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Abstract
Background: There are some early clinical indicators of cardiac ischemia, most notably a change
in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia
that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without
angiography (an invasive and time-consuming procedure) mainly due to the highly unspecific nature
of the disease.

Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool
which can help clinicians during the diagnosis process. As a first step towards this final goal, a
computational model of the gastrointestinal system has been developed and used to simulate
realistic blood flow during normal conditions.

Methods: An anatomically and biophysically based model of the major mesenteric arteries has
been developed to be used to simulate normal blood flows. The computational mesh used for the
simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes
equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This
scheme, together with a constitutive pressure-radius relationship, has been solved numerically for
pressure, vessel radius and velocity for the entire mesenteric arterial network.

Results: The computational model developed shows close agreement with physiologically realistic
geometries other researchers have recorded in vivo. Using this model as a framework, results were
analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection
and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a
periodic input varying between 10.2 kPa (77 mmHg) and 14.6 kPa (110 mmHg) at the abdominal
aorta are presented. An analytical solution has been developed to model blood flow in tapering
vessels and when compared with the numerical solution, showed excellent agreement.

Conclusion: An anatomically and physiologically realistic computational model of the major
mesenteric arteries has been developed for the gastrointestinal system. Using this model, blood
flow has been simulated which show physiologically realistic flow profiles.

Published: 8 May 2007

BioMedical Engineering OnLine 2007, 6:17 doi:10.1186/1475-925X-6-17

Received: 7 December 2006
Accepted: 8 May 2007

This article is available from: http://www.biomedical-engineering-online.com/content/6/1/17

© 2007 Mabotuwana et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedical-engineering-online.com/content/6/1/17
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17484787
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BioMedical Engineering OnLine 2007, 6:17 http://www.biomedical-engineering-online.com/content/6/1/17
Background
The purpose of our current research is to develop an exten-
sible anatomically and biophysically based computa-
tional model of the mesenteric arterial system, which is
the main blood supply to the human intestine, and to use
this model to carefully examine intestinal blood flow. We
believe that such a model could have clinical applications
particularly with relation to mesenteric ischemia, a com-
plex vascular problem that arises due to a narrowing or
blockage of blood vessels that supply oxygenated blood to
the small and large intestines, for which accurate diagno-
sis is often delayed. The prevalence of mesenteric ischemia
is increasing worldwide as the population ages and repre-
sents one of the most threatening abdominal conditions
in elderly patients [1]. The delayed diagnosis results in an
estimated mortality rate of around 60 – 80% [2,3] and is
usually attributed to the unspecific nature of the abdomi-
nal "gut pain". It is difficult, even for the trained specialist,
in discriminating ischemia from the many other types of
gut pains (which are more common and less severe). Due
to the lack of any non-invasive clinical indicators which
can be used to determine the viability of the intestinal
smooth muscle before any irreversible changes have
occurred [4], very little is known about the development
and progression of gastrointestinal ischemia. The compu-
tational framework described below allows the effect of a
number of different scenarios to be explored – something
not possible when dealing with patients. It also allows an
establishment of a database of normal range of mesenteric
circulation that can be used to investigate deviations from
normality. This could help in the early diagnosis of
mesenteric ischemia in order to prevent secondary dis-
eases such as ischemic colitis, gangrene and perforation of
the bowel. Such a database would allow comparison of a
subject's pathological profiles with those from a healthy
subject and an appreciation for various model parameters
can help identify the pathologic conditions (such as how
stiff or compliant the arteries are) involved. Further,
numerical simulations could be used as a tool when using
shape optimization theory in the development of pros-
thetic devices or vascular grafts, designing new prototypes,
providing specific design indications for the realization of
various surgical procedures and developing training beds
for new vascular surgeons [5].

