
 

Libraries and Learning Services 
 

University of Auckland Research 
Repository, ResearchSpace 
 

Version 

This is the Accepted Manuscript version. This version is defined in the NISO 
recommended practice RP-8-2008 http://www.niso.org/publications/rp/  

 

Suggested Reference 

Link, S. (2016). Approximation Logics for Subclasses of Probabilistic Conditional 
Independence and Hierarchical Dependence on Incomplete Data. In S. 
Abramsky, J. Kontinen, J. Vaananen, & H. Vollmer (Eds.), Dependence Logic (pp. 
183-217). Basel: Birkhäuser. doi:10.1007/978-3-319-31803-5_9 

Copyright 

Items in ResearchSpace are protected by copyright, with all rights reserved, 
unless otherwise indicated. Previously published items are made available in 
accordance with the copyright policy of the publisher. 

The final publication is available at Springer via http://dx.doi.org/10.1007/978-
3-319-31803-5_9 

For more information, see General copyright, Publisher copyright. 

 

 

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-3-319-31803-5_9
http://dx.doi.org/10.1007/978-3-319-31803-5_9
http://dx.doi.org/10.1007/978-3-319-31803-5_9
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124


Approximation Logics for Subclasses of
Probabilistic Conditional Independence and
Hierarchical Dependence on Incomplete Data

Sebastian Link

Abstract Probabilistic conditional independence constitutes a principled approach
to handle knowledge and uncertainty in artificial intelligence, and is fundamental
in probability theory and multivariate statistics. Similarly, first-order hierarchical
dependence provides an expressive framework to capture the semantics of an appli-
cation domain within a database system, and is essential for the design of databases.
For complete data it is well-known that the implication problem associated with
probabilistic conditional independence is not axiomatizable by a finite set of Horn
rules [56], and the implication problem for first-order hierarchical dependence is un-
decidable [30]. Moreover, both implication problems do not coincide [56] and nei-
ther of them is equivalent to the implication problem of some fragment of Boolean
propositional logic [51]. In this article, generalized saturated conditional indepen-
dence as well as full first-order hierarchical dependence over incomplete data are
investigated as expressive subclasses of probabilistic conditional independence and
first-order hierarchical dependence, respectively. The associated implication prob-
lems are axiomatized by a finite set of Horn rules, and both shown to coincide with
that of a propositional fragment under interpretations in the well-known approxi-
mation logic S -3. Here, the propositional variables in the set S are interpreted
classically, and correspond to random variables as well as attributes on which in-
complete data is not permitted to occur.

1 Introduction

The concept of conditional independence is important for capturing structural as-
pects of probability distributions, for dealing with knowledge and uncertainty in ar-
tificial intelligence, and for learning and reasoning in intelligent systems [24, 49]. A
conditional independence (CI) statement I(Y,Z | X) represents the independence of
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two sets of random variables relative to a third: given three mutually disjoint subsets
X , Y , and Z of a set S of random variables, if we have knowledge about the state of
X , then knowledge about the state of Y does not provide additional evidence for the
state of Z and vice versa. A fundamental problem is the implication problem, which
is to decide for an arbitrary finite set S, and an arbitrary set Σ ∪{ϕ} of CI state-
ments over S, whether every probability model that satisfies every CI statement in Σ

also satisfies ϕ . The significance of this problem is due to its relevance for building
Bayesian networks [49]. The implication problem for CI statements is not axiom-
atizable by a finite set of Horn rules [56]. An important subclass of CI statements
are saturated conditional independence (SCI) statements. These are CI statements
I(Y,Z | X) over S that satisfy XY Z = S, that is, the set union XY Z of X , Y , and Z is
S. Geiger and Pearl have established an axiomatization for the implication problem
of SCI statements by a finite set of Horn rules [21].

The notion of saturated conditional independence I(Y,Z | X) over S is closely
related to that of a multivalued dependency (MVD) X � Y |Z over S, studied in the
framework of relational databases [5, 7, 15, 18, 26, 39, 40, 51]. Here, a set X of at-
tributes is used to denote the X-value of a tuple over S, i.e., those tuple components
that appear in the columns associated with X . Indeed, X � Y |Z expresses the fact
that an X-value uniquely determines the set of associated Y -values independently
of joint associations with Z-values where Z = S−XY . Thus, given a specific oc-
currence of an X-value within a tuple, so far not knowing the specific association
with a Y -value and Z-value within this tuple, and then learning about the specific
associated Y -value does not provide any information about the specific associated
Z-value. Previous research has established an equivalence between the implication
problem for SCI statements and that for MVDs [61]. In addition it is known that
the implication problem of MVDs is equivalent to that of formulae in a Boolean
propositional fragment F′ [51], even in nested databases with finite list, and record
constructors [27]. Indeed, Sagiv et al. showed that it suffices to consider two-tuple
relations in order to decide the implication problem of MVDs [51]. This enabled
them to define truth assignments from two-tuple relations, and vice versa, in such a
way that the two-tuple relation satisfies an MVD if and only if the truth assignment
is a model for the F′-formula that corresponds to the MVD. It follows from these
results that the implication of SCI statements is equivalent to that of F′-formulae.

Contribution. The purpose of this article is to summarize recent insight into the
relationships between implication problems for fragments of conditional indepen-
dencies, database dependencies, and propositional logic. The classical equivalences
described above are extended in two directions. Firstly, extensions of saturated CI
statements, multivalued dependencies, and the propositional fragment F′ are con-
sidered. These extensions include generalized saturated conditional independence
(GSCI) statements I(Y1, . . . ,Yk | X), which declare the independence between any
finite number k of sets Y1, . . . ,Yk of random variables, given X ; as well as Delo-
bel’s class of full first-order hierarchical dependencies X : [Y1 | . . . | Yk] as an ex-
tension of MVDs X � Yi|R−XYi for i = 1, . . . ,k. Secondly, these extensions are
handled in the presence of incomplete data. For the probabilistic framework this
means that incomplete data can be present in some random variables, and for the
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database framework this means that null markers can be present in some attribute
columns. As a mechanism to control the degree of incomplete data we permit ran-
dom variables to be specified as complete, that is, incomplete data cannot be as-
signed to them. Similarly, attributes can be specified as NOT NULL to disallow
occurrences of null markers in these columns. In fact, the industry standard SQL for
defining and querying data permits attributes to be specified as NOT NULL [10]. As
a main contribution we establish axiomatizations, by a finite set of Horn rules, for
the implication problems of i) generalized saturated conditional independencies in
the presence of an arbitrary finite set C of complete random variables, and ii) full
first-order hierarchical dependencies in the presence of an arbitrary finite set Rs of
attributes declared NOT NULL. It is shown that both implication problems coincide
with the implication problem of a propositional fragment F under interpretations
by the well-known approximation logic S -3. Indeed, the propositional variables in
the set S correspond to the complete random variables in C as well as the NOT
NULL attributes in Rs. The main proof arguments are based on special probability
models that assign probability one half to two distinct assignments, and on two-
tuple relations, since these allow us to define corresponding S -3 truth assignments.
The established equivalences are rather special, since any duality between two of
these three frameworks fails already for general CI statements, embedded multi-
valued dependencies and any Boolean propositional fragment over complete data.
The equivalences are illustrated in Figure 1. In particular, they should be understood
as strong drivers for the advanced treatment of (in)dependence statements as first-
class citizens in some uniform framework for reasoning, such as dependence and
independence logic [2, 13, 19, 22, 45, 58, 59].

Fig. 1 Summary of Equivalences between Implication Problems

Organization. Generalized conditional independence statements and complete ran-
dom variables are defined in Section 2. Their combined implication problem is
axiomatized in Section 3. In Section 4 we prove the equivalence between the C-
implication of GSCI statements and S -3 implication of the propositional fragment
F. In Section 5 this equivalence is extended to include Delobel’s class of full first-
order hierarchical dependencies and NOT NULL attributes. Related work is outlined
in Section 6. We conclude in Section 7.
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2 Generalized Conditional Independence under Incomplete Data

We use the framework of Geiger and Pearl [21]. We denote by S a finite set of distinct
symbols {v1, . . . ,vn}, called random variables. A domain mapping is a mapping that
associates a set, dom(v), with each random variable v. The set dom(v) is called the
domain of v and each of its elements is called a data value of v. For X ⊆ S we say
that x is an assignment of X , if x∈∏v∈X dom(v). For an assignment x = (v1, . . . ,vk)
of X with vi ∈ dom(vi), we write x(vi) for the data value vi of vi. For some Y ⊆ X
we write x(Y ) for the projection of x onto Y , that is, x(Y ) denotes the restriction of
the assignment x to the random variables in Y .

2.1 Complete Random Variables

In theory one can assume that the data values of assignments always exist and are
known. In practice, these assumptions fail frequently. Indeed, it can happen in most
samples that some data values do not exist, or that some existing data values are
currently unknown. In statistics and machine learning, one speaks commonly of
structural zeros in the first case, and of sampling zeros in the second case [17, 54].
In databases, one speaks of inapplicable nulls in the first case, and of unknown nulls
in the second case [8, 9, 63]. In practice, it is often difficult to tell whether some
data value does not exist, or exists but is currently unknown.

We use the notation x(v) = µ to denote that no information is currently available
about the data value x(v) of the random variable v assigned to x. The interpretation
of the marker µ as no information means that a data value does either not exist, or a
data value exists but is currently unknown.

It is an advantage to gain control over the occurrences of incomplete data values.
For this purpose we introduce complete random variables. A random variable is de-
fined to be complete if and only if µ /∈ dom(v). Although we include µ in domains of
random variables that are not complete, we prefer to think of µ as a marker and not
as a data value. In what follows we use C to denote the subset of complete random
variables. It is a goal of this article to investigate the properties of generalized satu-
rated conditional probabilistic independence in the presence of an arbitrarily chosen
set C of complete random variables. Indeed, complete random variables are shown
to provide an effective means to control the degree of uncertainty and to soundly
approximate classical reasoning.

2.2 Conditional Independence under Complete Random Variables

A probability model over (S = {v1, . . . ,vn},C) is a pair (dom,P) where dom is a
domain mapping that maps each vi to a finite domain dom(vi), and P : dom(v1)×
·· ·× dom(vn)→ [0,1] is a probability distribution having the Cartesian product of
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these domains as its sample space. Note that µ /∈ dom(vi) if and only if vi ∈C. An
assignment x of X ⊆ S is complete if and only if x(v) 6= µ holds for all v ∈ X . As
usual, for an assignment x of X , P(x) denotes the marginal probability P(X = x).

