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List Scheduling: Extension for Contention

Awareness and Evaluation of Node Priorities

for Heterogeneous Cluster Architectures ⋆
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Rua Alves Redol 9, 1000-029 Lisboa, Portugal

Abstract

In the area of static scheduling, list scheduling is one of the most common heuristics
for the temporal and spatial assignment of a Directed Acyclic Graph (DAG) to a
target system. As most scheduling heuristics, list scheduling assumes fully connected
homogeneous processors and ignores contention on the communication links.

This article extends the list scheduling heuristic for contention aware scheduling
on heterogeneous arbitrary architectures. The extention is based on the idea of
scheduling edges to links, likewise the scheduling of nodes to processors. Based on
this extension, we compare eight priority schemes for the node order determination
in the first phase of list scheduling. Random graphs are generated and scheduled
with the different schemes to homogenous and heterogeneous parallel systems from
the area of cluster computing. Apart from identifying the best priority scheme,
the results give new insights in contention aware DAG scheduling. Moreover, we
demonstrate the appropriateness of our extended list scheduling for homogeneous
and heterogeneous cluster architectures.
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1 Introduction

Programming a parallel systems requires the scheduling of sub-tasks to the
resources of the parallel system, while respecting the precedence constraints
among the sub-tasks. For static scheduling, that is scheduling at compile time,
the program to be parallelised is usually modelled as a directed graph. Nodes
represent the tasks, i.e. the computation, and edges the inter task communi-
cation. The Directed Acyclic Graph (DAG) is the most common graph model
used for static scheduling [26].

The scheduling of a DAG (or task graph) is, in its general form, an NP-hard
problem [5], i.e. an optimal solution cannot be calculated in polynomial time
(unless NP = P ). Scheduling algorithms are therefore based on heuristics that
try to produce near optimal solutions. Early scheduling algorithms do not take
communication into account [1,3,10,11,13], but due to the increasing gap be-
tween computation and communication performance of parallel systems, the
consideration of the communication became soon more important and is in-
cluded in many scheduling algorithms [9,12,14,16,18,20,21,23,24,25,28,31,32].
Most of these algorithms assume the target system to be a homogenous system
with fully connected processors and a dedicated communication sub-system.
Moreover, contention for communication resources is neglected. List schedul-
ing [7], in one form or the other, is the most employed scheduling heuristic
by these algorithms, given a bounded number of processors. Very few algo-
rithms model the target system as an arbitrary processor network and incor-
porate contention in the scheduling heuristic [8,17,27,30]. However, Macey and
Zomaya [22] showed that the consideration of link contention is significant to
produce accurate and efficient schedules.

In this article we extend the classic list scheduling for contention aware
scheduling on heterogeneous arbitrary systems. The extended list scheduling
is appropriate for heterogeneous target systems, both in terms of processors as
well as in terms of communication links. Based on this extended list schedul-
ing we compare eight priority schemes for the node order determination in the
first phase of list scheduling. The evaluation of the schemes is based on the
results they produce for random graphs scheduled to several parallel systems
of the area of cluster computing. Our intention is not only to find the best
scheme, but also to show the appropriateness of our extended list scheduling
for cluster computing. Further, by analysing the behaviour of the different
schemes, we aim to obtain a deeper insight into DAG scheduling.

The rest of the article is organised as follows. Section 2 introduces the neces-
sary models and gives the background and Section 3 proposes the extended
list scheduling. In Section 4, the various priority schemes for the node or-
der determination are discussed and in Section 5 the experimental results are
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Figure 1. A DAG

presented and analysed. The article concludes with Section 6.

2 Definitions and Background

The program to be scheduled to a target system is represented as a Directed
Acyclic Graph (DAG). The DAG is a directed acyclic graph G = (V, E), where
V is a finite set of |V | nodes (vertices) and E is a finite set of |E| directed edges.
The nodes of G represent the computation and the edges the communication
of the modelled program. The weight w(ni) assigned to node ni represents
its computation cost and the weight w(eij) assigned to edge eij represents its
communication cost. The indices of an edge denote its direction, that is edge
eij is directed from node ni to nj . Figure 1 shows an example DAG with the
assigned node and edge weights.

The topology of the target system is modelled as an undirected graph
GT = (P, L), where P is a finite set of |P | vertices and L is a finite set of
|L| undirected edges. A vertex Pi represents the processor i and an undi-
rected edge Lij represents a bi-directional communication link between the
incident processors Pi and Pj. This definition of a topology graph, which is
employed in [8,17,27,30], is able to represent most static communication net-
works. Yet, it fails to accurately reflect the important bus topology. Inherent
in the undirected graph, an edge is only incident on two vertices, whereas a
bus is connected to multiple processors. We therefore propose the utilisation
of a hypergraph [2] with one hyperedge for the representation of a bus topol-
ogy. Let P be a finite set of |P | vertices and L be a hyperedge incident on all
vertices of the vertex set P . A vertex Pi represents the processor i and the
hyperedge L represents the bus connecting all processors.