Since the introduction of the one-dimensional modeling
of the human arterial system by Euler in 1775 [6], many
blood flow models have evolved, but a single model
which can fully capture all aspects of the hemodynamics
of the human arterial system is yet to be developed. Argu-
ably, this can be attributed to the non-linear nature of
blood flow in a very complex, mostly viscoelastic vascular
network full of non-planer, tapering branches. To make
physiologically realistic analyses of the cardiovascular sys-
tem even harder and more complex, the vascular system

can simply regulate itself – arterioles can contract and
pulse rate can increase when blood pressure drops, while
an increase in blood pressure can result in a dilation of the
arterioles (hence a reduction of the periphery resistance to
flow) and therefore a lower heart rate [5]. Even the blood,
which consists of 55% plasma and 45% cells (erythro-
cytes, leukocytes and platelets), is quite a complex sub-
stance on its own showing many anomalous properties
when compared to a typical fluid. The presence of backup
systems (e.g., vascular loops seen mainly in the mesenteric
vasculature) further adds complexity to realistic blood
flow modeling.

Much of the literature on hemodynamics is still confined
to either simple networks or idealized geometry (e.g.,
symmetry in the sagittal plane, identical daughter vessels
at bifurcations, planar geometry, straight vessels with no
tapering and rigid walled approximations [7,8]). How-
ever, some studies have investigated blood flow patterns
using anatomically realistic geometries. Several imaging
modalities (including Magnetic Resonance (MR) imaging
[9-11], variations of Computed Tomography (CT) imag-
ing [12,13], reconstruction from biplane angiography
with intravascular ultrasound [14,15] and MR Angiogra-
phy (MRA) [16,17]) have been used to create such geom-
etry for various sections of the human arterial system,
most commonly the coronary arteries [14,15,18,19], fem-
oral arteries [20,21], carotid bifurcation [22,23] and the
aorto-iliac bifurcation [10,16], but to the authors' knowl-
edge there have been no efforts in the past to reconstruct
the mesenteric arteries.

A few three-dimensional models have been developed in
recent years to study the effects of wall shear stresses on
the development of lesions and atherosclerosis in simple
arterial networks [8,24]. However, solving a full scale
three-dimensional computational fluid dynamics (CFD)
algorithm on a complex network is currently not feasible;
firstly due to the lack of a large set of morphological data
and secondly because it is computationally prohibitive.
Therefore, in this paper we treat the blood flow within the
mesenteric system as one-dimensional and solve this
model using numerical techniques developed previously
by Smith et al [18]. This provides an efficient numerical
scheme to model pulsatile three-dimensional blood flow
using a single dimension, and simulate vessel diameter
changes and pressure distributions.

Methods
This section details the data digitization process, finite ele-
ment creation, model development and the governing
blood flow equations. Numerical analysis and stability
issues are also discussed. All model creation and numeri-
cal results and visualization were generated using the cus-
Page 2 of 12
(page number not for citation purposes)



BioMedical Engineering OnLine 2007, 6:17 http://www.biomedical-engineering-online.com/content/6/1/17
tom developed software package known as CMISS ( http:/
/www.cmiss.org ).

Data digitization
Our computational mesh was created using the high reso-
lution (0.3 mm/pixel) male Visible Human (VH) dataset
which contains 2D axial slices, each 1 mm apart. The cen-
tre-line of the mesenteric arteries with a radius of approx-
imately 0.5 mm and greater was visually identified and
traced (to give a total of 898 raw data points) on a vertical
segment of 251 mm of the human body. By stacking these
images as shown in Fig. 1, an initial 3D model was con-
structed. The abdominal aorta, Superior Mesenteric Artery
(SMA), Inferior Mesenteric Artery (IMA), common iliac
arteries and the middle colic artery were relatively easy to
trace on the VH images, but the actual vessel boundaries
of the branches of the SMA were difficult to determine,
and anatomical texts [25] were used to augment the digi-
tized data.

Finite element model
A total of 188 points were selected at regular intervals
from the set of 898 raw data points obtained after digiti-
zation and used as nodes (red spheres in Fig. 2(a)) in the
construction of the finite element mesh. The selected
nodes were then connected linearly to form the initial, lin-
ear finite element model. The linear elements were then
fitted to the entire digitized dataset using a 1D cubic Her-

mite interpolation scheme (refer to [26] for details on
geometric fitting using cubic Hermite elements). The final
resulting mesh of this fitting process is the smooth net-
work shown in Fig. 2(b) consisting of a total of 159 vessel
segments with 25 bifurcations. Within the cubic Hermite
mesh, a total of 834 points were placed in the local finite
element space such that there was an average grid point
spacing of 1.3 mm. These points were used as the finite
difference solution points in our blood flow calculations
(see Section "Modeling Blood Flow").