Definition 1. The expression I(Y1, . . . ,Yk | X), where k is a non-negative integer, and
X ,Y1, . . . ,Yk are mutually disjoint subsets of S, is called a generalized conditional
independence (CI) statement over S. If XY1 · · ·Yk = S, we call I(Y1, . . . ,Yk | X) a
generalized saturated conditional independence (GSCI) statement. Let (dom,P) be
a probability model over (S,C). A generalized CI statement I(Y1, . . . ,Yk | X) is said
to hold for (dom,P) if for all complete assignments x of X , and for all assignments
yi of Yi for i = 1, . . . ,k,

P(y1, . . . ,yk,x) ·P(x)k−1 = P(y1,x) · . . . ·P(yk,x) (1)

Equivalently, (dom,P) is said to satisfy I(Y1, . . . ,Yk | X).

Remark 1. The expressions I(Y1, . . . ,Yk | X) are generalized in the sense that they
cover CI statements as the special case where k = 2. We assume w.l.o.g. that the sets
Yi are non-empty. Indeed, for all positive k we have the property that a probability
distribution satisfies I( /0,Y2, . . . ,Yk | X) if and only if the probability distribution
satisfies I(Y2, . . . ,Yk | X). In particular, for k = 1, the CI statement I(Y | X) is always
satisfied. One may now define an equivalence relation over the set of generalized CI
statements over some fixed set S of random variables. Indeed, two such generalized
CI statements are equivalent whenever they are satisfied by the same probability
distributions over S. However, our inference rules do not need to be applied to such
equivalence classes, as Remark 5 shows. For the sake of simplicity, we assume that
in GSCI statements I(Y1, . . . ,Yk | X) the sets Yi are non-empty.

Remark 2. The satisfaction of generalized CI statements I(Y1, . . . ,Yk | X) requires
equation (1) to hold for complete assignments x of X only. The reason is that the
mutual independence between the sets Yi is conditional on X . That is, assignments
that have no information about some random variable in X are not taken into account
when judging the independence between distinct Yi.

Remark 3. If every random variable is declared to be complete, that is when C = S,
and k = 2, then Definition 1 reduces to the standard definition of CI statements
[21, 49].

We now introduce the running example of this article.

Example 1. Let {m(ovie),a(ctor),r(ole),c(rew), f (eature), l(anguage),s(ubtitle)}
denote the set S of random variables, that captures properties of blu-rays we want
to model. Let C = {m,a,r,c,s} denote the set of complete random variables, and
let Σ consist of the GSCI statements I(sar,c, f l | m) and I(sc,ar | m f l), and let ϕ

be I(s,ar, f lc | m). We may define the following probability model (dom,P) over
(S,C):

• dom(m) = {Rashomon,The Seven Samurai},
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• dom(a) = {T. Mifune,M. Kyo},
• dom(r) = {Tajomaru,Masako},
• dom(c) = {Kurosawa,Hashimoto},
• dom( f ) = {Tailer,Comments,µ},
• dom(l) = {Japanese,Maori,µ},

and define P by assigning the probability one half to each of the following two
assignments of (S,C):

movie actor role crew feature language subtitle
Rashomon T. Mifune Tajomaru Kurosawa µ µ Suomi
Rashomon M. Kyo Masako Kurosawa µ µ Deutsch

.

It follows that (dom,P) satisfies Σ , but violates ϕ .

For the remainder of the article we will be interested in GSCI statements. Let
Σ ∪{ϕ} be a set of GSCI statements over S. We say that Σ C-implies ϕ , denoted by
Σ |=C ϕ , if every probability model over (S,C) that satisfies every GSCI statement in
Σ also satisfies the GSCI statement ϕ . The implication problem for GSCI statements
and complete r.v. is defined as the following problem.

PROBLEM: Implication problem of GSCI statements and complete r.v.
INPUT: Pair (S,C) with set S of random variables and

subset C ⊆ S of complete random variables
Set Σ ∪{ϕ} of GSCI statements over S

OUTPUT: Yes, if Σ |=C ϕ; No, otherwise

Example 2. For S = {m,a,r,c, f , l,s}, Σ = {I(sar,c, f l | m), I(sc,ar | m f l)} does
not C-imply ϕ = I(s,ar,c f l | m) for C = {m,a,r,c,s}, but Σ does C′-imply ϕ for
C′ = { f , l}. A proof of the former is given by the probability model over (S,C) in
Example 1, which satisfies Σ , but violates ϕ . Intuitively, for ϕ to be implied by Σ

one needs to specify f and l to be complete.

For Σ we let Σ ∗C = {ϕ | Σ |=C ϕ} be the semantic closure of Σ , i.e., the set of
all GSCI statements C-implied by Σ . In order to characterize the implication prob-
lem of GSCI statements and complete r.v. we use a syntactic approach by applying
inference rules. These inference rules have the form

premise
conclusion

condition

and inference rules without any premises are called axioms. The premise consists of
a finite set of GSCI statements, and the conclusion is a singleton GSCI statement.
The condition of the rule is simple in the sense that it stipulates a simple syntactic
restriction on the application of the rule. An inference rule is called sound, if ev-
ery probability model over (S,C) that satisfies every GSCI statement in the premise
of the rule also satisfies the GSCI statement in the conclusion of the rule, given
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Table 1 Axiomatization G= {T ′,S ′,C ′,W ′} of SCI statements when every r.v. is complete

I(S, /0 | /0)
I(Y1,Y2 | X)

I(Y2,Y1 | X)
(saturated trivial independence, T ′) (symmetry, S ′)

I(Z,Y | X) I(Z1,Z2 | XY )
I(Z1,Z2Y | X)

I(Y1,Y2Z | X)

I(Y1,Y2 | XZ)
(weak contraction, C ′) (weak union, W ′)

that the condition is satisfied. We write Σ `R ϕ if and only if there is some infer-
ence of ϕ from Σ by the set R of inference rules. That is, there is some sequence
γ = [σ1, . . . ,σn] of GSCI statements such that σn = ϕ and every σi is an element
of Σ or results from an application of an inference rule in R to some elements in
{σ1, . . . ,σi−1}. For Σ , let Σ

+
R = {ϕ | Σ `R ϕ} be its syntactic closure under in-

ferences by R. A set R of inference rules is said to be sound (complete) for the
implication of GSCI statements and complete r.v., if for every S, every C ⊆ S and
for every set Σ of GSCI statements over (S,C) we have Σ

+
R ⊆ Σ ∗C (Σ ∗C ⊆ Σ

+
R). The

(finite) set R is said to be a (finite) axiomatization for the implication problem of
GSCI statements and complete r.v., if R is both sound and complete.

Theorem 1 (Geiger and Pearl 1993). The set G= {T ′,S ′,C ′,W ′} from Table 1
forms a finite axiomatization for the implication problem of SCI statements, that
is, the special case of the implication problem for GSCI statements and complete
r.v. where all GSCI statements are of the form I(Y1,Y2 | X) and where all random
variables are complete. ut

Remark 4. Studený [56] showed that, in the special case where C = S and k = 2, the
implication problem of CI statements, i.e. to decide for any given set S of random
variables and any given set Σ ∪{ϕ} of CI statements over S of the kind I(Y1,Y2 | X)
whether Σ |=S ϕ holds, cannot be axiomatized by a finite set of Horn rules of the
form

I(Y1,Z1 | X1)∧·· ·∧ I(Yk,Zk | Xk)→ I(Y,Z | X) .

3 Axiomatizing GSCI Statements and Complete R.V.

In this section we show that the finite set S of Horn rules from Table 2 forms a
finite axiomatization for the implication problem of GSCI statements and complete
random variables. Our completeness argument applies special probability models
which consist of two assignments with probability one half. Special probability
models will be further exploited in subsequent sections.
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3.1 Sound Inference Rules

Note the following global condition that we enforce on applications of inference
rules that infer GSCI statements. It ensures that sets of random variables that occur
in GSCI statements are non-empty.

Remark 5. Whenever we apply an inference rule, then we remove all empty sets Yi
from the exact position in which they occur in the sequence of independent sets of
random variables. For instance, we can infer I(· | S) by an application of the weak
union rule W to the GSCI statement I(S | /0).

The rules in S are rather intuitive. The saturated trivial independence rule T
is just T ′ when we apply the global condition above. The permutation rule P re-
places the symmetry rule S ′ to reflect that a GSCI statement holds for a probability
distribution, independently of the order in which the sets Yi of random variables ap-
pear. For the case where k = 2, the only non-trivial permutation is easily captured by
the symmetry rule S ′. The weak union rule W remains unchanged over W ′, except
for the number of sets of random variables required. The restricted weak contrac-
tion rule C accommodates the arbitrary number of mutually independent sets of
random variables. In addition, C can only be applied when Y -complete assignments
are guaranteed. The next example shows that the condition Y ⊆C is necessary for
the soundness of the restricted weak contraction rule C . As a consequence, the im-
plication problem of GSCI statements and complete random variables is different
from the implication problem of GSCI statement where all variables are assumed to
be complete.

Example 3. Recall Example 2 where S = {m,a,r,c, f , l,s}, C = {m,a,r,c,s}, Σ =
{I(sar,c, f l | m), I(sc,ar | m f l)} and ϕ = I(s,ar,c f l | m). Indeed, Σ S-implies ϕ ,
but Σ does not C-imply ϕ .

Finally, the merging rule M is required to state that also the union of independent
sets of random variables can be independent of other sets of random variables. In
fact, the presence of M in S is necessary since the conclusion of any other rule
features at least as many independent sets as the maximum number of independent
sets amongst all its premises.

The soundness of the rules in S follows from the following proposition and the
soundness of the rules in G. In particular, for the restricted weak contraction rule C
soundness follows under the restriction that assignments must be Y -complete.

Proposition 1. Let S denote a finite set of random variables and C⊆ S. A probabil-
ity distribution π =(dom,P) over (S,C) satisfies the GSCI statement I(Y1, . . . ,Yk |X)
if and only if for every i = 1, . . . ,k, π satisfies the SCI statement I(Yi,S−XYi | X).

Proof. Assume that for every i = 1, . . . ,k, π satisfies the SCI statement I(Yi,S−
XYi | X). Let x be a complete assignment over X , and y1, . . . ,yk be assignments for
Y1, . . . ,Yk, respectively. Then we have
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Table 2 Axiomatization S= {T ,P,M ,W ,C } of GSCI statements and complete r.v.