A weight w(Pi) assigned to a processor Pi represents its relative execution
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speed and a weight w(Lij) assigned to a link Lij represents its relative com-
munication speed. Figure 2 shows examples of undirected graphs and a hyper-
graph representing three different target system topologies. The processing
speed of a system resource is defined relatively to the average speed of all
resources. In order to calculate the average speed, the speed value of 1 is at-
tributed to one randomly chosen resource and the speed of the other resources
is defined relative to this resource. The average speed is then calculated and
the speeds of the resources are normalised based on the average speed. The
costs of the elements of the DAG are in turn calculated based on the average
speed of the target system’s resources. For example a processor Pi with its
relative speed w(Pi) executes the node nj in w(nj)/w(Pi) time. If w(Pi) = 1,
the processor Pi runs with the average speed and executes the node nj in
w(nj) time.

2.1 DAG scheduling

Without considering communication contention and assuming a homogeneous
fully connected architecture, scheduling a DAG to a target system is to gen-
erate an execution schedule of the graph’s nodes on the system’s processors.
Every node is assigned to a processor and attributed a start and a finish
time. We say, node ni is scheduled to processor Pk, and denote its start time
on this processor as ST (ni, Pk) and its finish time as FT (ni, Pk). The fin-
ish time of processor Pk is defined as the finish time of the last node exe-
cuted on this processor, FT (Pk) = maxi{FT (ni, Pk)}. After all nodes of the
DAG have been scheduled to the target system, the schedule length is de-
fined as maxk{FT (Pk)}, that is the finish time of the last node. The aim of
all scheduling algorithms is to minimise the schedule length without violating
the precedence-constraints among the tasks (nodes).

The start time of a node ni is constrained by its dependences on other nodes,
which are the incoming communications represented by the edges of the graph.
A node can start execution when all data has arrived. The data ready time
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DRT (ni, Pk) of node ni on processor Pk is defined as the time when the last
communication from its parent nodes arrives:

DRT (ni, Pk) = max
j

{FT (nj) + w(eji)} (1)

with nj ∈ V and eji ∈ E, j = 1, . . . , |V |. The communication costs between
two nodes scheduled to the same processor is assumed to be negligible and is
set to zero. Note, the data ready time for node ni can only be determined if
all parent nodes have already been scheduled. FT (nj) therefore denotes the
finish time of the node nj in the partial schedule. Omitting the processor in
FT is non-ambiguous since every node is only contained once in the partial
schedule. For a valid schedule, ST (ni, Pk) ≥ DRT (ni, Pk) must be true for all
nodes.

DAG scheduling in general expects a dedicated target system. In other words,
the scheduled program does not share the resources of the target system with
any other program during its execution.

2.2 List scheduling

The most common heuristic for DAG scheduling is the traditional list schedul-
ing [7]. First utilised with the assumption of zero task communication costs,
e.g. [1,3,10,11,13], it was later used for non-zero task communication costs,
e.g. [12,16,20,21,32]. In the following we consider non-zero task communica-
tion costs.

Like most scheduling algorithms, list scheduling assumes a fully connected
homogeneous target system with a dedicated communication sub-system. The
basic structure of list scheduling is rather simple. In the first phase a priority
is attributed to every node. Based on this priority, the nodes are ordered into a
list. In each step, the node with the highest priority among the ready nodes is
chosen and added to the list. A node is said to be ready, if all its predecessors in
the graph are already in the list. After adding the chosen node to the list, the
new set of ready nodes is determined and the step is repeated until all nodes
are contained in the list. Note, that with this definition of list scheduling, the
nodes’ priorities are determined a priori, they do not depend on the status
of the list or a partial schedule. An alternative approach, though with higher
complexity, is to use dynamic priorities, which are updated during the second
phase of scheduling. Here, we only consider static priorities and the interested
reader should referred to e.g. [1,27].

In the second phase of list scheduling, the algorithm iterates over the list
built in the first phase and schedules the nodes to the processors of the target
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Figure 3. List Scheduling for the DAG in Figure 1

system. To accomplish that, it determines the start time of each node in turn
on every processor and chooses the processor that allows the earliest start

time. The start time of a node is constrained by (i) the arrival time of the
last incoming communication (DRT) and (ii) by the current finish time of the
processor. The earliest start time of node ni on processor Pk is

STmin(ni, Pk) = max{FT (Pk), DRT (ni, Pk)} (2)

and the earliest start time of node ni on the target system is

STmin(ni) = min
l
{STmin(ni, Pl)}. (3)

An alternative approach to determine the node’s start time also considers idle
time slots between already scheduled nodes in order to insert the node into a
slot if appropriate [15]. This technique has higher complexity and we discuss
it in [29]. Figure 3 shows a possible partial schedule of the DAG presented
in Figure 1 and the utilised node list. Nodes a, b, e, d, c, g have already been
scheduled to the target system comprising 3 processors and the current node is
node f . Processor P3 allows its earliest starting time (ST (f, P3) = 6), since the
incoming communication from node c is zeroed. On processor P1 and P2 f ’s
earliest start time is 7, caused by the communication from node c on processor
P3.