Initial radius assignment
The initial unstressed arterial radius (defined as the radius
at 0 kPa pressure) at each node shown in Fig. 2(a) was
determined from the VH images. Where possible, these
radii were validated against other published data to
ensure their accuracy, and the values of the abdominal
aorta, SMA and IMA were in good comparison with pub-
lished material (see Table 1). The radii values assigned at
the nodes were then interpolated linearly to create the
geometry shown in Fig. 3.

Modeling blood flow
Governing flow equations
Several approaches have been used in the literature to
model blood flow in large vessels in the cardiovascular
system. Modeling the pulsatile flow using Fourier analysis
[27,28] and using the mass and momentum conservation
equations coupled with a state equation [6,9,18] seem to
be two of the most widely used approaches, while several
other techniques, including flow modeling using closed-
loop systems mimicking electrical circuits [29,30], can
also be found. Most physiological parameters (including
the temporal variations in the cardiac cycle itself) are
more directly applicable to time domain models and we
believe that time domain analysis (as opposed to fre-
quency domain analysis) would provide additional, eas-

Finite element creation and fitting of mesenteric arteriesFigure 2
Finite element creation and fitting of mesenteric arteries. (a) 
Traced data points (smaller black spheres), node selection 
(larger red spheres) and linear element creation. (b) Fitted 
mesenteric artery network with nodes (red spheres).

Anterior view of a subset of five images from the Visible Human dataset showing how the mesenteric arteries were createdFigure 1
Anterior view of a subset of five images from the Visible 
Human dataset showing how the mesenteric arteries were 
created.
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ier-to-interpret information in terms of subject pressure
and flow profiling, especially where genesis and progres-
sion of ischemic conditions would be studied. On a sec-
ondary note, clinicians and most non-technical personnel
normally find it difficult to interpret results explained in
the frequency domain and would prefer the more intui-
tive time-domain approach.

In this study, blood is assumed to be Newtonian fluid a
common assumption in blood flow analysis in large to
medium sized vessels [5,9,16]. A typical Reynolds number
in the abdominal aorta is around 590 [16] and this is well
below the critical Reynolds number (which is generally
considered to be 2300) above which the transition from

laminar to turbulent flow usually occurs [31], therefore
laminar flow is assumed throughout the study. Further,
blood is considered to be an incompressible, homogene-
ous fluid with an axisymmetric flow and constant viscos-
ity. Under these assumptions, using a cylindrical
coordinate system (r, θ, x) where the x axis is aligned with
the local vessel axial direction and assuming a zero veloc-
ity in the circumferential direction, the complete 3-
dimensional Navier-Stokes equations can be reduced to a
set of 1-dimensional flow equations:

and

where p, R, V, ρ and ν represent pressure, inner vessel
radius, average velocity, blood density and blood viscosity
respectively. The parameter α is used to specify the shape
of the axial velocity profile, with α = 1 corresponding to a
flat profile.

The right hand side of (2) can be determined by specifying
an axial velocity profile in the x direction (vx) of the form

This form in (3) was deemed suitable by Hunter [32] to
give a compromise fit to experimental data obtained at
various different points in the cardiac cycle. The form of
the axial velocity profile with a value of α = 1.1, V = 200
mm/s and R = 3 mm is shown in Fig 4.

It should be noted that there are two singularities with this
equation; when α = 1 and when R = 0. When α = 1 it is not
physiological and results in a flow profile which is a step
function with no flow at the walls and maximum flow just
off the walls. The case where R = 0 corresponds to a fully
collapsed or occluded vessel. Although rare, this is a con-
dition that can occur physiologically and it can be repre-
sented in the model by decoupling a particular vessel
segment and replacing the terminals with a no-flow
boundary condition.