I(S | /0)
I(Y1, . . . ,Yk | X)

I(Yπ(1), . . . ,Yπ(k) | X)
(saturated trivial independence, T ) (permutation, P)

I(Y1, . . . ,Yk−1,Yk,Z | X)

I(Y1, . . . ,YkZ | X)

I(Y1, . . . ,Yk−1,YkZ | X)

I(Y1, . . . ,Yk | XZ)
(merging, M ) (weak union, W )

I(Y1 · · ·Yk,Y Z1 · · ·Zk | X) I(Y1Z1, . . . ,YkZk | XY )
I(Y1, . . . ,Yk,Y Z1 · · ·Zk | X)

Y ⊆C

(restricted weak contraction, C )

P(xy1 · · ·yk) ·P(x)k−1 = P(xy1) ·P(xy2 · · ·yk) ·P(x)k−2

= P(xy1) ·P(xy2) ·P(xy3 · · ·yk) ·P(x)k−3

= . . .
= P(xy1) · . . . ·P(xyk) ,

that is, π = (dom,P) satisfies I(Y1, . . . ,Yk | X).
Vice versa, assume that π = (dom,P) over (S,C) satisfies I(Y1, . . . ,Yk | X). Let x

be a complete assignment over X and yi,y1 · · ·yi−1yi+1 · · ·yk be assignments for Yi
and S−XYi, respectively. Then

P(xyiy1 · · ·yi−1yi+1 · · ·yk) ·P(x) = P(xyi) ·P(xy1 · · ·yi−1yi+1 · · ·yk) ,

that is, for every i = 1, . . . ,k, π satisfies the SCI statement I(Yi,S−XYi | X). ut

Example 4. For every probability model π over S = {m,a,r,c, f , l,s} and every set
C⊆ S of complete random variables, the GSCI statement I(sar,c, f l |m) is satisfied
by π if and only if all of the SCI statements I(sar,c f l | m), I(c,sar f l | m) and
I(sarc, f l | m) are satisfied by π .

Example 5. We can now prove that for S = {m,a,r,c, f , l,s}, C = { f , l}, Σ =
{I(sar,c, f l | m), I(sc,ar | m f l)} does indeed C-imply ϕ = I(s,ar,c f l | m), thereby
validating our statements from Example 2. In fact, the inference

I(sar,c, f l | m)

M : I(sar,c f l | m) I(sc,ar | m f l)

C : I(s,ar,c f l | m)
{ f ,l}⊆C

shows that Σ `S ϕ which means that Σ |=C ϕ by soundness of S.
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The following remark shows that Proposition 1 can be used to establish directly
that the set S of inference rules from Table 2 forms a finite axiomatization for the
implication problem of GSCI statements and complete random variables.

Remark 6. The following set D of inference rules

I(S, /0 | /0)
I(Y1,Y2 | X)

I(Y2,Y1 | X)

I(Y1Y2,Y Z1Z2 | X) I(Y1Z1,Y2Z2 | XY )
I(Y1,Y2Y Z1Z2 | X)

Y ⊆C
I(Y1,Y2Z | X)

I(Y1,Y2 | XZ)

forms a finite axiomatization for the implication problem of SCI statements and
complete random variables [44]. Suppose that S, C ⊆ S and Σ ∪{I(Y1, . . . ,Yk | X)}
are given such that Σ |=C I(Y1, . . . ,Yk | X) holds. For

Σ2 = {I(Vj,S−UVj |U) | I(V1, . . . ,Vm |U) ∈ Σ},

and all i = 1, . . . ,k it follows from Proposition 1 that Σ2 |=C I(Yi,S−XYi | X) holds,
too. The completeness of D for the implication of SCI statements and complete
random variables means that for all i= 1, . . . ,k, Σ2 `D I(Yi,S−XYi | X) holds. Since
D is subsumed by S as the special case where k = 2, we also have for all i =
1, . . . ,k that Σ2 `S I(Yi,S−XYi |X) holds. However, the merging rule M shows that
Σ `S σ holds for all σ ∈ Σ2. Consequently, for all i = 1, . . . ,k, Σ `S I(Yi,S−XYi |
X) holds. Finally, repeated applications of the restricted weak contraction rule C
and the permutation rule P show that Σ `S I(Y1, . . . ,Yk | X). This establishes the
completeness of S.

Even though the last remark has already established the completeness of S, we
want to illustrate recent techniques for proving completeness without the use of
Proposition 1. This will be done in the following subsections.

3.2 The Independence Basis

For some S and C ⊆ S, some set Σ of GSCI statements over S, and some X ⊆ S let
IDepΣ ,C(X) := {Y ⊆ S−X | Σ `S I(Y,S−XY | X)} denote the set of all Y ⊆ S−X
such that I(Y,S−XY | X) can be inferred from Σ by S. Note that the empty set /0 is
an element of IDepΣ ,C(X).

Lemma 1. The structure (IDepΣ ,C(X),⊆,∪,∩,(·)C , /0,S−X) forms a finite Boolean
algebra, where (·)C maps a set W to its complement S− (XW ).

Proof. It suffices to show that IDepΣ ,C(X) is closed under union, intersection, and
difference. The soundness of the merging rule M shows the closure under union.
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The soundness of the weak contraction rule C for the special case where k = 2 and
Y = /0 shows the closure under intersection and difference. ut

Recall that an element a ∈ P of a poset (P,v,0) with least element 0 is called
an atom of (P,v,0) precisely when a 6= 0 and every element b ∈ P with b v a
satisfies b = 0 or b = a [23]. Further, (P,v,0) is said to be atomic if for every
element b ∈ P−{0} there is an atom a ∈ P with a v b. In particular, every finite
Boolean algebra is atomic [23]. Let IDepBΣ ,C(X) denote the set of all atoms of
(IDepΣ ,C(X),⊆, /0). We call IDepBΣ ,C(X) the independence basis of X with respect
to Σ . Its importance is manifested in the following result.

Theorem 2. Let Σ be a set of GSCI statements over S and C ⊆ S. Then Σ `S
I(Y1, . . . ,Yk | X) if and only if for every i = 1, . . . ,k, Yi =

⋃
Y for some Y ⊆

IDepBΣ ,C(X).

Proof. Let Σ `S I(Y1, . . . ,Yk | X). Then for all i = 1, . . . ,k, Σ `S I(Yi,S−XYi | X)
by the merging rule M . Hence, for all i = 1, . . . ,k, Yi ∈ IDepΣ ,C(X). Since every
element b of a Boolean algebra is the union over those atoms a with a⊆ b it follows
that for all i = 1, . . . ,k, Yi =

⋃
Y for Y = {W ∈ IDepBΣ ,C(X) |W ⊆ Yi}.

Vice versa, let IDepBΣ ,C(X) = {W1, . . . ,Wn} and for all i = 1, . . . ,k, let Yi =
⋃

Y

for some Y ⊆ IDepBΣ ,C(X). Since I(W1, . . . ,Wn | X) ∈ Σ
+
S holds, successive appli-

cations of the permutation rule P and merging rule M result in I(Y1, . . . ,Yk | X) ∈
Σ
+
S. ut

Example 6. Recall our example where S = {m,a,r,c, f , l,s}, C = {m,a,r,c,s}, C′ =
{ f , l}, Σ = {I(sar,c, f l | m), I(sc,ar | m f l)}, and ϕ = I(s,ar, f lc | m). It follows
that IDepBΣ ,C(m) = {sar,c, f l}, which we can suitably represent in the form of the
single GSCI statement I(sar,c, f l |m). According to Theorem 2, Σ 6|=C ϕ . Moreover,
Σ |=C′ ϕ since IDepBΣ ,C′(m) = {s,ar,c, f l}.

3.3 Completeness

The original completeness proof for multivalued dependencies constructs a counter-
example relation with 2k tuples [5], where k denotes the elements in the (in)depen-
dence basis DepΣ (X) for the multivalued dependency X �Y | Z /∈ Σ+. The original
completeness proof for SCI statements constructs a probability model with 2|X |+1

values, where I(Y,Z | X) /∈ Σ
+
G [21]. Here, a recent technique [29] defines special

probability models with two assignments of probability one half each. The tech-
nique therefore extends the existence of special probability models from the case of
marginal SCI statements I(Y,Z | /0) [21] to GSCI statements and complete random
variables.

Theorem 3. The set S is complete for the implication problem of GSCI statements
and complete random variables.
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Proof. Let Σ ∪{I(Y1, . . . ,Yk | X)} be a set of GSCI statements over S and C ⊆ S,
and suppose that I(Y1, . . . ,Yk | X) cannot be inferred from Σ using S. We will show
that I(Y1, . . . ,Yk | X) is not C-implied by Σ . For this purpose, we will construct a
probability model over (S,C) that satisfies all GSCI statements of Σ , but violates
I(Y1, . . . ,Yk | X).

Let IDepBΣ ,C(X)= {W1, . . . ,Wn}, in particular S=XW1 · · ·Wn. Since I(Y1, . . . ,Yk |
X) /∈ Σ

+
S we conclude by Theorem 2 that there is some j ∈ {1, . . . ,k} such that Yj

is not the union of some elements of IDepBΣ ,C(X). Consequently, there is some
i ∈ {1, . . . ,n} such that Yj ∩Wi 6= /0 and Wi−Yj 6= /0 hold. Let

T :=
⋃

l∈{1,...,i−1,i+1,...,k}
Wl ∩C,

and
T ′ :=

⋃
l∈{1,...,i−1,i+1,...,k}

Wl−C.

In particular, S is the disjoint union of X ,T,T ′, and Wi. For every v∈ S−C we define
dom(v) = {0,1,µ}; and for every v ∈C we define dom(v) = {0,1}. We define the
following two assignments a1 and a2 of S. We define a1(v) = 0 for all v ∈ XWiT ,
a1(v) = µ for all v ∈ T ′. We further define a2(v) = a1(v) for all v ∈ XT T ′, and
a2(v) = 1 for all v ∈Wi. As probability measure we define P(a1) = P(a2) = 0.5. It
follows from the construction that (dom,P) does not satisfy I(Y1, . . . ,Yk | X).

Table 3 Special Probability Model from the Completeness Proof for S

XT Wi T ′ P
0 · · ·0 0 · · ·0 µ · · ·µ 0.5
0 · · ·0 1 · · ·1 µ · · ·µ 0.5

It remains to show that (dom,P) satisfies every GSCI statement I(V1, . . . ,Vm |U)
in Σ . Suppose that for some complete assignment u of U , P(u) = 0. Then equation
(1) will always be satisfied.

If P(u,vo) = 0 for some complete assignment u of U , and for some assignment
vo of Vo, then P(u,v1, . . . ,vm) = 0. Then equation (1) is also satisfied. Suppose that
for some complete assignment u of U , P(u) = 0.5. If for some assignments vl of Vl
for l = 1, . . . ,m, P(u,v1) = · · · = P(u,vm) = 0.5, then P(u,v1, . . . ,vm) = 0.5, too.
Again, equation (1) is satisfied.

