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Abstract—To fully benefit from a multiprocessor system, the
tasks of a program are to be carefully assigned and scheduled
on the processors of the system such that the overall execution
time is minimal. The associated task scheduling problem with
communication delays, P|prec, ¢;j|Cmas, is a well known NP-
hard problem. We propose a novel Mixed Integer Linear Pro-
gramming (MILP) solution to this scheduling problem, despite
the fact that scheduling problems are often difficult to handle
by MILP solvers. The proposed MILP solution uses problem
specific knowledge to eliminate the need to linearise the bi-
linear equations arising out of communication delays. Further,
the size of the proposed formulation in terms of variables is
independent of the number of processors. We analyse and discuss
the influence of the different MILP components in respect to
characteristics of the task graph such as structure and commu-
nication to computation ratio. The proposed MILP formulation
is experimentally compared with previous MILP formulations
used to solve this scheduling problem. The proposed formulation
displays a drastic improvement in performance, which allows to
solve larger problems optimally. We also observe strengths and
weaknesses of the formulation related to the input characteristics.

I. INTRODUCTION

For the performance and efficiency of a parallel program,
the scheduling of its (sub)tasks is crucial. Unfortunately,
scheduling is a fundamentally hard problem (an NP-hard
optimisation problem [1]), as the time needed to solve it
optimally grows exponentially with the number of tasks (un-
less P = NP). Existing scheduling algorithms are mostly
heuristics as they try to produce good rather than optimal
schedules, e.g. [2], [3], [4], [5], [6], [7], [8], [9], [10]. Having
optimal schedules can make a fundamental difference, e.g. for
time critical systems such as flight control, industrial auto-
mation, automotive applications, telecommunication systems,
consumer electronics, robotics and multimedia systems. Mul-
tiprocessor systems are also popular in small portable devices
such as cellphones or navigators to large systems such a indus-
trial robots or aircraft. An optimal schedule may also be used
as a benchmark to enable the precise evaluation of scheduling
heuristics. Moreover, once an optimal schedule is found, it may
be reused when a parallel program is rerun. Due to today’s
widespread use of parallel systems, an efficient parallelisation
is fundamental to take advantage of the computational power
available. It is hence of enormous practical significance to be
able to schedule small and medium sized task graphs optimally
on parallel processors. The objective of this work is to present
a fast Mixed Integer Linear Programming (MILP) formulation
for the classic problem of scheduling task graphs on parallel

systems with communication delay, which is P|prec, ¢;;|Cimaaz
in the alfly notation [11], [12]. Many heuristics have been
proposed for task scheduling on parallel systems [13]. While
they often provide good results and tend towards the op-
timal schedule there is no guarantee that the solutions are
optimal, especially for task graphs with high communication
costs [14],[15]. A number of approximation algorithms have
been proposed for the scheduling problem [16],[17]. For the
here addressed scheduling problem, P|prec, ¢ij|Crmaz, NO Q-
approximation is known [18]. The only known guaranteed
approximation algorithm in [19] has an approximation factor
depending on communication costs of the longest path in the
schedule.

Given the NP-hardness, finding an optimal solution requires
an exhaustive search of the entire solution space. For schedul-
ing, this solution space is spawned by all possible processor
assignments combined with all possible task orderings. Clearly
this search space grows exponentially with the number of
tasks, thus it becomes impractical already for very small
task graphs. Hence, few attempts have been made to solve
Plprec, ¢;;j|Chnae optimally. With the increase in processor
power in computers, it is now feasible to find optimal solu-
tions to larger instances of the scheduling problem. The A*
algorithm is one such popular optimal search algorithm used
to solve this scheduling problem [20],[21]. It begins the
search with an empty solution space and is then incrementally
grown. A* employs a best-first search technique [22],[23]
and is guided by a problem specific cost function. The main
drawback of A* is that it keeps all the nodes in memory
and it usually runs out of memory long before it runs out of
time making it unusable for medium and large sized problem
instances.

In this paper, a MILP formulation is proposed for the task
scheduling problem on parallel systems with communication
delays. It uses an overlap approach [24] to set variables
and constraints to ensure that no two tasks executing on the
same processor overlap in time. The proposed formulation
eliminates the need for the linearisation of bi-linear equations
arising out of communication delays. Further, the number
of variables is not a function of the number of processors,
which is beneficial for the complexity of the formulation.
The different components of the MILP formulation are ana-
lysed and their significance discussed. This helps to gain
insights into the relevance of task graph characteristics for the
efficient formulations of MILPs. An extensive experimental
evaluation consisting of over 7400 schedules is carried out



and compared with other existing MILP formulations that
solve this scheduling problem. The proposed formulation
displays a drastic improvement in performance. The proposed
formulation is found to outperform other MILPs especially
when the Communication to Computation Ratio (CCR) of the
task graph is high. It is also seen from the experiments that a
larger number of processors do not necessarily mean a slow
down in the runtime of the MILP.