Further manipulation of equations (1) – (3) gives
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Anterior view of the 3D anatomical model of a segment of abdominal aorta with the superior and inferior mesenteric arteries and their sub-divisional branches, with assigned radiiFigure 3
Anterior view of the 3D anatomical model of a segment of 
abdominal aorta with the superior and inferior mesenteric 
arteries and their sub-divisional branches, with assigned radii.

Table 1: Comparison of initial radii used for abdominal aorta, 
SMA and IMA.

Reference Radius (mm)

Abdominal Aorta SMA IMA

Olufsen et al [9] 8.5 3.3 2
Lee et al [39] - 4* 3*
Peifer et al [11] - 3.85 3
Current model 7.5 4.2 3.4

Shown in Fig. 3 is the model constructed after the initial radii were 
assigned. *Original diameter values have been converted to radius 
values.
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Equations (1) and (4) provide us with two equations for
the three unknowns, P, R and V. A third equation can now
be determined by taking the vessel mechanics into
account, and in this study we have chosen a pressure-
radius relationship of the form

where G0 and β are constants defining a particular wall
behavior and R0 is the initial unstressed vessel radius. This
was the empirical relationship originally deduced by
Hunter [32] and then adapted by Smith et al [18] in their
work. The chosen form assumes a purely elastic behavior
of the arterial wall and closely agrees with the conclusions
drawn by Saito et al [33] who concluded from their exper-
iments that in large artery models, viscoelasticity may be
neglected and the arterial walls may be considered purely
elastic. Similar pressure-radius relationships have been
proposed by Sherwin et al [6] and Olufsen et al [9] by
assuming a purely elastic wall.

Flow in a single vessel
The governing equations cannot be solved analytically
and the use of numerical techniques is required. The Two-
Step-Lax-Wendroff finite difference method was selected
as a suitable explicit scheme as it is second order accurate
in both space and time while eliminating large numerical
dissipations [18,32].

Equations (1), (4) and (5) were then solved numerically
using the above finite differencing technique for an N grid
point arterial segment to determine the values (P, R and
V) at each of the interior grid points (i = 2 to N-1, where i
denotes a grid point) while a boundary scheme is required
to determine the values at the two ends of the vessel seg-
ment. The specified boundary condition was chosen to be
pressure, as opposed to velocity or flow pulses chosen by
Parker et al [34] in their work, as pressure can be measured
in a clinical environment and is also less sensitive to small
measurement errors. Radius is simply a function of pres-
sure via the constitutive equation (5) and by considering
the characteristic directions along which information
propagates in (x,t) space, an expression for velocity at the
first and last grid points (i = 1 and i = N respectively) in a
single vessel can be derived (refer to [18] for details).

Following the studies of [18,32] G0 was set to 21.2 kPa
(158 mmHg) and β was set to 2.0 due to the nature of the
arterial walls. A value of α = 1.1 was chosen to define the
axial velocity profile. Blood density was assumed to be
1.05 gcm-3 and viscosity was considered to be 3.2 cm2s-1

(these parameter values are used for all simulations pre-
sented here).

Analytical test solution

In order to test our numerical scheme and its implemen-
tation, we simulated the flow in an approximately 55 mm
long tapering section of the abdominal aorta (the chosen
location was just below the SMA and slightly above the
IMA since we needed a single vessel with no branching)

and the initial conditions were set to  = 12.5 kPa,

 and  for each grid point i. The initial

radius was specified at various locations along the vessel
(using the information extracted during the digitizing
process) and the variation in radius along each segment
between 2 specified locations was assumed to be linear.
The pressure at the inlet was raised from 12.6 kPa to 14.6
kPa over 0.2 s (the approximate pressure change in the
heart during the ejection phase shown in Fig. 7) and the
spatial changes were plotted in Fig. 5.