The list scheduling heuristic can be summarised as follows

(1) Determine the nodes’ priorities. Order the nodes into a list according to
their priorities, respecting their precedence constraints.

(2) Iterate over the node list from 1.) and schedule each node to the processor
that allows its earliest start time (eq. (3)).
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The above described list scheduling heuristic generates a valid schedule, which
means that the precedence constraints among the nodes are respected. The
first phase creates a list of nodes respecting the nodes’ dependences and the
second phase schedules the nodes in exactly this order, ensuring that all pre-
decessors of a node to be scheduled have already been scheduled. Finally, the
scheduling of a node according to eq. (2) ensures the timely arrival of its in-
coming communications. In the second phase the finish time of every node is
evaluated P times together with its incoming edges, once for every processor,
resulting in a complexity of O(P (V + E)). The complexity of the first phase
depends on which priority scheme is used (see Section 4).

3 List scheduling with communication contention

In this section we propose an extension to the concept of traditional list
scheduling which supports arbitrary target systems and the consideration of
communication contention. The target system is represented by the model
described in Section 2, which allows arbitrary topologies with heterogeneous
processors and communication links.

3.1 Edge scheduling and link heterogeneity

The basic underlying idea is to treat the communication edges in the same
way as the nodes of the DAG: the edges are scheduled to the communication
links in the same way the nodes are scheduled to the processors [27,29,30].

Corresponding to the node, we define ST (eij, Llk) to be eij ’s start time on link
Llk and FT (eij, Llk) its finish time. Also, FT (Llk) is defined as the finish time
of a communication link. While the start time of a node is constrained by the
data ready time of its incoming communication, the start time of an edge is
restricted by the finish time of its origin node. The scheduling of an edge differs
further from that of a node, in that an edge might be scheduled on more than
one link. A communication between two nodes, which are scheduled on two
different but not adjacent processors, utilises all links of the communication
route between the two processors. The edge representing this communication
must be scheduled on each of the involved links. The method of data trans-
mission on the links of a communication route can be somewhere in between
two extremes: on the one end, data is transmitted on all links at the same
time, i.e. when the transmission finishes on the first link it also finishes of the
last link; on the other end, the data is transmitted on one link at a time and
when finished it is forwarded to the next link. For today’s parallel systems it
is a realistic assumption that communication happens on all links of a route
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at the same time, since in general there is no significant delay between two
adjacent links. As it will be seen below, introducing a delay for each “hop” is,
however, easily accomplished.

For causality reasons, an edge’s start time on a link cannot be earlier than
the edge’s start time on the first link. Further, the edge’s finish time cannot
be earlier than on the previous link. This matter becomes relevant for hetero-
geneous links as a fast link following a slow link cannot “overtake” the latter.
We formalise this in the following.

Let p = 〈L1, L2, . . . , Ln〉 be a path with n edges of a topology graph GT that
represents a communication route and the communication traverses the links
in the order of the path. The earliest start time of the edge eij scheduled to
the first link L1 of this route and its finish time are

STmin(eij , L1) = max{FT (L1), FT (ni)}

FT (eij, L1) = ST (eij, L1) + w(eij)/w(L1).
(4)

The earliest start time of the edge eij on all subsequent links and its finish
time is defined by the following equations

STmin(eij , Lk) = max{FT (Lk), ST (eij, L1),

FT (eij, Lk−1) − w(eij)/w(Lk)}

FT (eij, Lk) = ST (eij, Lk) + w(eij)/w(Lk)

(5)

with k = 2, . . . , n. Thus, on a subsequent link the edge eij can only start
after the link is ready (FT (Lk)) and late enough so that the edge does not
finish earlier than on the previous link (FT (eij , Lk−1) − w(eij)/w(Lk)). For
causality, edge eij must also start later than on the first link (ST (eij, L1)),
otherwise parts of the communication could arrive earlier at the destination
processors than they were sent.

Note, the communication costs are adapted to the link speed (w(eij)/w(Lk))
for the calculation of the finish time. This simple approach allows an accurate
modelling of the target system’s link heterogeneity. Moreover, the inclusion
of delays for communication via multiple links, as mentioned above, can be
easily performed by introducing a delay in the calculation of the start times on
subsequent links. For the utilisation of idle time slots between already sched-
uled edges, the determination of the start and finish times must be modified.
This insertion scheduling has higher complexity [29] and is, likewise for node
scheduling, not considered in this article.