The rest of the paper is organised as follows: Section II
discusses the general use of MILP formulations for schedul-
ing problems. Section III then describes the task scheduling
model. Section IV discusses bi-linear forms arising out of
communication delays and its linearisation for the studied
scheduling problem. Section V discusses the proposed math-
ematical formulation, its relaxation and reduction using MILP.
The constraint complexity of the proposed formulation is
compared with other known formulations. Section VI details
the experimental results wherein the runtime of the proposed
formulation is compared with other known formulations in
literature.

II. MIXED INTEGER LINEAR PROGRAMMING

MILP may be used to solve optimisation problems, in-
cluding scheduling problems. The MILP formulations can
be broadly classified as discrete time and continuous time
approaches [24],[25]. The discrete time approach introduces
a new variable for each instant of time on each processor
[26]. The number of time variables introduced in this approach
explode when diverse execution times are present in the
formulation. The continuous time approach, on the other hand,
can handle diverse execution times, but its efficiency depends
on how well the constraints and variables are formulated.
The continuous time approach is further subdivided into three
lines - sequencing, slots and overlaps. In sequencing, the
formulation involves invoking new variables to determine if
one task is executed after another task on the same processor
[27],[28]. The number of constraints required to enforce the
schedule requirements on each processor are known to grow
quickly. In slots, each task is assigned to a space-time vacancy
on a processor. The slot defines an order of tasks running on
a processor [29],[30]. The start time and end time of tasks
entering the slot are not fixed a priori. Since the exact number
of slots required on each processor is not known a priori, a
conservative number of slots (the number of tasks) has to be
reserved and it suffers from a variable blow-up if the number
of tasks to be scheduled is large. In overlap, variables are
defined to prevent overlap of tasks scheduled on the same
processor. Unlike other approaches, the number of variables
and constraints in the formulation scales well as the number
of tasks to be scheduled increases [24],[31],[32].

III. TASK SCHEDULING MODEL

The tasks that are to be scheduled are represented as a
weighted directed acyclic graph. The nodes in the graph
represent tasks while directed edges represent data precedence
relationships. Precedence relationships (if any) have to be
respected at all times. The node cost is the time required

for the task to complete its execution on a processor and the
edge cost is the communication time between two tasks on
different processors. If two tasks with data dependences are
mapped onto the same processor, the communication between
them is implemented by data sharing in local memory and
no communication delay is incurred. The model assumes
a fully connected network of homogeneous multiprocessors
P = {1,...,|P|} with identical communication links. Each
processor may execute several tasks, but each task has to
be assigned to exactly one processor, in which it is entirely
executed without pre-emption. Further, no multitasking or
parallelism is permitted within a task. The execution time for
each task on each processor and the data transfer times (or
communication delays) between tasks with data dependence
are given in advance as part of the task graph.

Formally, the tasks to be scheduled are represented
by a directed acyclic graph (DAG) defined by a 4-tuple
G=(V,E,C,L) where V denotes the set of tasks and E
represents the set of edges. Each edge (i,j) € FE defines
a precedence relation between the tasks 7,7 € V. A task
cannot be executed unless all of its predecessors (parents) have
completed their execution and all relevant data is available.
The set C' = {v;; : (i,j) € E} denotes the set of edge
communication times. If tasks ¢ and j are executed on different
processors h,k € P,h # k, they incur a communication
time penalty -;;. If both tasks are scheduled to the same
processor the communication time is zero. For a graph with
|[V| = n tasks, the set L = {L; ..., L,} represents the task
computation times (execution time length). Let 5~ (j) be the
set of precedents of task 4, that is d—(j) = {¢ € V|(4,]) €
E,j € V}. The variables ¢; and p; are the main variables
that describe a schedule for the problem to be solved. The
start time of task ¢ is ¢; and the processor on which task i
executes is p;. The objective of this task scheduling problem
is to allocate and schedule the tasks onto the processors such
that the overall completion time W (makespan) is minimised
[311,[33].