To validate the above results, we also derived a steady state
analytical solution using mass conservation. Considering
the vessel area S = πR2, a steady state expression can be
derived from (2) and (3) where all ∂/∂t terms are set to 0.
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Axial velocity flow profile across the vessel with radius of 3 mm and α = 1Figure 4
Axial velocity flow profile across the vessel with radius of 3 
mm and α = 1.1.
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Using a constant flow rate Q = VS and considering that
initial radius R0 (hence S0) to be a function of distance x,
equation (6) can be modified to:

Now considering the variation of R0 to be linear with x
between two grid points, i.e.,

R0 = a + bx (8)

where a, b are constants that can be easily determined
when radii at two locations along the vessel are known,
and:

we get

S0 = π(a + bx)2 (10)

Differentiating (10) with respect to x gives:

and (8) and (11) can now be substituted into (7) to derive
an expression for the variation of S with x for a single ves-
sel segment:

This cannot be solved for x using standard analytical solu-
tion techniques and therefore a simple numerical integra-
tion scheme was implemented using an explicit Runge-
Kutta formula of 4th/5th order. Both the analytical solution
and the numerical solutions are plotted in Fig. 5, showing
excellent agreement.
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Aortic inflow pressure boundary conditionFigure 7
Aortic inflow pressure boundary condition.

 10

 11

 12

 13

 14

 15

 16

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

P
re

ss
ur

e 
(k

P
a)

Time (s)

Aortic Boundary Conditions

Diastole

Isovolumic
Contraction

Ejection

Isovolumic
Relaxation

Steady-state analytical and numerical solutions for a tapering segment of the descending abdominal aorta when the inlet pressure is raised from 12.6 kPa to 14.6 kPa over 0.2 sFigure 5
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pressure is raised from 12.6 kPa to 14.6 kPa over 0.2 s.
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Flow at a bifurcation
Following the analysis of Smith et al [18], a bifurcation in
the arterial network is approximated using three short
elastic tubes which are short enough to assume a constant
velocity along them and zero losses due to fluid viscosity.
No fluid is assumed to be stored within the junction. The
grid points associated with each vessel segment are shown
in Fig. 6.

Equations (1) and (5) can be manipulated (for R ≠ 0) to
obtain the following expression:

Applying the principle of conservation of momentum for
tube a yields:

Expressions similar to (13) and (14) can be written for
tubes b and c. Expanding these equations using a central
difference representation about (k+1/2) time step and fur-
ther manipulation (refer to [18] for derivation details) of
the resulting difference equations give:

and

Equations (15) and (16) along with conservation of mass
given by:

form a system of three nonlinear equations which are
then solved using a Newton-Rhapson iterative scheme
which attempts to simultaneously satisfy Equations (15)
– (17).

Flow was simulated for the aorto-iliac bifurcation and the
resulting numerical values satisfied the conservation of
mass constraint with a 0.02% error (see Table 2).

Numerical stability
The two characteristic paths along which information
propagates in (x,t) space for the governing equations are
given by [18]:

or

where c is the wave speed at zero mean flow.

For the numerical scheme to be stable, the numerical

velocity ( ) of the finite difference scheme has to be

greater than the wave speed of the equations, or else errors
will be introduced which will ultimately grow and make
the solutions unstable. That is:

Substituting (18) into (19) we get:

Velocity of blood is seldom greater than 1 m/s while c is
approximately 5 m/s [32]. Using an α value of 1.1 the sta-
bility criterion is approximately:
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Table 2: Conservation of mass at the aorto-iliac bifurcation 
during steady state

Steady state

Parent vessel
Fp

R (mm) 11.12

V (mm/s) 870.32
F (mm3/s) 338094.74

Daughter Vessel 1
Fd1

R (mm) 8.85

V (mm/s) 727.05
F (mm3/s) 178896.03

Daughter Vessel 2
Fd2

R (mm) 8.26

V (mm/s) 742.39
F (mm3/s) 159126.34
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and this was the condition that was used when determin-
ing the maximum value of ∆t for a given ∆x.

