i) Let ¬p〈X〉 be a strong anti-key in Asmax. Then I

contains the tuples tsX , t
s′
X with

tsX [X] = (i, . . . , i) ∼s (i, . . . , i) = ts′X [X]

ii) Let ¬c〈X〉 be a weak anti-key in Awmax. Then I
contains the tuples twX , t

w′
X with

twX [X \ Y1Y2] = (i, . . . , i) ∼w (i, . . . , i) = tw′X [X \ Y1Y2]

twX [X ∩ Y1] = (⊥, . . . ,⊥) ∼w tw′X [X ∩ Y1]

twX [X ∩ Y2] ∼w (⊥, . . . ,⊥) = tw′X [X ∩ Y2]

It remains to show that I is a valid instance over

(T, TS , Σ), i.e., that I honors TS and does not violate

constraints in Σ. Honoring of TS is clear by choice of

Y,Z,A ⊆ T \ TS .

i) Let p 〈X ′〉 ∈ Σ and t, t′ ∈ I, t 6= t′ with t[X ′] ∼s
t′[X ′]. Since X ′ 6= ∅ and tuples constructed for

different anti-keys use unique values, we must have

{t, t′} = {tsX , ts′X} or {t, t′} = {twX , tw′X } for some

maximal anti-key ¬ 〈X〉 with X ′ ⊆ X. The former

cannot happen since p 〈X ′〉 ∈ Σ implies Σ � p 〈X〉,
so {t, t′} = {twX , tw′X } and ¬c〈X〉 is a maximal weak

anti-key. But then ⊥-base(t, t′) intersects with X ′

due to condition ii), so t[X ′] ∼s t′[X ′] cannot hold.

ii) Let c 〈X ′〉 ∈ Σ and t, t′ ∈ I, t 6= t′ with t[X ′] ∼w
t′[X ′].

– If X ′ 6⊆ ⊥-base(t, t′) we have again {t, t′} =

{tsX , ts′X} or {t, t′} = {twX , tw′X } for some maximal

anti-key ¬ 〈X〉 with X ′ ⊆ X. Either way ¬c〈X〉
and thus ¬c〈X ′〉 is a weak anti-key, which con-

tradicts Σ � c 〈X ′〉.



– If X ′ ⊆ ⊥-base(t, t′) then X ′ ⊆ Y for some

Y ∈ W×2. But ¬c〈Y 〉 is a weak anti-key by

condition i), again contradicting Σ � c 〈X ′〉.

If condition iii) of Theorem 3 holds for W, then con-

struction step III) ensures that I is Armstrong. ut

We illustrate Construction 1 on our running exam-

ple and show how Table 1 can be derived from it.

Example 12 Let T , TS , and Σ be given as in Example 4.

This gives us the maximal strong and weak anti-keys

Amax = {¬p〈author, title〉,¬c〈journal〉}

with the set W = {journal} meeting the conditions

of Theorem 3. Now Construction 1 produces the Arm-

strong table

title author journal

0 0 0

0 0 1

1 1 ⊥
2 2 ⊥

.

Here, we can remove either the third or the fourth tu-

ple because removal of either tuple would preserve the

weak agree set {journal}. After removal and suitable

substitution we obtain Table 1. ut

The conditions of Theorem 3 are difficult to test in

general, due to the large number of candidate sets W.

However, there are cases where testing becomes simple.

Corollary 4 Let Σ 2 c 〈∅〉.

i) If Σ 2 c 〈X〉 for every X ⊆ T \TS then there exists

an Armstrong table for (T, TS , Σ).

ii) If Σ � c 〈X〉 for some X ⊆ T \ TS with |X| ≤ 2

then there does not exist an Armstrong table for

(T, TS , Σ).

Proof i) follows from Theorem 3 with W = {T \ TS}.
For case ii), let I be an Armstrong table for (T, TS , Σ),

and AB ⊆ T \ TS . Then I contains tuples tA, tB with

tA[A] = ⊥ and tB [B] = ⊥, so AB ⊆ ⊥-base(tA, tB) is a

weak anti-key by Lemma 2. ut

Example 13 Let (T = NDGS, TS = N) and Σ consist

of c 〈ND〉 and p 〈S〉 with Name N , Date of Birth D,

Gender G and Security Number S. This gives us the

maximal strong and weak anti-keys

Amax = {¬p〈NG〉,¬p〈DG〉,¬c〈NGS〉,¬c〈DGS〉}

with the set W = {DGS} meeting the conditions of

Theorem 3. Construction 1 yields the Armstrong table:

Name DoB Gender SNumber

Ian (0) 10/03/1950 (0) M (0) 04-3452-8903 (0)

Ian (0) 01/06/1975 (1) M (0) 15-9385-2948 (1)

Bor (1) 02/04/1981 (2) F (1) 23-5039-1293 (2)

Cam (2) 02/04/1981 (2) F (1) 39-3920-4813 (3)

Kel (3) 03/07/1965 (3) ⊥ ⊥
Kel (3) 04/02/1989 (4) ⊥ ⊥
Don (4) ⊥ ⊥ ⊥
Sid (5) ⊥ ⊥ ⊥

with the integers of the construction indicated. ut

4.4 Computational Characterization

We present a worst-case double exponential time algo-

rithm for computing Armstrong tables whenever they

exist. Our experiments in Section 8 show that these

worst cases do not arise in practice, and our compu-

tation is very efficient. For example, our algorithm re-

quires milliseconds when brute force approaches would

require 22
20

operations. While the exact complexity of

the Armstrong table existence problem remains open,

we establish results which suggest that the theoretical

worst-case bound is difficult to improve upon.

Algorithm. Our goal is to compute the setW of Theo-

rem 3 whenever it exist. We first observe that maximal

anti-keys can be constructed using transversals. The

proof of the following lemma is given in the appendix.

Lemma 3 Let ΣP , ΣC be the sets of possible and cer-

tain keys in Σ. For readability we will identify attribute

sets with the keys or anti-keys induced by them. Then

Asmax = { X ∈ Tr(ΣC ∪ΣP ) |
¬(X ⊆ TS ∧ ∃Y ∈ Awmax. X ⊂ Y ) }

Awmax = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS}) \ Asmax

For computing Asmax and Awmax by Lemma 3, anti-

keys contained in strictly larger weak anti-keys cannot

be set-wise maximal weak anti-keys. Hence, the set of

all maximal weak anti-keys can be computed as

Awmax = Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS})\Tr(ΣC ∪ΣP )

The difficult part in deciding existence of (and then

computing) an Armstrong table given (T, TS , Σ) is to

check existence of (and construct) a set W meeting the

conditions of Theorem 3, in cases where Corollary 4

does not apply. Blindly testing all subsets of P(T \ TS)

becomes infeasible when T \TS contains more than 4 el-

ements (for 5 elements, up to 232 ≈ 4, 000, 000, 000 sets

would need to be checked). To ease discussion we will

rephrase condition ii) of Theorem 3. Let W ⊆ P(T ).