IV. BI-LINEAR REDUCTIONS

Communication between tasks executing on different pro-
cessors results in bi-linear constraints and needs to be lin-
earised. A fast linearisation is crucial in developing an effi-
cient MILP formulation for the task scheduling problem. A
commonly used linearisation of the bi-linear forms arising
out of communication delays for the task scheduling problem
called the usual linearisation and compact linearisation are
discussed in [34],[35]. The MILP formulations in [31] use the
linearisation in [34] to solve the task scheduling problem and
is categorised under the overlap approach discussed in Section
1L

We are now looking at that linearisation. Let ¢; be the start
time of task ¢ and ¢; the start time of task j. Define the
following variable for the MILP of the scheduling problem

1 task ¢ runs on processor h € P
Tih = .
0 otherwise



When using this variable in the formulation, the precedence
constraint created by an edge between two tasks ¢ and j
incurring a communication cost, is then

ViEV:iieds (j) ti=ti+Li+ >
h,k€ P,h#k

%‘j(ﬂfih-xjk)
(1)

So task j can only start after task 4 has finished (¢; + L;)
plus the communication time. Remember, the communication
cost is only incurred if the tasks are on different processors,
otherwise it is zero. The task scheduling model presented in
Section III assumes a fully connected network with identical
communication links. Hence, the communication time between
any two tasks ¢ and j running on different processors is given
by «;j. By definition, x;;, and x; are Boolean variables and
their multiplication needs to be linearised.

The linearisation in [31] uses two different approaches. The
linearisation variable z?j’“, where task ¢ runs on processor h
and task j runs on processor k, is defined as

VieV:ied (j),hkeP A2 =g Q)

ij

Using this definition, the multiplication of the Boolean vari-
ables x;,.xj of (1) is replaced by the linearisation variable
hk

z;; resulting in

VieViied () tizti+Li+ Y, v ©)
h,k€P,h#k

By (3), the number of constraints produced is |E| and the
number of variables per constraint in terms of the processor
combinations over z/'¥ is O(|P|?).

The first linearisation method called PACKING-USUAL
makes use of (3) and needs the additional (4)-(6) for the
complete linearisation.

VieVied (j),hkeP wipn>z 4)
ViEeVi€d (j),hkeP aj >zl (5)
VieVi€d (j,hkeP zf >xzp+ap—1 (6)

(4) - (6) are used to simulate the logic of a Boolean
multiplication using linear inequalities. By (4) - (6), the
number of constraints produced is |E||P|? and the number of
variables per constraint is O(1). Hence, the total complexity
of the PACKING-USUAL linearisation in terms of number
of constraints is O(|E||P|?).

The second linearisation method called PACKING-
COMPACT uses (3) plus (7) - (8), instead of (4)-(6).

ViZjeV,keP >t =a @)

heP

o, hk _ _kh
Vi£jeV,h,ke P i = Zji (8)

(7) is obtained by multiplying both sides of the equality (9)
with ;53 Vi # j € V, k € P. (9) implies that any given task
can run on exactly one processor.

VieV

> win=1 ©)

heP

(8) indicates that the multiplication zPF =

4 Tin-Tjk 18
commutative. By (7), the number of constraints generated
is O(|[V|?|P|) and the number of variables per constraint is
O(|P|). So, the total complexity of PACKING-COMPACT
in terms of number of constraints is O(|E| + |V|*|P]) =

O(IVI?|P)).

V. PROPOSED FORMULATION

The literature surveyed indicates that amongst all MILP
formulations, an overlap approach is best suited to tackle the
task scheduling problem. All the MILP formulations discussed
in this section are based on the overlap approach. A new
MILP formulation for scheduling (SHD-BASIC), its relaxa-
tion (SHD-RELAXED) and reduction (SHD-REDUCED) are
proposed and compared with the PACKING formulation in
[31] as well as ILP-RBL and ILP-TC in [32]. The formulation
in [31] utilise overlap variables adopted from [36] along with
a technique for the linearisation discussed in the previous sec-
tion. The formulation in [31] is improved in [32] by reworking
the boolean logic for dependent tasks and by defining a partial
order using a transitivity clause.

The first contribution of this work is to use problem specific
knowledge to eliminate the bi-linear forms [31] arising out of
communication delays. The proposed formulation eliminates
the use of the z variable (in Section IV) for the linearisation of
the bi-linear forms. This frees up to |V|?|P|? z variables and
its associated constraint complexity in the MILP formulation
and speeds up the runtime of the solver. The second contri-
bution is to run all variable indices in the proposed MILP
formulation independent of the number of processors. As a
result, the constraint complexity of the proposed MILP reduces
to O(|V]?).