Results
Using the same parameter values as in the previous sec-
tion and an initial condition of 10.2 kPa, the flow in the
mesenteric arterial model shown in Fig. 3 was simulated
using a periodic inlet boundary condition pressure pulse
at the proximal abdominal aorta, varying between 10.2
kPa (77 mmHg) and 14.6 kPa (110 mmHg). This pressure
profile (see Fig. 7) was based on data from [31] and rep-
resents the four distinct cardiac contraction phases-dias-
tole, isovolumic contraction, ejection and isovolumic
relaxation. The exit boundary condition was specified as a
constant pressure of 11 kPa and we believed this was a rea-
sonable value to hold the exit boundary condition at since
at the sizes of the vessels we are interested in, we expect
the exit pressures to be something between the minimum
and the maximum of the input pressure pulse. Using our
simulation software, it is possible to specify temporally
varying exit boundary conditions as well, but any realistic,
time-varying exit boundary conditions corresponding to
the inlet pressure cannot be easily determined. A solution
to this is to include the microcirculation and the venous
network as well and to set the terminal venous pressure to
a low value such as 0 kPa, similar to the work in [18], but
it simply is not a possibility at this stage with the VH
images where majority of the small vessels are either col-
lapsed or simply not visible.

The boundary and initial conditions used in (1), (4) and
(5) are summarized as follows:

The flow equations were solved for pressure, radius and
velocity, but only pressure and velocity results are pre-
sented herein as the radii changes over time were less than
± 5% of initial radius. The observed pressure and velocity
profiles of the 1-D mescenteric artery network at four dis-
tinct times are shown in Figs. 8 and 9.

The above profiles were generated using a time resolution
∆t of 0.2 ms, and a spatial resolution ∆x of 1.3 mm which
guaranteed at least 10 grid points for each vessel segment.
This value of ∆t was chosen based on the stability criterion
(Section II(5)) and was the maximum theoretical time res-
olution that could be used with the smallest spatial discri-
tization. Pushing ∆t to its maximum theoretical limit

helps in reducing simulation time and computational
effort.

Our results indicate that the simulation is numerically sta-
ble and is conserving mass and momentum. The profiles
also show that continuity of pressure is maintained across
all bifurcations points as expected. It is interesting to note
that there is almost always an increase in the pressure
along the vessel proximal to a bifurcation, and this is most
evident during peak ejection (see Fig. 8(c)) where the
pressure gradient in the network is the steepest. This is
because as vessels bifurcate, giving rise to daughter vessels
whose area sum is greater than the area of the parent (i.e.,
an increased vessel wall surface area to volume ratio), the
pressure drops which results in an increased friction fac-
tor. Note that even though the total cross-sectional area
has increased, the cross-sectional area for each daughter

p tinlet( ) =  Temporally varying pressure profile specified inn Fig. 7

 kPap

R R

V

outlet

i i

i

=

=

=

11

0

0 0

0

(21)

Velocity distribution of the 1D mesenteric artery networkFigure 9
Velocity distribution of the 1D mesenteric artery network. 
(a) Velocity distribution during diastole (t = 0.55 s); (b) at the 
end of isovolumic contraction (t = 0.98 s); (c) at peak ejec-
tion (t = 1.31 s); (d) at peak isovolumic relaxation (t = 1.46 
s).

Pressure distribution of the 1D mesenteric artery network at selected timesFigure 8
Pressure distribution of the 1D mesenteric artery network at 
selected times. (a) Pressure distribution during diastole (t = 
0.55 s) (b); at the end of isovolumic contraction (t = 0.98 s); 
(c) at peak ejection (t = 1.31 s); (d) at peak isovolumic relax-
ation (t = 1.46 s).
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vessel has decreased resulting in a decreased velocity and
pressure. Our geometry is consistent with the findings of
[35] where an average area increase of 1.26 was reported
at a bifurcation. No one has ever observed an increase in
area as large as a factor as 2 at any bifurcation [31] and it
is deemed that the vascular resistance measured at any
branch will always be higher than that of the parent since
vascular resistance is largely determined by the radius of
the vessels. It should be noted that some literature have
reported that arterial bifurcations are normally fractal in
nature and follow Murray's law with an exponential factor
usually ranging from 2.3–2.7 [36], but it should also be
noted that in these theoretical studies the vessels are usu-
ally modeled as straight, rigid cylindrical tubes, often with
identical daughter vessels.