We say that



– W supports Y ⊆ T if Y ⊆ Z for some Z ∈ W.

– W ∨-supports V ⊆ P(T ) ifW supports some Y ∈ V.

– W ∧∨-supports T ⊆ P(P(T ))

if W ∨-supports every V ∈ T .

We write Y ⊂∈ W to indicate that W supports Y .

Lemma 4 Let TX be the transversal set in T \ TS of

all possible keys that are subsets of X, and T the set of

all such transversals for all maximal weak anti-keys:

TX := Tr({X ′ ∩ (T \ TS) | p 〈X ′〉 ∈ Σmin ∧X ′ ⊆ X})
T := {TX | X ∈ Awmax}

Then condition ii) of Theorem 3 can be rephrased as:

ii’) W×2 ∧∨-supports T .

Proof Condition ii) states that for every ¬c〈X〉 ∈ Awmax
there exists Y ∈ W×2 which traverses {X ′ | p 〈X ′〉 ∈
Σmin ∧ X ′ ⊆ X}. Since Y ⊆ T \ TS this means Y

traverses {X ′ ∩ (T \ TS) | p 〈X ′〉 ∈ Σmin ∧ X ′ ⊆ X}.
Hence Y is a superset of a minimal transversal in TX ,

i.e. W×2 ∨-supports TX . This holds for every ¬c〈X〉 ∈
Awmax, so W×2 ∧∨-supports T . These deductions also

hold in reverse order. ut

We propose the following: For each TX ∈ T and

each minimal transversal t ∈ TX we generate all non-

trivial bi-partitions2 BX (or just a trivial partition for

transversals of cardinality < 2). We then add toW one

such bi-partition for every TX to meet condition ii),

and combine them with all single-attribute sets {A} ⊆
T \ TS to meet condition iii). This is done for every

possible combination of bi-partitions until we find a
set W that meets condition i), or until we have tested

them all. We then optimize this strategy: If a set PX
is already ∨-supported by W×2 (which at the time of

checking will contain only picks for some sets TX), we

may remove PX from further consideration, as long as

we keep all current picks in W. In particular, since all

single-attribute subsets of T \ TS are added to W, we

may ignore all PX containing a set of size 2 or less. In

pseudo-code, this strategy is given in Algorithm 1.

Proposition 3 Algorithm Armstrong-Set is correct.

Proof Lines 2 and 4 return setsW satisfying some con-

dition of Corollary 4, and thus also conditions i) to iii).

Failing that, W is defined so that condition iii) of The-

orem 3 holds. Since function Extend-Support returns a

superset of W, condition iii) is invariant for W.

Condition i) of Theorem 3 holds for the initial W
due to line 3. Every subsequent enlargements of W in

2 A partition of cardinality two.

Algorithm 1 Armstrong-Set
Input: T, TS , Σ
Output: W ⊆ P(T \ TS) meeting conditions i) to iii) of The-

orem 3 if such W exists, ⊥ otherwise
1: if ¬∃c 〈X〉 ∈ Σ with X ⊆ T \ TS then
2: return {T \ TS}
3: if ∃c 〈X〉 ∈ Σ with X ⊆ T \ TS and |X| ≤ 2 then
4: return ⊥
5: W := {{A} | A ∈ T \ TS}
6: Aw

max := Tr(ΣC ∪ {X ∈ ΣP | X ⊆ TS})\Tr(ΣC ∪ΣP )

7: T := { Tr({X′ ∩ (T \ TS) | p 〈X′〉 ∈ Σmin ∧X′ ⊆ X}) |
X ∈ Aw

max }
8: T := T \ {TX ∈ T | ∃Y ∈ TX . |Y | ≤ 2}
9: return Extend-Support(W, T )

Subroutine Extend-Support(W, T )
Input: W ⊆ P(T \ TS) meeting conditions i) and iii) of The-

orem 3, T ⊆ P(P(T \ TS))
Output: W′ ⊇ W meeting conditions i) and iii) of Theorem

3 such that W′×2 ∧∨-supports T if such W′ exists, ⊥
otherwise

10: if T = ∅ then
11: return W
12: T := T \ {TX} for some TX ∈ T
13: if W×2 ∨-supports TX then
14: return Extend-Support(W, T )
15: for all Y ∈ TX do
16: for all non-trivial bi-partitions Y = Y1 ∪ Y2 do
17: if (W ∪ {Y1, Y2})×2 contains no certain key then
18: W′ := Extend-Support(W ∪ {Y1, Y2}, T )
19: if W′ 6= ⊥ then
20: return W′
21: return ⊥

line 18 ensure condition i), due to the check in line 17.

Hence, condition i) is invariant for W.

It remains to show condition ii). For W = {{A} |
A ∈ T \ TS} the set W×2 already ∨-supports transver-

sal sets containing transversals of cardinality 2 or less.

Thus for every extension W+ of W for which W×2 ∧∨-

supports the set T after removal of such transversal

sets in line 8, the set W×2+ ∧∨-supports the original T .

Thus condition ii) follows directly from the correctness

of function Extend-Support and Lemma 4. This cor-

rectness can be shown recursively: If the check in line

13 holds W×2 already ∨-supports TX . If it does not,

∨-support of TX is ensured by extendingW with Y1, Y2
in line 18. The recursive call in line 14 or 18 ensures

that W ′×2 ∧∨-supports T \ {TX}.
It remains to argue that function Armstrong-Set re-

turns such a set W (rather than ⊥) whenever one ex-

ists. Essentially we are examining all minimal 3 sets W
which meet conditions ii) and iii), with a shortcut in

line 4 which is justified due to Corollary 4. In lines 8

and 14 we only omit cases leading to non-minimal sets

3 w.r.t. the ∧-support orderingW .W′ :⇔ ∀Y ∈ W.∃Y ′ ∈
W′.Y ⊆ Y ′



W. Since condition i) holds for a set W if it holds for

any larger3 set W ′, examining only minimal sets W is

sufficient to find a setW meeting all conditions of The-

orem 3, should one exist. ut

We illustrate the construction with an example.