Next, we propose the basic formulation SHD-BASIC in
Section V-A, its relaxation SHD-RELAXED in Section V-B
and its reduction SHD-REDUCED in Section V-C. SHD-
RELAXED and SHD-REDUCED formulations are compared
with PACKING formulation, ILP-RBL and ILP-TC in Sec-
tion V-D to bring out the advantages in using the proposed
formulation.

A. BASIC formulation (SHD-BASIC)

The MILP is formulated as a min-max problem that involves
minimising the maximum task finish time. The variables ¢ and
p gives the allocation and schedule of tasks on processors.
The o and € variables model the relative position of tasks
respectively along time and on the processors. They together
ensures that tasks running on the same processor do not
overlap in time. The constraints relate these variables to allow
a fast ILP without the need for linearisation. Let W be the
total makespan and |P| the number of processors available.
For each task i € V let t; € R be the start execution time
and p; € N be the ID of the processor on which task ¢ is to



be executed. In order to enforce non-overlapping constraints,
define two sets of binary variables

o 1 task ¢ finishes before task j starts
Vi,jeV o= )
0 otherwise
VijeV ey = 1 PIof trflsk 1 is less than of task j
0 otherwise

where PI is the Processor Index.

Based on these two types of binary variables the SHD-
BASIC formulation is proposed next, followed by a detailed
explanation of the role of each constraint. (A01) is the
objective, (A02)-(A10) are the main constraints and (A11)-
(A15) are the bounds.

min W (AO1)
VieV ti+L; <W (A02)
VitjeV oi; + 050 < 1 (A03)
VitjeV € + e <1 (AD4)
Vi£jeV oij + 04 + €5 + €5, > 1 (AOS)
ViZjeV  pj—pi—1— (e —1)|P| >0 (A06)
VizjeVv pj — pi — €5/ P| < 0 (A0T7)
Vi#gjeV  ti+Li+ (i — 1)Wias < t; (A08)

VjEV:’L'E(S_(j)
VieV:iied (j)

ti + Li +7vij(€i; + €ji) < t; (A09)
oi; =1 (A10)

Vi,j eV Oij,€i5 € {0, 1} (A11)
VieV pi € {1,...|P|} (Al12)
VieV t; >0 (Al3)

W >0 (Al4)
ZLi + Z Yig — Winaz = 0 (A1S)

i€V i,jEV

The constraints can be roughly categorised in the min-
max objective (A01-A02), overlap constraints (A03-A05),
processor constraints (A06-A07) and precedence constraints
(A08-A10). To discuss the completeness and correctness of the
formulation let us start by considering the case where there
are no precedence constraints and hence no communication
delays between tasks. Then, the minimisation objective (AO1),
constraints (A02-A06), (A08), (A11-A15) are sufficient to give
a valid formulation. For each task, (A02) specifies that the sum
of the task start time and its execution time (hence the task’s
finish time) is less than or equal W. By (A03), the sum of
oi; and oj; is at most 1 and (A04) enforces the same for the
sum of ¢;; and €;;. When tasks are assigned to processors,
the tasks that run on the same processor are to be ordered by
defining their start time. Let us consider the set V, of tasks
that are assigned to some processor z (l.e. all tasks € V' such
that p; = x). Constraint (A06) enforces that for any two tasks
1,7 € Vg, €; = €j; = 0. Consequently, the non-overlapping
constraint (A0S) will imply an order on these two tasks by
raising exactly one of the two variables o;; or oj; to 1 (by
constraint A03). This set of variables o;; for all pairs of tasks
1,7€V, will give a total order of the tasks on processor x

(transitivity being enforced by constraints (A05) and (A0S)).
Then constraint (A08) will affect valid starting times to the
tasks while constraint (AO1) will define the objective to be
minimised.

For this independent tasks case, an ordering on a pair of
tasks executing on different processors is not required as there
are no precedence constraints and do not require €;; or €;;
to be set to 1 whenever p;7#p;. To model the precedence and
communication delays, constraints (A07), (A09) and (A10) are
added to the independent tasks case. Constraint (A10) pre-sets
an ordering for all tasks that are connected by an edge and
constraint (AO8) affects the start times according to this order.
Constraint (A09) will ensure that the communication delays
are taken into account, but to meet this aim, exactly one of ¢;;
or €;; must be equal to 1 when p; # p;. This is guaranteed by
the addition of constraints (A07). Note that (A06) and (A07)
are both required to enforce that exactly one of €;; or €;; is
set to 1.