The determination of the route, i.e. the path in the topology graph GT , is
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Figure 4. Edge scheduled to links

done according to the routing policy of the target system. For a given pair
of processors, the routing algorithm used for edge scheduling must return the
sequence of links of the topology graph GT that correspond to the links of the
target system which are used for communication between the two specified
processors. Most of todays generic parallel systems employ a shortest path
routing algorithm [6], which can be calculated in the topology graph GT based
on a Breadth First Search (BFS) [4].

To illustrate the scheduling of edges to links, Figure 4 shows an example
where edge eij is scheduled to the route 〈L1, L2, L3, L4〉 with FT (ni) = 2 for
node ni. Link L2 has half of the other links’ speed, w(L2) = 1, and thus
the communication of eij needs twice the time. Since communication on the
subsequent link L3 cannot finish earlier than on link L2 (eq. (5)), it starts later
than on L1, even though link L3 is idle.

The scheduling of edges to links has practical consequences in the second
phase of the list scheduling. The data ready time DRT (ni, Pk) of node ni on
processor Pk is now calculated based on the finish time of the incoming edges
on their assigned links, thus eq. (1) becomes:

DRT (ni, Pk) = max
j

{FT (eji, Llk)} (6)

with nj ∈ V and eji ∈ E, j = 1, . . . , |V |. If the origin node nj of an incoming
communication is scheduled on the same processor as node ni, i.e. l = k, the
communication time is assumed to have cost zero and we define FT (eji, Lkk) =
FT (nj). For the determination of the start time of a node on a processor, all
of the node’s incoming edges must be temporarily scheduled to the respective
links. Only this guarantees a correct view of the communication times and the
contention on the links.

9



3.2 Processor heterogeneity

The heterogeneity of the processors brings a change to the calculation of the
finish time of the nodes, while the start time is calculated unchanged with eq.
(2). Likewise the determination of the edges finish time, the node finish time
is now

FT (ni, Pk) = ST (ni, Pk) + w(ni)/w(Pk), (7)

that is the processor’s speed is taken into account when calculating the exe-
cution time.

While for homogeneous systems the processor that permits the earliest start
time of a node is automatically the processor that permits also its earliest
finish time, the situation for heterogeneous systems is different. Due to varying
processor speed, a processor that allows the earliest start time is not necessarily
the processor that allows the earliest finish time for a node. To recognise this
fact, our extended list scheduling approach schedules a node, in the second
phase of the heuristic, to the processor that permits its earliest finish time.

3.3 Proposed Extended List Scheduling

The proposed extended list scheduling discussed in the previous sections can
be summarised as follows:

(1) Determine the nodes’ priorities. Order the nodes into a list according to
their priorities, respecting their precedence constraints.

(2) Iterate over the node list from 1.)
(a) For each node, find the processor that allows its earliest finish time

by temporarily scheduling the incoming edges to the links; the com-
munication routes are determined according to the target system.

(b) Schedule the node to the chosen processor and the incoming edges
to the corresponding links.

In the second phase of the extended list scheduling, the finish time of every
node is evaluated P times together with its incoming edges, once for every
processor. This has a complexity of O(P (V + E)), which is the complexity of
the traditional list scheduling. For every temporarily scheduling of an edge,
the links of the communication route on which the edge is scheduled must be
determined. We designate the complexity of this O(Routing). Thus, the the
complexity of the second phase of the extended list scheduling is O(P (V +
E · O(Routing))). As defined in edge scheduling (Section 3.1), the employed

10



routing algorithm is target system dependent. Most systems employ a shortest
path routing algorithms, which can be reflected in the topology graph GT

by a BFS based algorithm. For such systems, routing has a complexity of
O(Routing) = P + L, being the complexity of a BFS. Obviously, in regular
topologies the complexity is lower, e.g. fully connected, bus: O(Routing) = 1;
ring: O(Routing) = P .

4 Priority attributions

After discussing the second phase of the extended list scheduling in the pre-
vious section, we now come back to the attribution of node priorities in the
first phase, which is a significant issue of list scheduling.

The fundamental idea for the choice of a node priority is the node’s rela-
tive importance. In list scheduling it is assumed, and shown by experiment
[9,14,18], that the overall execution time of a program can be reduced if an
important node is scheduled as soon as possible, i.e. before nodes with less
importance. The earlier a node is considered for scheduling the earlier it can
aquire a processor for its execution. The challenge is to find priorities that
well reflect the nodes importance in the context of scheduling. In this article
we compare various priority schemes for the scheduling of DAGs to systems
with different topologies from the area of cluster computing.