It remains to consider the case where u is some complete assignment of U such
that P(u) = 1. In this case, the construction of the probability model tells us that
U ⊆ XT . Consequently, we can apply the weak union rule W and permutation rule
P to I(V1, . . . ,Vm | U) ∈ Σ to infer I(V1 − XT, . . . ,Vm − XT | XT ) ∈ Σ

+
S. Theo-

rem 2 also shows that I(Wi,T T ′ | X) ∈ Σ
+
S. Now we define V ′l := Vl −XT T ′ and

Zl := (Vl −XT )∩T ′ for l = 1, . . . ,m. Consequently, Wi = V ′1 · · ·V ′m, T ′ = Z′1 · · ·Z′m,
and Vl − XT = V ′l Z′l for l = 1, . . . ,m. An application of the restricted weak con-
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traction rule C to I(V ′1Z′1, . . . ,V
′
mZ′m | XT ) and I(V ′1 · · ·V ′m,T Z′1 · · ·Z′m | X) results

in I(V ′1, . . . ,V
′
m,T Z′1 · · ·Z′m | X) = I(V1−XT T ′, . . . ,Vm−XT T ′,T T ′ | X). It follows

from Theorem 2 that Vl −XT T ′, for every l = 1, . . . ,m, is the union of elements
from IDepBΣ ,C(X). Consequently, Vo − XT T ′ = Wi for some o ∈ {1, . . . ,m} and
Vp−XT T ′ = /0 for all p ∈ {1, . . . ,m}− {o}. Therefore, Wi ⊆ Vo and Wi ∩Vp = /0
for all p ∈ {1, . . . ,m} − {o}. Then, we are either in some previous case where
P(u,vl) = 0 for some l ∈ {1, . . . ,m}; or, P(u,vo) = 0.5, P(u,vp) = 1 for every
p ∈ {1, . . . ,m}−{o}, and P(u,v1, . . . ,vm) = 0.5. Again, equation (1) is satisfied.
This concludes the proof. ut

The next example illustrates the construction of the counter-example on our run-
ning example.

Example 7. Let S = {m,a,r,c, f , l,s} denote the set of random variables from Ex-
ample 1 and C = {m,a,r,c,s}, let Σ = {I(sar,c, f l | m), I(sc,ar | m f l)}, and ϕ =
I(s,ar,c f l | m). The assignments

a1 = (Rashomon,T. Mifune,Tajomaru,Kurosawa,µ,µ,Suomi)

and
a2 = (Rashomon,M. Kyo,Masako,Kurosawa,µ,µ,Deutsch)

taken together with the probability distribution P(a1) = 0.5 = P(a2) define a prob-
ability model that satisfies Σ and violates ϕ . Indeed, this probability model is an
instance of the special probability model used in the completeness proof of Theo-
rem 3, see Table 3. In fact, Wi = {a,r,s} and Yj = {s}.

3.4 Special Probability Models

We call a probability model (dom,P) over (S,C) special, if for every v ∈C, dom(v)
consists of two elements, for every v ∈ S−C, dom(v) consists of two elements
and the marker µ , and there are two assignments a1,a2 over (S,C) such that
P(a1) = 0.5 = P(a2). We say that Σ C-implies ϕ in the world of special probabil-
ity models, denoted by Σ |=2,C ϕ , if every special probability model over (S,C) that
satisfies every GSCI statement in Σ also satisfies the GSCI statement ϕ . The follow-
ing variant of the implication problem for GSCI statements and complete random
variables emerges.

PROBLEM: Implication problem for GSCI statements and complete r.v.
in the world of special probability models

INPUT: (S,C) with set S of random variables and subset
C ⊆ S of complete random variables
Set Σ ∪{ϕ} of GSCI statements over (S,C)

OUTPUT: Yes, if Σ |=2,C ϕ; No, otherwise

The proof of Theorem 3 implies the following result.
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Corollary 1. The implication problem for GSCI statements and complete random
variables coincides with the implication problem for GSCI statements and complete
random variables in the world of special probability models.

Proof. Let Σ ∪{ϕ} be a set of GSCI statements over S and C⊆ S. We need to show
that Σ |=C ϕ if and only if Σ |=2,C ϕ . If it does not hold that Σ |=2,C ϕ , then it also
does not hold that Σ |=C ϕ since every special probability model is a probability
model. Vice versa, if it does not hold that Σ |=C ϕ , then it does not hold that Σ `S ϕ

since S is sound for the implication of GSCI statements and complete random vari-
ables. However, the proof of Theorem 3 shows how to construct a special probability
model over (S,C) that satisfies every GSCI statement in Σ but does not satisfy ϕ .
Hence, it does not hold that Σ |=2,C ϕ . ut

Corollary 1 shows that to decide the implication problem for GSCI statements and
complete random variables it suffices to check special probability models.

Example 8. For the set S = {m,a,r,c, f , l,s} of random variables, the subset C =
{m,a,r,c,s} of complete random variables, and the statements in Σ = {I(sar,c, f l |
m), I(sc,ar | m f l)} and ϕ = I(s,ar,c f l | m), the probability model in Example 7
defines a special probability model that satisfies Σ and violates ϕ . Hence, Σ does
not C-imply ϕ in the world of special probability models.

4 Characterization by an S -3 Fragment

In this section we establish the equivalence between the C-implication of GSCI
statements and the implication of formulae in a propositional fragment F within
Cadoli and Schaerf’s well-known approximation logic S -3 [53]. After repeating
the syntax and semantics of S -3 logic, we define a mapping of GSCI statements
to formulae in F. The core proof argument establishes an equivalence between spe-
cial probability models, introduced in the previous section, and special S -3 truth
assignments.

4.1 Syntax and Semantics of S -3 logic

Schaerf and Cadoli [53] introduced S -3 logics as “a semantically well-founded
logical framework for sound approximate reasoning, which is justifiable from the
intuitive point of view, and to provide fast algorithms for dealing with it even when
using expressive languages”. For a finite set L of propositional variables, let L∗

denote the propositional language over L, generated from the unary connective ¬
(negation), and the binary connectives ∧ (conjunction) and ∨ (disjunction). Ele-
ments of L∗ are also called formulae of L, and usually denoted by ϕ ′,ψ ′ or their
subscripted versions. Sets of formulae are denoted by Σ ′. We omit parentheses if
this does not cause ambiguity.
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Let L` denote the set of all literals over L, i.e., L` = L∪{¬v′ | v′ ∈ L}. Let S ⊆
L. An S -3 truth assignment of L is a total function ω : L` → {F,T} that maps
every propositional variable v′ ∈S and its negation ¬v′ into opposite truth values
(ω(v′) = T if and only if ω(¬v′) = F), and that does not map both a propositional
variable v′ ∈ L−S and its negation ¬v′ into false (we must not have ω(v′) = F =
ω(¬v′) for any v′ ∈ L−S ). Accordingly, for each propositional variable v′ ∈ L and
each S -3 truth assignment ω of L there are the following possibilities:

• ω(v′) = T and ω(¬v′) = F,
• ω(v′) = F and ω(¬v′) = T,
• ω(v′) = T and ω(¬v′) = T (only if v′ ∈ L−S ).

S -3 truth assignments generalize both, standard 2-valued truth assignments as
well as the 3-valued truth assignments of Levesque [36]. That is, a 2-valued truth
assignment is an S -3 truth assignment where S = L, while a 3-valued truth assign-
ment is an S -3 truth assignment with S = /0.

An S -3 truth assignment ω : L`→ {F,T} of L can be lifted to a total function
Ω : L∗→{F,T}. This lifting has been defined as follows [53]. An arbitrary formula
ϕ ′ in L∗ is firstly converted (in linear time in the size of the formula) into its corre-
sponding formula ϕ ′N in Negation Normal Form (NNF) using the following rewrit-
ing rules: ¬(ϕ ′∧ψ ′) 7→ (¬ϕ ′∨¬ψ ′), ¬(ϕ ′∨ψ ′) 7→ (¬ϕ ′∧¬ψ ′), and ¬(¬ϕ ′) 7→ ϕ ′.
Therefore, negation in a formula in NNF occurs only at the literal level. The rules
for assigning truth values to NNF formulae are as follows:

• Ω(ϕ ′) = ω(ϕ ′), if ϕ ′ ∈ L`,
• Ω(ϕ ′∨ψ ′) = T if and only if Ω(ϕ ′) = T or Ω(ψ ′) = T,
• Ω(ϕ ′∧ψ ′) = T if and only if Ω(ϕ ′) = T and Ω(ψ ′) = T.

Thus, S -3 logic is non-compositional. An S -3 truth assignment ω is a model of a
set Σ ′ of L-formulae if and only if Ω(σ ′N) = T holds for every σ ′ ∈ Σ ′. We say that
Σ ′ S -3 implies an L-formula ϕ ′, denoted by Σ ′ |=3

S ϕ ′, if and only if every S -3
truth assignment that is a model of Σ ′ is also a model of ϕ ′.

4.2 The Propositional Fragment F

As a first step towards the anticipated duality we define the propositional fragment
that corresponds to GSCI statements. Let φ : S→ L denote a bijection between a
set S of random variables and the set L = {v′ | v ∈ S} of propositional variables. In
particular, for C ⊆ S let S = φ(C). Thus, complete random variables correspond to
propositional variables interpreted classically.

We extend φ to a mapping Φ from the set of GSCI statements over S to the
fragment F, that is, F is the range of Φ . For a GSCI statement I(Y1, . . . ,Yk | X) over
S, let Φ(I(Y1, . . . ,Yk | X)) denote the formula
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∨
v∈X

¬v′∨
k∨

i=1

 ∧
v∈∪ j 6=iY j

v′

 .

Disjunctions over zero disjuncts are interpreted as false, denoted by F, and con-
junctions over zero conjuncts are interpreted as true, denoted by T. We will simply
denote Φ(ϕ) = ϕ ′ and Φ(Σ) = {σ ′ | σ ∈ Σ}= Σ ′. Note that for the special case of
SCI statements ϕ = I(Y,Z | X), that is, GSCI statements where k = 2, the formula
ϕ ′ becomes ∨

v∈X

¬v′∨

(∧
v∈Y

v′
)
∨

(∧
v∈Z

v′
)
.

Example 9. Let S = {m,a,r,c, f , l,s} denote the set of random variables from Ex-
ample 1 and C = {m,a,r,c,s}, let Σ = {I(sar,c, f l | m), I(sc,ar | m f l)}, and ϕ =
I(s,ar,c f l |m). Then L = {m′,a′,r′,c′, f ′, l′,s′}, S = {m′,a′,r′,c′,s′}, Σ ′ consists
of

¬m′∨ (c′∧ f ′∧ l′)∨ (s′∧a′∧ r′∧ f ′∧ l′)∨ (s′∧a′∧ r′∧ c′)

and
¬m′∨¬ f ′∨¬l′∨ (a′∧ r′)∨ (s′∧ c′),

and ϕ ′ = ¬m′∨ (a′∧ r′∧ c′∧ f ′∧ l′)∨ (s′∧ c′∧ f ′∧ l′)∨ (s′∧a′∧ r′).