Similar to the pressure profiles, a drop in velocity can be
observed at each bifurcation as the area sum of daughter
vessels is greater than the area of the parent. However,
unlike pressure, velocity is not continuous across a bifur-
cation. During the diastole phase, arterial velocity
decreases as the pressure boundary condition at the
descending aorta drops (hence smaller pressure gradients
across the network), while arteriole velocity rises as flow
begins to be transmitted through vessels with smaller
radii. Similar to the observations made by Chakravarty et
al [7] and Pedersen et al [37], a small backflow can be
observed during this phase.

It is interesting to note that the maximum abdominal aor-
tic velocity our simulations give, around 600 mm/s (see
Fig. 9(c)), compares well with the 59 cm/s measured in
vivo by Pedersen et al [37]. Their minimum abdominal
aortic velocity of approximately -10 cm/s also matches
extremely well with our simulated minimum abdominal
aortic velocity (see Fig. 9(b)). With the onset of ejection,
the rapid rise in aortic pressure begins to dominate veloc-
ities. The rising pressure produces a drop in radii in the
low pressure, arteriole network, resulting in an increase in
velocity as blood is squeezed out of these vessels.

We also examined the sensitivity of the constant-terminal-
pressure boundary condition we have used by running the
same simulations as those discussed previously, but hold-
ing the terminal pressures at different values. Temporal
variations in pressure at chosen locations of the arterial
tree were observed, and Figs 10(a–c) show the pressure
variation in the SMA, IMA and the right common iliac
artery with these varying exit pressures. The abdominal
aortic input pressure waveform (similar to Fig. 7) is also
shown for comparison purposes.

Fig. 10(a) shows the minimum sensitivity to the varia-
tions in exit pressure and this is because the SMA is the
closest to the input of the above three arteries and the high

Graphs showing the variation in pressure at various locations in the 1D mesenteric arterial tree, (a) SMA (b) IMA (c) Right common iliac arteryFigure 10
Graphs showing the variation in pressure at various locations 
in the 1D mesenteric arterial tree, (a) SMA (b) IMA (c) Right 
common iliac artery. The pressure keys (9 kPa, 10 kPa and 11 
kPa) in these graphs indicate the exit pressure boundary con-
dition.
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velocities in the abdominal aorta propagate the input
pressure pulse to the SMA with minimal delay. Fig 10(b)
is towards an exit point and the maximum change in pres-
sure observed, compared to the terminal pressure is only
about 0.7 kPa irrespective of the boundary condition. The
amplitude of the input pressure pulse has gradually
decreased towards the common iliac arteries (Fig. 10(c))
although the same waveform can be observed, but with a
slight delay due to propagation delays. Also, it is interest-
ing to note that the minimum propagation delays are
observed when the pressure gradient in the arterial tree is
maximum (that is when the terminal pressures are main-
tained at 9 kPa in the above simulations), which is the
result of increased velocities due to increasing pressure
gradients.

Discussion
We have presented an anatomically realistic computa-
tional model of the major mesenteric arteries (constitut-
ing mainly of the abdominal aorta, SMA, IMA, common
iliac arteries and the middle colic artery) and used it to
simulate normal blood flow. This has been successfully
achieved by digitizing the male VH dataset and creating a
finite element mesh on which a one dimensional numer-
ical computational analysis has been performed. In addi-
tion, we have presented an analytical scheme which can
be used to determine vessel radius at a given location for
a tapering vessel with a steady pressure gradient.

Early diagnosis of mesenteric ischemia is vital and we
believe the framework presented herein can be used to
achieve this ultimate goal. Narrowing of vessels is not
uncommon and with the many redundant systems
(loops) in the mesenteric arterial network, narrowed ves-
sels do not necessarily indicate mesenteric ischemia –
therefore perfusion profiles need to be looked at to get an
indication on the bowel movement. The unstressed radius
(R0) of the mesenteric network of a suspected patient can
be determined using an MRI (or some other screening
technique) and using the techniques presented here, the
radii and velocities at each solution point can be deter-
mined. Using these time varying radii and velocities, per-
fusion profiles can be developed which can then be
examined by a medical expert for early diagnostic pur-
poses.