Example 14 Let (T, TS) = (ABCDE, ∅) and

Σ =

{
p 〈A〉, p 〈B〉, p 〈CD〉,
c 〈ABE〉, c 〈ACE〉, c 〈ADE〉, c 〈BCE〉

}
Neither condition of Corollary 4 is met, so Algorithm

Armstrong-Set initializes/computesW, Awmax and T as

W = {A,B,C,D,E}
Awmax = {ABCD,AE,BDE,CDE}
T = {{ABC,ABD}}

Then, in method Extend-Support, Tx = {ABC,ABD}
which is not ∨-supported by W×2. The non-trivial bi-

partitions (Y1, Y2) of ABC are (A,BC), (AC,B), and

(AB,C). None of these are suitable for extending W,

as the extension (W ∪ {Y1, Y2})×2 contains the cer-

tain keys BCE, ACE and ABE, respectively. The non-

trivial bi-partitions of the second set ABD are (A,BD),

(AD,B), and (AB,D). As (AD,B) and (AB,D) are

again unsuitable, (A,BD) can be used to extend W to

the Armstrong set

W ′ = Extend-Support({A,BD,C,E}, ∅)
= {A,BD,C,E}

If we add c 〈BDE〉 to the schema, then (A,BD) be-

comes unsuitable and no Armstrong set exists. ut

Hardness. The main complexity of constructing Arm-

strong relations for keys in the relational model goes

into the computation of all anti-keys. This is just the

beginning for Algorithm 1, line 6. When computing the

possible combinations of bi-partitions in line 16, Al-

gorithm 1 becomes worst-case double exponential. We

provide evidence that this worst-case bound may be

difficult to improve upon. For this purpose, we study

the key/anti-key satisfiability problem. Given a schema

(T, TS , Σ) and a set Aw ⊆ P(T ) of weak anti-keys, we

say that (T, TS , Σ,Aw) is satisfiable if there is a table I

over (T, TS , Σ) such that every element of Aw is a weak

anti-key for I. The key/anti-key satisfiability problem

is to decide if the input (T, TS , Σ,Aw) is satisfiable.

Lemma 5 A schema (T, TS , Σ,Aw) is satisfiable iff

there is a set W ⊆ P(T \ TS) such that:

i) Every element of W×2 is a weak anti-key for Σ,

and

ii) For every weak anti-key ¬c〈X〉 ∈ Aw and for every

possible key p 〈X ′〉 ∈ Σ with X ′ ⊆ X there exists

Y ∈ W×2 with Y ∩X ′ 6= ∅.

Proof Analogous to the proof of Theorem 3. ut

The pre-Armstrong existence problem can be re-

duced to the key/anti-key satisfiability problem by com-

puting the set of maximal weak anti-keys for Σ. We

followed this approach in Algorithm 1 that computes a

set W of Theorem 3 whenever such a set exists. There-

fore, by showing key/anti-key satisfiability to be NP-

complete, we show that every attempt to decide Arm-

strong existence more efficiently will likely need to take

a very different route. As W can be exponential in the

size of Σ, every such approach must not computeW at

all. The NP-hard problem we reduce to the key/anti-

key satisfiability problem is monotone 1-in-3 SAT [48],

which asks: Given a set of 3-clauses without negations,

does there exist a truth assignment such that every

clause contains exactly one true literal?

Proposition 4 The key/anti-key satisfiability problem

is NP-complete.

Proof We will reduce the monotone 1-in-3 SAT problem

to it. Let SAT be an arbitrary set of 3-clauses without

negation. We construct an instance of the key/anti-key

satisfiability problem as follows.

T := XY Z ∪
⋃
C∈SAT

C

Aw := {¬c〈XABC〉,¬c〈Y ABC〉 | ABC ∈ SAT } ∪ {Z}
Σ := {p 〈A〉 | A ∈ T} ∪{

c 〈ZABC〉, c 〈XY AB〉,
c 〈XY AC〉, c 〈XY BC〉

∣∣∣∣ABC ∈ SAT}
We claim that (T, ∅, Σ,Aw) is satisfiable iff SAT is 1-

in-3 satisfiable.

Let I be a table satisfying (T, ∅, Σ,Aw), andW as in

Lemma 5. We may assume w.l.o.g. thatW is downward

closed, i.e., that W =
⋃
w∈W P(w).

Since every attribute in T is nullable and a possible

key, we must have Aw ⊆ W×2. In particular Z ∈ W,

and for every ABC ∈ SAT we have XABC, Y ABC ∈
W×2. Since c 〈ZABC〉 ∈ Σ we cannot have ABC ∈
W. This leaves XA,XB or XC ∈ W, and similarly

Y A, Y B or Y C ∈ W. The certain keys

c 〈XY AB〉, c 〈XY AC〉, c 〈XY BC〉 ∈ Σ

mean that XA ∈ W prohibits both Y B ∈ W and

Y C ∈ W so Y A ∈ W must hold. Conversely Y A ∈ W
prohibits both XB ∈ W and XC ∈ W. By symmetrical

argument exactly one of XA,XB,XC lies in W.



Thus SAT is 1-in-3 satisfiable with

A→

{
true if XA ∈ W
false if XA 6∈ W

Conversely let SAT be 1-in-3 satisfiable with truth

assignment L. Then the set

W := {XA,Y A,BC | ABC ∈ SAT ∧ L(A)} ∪ {Z}

meets the conditions of Lemma 5.

The above shows NP-hardness. If there is an in-

stance I satisfying the given keys and anti-keys, it con-

tains a subtable with at most 2 · |Aw| tuples, and thus

can be guessed and verified in polynomial time. ut

In summary, the pre-Armstrong existence problem

is solved as follows: First, we construct the sets of max-

imal weak (and strong) anti-keys. These sets can be ex-

ponential in the size of Σ. Second, we then reduce the

problem of findingW to the NP-complete key/anti-key

satisfiability problem.

The construction of the anti-keys is in EXPTIME,

and finding W is in NP (EXPTIME in our algorithm),

butW is exponential in the size of the input Σ because

W includes the exponentially large set of anti-keys. So,

overall the problem lies in NEXPTIME, and our al-

gorithm runs in double-exponential time and exponen-

tial space. The NP-hardness proof of the key/anti-key

satisfiability problem does not actually prove anything

about the hardness of checking the existence of W, in

particular as the second part of finding W from the

keys and anti-keys covers only a subset, say X, of the

problem space for key/anti-key satisfiability (where we

do not require a relationship between keys and anti-

keys here). But we know that every PTIME solution

would need to find a way to solve the key/anti-key sat-

isfiability problem for instances in X in PTIME, and

NP-hardness of the key/anti-key satisfiability problem

suggests that this may not be easy (or possible).

Despite the poor theoretical worst-case bounds of

the problem, our experiments in Section 8 show that

our algorithm is typically very efficient.

4.5 Weak and Strong FDs resist Armstrong relations

Note that there is a “strong similarity” between possi-

ble and certain keys and the weak and strong functional

dependencies discussed in [34]. Despite this, [34, Theo-

rem 6.1] claims that for a set of strong and weak func-

tional dependencies, an Armstrong relation always ex-

ists. Unfortunately that claim is wrong, with the proof

not considering all tuple pairs in Case 2, “if” direction.

We must note here that Armstrong tables in [34]

correspond to our pre-Armstrong tables, they do not

consider NOT NULL constraints, and a weak/strong FD

X → T may hold on a relation over T while the corre-

sponding possible/certain key (p/c) 〈X〉 does not. Hence

non-existence of a (pre-)Armstrong table for a set of

possible and certain keys does not imply non-existence

of an Armstrong table for the corresponding set of weak

and strong FDs.