4.3 Special Truth Assignments

We will now show that for every set Σ ∪{ϕ} of GSCI statements over S and every
C ⊆ S, there is a probability model π = (dom,P) over (S,C) that satisfies Σ and
violates ϕ if and only if there is a truth assignment ω ′π that is an S -3 model of Σ ′

but not an S -3 model of ϕ ′. For arbitrary probability models π it is not obvious how
to define the interpretation ω ′π . However, the key to showing the correspondence
between counterexample probability models and counterexample truth assignments
is Corollary 1. Corollary 1 tells us that for deciding Σ |=C ϕ it suffices to examine
special probability models (instead of arbitrary probability models). For a special
probability model π = (dom,{a1,a2}), however, we can define its corresponding
special 3-valued truth assignment ω ′π of L as follows:

ωπ(v′) =
{
T , if a1(v) = a2(v)
F , otherwise , and

ωπ(¬v′) =
{
T , if a1(v) = µ = a2(v) or a1(v) 6= a2(v)
F , otherwise .

Note that the 3-valued truth assignment is an S -3 truth assignment since it is impos-
sible to have a1(v) = µ = a2(v) for any complete random variable v ∈C. For every
S -3 truth assignment ω of L there is some special probability model π = (dom,P)
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over (S,C) such that ωπ = ω . In fact, if ω(v′) = T= ω(¬v′) for some v′ ∈S , then
define dom(v) := {0,1} such that the assignments of π are C-complete.

Example 10. Let S = {m,a,r,c, f , l,s} denote the set of random variables from Ex-
ample 1 and C = {m,a,r,c,s}. The special probability model π defined by

a1 = (Rashomon,T. Mifune,Tajomaru,Kurosawa,µ,µ,Suomi)

and
a2 = (Rashomon,M. Kyo,Masako,Kurosawa,µ,µ,Deutsch)

and the probability distribution P(a1) = 0.5 = P(a2) translates into the following
S -3 interpretation of L = {m′,a′,r′,c′, f ′, l′,s′} with S = {m′,a′,r′,c′,s′}:

• ωπ(m′) = T and ωπ(¬m′) = F
• ωπ(a′) = F and ωπ(¬a′) = T
• ωπ(r′) = F and ωπ(¬r′) = T
• ωπ(c′) = T and ωπ(¬c′) = F
• ωπ( f ′) = T and ωπ(¬ f ′) = T
• ωπ(l′) = T and ωπ(¬l′) = F
• ωπ(s′) = F and ωπ(¬s′) = T

4.4 Semantic Justification of Special Truth Assignments

Next we justify the definition of the special truth assignment and that of the propo-
sitional fragment F in terms of the special probability models.

Lemma 2. Let π = (dom,{a1,a2}) be a special probability model over (S,C), and
let ϕ denote a GSCI statement over (S,C). Then π satisfies ϕ if and only if ω ′π is a
3-valued model of ϕ ′.

Proof. Let ϕ = I(Y1, . . . ,Yk | X) and

ϕ
′ =

∨
v∈X

¬v′∨
k∨

i=1

 ∧
v∈∪ j 6=iY j

v′

 .

Suppose first that π satisfies ϕ . We need to show that ω ′π is a 3-valued model of ϕ ′.
Assume that ω ′π(¬v′)=F for all a∈X . According to the special truth assignment we
must have µ 6= a1(v) = a2(v) 6= µ for all v ∈ X . That means P(a1(X)) = 1. Suppose
that for all i = 2, . . . ,k there is some v∈

⋃
j 6=i Yj such that ω ′π(v

′) = F. Consequently,
there is some v ∈ Y1 such that ω ′π(v

′) = F. Hence, a1(v) 6= a2(v) according to the
special truth assignment. Then P(a1(XY1)) = P(a1) = 0.5. However, since a1(X) is
complete on X and π satisfies ϕ we must have P(a1(XYi)) = 1 for all i = 2, . . . ,k.
Hence, for every v ∈ Y2 · · ·Yk, we have a1(v) = a2(v). This means that for all v ∈
Y2 · · ·Yk we have ω ′π(v

′) = T. This shows that ω ′π is a 3-valued model of ϕ ′.
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Suppose ω ′π is a 3-valued model of ϕ ′. We need to show that π satisfies ϕ . That
is, for every complete assignment x of X , and every assignment yi of Yi for i =
1, . . . ,k, we must show that P(x,y1, . . . ,yk) ·P(x)k−1 = P(x,y1) ·P(x,yk) holds. We
distinguish between a few cases.

Case 1. If P(x,yi) = 0 holds for some i ∈ {1, . . . ,k}, then P(x,y1, . . . ,yk) = 0
holds, too. For the remaining cases we can therefore assume that for all i = 1, . . . ,k,
P(x,yi)> 0. In particular, P(x)> 0.

Case 2. Suppose that P(x) = 0.5. Then P(x,yi) = 0.5 for all i = 1, . . . ,k. Conse-
quently, (x,y1, . . . ,yk) equals a1 or a2, as P(x) would have to be 1 otherwise. Hence,
P(x,y1, . . . ,yk) = 0.5. Therefore, we have

P(x,y1, . . . ,yk) ·P(x)k−1 = (1/2)k = P(x,y1) · . . . ·P(x,yk).

Case 3. Suppose P(x) = 1. It follows that a1(X) = x = a2(X). Since x is a
complete assignment of X , the special truth assignment entails that ωπ(¬v′) = F
for all v ∈ X . Since ω ′π is a 3-valued model of ϕ ′ we conclude that ω ′π(v

′) =
T for all v ∈ S− XYi for some i ∈ {1, . . . ,k}. This, however, would mean that
P(x,y1, . . . ,yi−1,yi+1, . . . ,yk)= 1. Since ϕ is saturated, it follows that P(x,yi)= 0.5.
Consequently, (x,y1, . . . ,yk) equals a1 or a2. That is, P(x,y1, . . . ,yk) = 0.5. There-
fore,

P(x,y1, . . . ,yk) ·P(x)k−1 = 1/2 = P(x,y1) · . . . ·P(x,yk).

It follows that π satisfies ϕ . ut

4.5 The Equivalence

Corollary 1 and Lemma 2 allow us to establish the anticipated equivalence between
the implication problem of GSCI statements and complete random variables and the
implication problem of fragment F in S -3 logic.

Theorem 4. Let Σ ∪ {ϕ} be a set of GSCI statements over S and C ⊆ S, and let
Σ ′ ∪{ϕ ′} denote the set of its corresponding propositional formulae over L. Then
Σ |=C ϕ if and only if Σ ′ |=3

S ϕ ′.

Proof. Based on Corollary 1 it suffices to establish an equivalence between Σ |=2,C
ϕ and Σ ′ |=3

S ϕ ′.
Suppose first that Σ |=2,C ϕ does not hold. Then there is some special probability

model π over (S,C) that satisfies every GSCI statement σ in Σ but violates ϕ . Let
ωπ denote the special truth assignment associated with π . By Lemma 2 it follows
that ωπ is a 3-valued model of every formula σ ′ in Σ ′ but not a 3-valued model of
ϕ ′. As ωπ is an S -3 truth assignment it follows that Σ ′ |=3

S ϕ ′ does not hold.
Suppose now that Σ ′ |=3

S ϕ ′ does not hold. Then there is some truth assignment
ω over L that is an S -3 model of every formula σ ′ in Σ ′, but not an S -3 model of
the formula ϕ ′. Define the following special probability model π = (dom,{a1,a2})
over (S,C). For v∈C, let dom(v) = {0,1}; and for v∈ S−C, let dom(v) = {0,1,µ}.
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We now define a1 and a2 as follows. If ω(v′) =T and ω(¬v′) = F, then µ 6= a1(v) =
a2(v) 6= µ . If ω(v′) =T and ω(¬v′) =T, then a1(v) = µ = a2(v). Finally, if ω(v′) =
F and ω(¬v′) = T, then µ 6= a1(v) 6= a2(v) 6= µ . Since ω is not an S -3 model of
ϕ ′, it follows that a1 6= a2. It follows now that ωπ = ω . By Lemma 2 it follows that
π satisfies every GSCI statement σ in Σ but violates ϕ . Hence, Σ |=2,C ϕ does not
hold. ut

Example 11. Let S = {m,a,r,c, f , l,s} denote the set of random variables from
Example 1 and C = {m,a,r,c,s}, let Σ = {I(sar,c, f l | m), I(sc,ar | m f l)}, and
ϕ = I(s,ar,c f l | m). The special probability model π defined by

a1 = (Rashomon,T. Mifune,Tajomaru,Kurosawa,µ,µ,Suomi)

and
a2 = (Rashomon,M. Kyo,Masako,Kurosawa,µ,µ,Deutsch)

shows that Σ does not C-imply ϕ . From a logical point of view, the special S -3
interpretation ωπ of L = {m′,a′,r′,c′, f ′, l′,s′} with S = {m′,a′,r′,c′,s′}:

• ωπ(m′) = T and ωπ(¬m′) = F
• ωπ(a′) = F and ωπ(¬a′) = T
• ωπ(r′) = F and ωπ(¬r′) = T
• ωπ(c′) = T and ωπ(¬c′) = F
• ωπ( f ′) = T and ωπ(¬ f ′) = T
• ωπ(l′) = T and ωπ(¬l′) = F
• ωπ(s′) = F and ωπ(¬s′) = T

shows that Σ ′, consisting of

¬m′∨ (c′∧ f ′∧ l′)∨ (s′∧a′∧ r′∧ f ′∧ l′)∨ (s′∧a′∧ r′∧ c′)

and
¬m′∨¬ f ′∨¬l′∨ (a′∧ r′)∨ (s′∧ c′),

does not S -3 imply ϕ ′ =¬m′∨(a′∧r′∧c′∧ f ′∧ l′)∨(s′∧c′∧ f ′∧ l′)∨(s′∧a′∧r′).

5 Full Hierarchical Dependencies and NOT NULL constraints

In this section we extend the duality between the implication problem of GSCI state-
ments and complete random variables and the implication problem of the fragment
F under S -3 interpretations to a trinity including the implication problem of De-
lobel’s class of full first-order hierarchical dependencies (FOHDs) [12] and NOT
NULL constraints. We adapt the technique of special probability models to estab-
lish an axiomatization H for the implication problem for FOHDs and NOT NULL
constraints. The completeness proof exploits two-tuple relations. In the database
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context, two-tuple relations form the counter-part of special probability models, en-
abling us to establish the anticipated trinity of implication problems. The proof tech-
niques in this section are different from the ones in the previous section in that they
explore decomposition arguments rather than probabilities.

5.1 Defining Hierarchical Dependencies under Incomplete Data

Let A = {v̂1, v̂2, . . .} be a (countably) infinite set of symbols, called attributes. A
relation schema is a finite set R = {v̂1, . . . , v̂n} of attributes from A. Each attribute
v̂ of a relation schema is associated with a domain dom(v̂) which represents the
set of possible values that can occur in the column named v̂. Note that the validity
of our results only depends on having at least two element values in each domain.
This is a consequence of our proof techniques. In order to encompass incomplete
information the domain of each attribute contains the null marker, denoted by ni ∈
dom(v̂). The intention of ni is to mean “no information”. This is the most primitive
interpretation, and it can model non-existing as well as unknown information [3, 63].
We stress that the null marker is not a domain value. In fact, it is a purely syntactic
convenience that we include the null marker in the domain of each attribute as a
distinguished element.