Both 0;; and ¢;; are Boolean variables due to (A11). (A12)
gives the bound on processor allocation for each task 7 € V. By
(A13), all tasks have a start time greater than or equal to zero.
By (A14), the makespan W is greater than or equal to zero.
By (A15), Wyae gives an upper bound on W and is defined
as the sum of all task execution times and edge communication
times. This is a worst case value which ensures that (A08) is
correct when o;; = 0. Note that there is no strict requirement
that o values have to correspond to a transitive closure for the
task graph. E.g. If 013 = 1 and 035 = 1, then the value of 15
is not relevant with respect to time ordering.

B. RELAXED formulation (SHD-RELAXED)

The RELAXED formulation is introduced to speed up the
BASIC formulation. In the BASIC formulation (SHD-BASIC),
(AQ7) is created for all edge pairs i # j. In the RELAXED
formulation, these constraints are defined only for tasks with
a direct edge between them. L.e. (AO7A) and (AO7B) are used
instead of (A07). The formulation using (AO7A) and (AO7B)
instead of (A07) is named SHD-RELAXED.

VieV:iied (j)
VieV:iied (j)

(AO7A)
(AO7B)

p; —pi —€;]P] <0
pi —p; — €5i|P] <0

From section V-A, it is seen that constraint (AQ7) is included
to model communication delays. However, since communica-
tion delay exists only between tasks that have an edge between
them, constraints (A07) are needed only for such pairs of tasks.

C. REDUCED formulation (SHD-REDUCED)

The REDUCED formulation is introduced to remove re-
dundant constraints that appear in SHD-RELAXED. The logic
in (A03) is redundant in (A08) and the logic in (A04) is
redundant in (A06). For (A08): if o;; =1, then t; > t;, + L;
and if Oji = 1, then t; > tj —|—Lj. If Oj; = Oj; = 1, then
t; > t;+ L; and t; > t; + L; should be simultaneously valid
constraints. This is true only if ¢{; = ¢; and L; = L; = 0. If
non-zero task execution times are considered, then by (A08),
at most one of the o variable may be set to 1.



For (A06): if ¢;; = 1, then p; > p; + 1 and if ¢;; = 1, then
pi = pj+1.1fe; =€ =1,thenp; > p;+1and p; > p;+1
should be simultaneously valid constraints. However, both the
constraints cannot be simultaneously true as it is not possible
to place a task on a higher and lower processor index at the
same time. Hence, (A06) may set at most one of the e variables
to 1. This allows (A03) and (A04) to be eliminated from SHD-
RELAXED. The reduced formulation eliminating (A03) and
(A04) from SHD-RELAXED is named SHD-REDUCED and
the performance of SHD-REDUCED is compared with SHD-
RELAXED. Note that (A03) and (A04) are redundant in the
formulation but not for their linear relaxation.

D. Comparison of SHD-RELAXED and SHD-REDUCED
with PACKING formulation, ILP-RBL and ILP-TC

SHD-RELAXED and its reduction SHD-REDUCED are
used instead of SHD-BASIC in the following analysis.
SHD-RELAXED generates O(|E|) constraints using (A07A)-
(A07B) whereas SHD-BASIC generates O(|V'|?) constraints
using (A07). The PACKING formulation in [31] uses linear-
isation variables to linearise the bi-linear inequalities arising
from communicating edges. These linearisation variables are
eliminated in ILP-RBL [32] by reworking the Boolean logic of
the communicating edges. ILP-TC [32] reworks the linearisa-
tion of the bi-linear forms in the PACKING formulation using
a transitivity clause in a manner that aids the elimination of
over-defined inequalities in ILP-RBL.

For uniformity across comparisons, it is noted that the task
scheduling model for the PACKING formulation unlike SHD-
BASIC and its variants do not mandate a fully connected pro-
cessor network. Table I compares the variable and constraint
complexities of the formulations tested.

When ILP-RBL is used to schedule a large number of tasks
on a small number of processors, the contribution of |P|?
towards the constraint complexity of ILP-RBL diminishes.

The proposed formulation SHD-RELAXED has a constraint
complexity of O(|V|?) as all variable indices are free of
the number of processors. The bound on the number of
processors available for scheduling is given by (A12). SHD-
RELAXED is also free of the linearisation variable z, making
it faster than the PACKING formulation. SHD-RELAXED
and ILP-RBL have a similar constraint complexity over a
small number of processors but is much faster than ILP-
RBL over a larger number of processors. SHD-RELAXED
also runs faster than ILP-TC which have a higher constraint
complexity, as observed from Table I. The reduced formulation
SHD-REDUCED has fewer inequalities than SHD-RELAXED
through the elimination of (A03) and (A04). However, as
noted in Section V-C, these inequalities are redundant only for
the formulation but not their linear relaxation. The experiments
carried out in Section VI confirm that the complexity compar-
isons in this section are in agreement with the experimental
results.