Thus, to show that the claim in [34, Theorem 6.1] is

wrong, rather than just its proof, we provide a counter

example next. Following the notation of [34], we denote

weak FDs by ♦(X → Y ) and strong FDs by�(X → Y ).

Example 15 (no FD (pre-)Armstrong table)

Let T = ABCDE and

Σ =


�(AB → E),�(CD → E),

♦(AC → E),♦(AD → E),

♦(BC → E),♦(BD → E),

�(E → ABCD)


Note the similarity to Example 11. Now every Arm-

strong table I must disprove the strong FDs

�(AC → E),�(AD → E),�(BC → E),�(BD → E)

while respecting the weak FDs

♦(AC → E),♦(AD → E),♦(BC → E),♦(BD → E) .

I cannot contain⊥ in column E, or else�(E → ABCD)

forces all tuples to be strongly similar on ABCD, caus-

ing non-implied FDs to hold.

In each of the four cases, we require two tuples

t, t′ which violate a strong FD �(X → E) but satisfy

♦(X → E). Thus

t[X] ∼w t′[X] and t[E] 6∼s t′[E] , and

t[X] 6∼s t′[X] or t[E] ∼w t′[E]

Since t[E], t′[E] 6= ⊥ they cannot be weakly similar

without being strongly similar. Hence we have t[X] 6∼s
t′[X], meaning either t[X] or t′[X] must contain ⊥.

Using the same arguments as in Example 11, we

obtain (e.g.) tA[AB] ∼w tB [AB] with tA[AB] and/or

tB [AB] containing ⊥. However, from �(AB → E) and

�(E → ABCD) it then follows that tA[AB] ∼s tB [AB],

contradicting the presence of ⊥. ut

5 Finite Domains

So far, we have assumed that domains are infinite, or

at least “sufficiently large”. While the domains of some

key attributes are usually sufficiently large, there may

be real-world situations in which all domains are fairly



small, e.g. boolean. We will now investigate possible

and certain keys under finite and infinite domains, that

is, we do not assume domains to be infinite. For the

obvious reason, we do require the domains of all key

attributes to contain at least two elements.

5.1 Syntactic Characterization

Certain keys enjoy a robust syntactic characterization.

Corollary 5 Permitting finite domains, X ⊆ T is a

certain key for I iff no two tuples in I with distinct

tuple identities are weakly similar on X.

Proof The proof of Theorem 1 does not make use of the

infinite domain assumption for certain keys. ut

Possible keys are not robust, as the following exam-

ples illustrate.

Example 16 (possible-key satisfaction)

Assuming the domain of Gender only contains M and F,

consider the following instance I:

Name Gender DoB

Alex F 23/07/2000

Alex ⊥ 04/01/1999

Ben M 04/01/1999

Here, the possible key p 〈Gender〉 does not hold on I.

However, no tuples are strongly similar on Gender, and

p 〈Gender〉 does hold on every 2-subset of I, that is,

every subset of cardinality 2.

Furthermore, the possible keys p 〈Name,Gender〉
and p 〈Gender,DoB〉 each hold individually, that is, for

each possible key there exists a possible world satisfying

that key. However, neither of the two possible worlds

satisfies both keys. ut

This shows that pairwise tuple comparison alone is

insufficient to decide whether a possible key holds, and

that it is insufficient to decide satisfaction of each pos-

sible key in isolation. This makes it much harder to

enforce possible keys – NP-hard in fact, as we show

now.

Problem 1 (possible-key satisfaction)

Given a schema T , an instance I over T and a set Σ

of keys over T , does there exist a possible world of I

satisfying Σ?

Proposition 5 The possible key satisfaction problem

is NP-complete for finite domains.

Proof The membership in NP follows from the fact that

we can guess a possible world of I and verify in time

polynomial in the input (the instance I and the key set

Σ) that I satisfies Σ.

To show NP-hardness, we will reduce 3-SAT to it.

Let V = {v1, . . . , vn} denote the set of variables, and

C = {c1, . . . , cm} the set of clauses after removing all

tautologies. We construct T, I and Σ as follows:

– T contains an attribute Ai with sufficiently large

domain for every clause ci ∈ C, and an attribute Bi
with boolean domain for every variable vi ∈ V.

– Σ contains a key AiBjBkBl for every clause ci =

{(¬)vj , (¬)vk, (¬)vl} ∈ C.
– I contains a tuple t0 with

– t0[Ai] = 0 for i = 1 . . . n

– t0[Bi] = ⊥ for i = 1 . . .m

and a tuple ti for every clause ci ∈ C with

– ti[Ai] = 0

– ti[Aj ] = i for j 6= i

– ti[Bj ] = F for vj ∈ ci
– ti[Bj ] = T for vj /∈ ci

Now each possible world ρ(I) corresponds to a truth

assignment via vi = ρ(to[Ai]), and one may verify that

this truth assignment satisfies C iff Σ holds on ρ(I). ut

For these reasons we shall abandon our semantic no-

tion of possible keys for finite domains, and investigate

the combination of certain keys, uniqueness constraints

and NOT NULL constraints instead. According to the

SQL standard, uniqueness constraints enjoy the syntac-

tic characterization of Theorem 1. That is, UNIQUE(X)

holds on table I if and only if I does not contain two

tuples with different tuple identities that are strongly

similar on X. In addition, when we speak about finite

domains, the notion of strong anti-keys is derived from

that of uniqueness constraints. That is, X is a strong

anti-key for I, denoted by ¬p〈X〉, if UNIQUE(X) does

not hold on I.

5.2 Implication, Anti-keys and Key Discovery

Our results about implication of certain and possible

keys, in particular Theorem 2 (implication), Corollar-

ies 1 (implication complexity) and 2 (axiomatization),

and Proposition 2 (minimal cover) continue to hold for

finite domains when we replace possible keys by unique-

ness constraints. This can be seen as follows (recall that

we require domains to contain at least 2 values):

(i) In Theorem 2 the “if” direction follows from The-

orem 1 which still holds, and the proof for the

“only if” direction only uses instances with 2 tu-

ples and thus still works under finite domains.



(ii) The remaining corollaries and proposition follow

from Theorem 2.

Similarly our results about the implication between

anti-keys, namely Proposition 1, hold over finite do-

mains when we replace possible keys with uniqueness

constraints. This follows from its proof, which uses only

2 distinct domain values.

Finally, Corollary 3 (key discovery) holds over finite

domains when we replace possible keys by uniqueness

constraints, as it only depends on Theorems 1 and 2.

5.3 Armstrong Tables

During the construction of Armstrong tables, having

sufficiently many domain values is crucial to prevent

interaction of different tuples. As the following example

shows, finite domains can already prevent the existence

of Armstrong tables in the relational case.