A tuple over R is a function t : R →
⋃

v̂∈R dom(v̂) with t(v̂) ∈ dom(v̂) for all
v̂∈ R. The null marker occurrence t(v̂) = ni associated with an attribute v̂ in a tuple
t means that “no information” is available about the value t(v̂) of t on attribute v̂.
For X ⊆ R let t(X) denote the restriction of the tuple t over R to X , and dom(X) =

∏v̂∈X dom(v̂) the Cartesian product of the domains of attributes in X . A (partial)
relation r over R is a finite set of tuples over R. Let t1 and t2 be two tuples over R.
It is said that t1 subsumes t2 if for every attribute v̂ ∈ R, t1(v̂) = t2(v̂) or t2(v̂) = ni
holds. In consistency with previous work [3, 37, 63], the following restriction will
be imposed, unless stated otherwise: No relation shall contain two tuples t1 and t2
such that t1 subsumes t2. With no null markers present this means that no duplicate
tuples occur. For a tuple t over R and a set X ⊆ R, t is said to be X-total, if for all
v̂ ∈ X , t(v̂) 6= ni. Similar, a relation r over R is said to be X-total, if every tuple t of
r is X-total. A relation r over R is said to be a total relation, if it is R-total.

We recall the definition of projection and join operations on partial relations [3,
37]. Let r be some relation over R. Let X be some subset of R. The projection r[X ]
of r on X is the set of tuples t for which (i) there is some t1 ∈ r such that t = t1(X)
and (ii) there is no t2 ∈ r such that t2(X) subsumes t and t2(X) 6= t. For Y ⊆ X , the
Y -total projection rY [X ] of r on X is rY [X ] = {t ∈ r[X ] | t is Y -total}. Given an X-
total relation r1 over R1 and an X-total relation r2 over R2 such that X = R1∩R2 the
natural join r1 ./ r2 of r1 and r2 is the relation over R1 ∪R2 which contains those
tuples t such that there are some t1 ∈ r1 and t2 ∈ r2 with t1 = t(R1) and t2 = t(R2)
[3, 37]. For example, the relation
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movie actor role crew feature language subtitle
Rashomon T. Mifune Tajomaru Kurosawa ni ni Suomi
Rashomon M. Kyo Masako Kurosawa ni ni Deutsch

is the natural join of the following three relations:

movie actor role subtitle
Rashomon T. Mifune Tajomaru Suomi
Rashomon M. Kyo Masako Deutsch

movie crew
Rashomon Kurosawa

movie feature subtitle
Rashomon ni ni

.

Following Atzeni and Morfuni [3], a null-free subschema (NFS) over the relation
schema R is an expression Rs where Rs ⊆ R. The NFS Rs over R is satisfied by a
relation r over R, denoted by |=r Rs, if and only if r is Rs-total. SQL, the industry
standard for data management, allows attributes to be specified as NOT NULL [10].

Definition 2. A full first-order hierarchical dependency (FOHD) over the rela-
tion schema R is an expression X : [Y1 | . . . | Yk] with a non-negative integer k,
X ,Y1, . . . ,Yk ⊆ R such that Y1, . . . ,Yk form a partition of R−X . A relation r over
R is said to satisfy (or said to be a model of) the full first-order hierarchical de-
pendency X : [Y1 | · · · | Yk] over R, denoted by |=r X : [Y1 | · · · | Yk], if and only if
rX [R] = (· · ·(rX [XYk] ./ rX [XYk−1]) ./ · · ·) ./ rX [XY1] holds.

The FOHD /0 : [Y1 | · · · | Yk] expresses the fact that any relation over R is the
Cartesian product over its projections to attribute sets in {Yi}k

i=1. For k = 0, the
FOHD X : [ ] is satisfied trivially, where [ ] denotes the empty list.

Remark 7. In consistency with Remark 1 on GSCI statements, we assume w.l.o.G.
that the sets Yi in FOHDs are non-empty. Indeed, for all positive k we have the
property that for all relations r the FOHD X : [ /0,Y2, . . . ,Yk] is satisfied by r if and
only if r satisfies the FOHD X : [Y2, . . . ,Yk]. In particular, if k = 1, then X : [ /0] is
equivalent to X : [ ]; more specifically, they are both satisfied by all relations.

Example 12. We use now

R = {m̂(ovie), v̂(ctor), r̂(ole), ĉ(rew), f̂ (eature), l̂(anguage), ŝ(ubtitle)}

to denote a relation schema that models information about blu-rays of movies. As
the NFS there are at least the two options Rs = {m̂, v̂, r̂, ĉ, ŝ} and R′s = { f̂ , l̂}. For
ease of presentation in this and the following examples we denote attributes by
lower-case Latin letters without the ·̂ above them. The following full first-order hi-
erarchical dependencies are specified to enforce consistency in database relations:
Σ = {m : [sar | c | f l],m f l : [sc | ar]}. The database design team has identified an
additional meaningful FOHD ϕ = m : [s | ar | c f l], and is wondering whether ϕ

must be enforced in addition to Σ , or whether it is already implicitly enforced by
enforcing Σ , i.e., whether ϕ is Rs-implied or R′s-implied by Σ , respectively.
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5.2 Axiomatization

For the design of a relational database schema semantic constraints are defined on
the relations which are intended to be instances of the schema [38]. During the de-
sign process one usually needs to determine further constraints which are logically
implied by the given ones. As was the case with GSCI statements and propositional
formulae before, we can speak of Rs-implication for sets of full first-order hier-
archical dependencies. Similarly, we can introduce the notions of soundness and
completeness for sets of inference rules. Finite sets of full first-order hierarchical
dependencies are denoted by Σ̂ and single FOHDs by ϕ̂ .

PROBLEM: Implication Problem for FOHDs and NFSs
INPUT: Relation schema R, null-free subschema Rs over R,

Set Σ̂ ∪{ϕ̂} of FOHDs over R
OUTPUT: Yes, if Σ̂ |=Rs ϕ̂; No, otherwise

Table 4 Axiomatization F= {Û ,P̂,M̂ , ˆA ,T̂ } of FOHDs and NFS Rs

/0 : [R]
X : [Y1 | · · · | Yk]

X : [Yπ(1) | · · · | Yπ(k)]

(universal, Û ) (permutation, P̂)

X : [Y1 | · · · | Yk−1 | Yk | Z]
X : [Y1 | · · · | Yk−1 | YkZ]

X : [Y1 | · · · | YkZ]
XZ : [Y1 | · · · | Yk]

(merging, M̂ ) (augmentation, ˆA )

X : [Y1 · · ·Yk | Y Z1 · · ·Zk] XY : [Y1Z1 | · · · | YkZk]

X : [Y1 | · · · | Yk | Y Z1 · · ·Zk]
Y ⊆ Rs

(restricted transitivity, T̂ )

Remark 8. In consistency with Remark 5 on the application of inference rules to
GSCI statements, note the following global condition that we enforce on all appli-
cations of inference rules that infer FOHDs. Whenever we apply such an inference
rule, we remove all empty sets from the exact position in which they occur as el-
ements in the sequence in the conclusion. For instance, we can infer R : [ ] by an
application of the augmentation rule ˆA to the FOHD /0 : [R].

As in the context of GSCI statements, we can define Dep
Σ̂ ,Rs

(X) := {Y ⊆ R−X |
Σ `F X : [Y | R−XY ]} as the set of all Y ⊆ R−X such that X : [Y | R−XY ] can be
inferred from Σ̂ by F. The special case Y = /0 of the restricted transitivity rule T̂ as
well the merging rule M̂ show that
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(Dep
Σ̂ ,Rs

(X),⊆,∪,∩,(·)C , /0,R−X)

forms a finite Boolean algebra where (·)C maps a set Y ⊆ R−X to its complement
R− (XY ). Let DepB

Σ̂ ,Rs
(X) denote the set of all atoms of (Dep

Σ̂ ,Rs
(X),⊆, /0). We

call DepB
Σ̂ ,Rs

(X) the dependence basis of X with respect to Σ̂ and Rs [4]. The proof
of the following result follows the proof of Theorem 2.

Theorem 5. Let Σ̂ be a set of FOHDs over R. Then Σ̂ `F X : [Y1 | · · · |Yk] if and only
if for every i = 1, . . . ,k, Yi =

⋃
Y for some Y ⊆ DepB

Σ̂ ,Rs
(X). ut

The completeness proof shows that an FOHD ϕ̂ is not Rs-implied by a set of
FOHDs Σ̂ whenever ϕ̂ cannot be inferred from Σ̂ by F. We will now apply the
techniques from the completeness proof for GSCI statements to construct a two-
tuple relation that satisfies Σ̂ but violates ϕ̂ .

Theorem 6. The set F of inference rules from Table 4 forms an axiomatization for
the implication problem of full first-order hierarchical dependencies and null-free
subschemata.

Proof. It remains to show the completeness of F. Let R be an arbitrary relation
schema, let Rs be an NFS over R, and let Σ̂ be an arbitrary set of FOHDs over R. We
need to show that Σ̂ ∗Rs

⊆ Σ̂
+
F holds.

Let X : [Y1 | · · · | Yk] /∈ Σ̂
+
F . Let DepB

Σ̂ ,Rs
(X) = {W1, . . . ,Wn}, in particular R =

XW1 · · ·Wn. Since X : [Y1 | · · · | Yk] /∈ Σ̂
+
F we conclude by Theorem 5 that there is

some j ∈ {1, . . . ,k} such that Yj is not the union of some elements of DepB
Σ̂ ,Rs

(X).
Consequently, there is some i ∈ {1, . . . ,n} such that Yj ∩Wi 6= /0 and Wi−Yj 6= /0
hold. Let T :=

⋃
l∈{1,...,i−1,i+1,...,k}Wl ∩Rs, and T ′ :=

⋃
l∈{1,...,i−1,i+1,...,k}Wl−Rs. In

particular, R is the disjoint union of X ,T,T ′, and Wi. We define the following two
tuples t1 and t2 over R. We define t1(v̂) = 0 for all v̂ ∈ XWiT , t1(v̂) = ni for all
v̂ ∈ T ′. We further define t2(v̂) = t1(v̂) for all v̂ ∈ XT T ′, and t2(v̂) = 1 for all v̂ ∈Wi.
The two-tuple relation r = {t1, t2} is illustrated in Table 5. It is simple to observe
that the relation r enjoys the following property: an FOHD U : [V1 | · · · | Vm] is
satisfied by r if and only if i) U ∩T ′ 6= /0, or ii) U ∩Wi 6= /0, or iii) Wi ⊆Vo for some
o ∈ {V1, . . . ,Vm}. Indeed, if U ∩T ′ 6= /0, then rU [Z] = /0 for all Z ⊆ R. If U ∩T ′ = /0
and U ∩Wi 6= /0, then the projections rU [UVl ] contain two tuples for all l = 1, . . . ,m
and only the original tuples match on common attributes. If, U ⊆ XT and Wi ⊆ Vo,
then the projection rU [UVl ] contains only one tuple for all Vl ∈ {V1, . . . ,Vn}−{Vo},
and the projection rU [UVo] contains two tuples. The join of those projections is the
original relation r. Vice versa, if U ⊆ XT and Wi 6⊆ Vo for all Vo ∈ {V1, . . . ,Vm},
then the projections rU [UVl ] contain tuples whose join does not occur in the original
relation r (in fact, a projection of some tuple in the joined relation to Wi contains
some 0s and some 1s).