VI. EXPERIMENTAL RESULTS

The main goals of this section are: (a) performance compar-
isons of the proposed MILP formulation SHD-RELAXED

with both linearisation of the PACKING formulation in
[31] (PACKING-USUAL and PACKING-COMPACT), the
MILP formulations in [32], namely ILP-RBL and ILP-TC
and the reduced formulation SHD-REDUCED from Section
V-C (b) to analyse the behaviour of the MILP formulations
with respect to graph structures (c) study the effect of
Communication cost to Computation cost Ratio (CCR) on
MILP formulation runtime.

The computations are carried out using CPLEX 11.0.0 [37]
on an Intel Core i3 processor 330M, 2.13 GHZ CPU and 2 GB
RAM running with no parallel mode and on a single thread
on Windows 7.

All experiments are run for the task scheduling model
discussed in Section III. I.e. a fully connected processor
network with identical bandwidth capacity is assumed. The
input graphs used for experiments in Section VI-A are from
[21] and the input graphs used for benchmarking in Section
VI-B are from [31],[38]. The following two definitions of
graph densities are used:

Q= IE|/|V]
w = (|E]/~)100

(10)
Y

with the maximum possible number of edges in the graph as
v = |V|(J]V]—1)/2. The two density equations (10) and (11)
arise due the difference in density definitions of the task graph
databases used. It is also worth noting that very high densities
are not realistic for most real software applications.

Two types of performance comparison experiments are
carried out: a 1 minute timeout in Section VI-A and 12 hour
timeout in Section VI-B. The 1 minute timeout experiments
carried out in Section VI-Al are to get many results to
learn about the performance behaviour and on which input
characteristics it depends. Section VI-A2 compares the relation
between characteristics of the task graph structure with respect
to the MILP formulations. Section VI-A3 studies the effect of
CCR on MILP formulations. The 12 hour timeout experiments
in Section VI-B are longer experiments for a direct comparison
between runtime of the MILP formulations, especially in
regards to previous work. Larger input graphs are tackled in
these experiments. A Java implementation of all the MILP
formulations compared and some of the optimal results that
it returned can be found in the Green Banana (GB) scheduler
suite [39]. They use the Graph eXchange Language (GXL)
format [40] to represent input task graphs.

A. MILP comparisons with 1 minute timeout

A database of 207 task graphs, summarised in Table II,
comprising of 10, 21 and 30 tasks of the following structures:
fork, join, fork-join, in-tree, out-tree, series-parallel, pipeline,
random, stencil and independent tasks is chosen [21]. The
densities for the graphs in the database conform to the defin-
ition in (10). The experiments are carried out for 2, 4, 8 and
16 processors. A one minute timeout is set for each graph.

1) Overall performance evaluation: In this section, the
overall performance of the graphs in the database are compared
for the MILP formulations discussed. The number of graphs



Table I: Comparison between formulations tested

| [ PACKING-USUAL | PACKING-COMPACT || TLP-RBL [ ILP-TC || BASIC | RELAXED | REDUCED |
VARTABLES |E|.|P|?,z variables | [V]2.[P|?,z variables free of z free of z || free of z | free of z free of z
CONSTRAINTS | O([V[*+E[[P[?) O(IVZ.[P]) O(QVP+IENP?) [ OqVP) [ oqVvP?) [ O(VP) o(qvP)

Table II: Detailed Structure of the 207 Graph Database
[ Graph Structure [ n=10 [ n=21 [ n =30 | Total |

Fork-Join 4 4 4 12
Fork 4 4 4 12
Independent 1 1 1 3
InTree 8 8 8 24
Join 4 4 4 12
OutTree 8 8 8 24
Pipeline 4 4 4 12
Random 16 16 16 48
Series-Parallel 16 16 16 48
Stencil 4 4 4 12
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Figure 1: Completed schedules of different formulations over

number of processors

NUMBER OF COMPLETED SCHEDULES

for which an optimal schedule was returned by CPLEX within
one minute for the 207 graph set is tallied and plotted in Figure
1. The comparison criteria used here is completed schedules
within one minute.