A measure widely used for the attribution of node priorities are “levels” [7],
which are path lengths of the graph. The bottom-level bl(ni) of node ni denotes
the length of the longest path starting with ni. Complementary to the bottom-
level, the top level tl(ni) of node ni, is defined the as length of the longest path
entering ni. In the DAG of Figure 1, node e has bl(e) = 9 and tl(e) = 7. The
length of a path is defined as the sum of all its node and edge weights (weights
are determined as described in Section 2). A level calculated only based on
the node weights is called computation level – for example the computation
bottom-level blcomp(ni) (e.g. blcomp(e) = 4). By induction, it can be easily
shown that the longest path starting with a node always ends in a sink node,
i.e. a node without leaving edges and that the longest path entering a node
always starts in a source node, i.e. a node without entering edges.

A lower bound for the execution time of a DAG is its computation critical path,
i.e. the longest computation path through the graph. The DAG of Figure 1
has the computation critical path 〈a, d, f, i〉 of length 8. As all nodes of this
path have to be executed in serial order, due to their precedence constraints,
the length of the computation critical path is its minimum execution time
achievable on a parallel machine. Note that this is only a lower bound for the
execution time of the DAG and is in general not the optimal execution time.
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To consider communication, the critical path (CP) can be determined based
on the computation and communication costs. In Figure 1 the CP 〈a, b, e, g, i〉,
length 16, is the emphasised path. When doing this, the length of the CP (cp)
is

cp = max
i

{bl(ni) + tl(ni)},

being the maximum sum of a node’s bottom and top-level. For nodes on the
CP, the critical nodes, the sum of bottom-level and top-level equals cp. In
particular for the first node of the critical path bl(nc1) = cp (bl(a) = 16),
since the first node is a source node with tl(nc1) = 0. Thus, the node with the
highest bottom level is the first node of the CP. After removing this node from
the graph, the node with the highest bottom-level of the remaining graph is
the first node of the CP of this remaining graph. So, by choosing always the
node with the highest bottom-level, we choose the first node of a dominant
sequence, that is the dynamic critical path of the remaining graph.

The top-level and the bottom-level of every node of the DAG can be deter-
mined in O(V +E) using a Depth First Search (DFS) [4]. During the schedul-
ing, the bottom-level of a node does not change in contrast to the top-level
that might be affected by the zeroing of communication costs between nodes
scheduled to the same processor.

For the experiments we employ node lists in decreasing bottom-level (BL)
order and, for the purpose of comparison, in decreasing computation bottom-
level (BLcomp) order. We expect that the bottom-level performs better since
it includes communication costs. As shown in [30], the decreasing (computing)
bottom-level order is also a topological order [4] of the nodes, that is an order
that respects the nodes dependences. Thus, the complexity to determine the
node list is O(V +E) to calculate the levels and O(V lgV ) for the sorting (e.g.
Mergesort [4]), resulting in the total of O(V lgV + E).

When using the bottom-level as a measure for the priority, the incoming com-
munications of the node considered are not taken into account. All ancestor
nodes have already been scheduled to the target system, but not their out-
going edges. Two nodes, while having similar bottom-levels, can significantly
differ in their incoming communication costs. The one with the more impor-
tant communication should be scheduled first to have a larger resource choice.
The bottom-level can be “extended in top direction” by adding the incoming
communication costs. Two schemes are intuitive: (i) The priority assigned to
node ni is the sum of its bottom-level and the largest incoming communication,
pri(ni) = bl(ni) + maxj{w(eji)} (e.g. in Figure 1, pri(g) = 5 + w(ebg) = 9).
(ii) The priority assigned to node ni is the sum of its bottom-level and the
communication costs from its critical ancestor nk, i.e. the parent node with
the highest sum of top-level, computation cost and communication costs to ni,
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pri(ni) = bl(ni)+w(eki). For example, the critical ancestor of g in Figure 1 is e
(tl(e)+w(e)+w(eeg) = 7+1+3 compared to tl(b)+w(b)+w(ebg) = 2+2+4),
thus pri(g) = 5 + w(eeg) = 8.

The complexity to generate node lists using these priorities is as follows. Find-
ing the largest or the critical communication of each node has a complexity of
O(V + E) using a DFS, likewise the calculation of the levels. Since nodes in
decreasing priority order are in general not in topological order, we must main-
tain a set of ready nodes when creating the list. The complexity of adding and
removing one node from this set is O(lgV ), using a Heap [4], and is done once
for every node. Determining the set of ready nodes is O(E) for all nodes. The
total complexity of the node list determination is thus O(V lgV + E). For the
experiments we employ both schemes (BL+MaxComm, BL+CriticalComm)
and, as used in [27], the computation bottom-level plus the largest incoming
communication (BLcomp+MaxComm).