The construction ensures that r violates X : [Y1 | · · · |Yk] since X∩T ′= /0, X∩Wi =
/0, and Wi 6⊆ Ys for s = 1, . . . ,k. Furthermore, r is Rs-total by construction.

It remains to show that r satisfies Σ̂ , that is, every FOHD U : [V1 | · · · | Vm] in
Σ̂ . If U ∩T ′ 6= /0 or U ∩Wi 6= /0, then r satisfies U : [V1 | · · · | Vm]. Otherwise, U ⊆
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Table 5 Two-tuple Relation from Completeness Proof of F

XT T ′ Wi

0 · · ·0 ni · · ·ni 0 · · ·0
0 · · ·0 ni · · ·ni 1 · · ·1

XT . Consequently, we can apply the augmentation rule ˆA and permutation rule P̂
to U : [V1 | · · · | Vm] ∈ Σ̂ to infer XT : [V1−XT | · · · | Vl −XT ] ∈ Σ̂

+
F . Theorem 5

also shows that X : [Wi | T T ′] ∈ Σ̂
+
F . Now we define V ′l := Vl −XT T ′ and Zl :=

(Vl −XT )∩ T ′ for l = 1, . . . ,m. Consequently, Wi = V ′1 · · ·V ′m, T ′ = Z′1 · · ·Z′m, and
Vl−XT =V ′l Z′l for l = 1, . . . ,m. An application of the restricted transitivity rule T̂
to XT : [V ′1Z′1| · · · |V ′mZ′m] and X : [V ′1 · · ·V ′m|T Z′1 · · ·Z′m] results in X : [V ′1 | · · · | V ′m |
T Z′1 · · ·Z′m] = X : [V1−XT T ′ | · · · | Vm−XT T ′ | T T ′]. It follows from Theorem 2
that for every l = 1, . . . ,m, Vl −XT T ′ is the union of elements from DepB

Σ̂ ,Rs
(X).

Consequently, Vo −XT T ′ = Wi for some o ∈ {1, . . . ,m} and, therefore, Wi ⊆ Vo.
As we have seen above, this means that r indeed satisfies U : [V1 | · · · | Vm]. This
concludes the proof. ut

Example 13. Recall our running example: R = {m,a,r,c, f , l,s}, Rs = {m,a,r,c,s},
Σ = {m : [sar | c | f l],m f l : [sc | ar]}, and ϕ = m : [s | ar | c f l]. The construction
from Theorem 6 may result in the following relation r

movie actor role crew feature language subtitle
Rashomon T. Mifune Tajomaru Kurosawa ni ni Suomi
Rashomon M. Kyo Masako Kurosawa ni ni Deutsch

that satisfies Σ and Rs, but violates ϕ . For example, the movie-total part of the join
of the following projections

movie subtitle
Rashomon Suomi
Rashomon Deutsch

movie actor role
Rashomon T. Mifune Tajomaru
Rashomon M. Kyo Masako

movie crew feature language
Rashomon Kurosawa ni ni

is

movie actor role crew feature language subtitle
Rashomon T. Mifune Tajomaru Kurosawa ni ni Suomi
Rashomon M. Kyo Masako Kurosawa ni ni Deutsch
Rashomon T. Mifune Tajomaru Kurosawa ni ni Deutsch
Rashomon M. Kyo Masako Kurosawa ni ni Suomi

which is different from r.
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5.3 Implication of FOHDs and NOT NULL Constraints in the
World of Two-tuple Relations

A relation r that consists of two tuples is said to be a two-tuple relation. We say that
Σ Rs-implies ϕ in the world of two-tuple relations, denoted by Σ̂ |=2,Rs ϕ̂ , if every
Rs-total two-tuple relation over R that satisfies every FOHD in Σ̂ also satisfies the
FOHD ϕ̂ . The following variant of the implication problem for FOHDs and NFSs
emerges.

PROBLEM: Implication problem for FOHDs and NFSs in
the world of two-tuple relations

INPUT: Relation schema R, NFS Rs over R,
Set Σ̂ ∪{ϕ̂} of FOHDs over R

OUTPUT: Yes, if Σ̂ |=2,Rs ϕ̂; No, otherwise

The proof of Theorem 6 implies the following result.

Corollary 2. The implication problem for FOHDs and NFSs coincides with the im-
plication problem for FOHDs and NFSs in the world of two-tuple relations.

Proof. Let Σ̂ ∪{ϕ̂} be a set of FOHDs over R. We need to show that Σ̂ |=Rs ϕ̂ if and
only if Σ̂ |=2,Rs ϕ̂ . If it does not hold that Σ̂ |=2,Rs ϕ̂ , then it also does not hold that
Σ̂ |=Rs ϕ̂ since every two-tuple relation is a relation. Vice versa, if it does not hold
that Σ̂ |=Rs ϕ̂ , then it does not hold that Σ̂ `F ϕ̂ since F is sound for the implication
of FOHDs. However, the proof of Theorem 6 shows how to construct an Rs-total
two-tuple relation that satisfies every FOHD in Σ̂ but does not satisfy ϕ̂ . Hence, it
does not hold that Σ̂ |=2,Rs ϕ̂ . ut

Corollary 2 shows that to decide the implication problem for FOHDs and NFSs over
R it suffices to check two-tuple relations over R.

Example 14. The two-tuple relation r from Example 13 shows that Σ̂ does not Rs-
imply ϕ̂2 in the world of two-tuple relations.

5.4 Functional and Hierarchical Dependencies

In this subsection we establish a result on the interaction of FOHDs and functional
dependencies over two-tuple relations. The finding subsumes a known result on
the interaction of multivalued dependencies (MVDs) and functional dependencies
over two-tuple relations [1]. Recall that a functional dependency (FD) over relation
schema R is an expression X → Y with X ,Y ⊆ R. A relation r over R satisfies the
FD X → Y if and only if all tuples t, t ′ ∈ r with matching non-null values on all
the attributes in X also have matching values on all the attributes in Y , that is, if
t(X) = t ′(X) and t, t ′ are X-total, then t(Y ) = t ′(Y ) [3, 37].
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Theorem 7. Let r = {t1, t2} be a two-tuple relation over relation schema R. Then r
satisfies the FOHD X : [Y1 | · · · | Yk] if and only if there is some i ∈ {1, . . . ,k} such
that r satisfies the FD X → R−XYi.

Proof. If t1(X) 6= t2(X), or t1 and t2 are not both X-total, then r satisfies both the
FOHD X : [Y1 | · · · |Yk] and the FDs X→ R−XYi for all i = 1, . . . ,k. For the remain-
der of the proof we therefore assume that t1(X) = t2(X) holds and t1, t2 are both
X-total, i.e., the tuples in the projections rX [XYi] all have matching non-null values
on their common attributes, i.e., the attributes in X .

Assume first that r satisfies the FD X → R−XYi for some i ∈ {1, . . . ,k}. Conse-
quently, the projections rX [XYj] contain only one tuple for all j ∈ {1, . . . ,k}−{i},
and rX [XYi] contains at most two tuples. The join rX [XY1] ./ · · · ./ rX [XYk] contains
only tuples from r, i.e., rX [R] = rX [XY1] ./ · · · ./ rX [XYk].

Assume now that r violates the FDs X → Yi and X → Yj for some i 6= j. Then
rX [XYi] and rX [XYj] contain two tuples each. The join rX [XY1] ./ · · · ./ rX [XYk] thus
contains tuples that are not originally in r. This concludes the proof. ut

Example 15. Recall the following two-tuple relation r from Example 13

movie actor role crew feature language subtitle
Rashomon T. Mifune Tajomaru Kurosawa ni ni Suomi
Rashomon M. Kyo Masako Kurosawa ni ni Deutsch

.

Indeed, r does not satisfy any of the FDs m → arc f l, m → rc f ls, nor m → as.
According to Theorem 7, r does not satisfy the FOHD ϕ = m : [s | a | cr f l].

5.5 Equivalence to the Propositional Fragment F

Let φ̂ : R→ L denote a bijection between a relation schema R of attributes v̂ and
the set L = {v′ | v̂ ∈ R} of propositional variables, where φ̂(Rs) = S ⊆ L for an
NFS Rs over R. We extend φ̂ to a mapping Φ̂ from the set of FOHDs over R to the
fragment F, that is, F is the range of Φ̂ . For an FOHD X : [Y1 | · · · | Yk] over R, let
Φ̂(X : [Y1 | · · · | Yk]) denote the formula

∨
v̂∈X

¬v′∨
k∨

i=1

 ∧
v̂∈∪ j 6=iY j

v′

 .

Recall from before that disjunctions over zero disjuncts are interpreted as F and con-
junctions over zero conjuncts are interpreted as T. We will simply denote Φ(ϕ̂)=ϕ ′

and Φ̂(Σ̂) = {σ ′ | σ̂ ∈ Σ̂} = Σ ′. Example 9 shows the F-formulae that correspond
to the FOHDs from Example 12.

Note that for the special case of MVDs ϕ̂ = X : [Y | Z], i.e. FOHDs where k = 2,
the formula ϕ ′ becomes again
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∨
v̂∈X

¬v′∨

(∧
v̂∈Y

v′
)
∨

(∧
v̂∈Z

v′
)
.

We will now show that for any set Σ̂ ∪ {ϕ̂} of FOHDs over R there is an Rs-
total relation r over R that satisfies Σ̂ and violates ϕ̂ if and only if there is an S -
3 truth assignment ω ′r that is an S -3 model of Σ ′ but not an S -3 model of ϕ ′.
For arbitrary relations r it is not obvious how to define the truth assignment ω ′r.
However, the key to showing the correspondence between counterexample relations
and counterexample truth assignments is Corollary 2. Corollary 2 tells us that for
deciding the implication problem of FOHDs and NFSs it suffices to examine two-
tuple relations (instead of arbitrary relations). For a two-tuple relation r = {t1, t2},
however, we can define its corresponding special 3-valued truth assignment ω ′r of L
as follows:

ω
′
r(v
′) =

{
T , if t1(v̂) = t2(v̂)
F , otherwise ,

and

ω
′
r(¬v′) =

{
T , if t1(v̂) 6= t2(v̂) or t1(v̂) = ni= t2(v̂)
F , otherwise .