Example 17 (No Relational Armstrong Table)

Consider relational schema T = ABC with the keys

Σ = {A,BC}. If the domain of A contains only two

distinct values, then every Armstrong table contains at

most 2 tuples. To satisfy the maximal anti-keys B and

C, these tuples must be identical on both B and C,

which would violate the key BC. Thus no Armstrong

table exists. ut

In the example above, the problem is caused by a

key containing only attributes with finite domains, re-

stricting the number of tuples allowed in every instance.

Clearly this limits the practical usability of such tables.

Note also that the question of whether an Arm-

strong table exists under finite domains is at least as

hard as finding the size of a minimum-sized Armstrong

table under infinite domains (same trick as in Exam-

ple 17), a problem for which no exact results are known.

For these reasons we will focus on Armstrong tables

for instances where no restriction is imposed on the

number of tuples, that is, where every key contains at

least one attribute with an infinite domain. This allows

us to obtain a result similar to Corollary 4 for finite

domains.

Theorem 5 If every certain key c 〈X〉 ∈ Σ contains

an attribute A ∈ TS with infinite domain, and every

uniqueness constraint UNIQUE(Y ) ∈ Σ contains an at-

tribute B with infinite domain, then there exists an

Armstrong table for (T, TS , Σ).

Proof We construct an Armstrong table I by adapting

Construction 1 with W = {T \ TS} to finite domains,

as follows. Denote the attributes with finite and infi-

nite domain by TF ∪ T∞ = T respectively. We further

abbreviate TS,F := TS ∩ TF and TS,∞ := TS ∩ T∞.

I) For every strong anti-key ¬p〈X〉 ∈ Asmax add tu-

ples tsX , t
s′
X to I with

tsX [X ∩ T∞] = (i, . . . , i) ts′X [X ∩ T∞] = (i, . . . , i)

tsX [X ∩ TF ] = (0, . . . , 0) ts′X [X ∩ TF ] = (0, . . . , 0)

tsX [T∞\X] = (j, . . . , j) ts′X [T∞\X] = (k, . . . , k)

tsX [TF \X] = (0, . . . , 0) ts′X [TF \X] = (1, . . . , 1)

where i, j, k are distinct integers not used prior.

II) For every weak anti-key ¬c〈X〉 ∈ Awmax we add

tuples twX , t
w′
X to I with

twX [X ∩ TS,∞] = (i, . . . , i) tw′X [X ∩ TS,∞] = (i, . . . , i)

twX [X ∩ TS,F ] = (0, . . . , 0) tw′X [X ∩ TS,F ] = (0, . . . , 0)

twX [X \ TS ] = (⊥, . . . ,⊥) tw′X [X \ TS ] = (⊥, . . . ,⊥)

twX [T∞\X] = (j, . . . , j) tw′X [T∞\X] = (k, . . . , k)

twX [TF \X] = (0, . . . , 0) tw′X [TF \X] = (1, . . . , 1)

where i, j, k are distinct integers not used prior.

III) Add a tuple t⊥ to I with

t⊥[TS,F ] = (0, . . . , 0)

t⊥[TS,∞] = (i, . . . , i)

t⊥[T \ TS ] = ⊥

where i is an integer not used previously.

Clearly all maximal strong and weak anti-keys hold on

I, and all columns in T\TS contain a⊥ value. It remains

to show that Σ holds on I.

By construction all matching tuple-pairs tsX , t
s′
X and

twX , t
w′
X use values on attributes with infinite domains

that are either ⊥ or distinct from all other tuples. As

all keys contain an attribute with infinite domain (and

NOT NULL for certain keys), no key in Σ can be violated

by non-matching tuple-pairs.

Consider UNIQUE(Y ) ∈ Σ. For a strong anti-key

¬p〈X〉 ∈ Asmax we must have Y * X. As the match-

ing tuple-pair tsX , t
s′
X differs on Y \ X, it does not vi-

olate UNIQUE(Y ). For a weak anti-key ¬c〈X〉 ∈ Awmax
we must have Y * X ∩ TS . As the matching tuple-pair

twX , t
w′
X either differs or is ⊥ outside of X ∩ TS , it does

not violate UNIQUE(Y ).

Consider c 〈Y 〉 ∈ Σ. For a strong or weak anti-key

¬ 〈X〉 ∈ Amax we must have Y * X. As the matching

tuple-pair tsX , t
s′
X or twX , t

w′
X strongly differs on Y \X, it

does not violate c 〈Y 〉. ut

The equivalence of possible keys with SQL UNIQUE

requires infinite domains (or large enough, finite, do-

mains). This section has established several results for

SQL UNIQUE which even hold for finite domains. Data-

base users may find reassurance in SQL’s adoption of

the syntactic definition of UNIQUE, since it enables all of

these results. Indeed, we showed that a possible world

semantics for UNIQUE “only” works when some large

enough domains are available.



Fig. 2 Maximum Non-redundant Family of Certain Keys (in
red) and Possible Keys (in green)

6 Combinatorics of SQL Keys

Data engineers want to know how complex the main-

tenance of their data can grow. Here, we provide an-

swers to the basic question which non-redundant fam-

ilies of possible and certain keys attain maximum car-

dinality. We even provide a complete solution to this

question when an upper bound on the number of key

attributes is stipulated. The results provide further in-

sight to other problems we have studied in this article:

They tell us how large non-redundant inputs to the im-

plication problem or Armstrong computation may be-

come, how large non-redundant outputs to the discov-

ery problem may become, and how many indices we

may need to specify to support all access paths that

uniquely identify entities. Our solution is derived by ap-
plying techniques from extremal set theory. The result

is interesting from a combinatorial perspective itself, as

it generalizes the famous theorem by Sperner [50].

Throughout this section we write [n] := {1, . . . , n}
instead of T = {A1, . . . , An}. For X ⊆ [n], we use the

notations X(i) := {Y ⊆ X : |Y | = i} and X(≤i) :=

{Y ⊆ X : |Y | ≤ i}. A family A ⊆ [n](≤n) is an anti-

chain (or Sperner family) if X 6⊆ Y for all distinct

X,Y ∈ A. For a set Σ of possible and certain keys over

[n], define F := {X | c 〈X〉 ∈ Σ} and G := {X | p 〈X〉 ∈
Σ}. The following theorem is just a simple translation

of Theorem 2 into a language to which we can apply

extremal set theory.

Proposition 6 Let Σ be a set of possible and certain

keys, and TS the set of all attributes declared NOT NULL.

Then Σ is non-redundant if and only if (1) F is an

anti-chain, (2) G is an anti-chain, (3) ∀F ∈ F , G ∈
G : F 6⊆ G, and (4) ∀F ∈ F , G ∈ G : G 6⊆ F ∩ TS. ut

Using Proposition 6 the problem we study reads as

follows. Given non-negative integers n, k with k ≤ n

and a set TS ⊆ [n], find all pairs (F ,G) ∈ [n](≤k) ×
[n](≤k) that satisfy conditions (1)–(4) of Proposition 6

and maximize |F ∪G|. Note that F and G must be dis-

joint because of (3). In what follows, a complete solution

is given.