Another technique to establish an order among the nodes is based on a criti-
cal path oriented traversal of the DAG. While the bottom-level, as described
above, orders the nodes of the DAG according to the current dominant se-
quence, this technique orders the nodes based on the global critical path [17].
The algorithm distinguishes between critical path nodes (CPN), in-branch
nodes (IBN), which are nodes that have a path to a CPN, and out-branch
nodes (OBN), which are all nodes that are neither CPNs nor IBNs. For exam-
ple, the DAG of Figure 1 has: the CPNs a, b, e, g, i; the IBNs c, d, f and only
one OBN h. Defining CPN, IBN and then OBN as the order of importance,
the aim is to schedule the CPN as soon as possible. This approach results in
scheduling first the critical path nodes in order. If a CPN has ancestors not
yet in the list (i.e. IBNs), these are recursively added to the list before this
CPN. When all CPNs are scheduled, and therefore also all IBNs, the OBNs
are added to the list.

To establish an order between the IBNs, e.g. between the IBNs c and d in
the example DAG, the one with the largest communication is chosen first in
[17] and the OBNs are added to the list in topological order. In a later article
by the same authors [19], the parent with the highest bottom-level is chosen
first, ties are broken by choosing the one with the smallest top-level. The
OBNs are added in decreasing order of their bottom-levels. For the experiment
we employ both approaches (CP MaxComm, CP BL TL). Furthermore, we
employ a third approach where the IBN with the highest top-level is chosen
(CP TL). This is the last node of the critical path of the sub-graph formed by
a node’s ancestor. In this approach, the OBNs are also added in decreasing
order of their bottom-levels.

Finding the CP and calculating the levels has a complexity of O(V + E). The
traversal of the CPNs and the IBNs is O(E), but determining the IBN with
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Priority scheme Description

Nodes ordered by

BL bottom-level

BLcomp computation bottom-level

BL+CriticalComm bottom-level + critical incoming communication

BL+MaxComm bottom-level + maximum incoming communication

BLcomp+MaxComm computation bottom-level + maximum incoming communication

Critical path traversal: IBNs chosen by

CP BL TL bottom-level, ties broken by top-level; OBNs ordered by bottom-level

CP TL top-level; OBNs ordered by bottom-level

CP MaxComm maximum communication; OBNs ordered in topological order

TopoOrder topological order, i.e. random order respecting dependences

Table 1
Summary of priority schemes

the highest priority is limited by O(ElgE) over all IBNs. Adding the OBNs in
topological order is O(V +E), in decreasing top-level order it is O(V lgV +E).
Thus, CP MaxComm is O(V + ElgE) and CP BL TL, as well as CP TL, is
O(V lgV + ElgE).

As a reference we generate a node list according to the topological order of
the nodes (TopoOrder). The topological order guarantees the compliance of
the precedence constraints, but in terms of node’s importance it establishes a
random order. Table 1 lists the above discussed priority schemes with a short
description.

5 Experiments

In this section we present an experimental comparison of the priority schemes
for our extended list scheduling, as described in the previous sections. For this
purpose we have implemented the algorithms and generated random graphs
which were then scheduled by these algorithms to various target systems.
The comparison is intended not only to present quantitative results but also
to qualitatively analyse the results and to suggest explanations, for a better
insight in the overall scheduling problem.

5.1 Experimental setup

For the generation of random graphs, which are commonly used to compare
scheduling algorithms [9,14,18], two fundamental characteristics of the DAG
are considered: (i) the communication to computation ratio (CCR) and (ii)
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the average number of edges per node. The CCR is defined as the sum of all
communication costs (that is the weight of all edges) divided by the sum of all
computation costs: CCRs of 0.1, 1 and 10 are used to simulate low, medium
and high communication, respectively. For the average number of edges per
node, we utilised values of 2 and 5. Graphs were generated for all combinations
of the two above parameters with the number of nodes ranging between 100
and 1500, in steps of 200. Every possible edge (DAGs are acyclic) was created
with the same probability, calculated based on the average number of edges
per node. To obtain the desired CCR for a graph, node weights are taken
randomly from a uniform distribution [0.1, 1.9] around 1, thus the average
node weight is 1. Edge weights are also taken from a uniform distribution,
whose mean depends on the CCR and on the average number of edge weights
(e.g. the mean is 5 for CCR = 10 and 2 edges per node). The relative deviation
of the edge weights is identical to that of the node weights. Every set of the
above parameters was used to generate several random graphs in order to
avoid scattering effects. The results presented below are the average of the
results obtained for these graphs.