Next we justify the definition of the special truth assignment and that of the propo-
sitional fragment F in terms of two-tuple relations.

Lemma 3. Let r = {t1, t2} be a two-tuple relation over R, and let ϕ̂ denote an FOHD
over R. Then r satisfies ϕ̂ if and only if ω ′r is a 3-valued model of ϕ ′.

Proof. Let ϕ̂ = X : [Y1 | · · · | Yk] and

ϕ
′ =

∨
v̂∈X

¬a′∨
k∨

i=1

 ∧
v̂∈∪ j 6=iY j

a′

 .

Suppose first that r satisfies ϕ̂ . We need to show that ω ′r is a 3-valued model of
ϕ ′. Assume that ω ′r(¬a′) = F for all v̂ ∈ X . According to the special 3-valued truth
assignment we must have ni 6= t1(v̂) = t2(v̂) 6= ni for all v̂ ∈ X . Suppose that for
all i = 2, . . . ,k there is some v̂ ∈

⋃
j 6=i Yj such that ω ′r(a

′) = F. Consequently, there
is some v̂ ∈ Y1 such that ω ′r(a

′) = F. Hence, t1(v̂) 6= t2(v̂) according to the special
3-valued truth assignment. However, since r satisfies ϕ , r must satisfy the FD X →
Y2 · · ·Yk by Theorem 7. Consequently, for every v̂ ∈ Y2 · · ·Yk we have t1(v̂) = t2(v̂).
This means that for all v̂ ∈ Y2 · · ·Yk we have ω ′r(a

′) = T. This shows that ω ′r is a
3-valued model of ϕ ′.

Suppose ω ′r is a 3-valued model of ϕ ′. We need to show that r satisfies ϕ̂ . That
is, r = r[XY1] ./ · · · ./ r[XYk] holds. According to Theorem 7 this is equivalent to
showing that r satisfies the FD X → R−XYi for some i ∈ {1, . . . ,k}. Suppose that
t1(X) = t2(X) and t1, t2 are both X-total, otherwise there is nothing to show. This
implies that ω ′r(a

′) = T for all v̂ ∈ X . Assume that for j = 2, . . . ,k, r violates X →
R−XYj, otherwise there is nothing to show. Consequently, for all j = 2, . . . ,k there is
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some v̂∈ R−XYj such that ω ′r(a
′) = F. Since ω ′r satisfies ϕ ′ we must have ω ′r(a

′) =
T for all v̂∈Y2 · · ·Yk. Hence, t1(Y2 · · ·Yk) = t2(Y2 · · ·Yk), and r satisfies X→ R−XY1.
It follows that r satisfies ϕ̂ . ut

The equivalence between two-tuple relations for FOHDs and special truth assign-
ments extend the existing equivalence between two-tuple relations for multivalued
dependencies and special truth assignments [14, 29, 51].

Corollary 2 and Lemma 3 allow us to establish the anticipated equivalence be-
tween two-tuple relations and propositional truth assignments.

Theorem 8. Let Σ̂ ∪{ϕ̂} be a set of FOHDs over relation schema R with NFS Rs,
and let Σ ′ ∪{ϕ ′} denote the set of its corresponding formulae over L with the set
S . Then Σ̂ |=Rs ϕ̂ if and only if Σ ′ |=3

S ϕ ′.

Proof. Based on Corollary 2 it remains to establish the equivalence between Σ̂ |=2,Rs

ϕ̂ and Σ ′ |=3
S ϕ ′. Suppose first that Σ̂ |=2,Rs ϕ̂ does not hold. Then there is some

Rs-total relation r over R that satisfies every FOHD σ̂ in Σ̂ but violates ϕ̂ . Let ω ′r
denote the special 3-valued truth assignment associated with r. By definition ω ′r is
an S -3 interpretation. By Lemma 3 it follows that ω ′r is an S -3 model of every
formula σ ′ in Σ ′ but not an S -3 model of ϕ ′. Consequently, Σ ′ |=3

S ϕ ′ does not
hold. Suppose now that Σ ′ |=3

S ϕ ′ does not hold. Then there is some S -3 truth
assignment ω ′ over L that is an S -3 model for every formula σ ′ in Σ ′, but not an
S -3 model for the formula ϕ ′. Define the following two-tuple relation r = {t1, t2}
over R: for all v̂ ∈ R, let ni 6= t1(v̂) = t2(v̂) 6= ni, if ω(a′) = T and ω(¬a′) = F;
let t1(v̂) = ni = t2(v̂), if ω(a′) = T = ω(¬a′); and let ni 6= t1(v̂) 6= t2(v̂) 6= ni, if
ω(a′) = F and ω(¬a′) = T. In particular, it follows that ω ′r = ω ′. By Lemma 3 it
follows that r satisfies every FOHD σ̂ in Σ̂ but violates ϕ̂ . In addition, r is Rs-total
since the construction ensures that the null marker ni can only occur on attributes
outside of Rs. Hence, Σ̂ |=2,Rs ϕ̂ does not hold. ut

Examples 9 and 13 illustrate the equivalences between the implication problem
of FOHDs and NFSs and the implication problem of formulae in F under S -3
interpretations.

6 Related Work

Dawid [11] has started to investigate fundamental properties of conditional inde-
pendence, leading to a claim that “rather than just being another useful tool in the
statistician’s kitbag, conditional independence offers a new language for the ex-
pression of statistical concepts and a framework for their study”. Geiger and Pearl
[20, 21, 49] have systematically investigated the implication problem for fragments
of conditional independence statements over different probability models. In partic-
ular, they have established an axiomatization of saturated conditional independence
(SCI) statements by a finite set of Horn rules [20]. Studený [56] showed that no ax-
iomatization by a finite set of Horn rules exists for general conditional independence
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statements. Recently, Naumov and Nicholls [46] established a complete infinite re-
cursively enumerable axiomatization of the propositional theory for conditional in-
dependence statements. Niepert et al. [47, 48] established an axiomatization for sta-
ble conditional independence statements, which subsume saturated statements, and
showed that their associated implication problem is coNP-complete. Recently, this
line of work has been extended to incomplete data, in which the implication problem
changes [6, 32, 33, 34, 41, 42, 43, 44]. Figure 2 shows a classification of this work
by distinguishing between implication problems in fixed and undetermined sets of
attributes, random variables, or propositional variables, respectively (referred to col-
lectively as features), and by distinguishing between the sets of features that can be
declared complete (either only the empty set /0, or the entire set S, or an arbitrary
subset C of S). The present article is a summary of the results and techniques applied
to fixed sets of features. Similar results hold when the set of features remains unde-
termined [6, 32, 33]. In particular, the results establish strong bonds with database
semantics and approximation logics.

Fig. 2 Classification of Related Work on Conditional Independence and Hierarchical Dependence

In fact, database theory has studied more than 100 different classes of database
dependencies [57] over strictly relational data, where incomplete data must not
occur. These dependencies enforce the semantics of application domains within a
database system [38]. Here, multivalued dependencies [15] are an expressive class
whose implication problem can be decided in almost linear time [4, 18, 50]. In par-
ticular, they form the basis for the Fourth Normal Form in database design which
characterizes database schemata whose instances are free from data redundancy
[15, 60, 62]. The implication problem of multivalued dependencies is equivalent
to that of a Boolean propositional fragment [52], and to that of SCI statements [61].
Furthermore, it is known that the equivalence between MVD implication and that
of their corresponding propositional counterpart cannot be extended to an equiva-
lence between the implication problem of embedded MVDs and that of any Boolean
propositional fragment [52]. We also note that the implication problem of embed-
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ded multivalued dependencies is undecidable [30, 31] and not axiomatizable by a
finite set of Horn rules [55]. Studený also showed that the implication problem of
embedded MVDs and that of CI statements do not coincide [56]. Again, this line
of work has been extended to incomplete data [16, 25, 28, 29, 35] and the present
article can be understood as a summary of these findings.

It is important to point out that the results in this article can be proven more
directly in different ways. Firstly, for a set Σ ∪ {I(Y1, . . . ,Yk | X)} of GSCI state-
ments over S with C⊆ S it holds that Σ |=C I(Y1, . . . ,Yk | X) if and only if Σ [XC] |=S
I(Y1, . . . ,Yk | X), where Σ [U ] = {I(W1, . . . ,Wm | V ) ∈ Σ | V ⊆U}. This embedding
translates every instance of the implication problem for GSCI statements and com-
plete random variables into an instance of the implication problem for GSCI state-
ments. This illustrates the significance of the special case where C = S. Secondly,
every instance of the implication problem for GSCI statements and complete ran-
dom variables can be translated into an instance of an implication problem for SCI
statements and complete random variables, see Remark 6. Finally, the results for
full first-order hierarchical dependencies from Section 5 can be obtained by exploit-
ing a strong correspondence between relations that satisfy an FOHD X : [Y1| · · · |Yk]
and probability models that satisfy I(Y1, . . . ,Yk | X). For instance, a two tuple rela-
tion r = {t1, t2} satisfies X : [Y1| · · · |Yk] if and only if the special probability model
τ(r) satisfies the GSCI statement I(Y1, . . . ,Yk | X), where τ(r) is obtained by stipu-
lating P(t1) = 0.5 = P(t2). Vice versa, the special probability model π satisfies the
GSCI statement I(Y1, . . . ,Yk | X) if and only if the relation τ ′(π) satisfies the FOHD
X : [Y1| · · · |Yk], where the two tuples in τ ′(π) are simply the two assignments of π

that have probability one half. Nevertheless, the main focus of this article is not on
the results for GSCI statements, but on the techniques used to obtain them.

7 Conclusion

Conditional independence is a core concept in disciplines as diverse as artificial in-
telligence, databases, probability theory, and statistics. The implication problem for
conditional independence statements is paramount for many applications including
Bayesian networks and database design. It is known that the implication problem
for general conditional independence statements cannot be axiomatized by a finite
set of Horn rules, and is coNP-complete to decide for their stable fragment, al-
ready in the idealized case where all data is complete. This article showcases the
equivalences between three different implication problems: i) generalized saturated
conditional independence statements in the presence of a set of complete random
variables, ii) a fragment of propositional logic under S -3 interpretations, and iii)
Delobel’s class of full first-order hierarchical database dependencies in the presence
of a set of attributes declared NOT NULL. Axiomatizations in the form of finite sets
of Horn rules were established, and algorithms to decide the associated implication
problems in almost linear time are also available [44]. The key to these equivalences
are special probability models and two-tuple relations. It is further known that none
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of these equivalences holds between the frameworks of conditional independence
statements, any fragment of Boolean propositional logic, and general first-order hi-
erarchical dependencies, already in the case of complete data [44].

This body of work is a strong advocate for investigating notions of dependence
and independence as first-class citizens within standard frameworks for reasoning,
as successfully started in dependence and independence logics.
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