First, we briefly discuss the case when TS = [n]. In

this case, (1)–(4) are satisfied if and only if F∪̇G ⊆
[n](≤k) is an anti-chain. If k > n/2, then by Sperner’s

Theorem [50] |F ∪ G| attains its maximum if and only

if F and G form a partition of [n](bn/2c) or of [n](dn/2e),

respectively. If k ≤ n/2, then |F∪G| is maximized if and

only if F and G form a partition of [n](k). This is well-

known and follows from the original proof of Sperner’s

Theorem [50]. In the sequel, we will assume that 0 ≤
|TS | < n. Note that the bound (1) below does not hold

when TS = [n] for even n and k > n/2.

Theorem 6 Let n, a, k be non-negative integers with

n ≥ 2, a < n and k ≤ n, and let TS ⊆ [n] with |TS | = a.

Furthermore, let F ,G ⊆ [n]
(≤k)

be anti-chains such that

F 6⊆ G and G 6⊆ F ∩TS for all F ∈ F and G ∈ G. Then

|F ∪ G| ≤
(
n+ 1

m

)
−
(

a

m− 1

)
, (1)

where m := min{k, bn/2c + 1}. This bound is the best

possible, and equality is attained if and only if

(i) F∪̇G = [n](m) ∪ ([n](m−1) \ T (m−1)
S ), or

(ii) F∪̇G = [n](m−1) ∪ ([n](m−2) \ T (m−2)
S ), where

n is even, k > n/2, and a ≤ n/2− 2 or a = n− 1

Furthermore, for k > 1, (i) implies

[n](m) \ T (m)
S ⊆ F and [n](m−1) \ T (m−1)

S ⊆ G

while (ii) implies

[n](m−1) \ T (m−1)
S ⊆ F and [n](m−2) \ T (m−2)

S ⊆ G .

Note that [n](m) and [n](m−1) are the two largest

disjoint anti-chains over [n](≤k). To prevent F ⊆ G, F

must contain the larger sets. To prevent G ⊆ F ∩ TS
we drop small subsets of TS . The remaining subsets of

TS may be attributed to either F or G as they do not

conflict with others. This reflects the equivalence of cer-

tain/possible keys over NOT NULL attributes. While case

(i) always presents a non-redundant family of maximum

cardinality, case (ii) occurs because for even n and large

k, an additional pair of largest disjoint anti-chains ex-

ists: [n](m−1) and [n](m−2). The difference between the

resulting sets lies in the size of T
(m−1)
S and T

(m−2)
S ,

leading to the conditions for a. The trivial case n = 1

is excluded above to avoid certain technicalities in its

proof.



Example 18 For table schema (T = {A,B,C,D}, TS =

{A,B}), or n = 4 and a = 2, the maximum cardinality

of a non-redundant family of possible and certain keys

is nine. The bound is attained by the set Σ where

Σ =

{
c 〈A,B,C〉, c 〈A,B,D〉, c 〈A,C,D〉, c 〈B,C,D〉,
p 〈A,C〉, p 〈B,C〉, p 〈A,D〉, p 〈B,D〉, c 〈B,D〉

}
.

The associated powerset lattice is shown in Figure 2,

where certain keys are marked red and possible keys

are marked blue. ut

The proof of Theorem 6 can be found in the ap-

pendix.

7 Enforcing Certain Keys

Certain keys can uniquely identify entities in an SQL ta-

ble. However, the unique identification of entities must

also be efficient in order to meet Codd’s rule of en-

tity integrity. In practice, an efficient enforcement of

certain keys requires index structures. Finding suitable

index structures for certain keys is non-trivial as weak

similarity is not transitive. Hence, classical indices will

not work directly. We present an index scheme, based

on multiple classical indices, which allows us to check

certain keys efficiently, provided there are few nullable

key attributes. While an efficient index scheme seems

elusive for larger sets of nullable attributes, our experi-

ments from Section 8 suggest that most certain keys in

practice have few nullable attributes.

Let (T, TS) be a table schema andX ⊆ T . A certain-

key-index for c 〈X〉 is a collection of indices IY on sub-

sets Y of X which include all NOT NULL attributes of

X, that is, Ic〈X〉 := {IY | X ∩ TS ⊆ Y ⊆ X}. Here we

treat ⊥ as regular value for the purpose of indexing, i.e.,

we do index tuples with ⊥ “values”. When indexing a

table I, each tuple in I is indexed in each I.

Obviously, |Ic〈X〉| = 2n, where n := |X \ TS |, which

makes maintenance efficient only for small n. When

checking if a tuple exists that is weakly similar to some

given tuple, we only need to consult a single index, but

within that index we must perform up to 2n lookups.

Proposition 7 Let t be a tuple on (T, TS) and Ic〈X〉 a

certain-key-index for table I over (T, TS). Define

K := {A ∈ X | t[A] 6= ⊥} .

Then the existence of a tuple in I weakly similar to t

can be checked with at most 2k lookups in IK , where

k := |K \ TS |.

Proof The tuple t[K] can be weakly similar to every

tuple in {t′ | ∀A ∈ K \TS(t′(A) = t(A) or t′(A) = ⊥)}.
Hence, there are up to 2k tuples in IK that need to be

looked up. ut

As |K\TS | is bounded by |X\TS |, lookup is efficient

whenever indexing is efficient.

Example 19 Consider schema (ABCD,A, {c 〈ABC〉})
with table I over it:

I =

A B C D

1 ⊥ ⊥ 1

2 2 ⊥ 2

3 ⊥ 3 ⊥
4 4 4 ⊥

The certain-key-index Ic〈ABC〉 for c 〈ABC〉 consists of:

IA
A

1

2

3

4

IAB
A B

1 ⊥
2 2

3 ⊥
4 4

IAC
A C

1 ⊥
2 ⊥
3 3

4 4

IABC
A B C

1 ⊥ ⊥
2 2 ⊥
3 ⊥ 3

4 4 4

These tables represent attribute values that we in-

dex by, using every standard index structure such as

B-trees. When checking whether tuple t := (2,⊥, 3, 4)

is weakly similar on ABC to some tuple t′ ∈ I (and thus

violating c 〈ABC〉 when inserted), we perform lookup

on IAC for tuples t′ with t′[AC] ∈ {(2, 3), (2,⊥)}. ut

Our indexing approach works for every type of index

(e.g. hash, B-tree), as we only require fast lookup of ex-

act matches. Some index structures however, such as B-

tree and its variants, also allow efficient lookup of prefix

matches. That is, an index over ABCD also supports

lookups on A, AB and ABC. Such index structures

are available in most DBMSs, so we can exploit them

to reduce the number of indexes required. If X = Y A

contains only a single NULL attribute A, we can support
c 〈X〉 with a single prefix index on Y A, as this allows

lookups for both Y and Y A. If X = Y AB contains two

NULL attributes A andB, we can support c 〈X〉 with two

prefix indices on Y AB and Y B. While such an approach

cannot prevent an exponential growth in the number

of indices required to achieve performance guarantees

(each prefix index only supports a linear number of pre-

fix sets), it significantly reduces the number of indices

required in practice. When building a prefix index it

helps to order the nullable columns, so that columns

with high selectivity and few null marker occurrences

(potentially contradicting measures) appear first. High

selectivity ensures that we gain greater precision out

of the index when the column is used, and few null

marker occurrences ensure that follow-up columns are

less likely to be excluded from use. The potential for

additional gains from these techniques is rather small,

because a single index on the columns that are NOT

NULL tends to have excellent performance already, as

illustrated in the next section.