The architectures employed for the experiments are aimed to reflect a wide
range of typical cluster computing systems. Hence, we used the following ar-
chitectures: fully connected processors, bus topology and ring topology. The
bus topology does not only represent a SMP system, but also topologies of
cluster computing, e.g. workstations connected via a hub (not a switch). The
three different architectures were modelled with 8, 32 and 128 processors. In
order to get results for heterogeneous systems, the fully connected architecture
was also used with heterogeneous processors and links. For the simulation of
a NUMA architecture, the processors of a fully connected system are divided
into pairs and the speed of the link connecting the two processors is set to 10,
i.e. 10 times faster than the unmodified links. This scenario corresponds to a
cluster of dual processor machines connected via a switch, with a total of 8 and
32 processors. To represent a network of workstations (NOW), i.e. a cluster
of in general heterogeneous systems, we modified the processors’ speed of 8
(all speeds are different taken from the interval [0.6, 1.4]) and 32 (w(Pi) = 0.8
with 1 ≤ i ≤ 16, w(Pj) = 1.2 with 17 ≤ j ≤ 32) processor fully connected
machine, but in a way that the average speed remained 1, in order to obtain
comparable results.

5.2 Results

5.2.1 Level based schemes

Due to the high number of different priority schemes, only the schemes based
on the bottom-level and the computation bottom-level are initially compared.
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Figure 5 shows the schedule length of the graphs, for CCR of 0.1 and 2 av-
erage edges per node, on 32 and 128 fully connected processors. The results
on 128 processors are less stable than those on 32 processors due to the closer
number of DAG nodes regarding the number of processors. At first, it can
be surprising that there is no perceivable difference between the five schemes.
Since communication is low it is not significant in the calculation of the pri-
orities, thus all schemes behave like nodes sorted by the computation bottom
level. However, the importance of the node list order becomes apparent by
the fact that the topological order performs much worse. This was confirmed
by all other experiments (in some experiments several times worse), therefore
TopoOrder is omitted in the figures of the remaining paper.

With high communication, CCR = 10 in Figure 6a, the differences between the
schemes becomes significant. Worst performs BLcomp+MaxComm, which can
be explained by the disproportional significance of the largest incoming com-
munication in the priority. Of the remaining schemes, BL almost always yields
better results than BLcomp, BL+MaxComm and BL+CriticalComm, with a
maximum difference of about 20%. The results for the other experiments with
the (computation) bottom-level schemes range qualitatively between the ex-
amples of Figure 5 and 6a.

Surprising is here that the computation bottom-level is not much worse than
the schemes that take communication costs into account. The node order
established by the computation bottom-level and the bottom-level differ sig-
nificantly only for high CCRs. A possible explanation for these results is the
zeroing of communication costs when the communicating nodes are scheduled
to the same processor. Thus, the costs included in a priority due to com-
munication might change after a node was scheduled, while the computation
costs are fixed. Nevertheless, high CCRs show that it is important to consider
communication and apparently the BL scheme is the best compromise.

It is interesting to notice that the difference between the level based schemes
becomes more significant with the decrease of contention: for systems with few
links (e.g. the ring used in Figure 6b), there is only a small difference, while for
fully connected systems the difference is significant (Figure 6a). We confirmed
this tendency by using these priority schemes for traditional list scheduling,
without considering contention, for 8, 32 and 128 processors. Figure 6c shows
the results for 32 processors, CCR 10 and 2 average edges per node. For
high communication the results are very similar to those obtained on the
fully connected architecture considering contention (Figure 6a). A possible
explanation is that without considering contention the communication costs
of an edge reflect the communication time better than when contention comes
into play.
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Figure 5. Level based schemes; DAGs: edges/node = 2
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Figure 6. Level based schemes; DAGs: edges/node = 2

5.2.2 CP based schemes

Next we compare the priority schemes based on the global critical path and
we use BL, being the best of the previously compared schemes, as a reference.
We repeat the experiments of Figure 6a (32-fully connected, CCR = 10, avg.
edges/node = 2) for these priority schemes and the results are presented in
Figure 7a. Among the three critical path schemes, CP MaxComm clearly pro-
vides the worst performance. Using the largest communication as the criterion

17



to choose the IBN is a local decision and cannot identify the importance of
the IBN. The other two schemes CP BL TL and CP TL perform similar and
are very close to BL.

For low communication, the situation becomes different: Figure 7b shows the
results on a 32 processor bus machine with low communication (CCR = 0.1).
CP BL TL and CP TL perform notably worse than BL. Low communication
needs a technique that can balance the load, which the schemes based on
the CP apparently cannot. Even worse, in Figure 7c the experiment of Fig-
ure 7b is repeated but now with an average of 5 edges per node. All three
critical path schemes yield results much worse than BL. Even the best of the
three (CP BL TL) is up to 100% worse than BL. While in most experiments
similar, CP BL TL performs in this experiment better than CP TL. Overall,
CP BL TL is the best of the critical path schemes. Again, results for the other
experiments with the schemes based on the global critical path range quali-
tatively between the examples of Figure 7a through 7c. For graphs with high
communication and topologies with many links, CP BL TL and CP TL have
similar performance as BL, and are in some cases better than other schemes
based on the bottom level. Increasing the number of edges per node, however,
while fixing the CCR, always outcomes in worse results. A possible explana-
tion is that for graphs with many edges there is no distinguished CP because
several paths have similar length.