It is seen from Figure 1 that SHD-RELAXED and SHD-
REDUCED outperform all the other ILP’s on 4, 8 and
16 processors. PACKING-USUAL marginally outperforms
SHD-RELAXED and SHD-REDUCED over 2 processors,
with 74 optimal solutions found in the 207 graph data-
set. However, the performance of PACKING-USUAL and
PACKING-COMPACT quickly degrades over 4, 8 and 16
processors in comparison to SHD-RELAXED and SHD-
REDUCED. ILP-TC has a steady performance improvement
over 2, 4, 8 and 16 processors unlike PACKING-USUAL,
PACKING-COMPACT and ILP-RBL. This performance
increase is attributed to the constraint complexity of ILP-
TC that is independent of the number of processors. It is
found that an increase in the number of processors does not
necessarily imply a decrease in performance. Other than ILP-
TC, only SHD-RELAXED and SHD-REDUCED have a
steady performance increase over 2, 4, 8 and 16 processors.
SHD-RELAXED and SHD-REDUCED also have a con-
straint complexity independent of the number of processors.
Unlike ILP-TC with a constraint complexity of O(|V|?),

the constraint complexity of SHD-RELAXED and SHD-
REDUCED is O(|V|?). This improved constraint complexity
matches with the experimental comparisons as it is observed
that SHD-RELAXED and SHD-REDUCED outperforms
ILP-TC.

2) Structure based performance evaluation: In this section,
we analyse the performance of the MILP formulations over
the graph structures given in Table II. Figure 2, Figure 3,
Figure 4 and Figure 5 depict the previous results separ-
ated by the individual graph structures over 2, 4, 8 and
16 processors for the formulations SHD-RELAXED, SHD-
REDUCED, PACKING-USUAL, PACKING-COMPACT,
ILP-RBL and ILP-TC.

From the 2 processor experiments in Figure 2, it is seen that
SHD-RELAXED and SHD-REDUCED display a relatively
similar performance with respect to PACKING-USUAL or
PACKING-COMPACT except for PIPELINE and RANDOM
graphs where PACKING-USUAL exhibits a better perform-
ance. ILP-RBL is also seen to perform well in comparison
with the other formulations (as expected to be the case over
a smaller number of processors). For the 4 processor experi-
ments in Figure 3, it is observed that either SHD-RELAXED
or SHD-REDUCED displays a similar or better performance
in relation to the other formulations and for the 8 and 16
processor experiments (in Figure 4 and Figure 5 respectively),
their performance gains over other formulations are observed
to be prominent.

The Fork-Join graphs have the best performance with SHD-
RELAXED and ILP-TC whereas the Forks perform best on
SHD-REDUCED. Independent graphs have a similar per-
formance with SHD-RELAXED, SHD-REDUCED, ILP-
RBL, ILP-TC and PACKING-USUAL. InTree graphs on 2,
4 processors are seen to best perform with SHD-RELAXED,
PACKING-USUAL and on 8, 16 processors are seen to best
perform with SHD-REDUCED. OutTree graphs are seen to
perform best with SHD-REDUCED whereas Pipeline graphs
are seen to perform best with SHD-RELAXED (except on 2
processors where PACKING-USAL and ILP-RBL are seen to
perform better). Random graphs are seen to perform best on
SHD-REDUCED (except on 2 processors were PACKING-
USUAL and ILP-RBL perform better). Series-Parallel and
Stencil graphs are both seen to perform best over SHD-
REDUCED. Overall, it is observed that SHD-RELAXED or
SHD-REDUCED have the best performance for each graph
structure.

Table III gives the percentage of individual graph structures
that passed the 1 minute timeout test averaged over 2, 4, 8 and
16 processors for SHD-RELAXED and SHD-REDUCED
in Figure 2 to Figure 5. It is seen that the graph structures
that perform the best over these two MILP formulations are
Random and Pipeline and the worst are Join, Fork and Inde-
pendent. These graphs have a very similar structure because



Table III: Performance Statistics on Individual Graph Struc-
tures over SHD-RELAXED and SHD-REDUCED

| RELAXED | % Passed | REDUCED | % Passed |
Random 62.5 Random 70
Pipeline 62.5 Pipeline 60.25
Stencil 54 Series-Parallel 56
Series-Parallel 52.25 OutTree 47.75
InTree 44.75 InTree 46.75
OutTree 42.5 Stencil 39.5
Fork-Join 35.25 Fork-Join 33.25
Join 27 Join 29.25
Independent 25 Fork 27
Fork 22.75 Independent 25
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Figure 2: Completion percentage of formulations over graph
structures 2 processors

a Fork or Join is a set of Independent tasks with an edge
from or to another task. Independent tasks are in general
harder to schedule since they have no precedence constraints
and all possible task combinations on an allocated processor
have to be tried out. Stencil graphs are seen to perform better
over SHD-RELAXED as compared to SHD-REDUCED. The
other graph structures are found to have a similar performance
with SHD-RELAXED and SHD-REDUCED.