8 Experiments

We conducted several experiments to evaluate various

aspects of our work. Firstly, we discovered possible and

certain keys in public data sets. Secondly, we tested our

algorithms for computing and deciding the existence of

Armstrong tables. Lastly, we considered storage space

and time requirements for our index scheme. We used

the following data sets for our experiments:

– GO-termdb (Gene Ontology)

www.geneontology.org/

– IPI (International Protein Index)

www.ebi.ac.uk/IPI

– LMRP (Local Medical Review Policy)

www.cms.gov/medicare-coverage-database/

– PFAM (protein families)

pfam.sanger.ac.uk/

– RFAM (RNA families)

rfam.sanger.ac.uk/

These data sets were chosen for their availability in

non-curated database format. This was important be-

cause null marker occurrences and inconsistencies have

often been cleaned in curated databases. In principle,

there is potential for bias, for example related to the

interpretation of null markers, but it is unclear to us

why or in which form that would occur. The experi-

ments were run on a Dell Latitude E5530, Intel core i7,

CPU 2.9GHz with 8GB RAM on a 64-bit operating sys-

tem. The experiments regarding key enforcement were

conducted in MySQL version 5.6.

8.1 Key Discovery

Examining the schema definition does not suffice to de-

cide what types of key constraints hold or should hold

on a database. Certain keys with ⊥ occurrences can-

not be expressed in current SQL databases, so would

be lost. Even constraints that could and should be ex-

pressed are often not declared. Even if NOT NULL con-

straints are declared, one frequently finds that these

are invalid, resulting in work-arounds such as empty

strings. We mined data tables for possible and certain

keys, with focus on finding certain keys with ⊥ occur-

rences. For deciding if a column is NOT NULL, we ig-

nored all schema-level declarations, and instead tested

whether a column contained ⊥ occurrences. To alleviate

string formatting issues (such as “Zwieb C.” vs “Zwieb

C.;”) we normalized strings by trimming non-word non-

decimal characters, and interpreting the empty string

as ⊥. This pre-processing was necessary because several

of our test data sets were available only in CSV for-

mat, where ⊥ occurrences would have been exported as

Key Type Occurrences
Certain Keys with NULL 45
Possible Keys with NULL 237
Keys without NULL 309

Table 6 Number of keys found by type

empty strings. Tables with less than two tuples were ig-

nored. In the figures reported, we exclude tables pfamA

and lcd from the PFAM and LMRP data sets, as they

contain over 100,000 (pfamA) and over 2000 (lcd) mini-

mal keys, respectively, almost all of which appear to be

‘by chance’, and thus would distort results completely.

Table 6 lists the number of minimal keys of each type

discovered in the 130 tables. We distinguish between

possible and certain keys with NULL columns, and keys

not containing NULL columns. For the latter, possible

and certain keys coincide.

Two factors likely have a significant impact on the

figures in Table 6. First, constraints may only hold acci-

dentally, especially on small tables. For example, Table

1 of the RFAM data set satisfies c 〈title, journal〉 and

c 〈author, journal〉, with NULL column journal. Only

the first key appears to be sensible. Second, constraints

that should sensibly hold may be violated due to lack

of enforcement. Certain keys with ⊥ occurrences, which

cannot easily be expressed in existing systems, are likely

to suffer from this effect more than others. Indeed, most

SQL users know how to enforce a primary key but likely

find it challenging to enforce a certain key, for exam-

ple by triggers. We thus consider our results qualitative

rather than quantitative. Still, they indicate that cer-

tain keys do appear in practice, and may benefit from

explicit support by database systems.

We argue that more meaningful keys can be found

by relaxing conditions during key discovery. In an effort

to identify potentially meaningful certain keys that are

violated due to lack of enforcement, we have mined all

130 tables for certain near-keys of order n. These are

satisfied by a given data set if there are no more than

n tuples with distinct tuple identities that are pairwise

weakly similar on the given set of attributes. Pairwise

weak similarity is sufficient and necessary for the exis-

tence of a possible world in which the n tuples agree on

the given attributes. Certain keys are certain near-keys

of order 1. For n = 1, . . . , 5 we obtained the results in

Table 7. In total there are 324 certain near-keys with

null occurrences in some key column.

The order of a certain near-key indicates the maxi-

mum degree of violation in an instance. We now use the

frequency by which violations occur in order to deter-

mine whether a certain near-key represents a meaning-

ful certain key and does not only hold accidentally on

an instance I. Thus, we define the conflict rate of I for

www.geneontology.org/
www.ebi.ac.uk/IPI
www.cms.gov/medicare-coverage-database/
pfam.sanger.ac.uk/
rfam.sanger.ac.uk/


Order n Min Max
of certain conflict conflict
near-key #NULLs Frequency rate rate

1 1 41 0 0
1 2 4 0 0
2 1 107 <1 100
2 2 13 <1 20
3 1 45 <1 70
3 2 12 1 6
4 1 40 1 37
4 2 6 7 42
4 3 1 54 54
5 1 43 <1 100
5 2 11 7 42
5 3 1 55 55

Table 7 Number of certain near-keys found up to order 5,
and their minimum and maximum conflict rates

Fig. 3 Distribution of conflict rates

a certain near-key of order n as the percentage of rows
in I that are weakly similar on the given attributes

to at least one other row in I. The last two columns

of Table 7 show the minimum and maximum conflict

rates for the corresponding certain near-keys. Low con-

flict rates can be taken as an indicator for keys to be

meaningful. However, this fails when many duplicates

exist. The distribution of conflict rates over all mini-

mal certain near-keys with null columns, of orders 2-5,

is shown in Figure 3, where order 1 is omitted as con-

flict rates are 0. For many of the minimal certain near-

keys identified, their conflict rate is small. This confirms

their status as potentially meaningful certain keys. Ulti-

mately however, not knowing the ground truth of what

keys are meaningful, it is impossible to classify keys as

meaningful or accidental.