5.2.3 Cluster topologies

After the comparison of the priority schemes, we turn our attention to the
behaviour of the extended list scheduling for the different systems’ topolo-
gies. For better readability, the following figures show only four selected pri-
ority schemes, namely BL and BLcomp+MaxComm, and CP BL TL and
CP MaxComm, representing the best and the worst examined scheme of its
kind, respectively. Figure 8a depicts the results on a 32 processor ring archi-
tecture with medium communication (CCR = 1.0, avg. edges/node = 2). The
schedule lengths obtained are up to several times as large as on the fully con-
nected architecture (Figures 6a and 7a), even though the CCR is lower than
in those examples. So, the reduced speedup is due to the higher contention
caused by the low number of communication links of the ring architecture.
This effect is also observed on the bus machine, for example in Figure 7b and
7c.

The effect of contention on architectures with few communication links can
lead to schedule lengths higher than the sequential execution times. Figure 8b
shows such a case for high communication (CCR = 10, avg. edges/node = 5) on
a 8 processor bus machine. Another example are the results on a ring topology
in Figure 6b. Remember that the average node weight is 1, so the sequential
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Figure 7. CP based schemes
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Figure 8. High contention

execution time corresponds to the number of nodes of the DAG. In these cases
the extended list scheduling is not able to parallelise the graph efficiently.
However, this situation can be easily identified when the schedule length is
higher than the sequential execution time and the parallel schedule can then
be substituted by the sequential schedule. In traditional list scheduling without
considering contention this problem can only arise when the CCR is extremely
high.
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Figure 9. Heterogeneity; DAGs: CCR = 10, edges/node = 2

5.2.4 Heterogeneous cluster topologies

In the following, the appropriateness of our extended list scheduling for het-
erogeneous cluster architectures is analysed. In Figure 9a graphs with a CCR
of 10, and 2 average edges per node are scheduled by the selected schemes to
the fully connected system with 32 heterogeneous processors. Since the DAGs
are the same as for the experiments in Figure 6a and 7a, where they are
scheduled to a corresponding homogeneous system, the results can be directly
compared with the results of those experiments. The differences are minimal
and lead to the conclusion that our extended list scheduling is not affected by
the heterogeneity (remember, the total processor speed is the same for both
systems). This result is confirmed by the other experiments for heterogeneous
systems.

In Figure 9b we repeated the previous experiment on a 32 processor fully
connected system with 16 faster links (10 times) each connecting a distinct
pair of processors (NUMA architecture). For all priority schemes the schedule
length is reduced in comparison to the homogenous system (Figure 6a, 7a),
so the extended list scheduling uses the advantage of the faster links, hence
it is also appropriate for heterogeneous communication links. Once more, the
results for the other systems with heterogeneous links are similar.

6 Conclusions

In this article traditional list scheduling was extended for the consideration
of contention on communication links. The proposed extended list scheduling
achieves this goal by scheduling the edges of the DAG to the links of the target
system, which may have an heterogeneous arbitrary architecture. Based on the
extended list scheduling, we compared eight priority schemes for the genera-
tion of the nodes’ schedule order. The schemes were employed for scheduling

20



random graphs on systems taken from the area of cluster computing.

From the obtained results, the following can be concluded. Priority schemes
based on the bottom-level are superior to schemes based on the global critical
path. The difference between the schemes is even amplified with the increase
of the average number of edges per node. The addition of communication costs
to the bottom-level (BL+CriticalComm, BL+MaxComm) cannot improve the
schedule length compared to the bottom-level only. Surprising is that the
computation bottom-level (BLcomp) does not perform much worse than the
bottom-level (BL) and the difference becomes even less significant with the
increase of the average number of edges per node.

The qualitative behaviour of the schemes is not dependent on the topology
of the target system, yet on the relative number of communication links. Few
links emphasise the relevance of contention especially for DAGs with high
communication. The differences between (computation) bottom-level based
schemes decrease with the increase of contention, an interesting result con-
firmed with contention free list scheduling. This observation might lead to
the conclusion that priority schemes for traditional and extended list schedul-
ing should be chosen different. Nevertheless, the bottom-level scheme (BL)
performed best for all experiments, with and without contention.

One shortcoming of the extended list scheduling is that it produces schedule
lengths above the sequential execution times, when the communication to
computation ratio of the DAG is high and the communication links of the
target topology are sparse. However, an efficient parallel schedule might not
be feasible inherent in the schedule problem and it is easy to substitute the
result with the sequential version.

The results show that extended list scheduling is appropriate for scheduling
DAGs to heterogeneous target systems with different topologies from the area
of cluster computing. Heterogeneous systems are utilised as efficient as homo-
geneous systems and the schedule length benefits from faster communication
links.
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