3) Effect of CCR on MILP formulation runtime:
In this section, the effect of CCR on the performance of MILP
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Figure 3: Completion percentage of formulations over graph
structures on 4 processors
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Figure 4: Completion percentage of different formulations over
graph structures on 8 processors
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Figure 5: Completion percentage of formulations over graph
structures on 16 processors

formulation is studied. Of the 207 graphs in the database, 51
each are of CCR 0.1, CCR 1.0, CCR 2.0 and CCR 10. The
independent graphs in the database have no communication
edges and are not considered for the analysis. The number of
graphs for which an optimal schedule was returned by CPLEX
within one minute is tallied and plotted in Figure 6 for 4 and
8 processors.

It is observed that an increase in CCR results in a decrease
in the performance of all the MILP formulations in the
experiment irrespective of the number of processors they are
scheduled on. A possible explanation for this behaviour is
that higher CCR values increase the schedule length variance
between different schedules. A single task allocated to the
wrong processor can imply a strong penalty on the schedule
length due to large remote communication. The LP relaxation
of the ILP formulations used by the solver can then be further
away from the optimal solution of the ILP. This results in
longer runtimes of the branch-and-bound part of the solver.

This CCR dependent behaviour is very interesting as it
shows that the ILP runtimes do not only related to the size
of the input problem in terms of number of tasks, edges and
processors, but also depends on the weight values.
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(b) Completed schedules of different formulations over CCR on 8 pro-
cessors for 51 graph set for a 1 minute timeout

Figure 6: CCR Comparisons on 4 and 8 Processors Set for a
1 minute Timeout

B. MILP comparisons set for a 12 hour timeout

The 12 hour timeout experiments are for a direct comparison
between runtimes of the MILP formulations. The input graphs
used for benchmarking in this section are from [31],[38]. If the
CPLEX solver is unable to find an optimal solution within 12
hours, the program is terminated and the results tabulated. The
h:m:s notation is the standard hours:minutes:seconds taken by
the MILP formulation to find an optimal solution. The graphs
with a name starting with ’t" were generated randomly and
suffixed with the number of tasks in that graph followed by
its edge density and the index used to distinguish graphs when
they have the same n and w values. The graphs with a name
starting with ’ogra’ are suffixed with the number of tasks
followed by its edge density. These edge densities conform
to the percentage definition of density in (11). According to
[31], the optimal solution for *ogra’ graphs are obtained when
the tasks are well packed (as in ideal schedule). This has
similar characteristics with respect to a number of mutually
independent tasks (that can be well packed as there are no
communication delays), for which it is hard to find the task
ordering which yields the optimal schedule. In Table 1V, the
first column gives the name of the graph, column n records the
number of tasks in the graph. The symbols 2 and w conform
to the density definition in (10) and (11) respectively. Column
p refers to the number of processors. The rest of the columns
record the solution time for the MILP formulations being
compared. Where the comparison table refers to the MILP
formulation as PACKING, it implies that both PACKING-
USUAL and PACKING-COMPACT in [31] are used for
the experiments and the shorter of the two MILP runtimes
is recorded. When the CPLEX solver is unable to find an
optimal solution within 12 hours, the program is terminated
and the gap returned by CPLEX is recorded. Let the feasible

schedule length returned when the program terminates be F'S L
and the optimal schedule length (to be found) be OSL. The
gap (in percentage) is a guarantee that the the difference
between the F'SL and OSL is at most F'SL times the gap.
Le. FSL—OSL<FSL-gap. If a solution is found within 12
hours, the gap is 0% and not recorded. If no feasible solution
could be found within 12 hours, the gap is infinite and recorded
as inf. For example, if the schedule length returned by the
program when it terminates at the end of 12 hours is 200
units and the gap is 10%, then the optimal schedule length is
guaranteed to be greater than or equal to 180 units.

Table IV compares the proposed formulations SHD-
BASIC, SHD-RELAXED and SHD-REDUCED with
PACKING, ILP-RBL and ILP-TC over 2, 4, 8 and 16 pro-
ce