The mining of certain keys from all 130 tables took

a total of 246 seconds, while the mining of certain near-

keys of up to order 5 from all 130 tables required less

than 5.6 times as much time, namely 1369 seconds.

These numbers report the averages over ten runs.

8.2 Armstrong Tables

We applied Algorithm 1 and Construction 1 to compute

Armstrong tables for the 130 tables we mined possible

and certain keys from. As each certain key contained

some NOT NULL column, Corollary 4 applied in all cases.

Each Armstrong table was computed within a few mil-

liseconds, and they contained only 7 tuples on average.

We also tested our algorithms against 1 million ran-

domly generated table schemas and sets of keys. Each

table contained 5-25 columns, with each column hav-

ing a 50% chance of being NOT NULL, and 5-25 keys of

size 1-5, with equal chance of being possible or certain.

To avoid overly silly examples, we removed certain keys

with only 1 or 2 NULL attributes and no NOT NULL at-

tributes. Hence, case ii) of Corollary 4 never applies.

In all but 85 cases an Armstrong table existed, with

average computation time in the order of a few millisec-

onds. For larger random schemas, transversal computa-

tion can become a bottleneck [11,13].

Together these results suggest that, although Al-

gorithm 1 is worst-case double exponential, such hard

cases need to be carefully constructed and arise neither

in practice nor by chance (at least not frequently).

8.3 Indexing

The efficiency of our index scheme for certain keys with

⊥ occurrences depends directly on the number of NULL

attributes in the certain key. Thus the central ques-

tion is how many NULL attributes occur in certain keys

in practice. For 45 certain keys with ⊥ occurrences,

discovered from the data sets in our experiments, 41
certain keys have only 1 column with null marker oc-

currences, while 4 certain keys have 2 columns with null

marker occurrences, see Table 7. In addition, Table 7

shows that even for certain near-keys between orders

2-5, at most three columns had occurrences of ⊥, and

those with only one column dominated.

Therefore, certain keys with ⊥ occurrences contain

mostly only a single attribute on which ⊥ occurs (re-

quiring 2 standard indices), and rarely more than two

attributes (requiring 4 standard indices). Assuming these

results generalize to other data sets, certain keys with

⊥ occurrences can be enforced efficiently in practice.

We used triggers to enforce certain keys under differ-

ent combinations of B-tree indices, and compared these

to the enforcement of the corresponding primary keys.

For all experiments the schema was (T = ABCDE, TS =

A) and the table I over T contained 100M tuples. In

each experiment we inserted 10,000 times one tuple and

took the average time to perform this operation. This

includes the time for maintaining the index structures



T = ABCDE, TS = A
Index X = AB X = ABC X = ABCD

PK(X) 0.451 0.491 0.615
IX 0.764 0.896 0.977
ITS

0.723 0.834 0.869
Ic〈X〉 0.617 0.719 1.143

Table 8 Average Times to Enforce Keys on X

involved. We enforced c 〈X〉 in the first experiment for

X = AB, in the second experiment for X = ABC and

in the third experiment for X = ABCD, incrementing

the number of NULL columns from 1 to 3. The distri-

bution of permitted ⊥ occurrences was evenly spread

amongst the 100M tuples, and also amongst the 10,000

tuples to be inserted. Altogether, we run each of the

experiments for 3 index structures: i) IX , ii) ITS
, iii)

Ic〈X〉. The times were compared against those achieved

under declaring a primary key PK(X) on X, where

we had 100M X-total tuples. Our results are shown in

Table 8. All times are in milliseconds.

Hence, certain keys can be enforced efficiently as

long as we involve the columns in TS in some index.

Just having ITS
ensures a performance similar to that

of the corresponding primary key. Indeed, the NOT NULL

attributes of a certain key suffice to identify most tu-

ples uniquely. Our experiments confirm these observa-

tions even for certain keys with three NULL columns,

which occur rarely in practice. Of course, ITS
cannot

guarantee the efficiency bounds established for Ic〈X〉
in Proposition 7. We stress the importance of index-

ing: enforcing c 〈X〉 on our data set without an index

resulted in a performance loss in the order of 104.

Memory consumption is proportional to the number
of indices used. In particular, it is no worse than classic

indices if only one index is used. In other cases, con-

sumption will be larger by up to (and probably close

to) a factor of 2]nullable key-columns.

9 Conclusion and Future Work

Primary key columns must not feature null markers

and therefore oppose the requirements of modern appli-

cations, inclusive of high volumes of incomplete data.

We studied keys over SQL tables in which the desig-

nated null marker may represent missing or unknown

data. Both interpretations can be handled by a possi-

ble world semantics. A key is possible (certain) to hold

on a table if some (every) possible world of the table

satisfies the key. Possible keys capture SQL’s UNIQUE

constraint, and certain keys generalize SQL’s primary

keys by permitting null markers in key columns. We es-

tablished solutions to several computational problems

related to possible and certain keys under NOT NULL

constraints. These include axiomatic and linear-time

algorithmic characterizations of their implication prob-

lem, minimal representations of keys, discovery of keys

from a given table, and structural and computational

properties of Armstrong tables. Using extremal set the-

ory, we also characterized which families of possible and

certain keys attain maximum cardinality under given

NOT NULL constraints, even under given upper bounds

on their size. Experiments confirm that our solutions

work effectively and efficiently in practice. This also

applies to enforcing certain keys, by utilizing known

index structures. Our findings from public data con-

firm that certain keys have only few columns with null

marker occurrences. Certain keys thus achieve the goal

of Codd’s rule for entity integrity while accommodating

the requirements of modern applications. This distinct

advantage over primary keys comes only at a small price

in terms of update performance.

This research encourages various future work. Our

keys have been extended to possible and certain func-

tional dependencies, which enable SQL schema normal-

ization [31]. The exact complexity of deciding the ex-

istence of Armstrong tables should be determined. It

is worth investigating optimizations to reduce the time

complexity of computing Armstrong tables, and their

size. Domain or database experts may not be available

during the acquisition of keys. Such situations call for

automated support in indicating that a target key holds

on the Armstrong table, or why it is violated. This may

prompt the experts to change the keys (table), and in-

formed interaction may still progress until the experts

are satisfied. A combination of the discovery and Arm-

strong table algorithms result in informative Armstrong

samples for our keys, similar to classical data dependen-

cies [39]. Evidently, the existence and computation of

Armstrong relations for sets of weak and strong func-

tional dependencies requires new attention [34]. Scal-

able approximate discovery is an important problem as

meaningful keys may be violated, but research has only

started for total [25,49] and possible keys [25]. These

algorithms may be extended to handle the weak simi-

larity of tuples and thus the discovery of certain keys.

Other index schemes may prove valuable to enforce cer-

tain keys. It is interesting to combine possible and cer-

tain keys with possibilistic or probabilistic keys [6,29],

or inclusion dependencies with nulls [30,41,42].
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