As pointed out by many authors, including Olufsen et al
[9], Wilson et al [21] and Quarteroni [5], numerical sim-
ulation of the vascular system can offer great insight into
the physiological behavior of the hemodynamics of the
human cardiovascular system. Patient specific geometric
models of the arteries can be created using various imag-
ing modalities such as MRI, CT, X-Ray, MRA and ultra-
sound which can then be used to perform physiologically
realistic numerical simulations. Such a tool can be very

useful in a clinical environment, especially in the diagno-
sis, understanding and monitoring the progression of car-
diovascular diseases.

Our simulations are based on some fundamental assump-
tions (such as Newtonian blood, laminar flow, zero radial
velocity and so on as described in Section II(4)) which are
broadly accepted in published literature for one dimen-
sional models. Apart from these flow assumptions, an
important assumption made is the pressure-radius rela-
tionship where a purely elastic vessel wall is assumed.
Such an assumption was considered acceptable by Saito et
al [33] in their studies as the effects of including a viscoe-
lastic model were fairly minimal, although such viscoelas-
tic walls may have some effect [38]. Also, the vessels are
assumed to be in a maximally dilated state where any
effects of the vascular smooth muscle are not taken into
account.

In our current work, arterial blood flow was simulated
starting from a single vessel segment, which was then
extended to a bifurcation using the conservation of mass
and momentum equations and a constitutive pressure-
radius relationship. The technique was then applied to the
computational mesenteric arterial network that was cre-
ated and the results in the abdominal aortic region show
a realistic pressure and velocity distribution when com-
pared with the in vivo measurements made by [37]. How-
ever, this is by no means an indication that the current
model is without its own set of drawbacks and limita-
tions. One of the main drawbacks of the current model is
that it is based on images from the male VH dataset which
represent the geometry of a deceased person, and there-
fore some of the vessels have either collapsed or are diffi-
cult to identify. Also, the model is based on some material
parameters (such as G0 and β which control the compli-
ance of the vessels) which have not been measured in a
clinical setting. These parameters can be expected to vary
throughout the arterial tree, although a constant value has
been assumed for the entire network in this work mainly
due to the lack of detailed knowledge. However, varying
material parameter values can easily be accommodated
into the existing framework.

Another major drawback with the current model is its ina-
bility to create the capillary and venous networks. It is
possible to assume identical geometries for the arterial
and venous networks and run similar simulations as in
[18] by using a lumped parameter model for the microcir-
culation in the capillary network, but this may not be a
valid assumption since the arterial and venous networks
have considerably different vascular geometries in vivo.
Despite the rapid developments in imaging modalities,
the complexity and the practical limitations associated
with resolving the microvasculature are very likely to
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make lumped parameter models the preferred method for
microcirculation simulations even in the foreseeable
future.

To remedy the issues encountered due to indistinct vessel
boundaries in the male VH images, we now intend to
develop a new model based on MRI images of a healthy
volunteer, which should lead to a better anatomical
description of the network of a living human. Modeling
mesenteric arterial blood flow will hopefully increase our
understanding of blood supply to the intestine and help
us develop a generic model of the mesenteric arteries (to
some extent similar to the work that has been done on the
human heart [19]) with a range of acceptable vessel radii
values and geometries, which patient specific models can
be compared against.

Ultimately, we intend to use our model to simulate
ischemic conditions as occur in those suffering from
mesenteric ischemia. This can also be easily accommo-
dated into the existing framework as R0, the most notice-
able change during a stenotic condition is already a model
parameter. Future work will involve using that complete
model to simulate compromised blood flow as seen dur-
ing mesenteric ischemia. This will allow us to assess the
degree to which different levels of flow restrictions in dif-
ferent vessels affect different regions of the network.

Conclusion
A computational model of the major arteries of the gas-
trointestinal system has been developed based on VH
images, which shows anatomically and physiologically
realistic geometries. Blood flow during normal conditions
has been simulated using this computational model and
results indicate that numerical flow modeling on a com-
plex system such as the mesenteric network is feasible and
would yield realistic flow profiles.
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