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Abstract. Mechanisms governing phosphorus (P) speciation

in coastal sediments remain largely unknown due to the di-

versity of coastal environments and poor analytical speci-

ficity for P phases. We investigated P speciation across salin-

ity gradients comprising diverse ecosystems in a P-enriched

estuary. To determine P load effects on P speciation we

compared the high P site with a low P site. Octacalcium

phosphate (OCP), authigenic apatite (carbonate fluorapatite,

CFAP) and detrital apatite (fluorapatite) were quantitated in

addition to Al / Fe-bound P (Al / Fe-P) and Ca-bound P (Ca-

P). Gradients in sediment pH strongly affected P fractions

across ecosystems and independent of the site-specific to-

tal P status. We found a pronounced switch from adsorbed

Al / Fe-P to mineral Ca-P with decreasing acidity from land

to sea. This switch occurred at near-neutral sediment pH and

has possibly been enhanced by redox-driven phosphate des-

orption from iron oxyhydroxides. The seaward decline in

Al / Fe-P was counterbalanced by the precipitation of Ca-

P. Correspondingly, two location-dependent accumulation

mechanisms occurred at the high P site due to the switch,

leading to elevated Al / Fe-P at pH < 6.6 (landward; adsorp-

tion) and elevated Ca-P at pH > 6.6 (seaward; precipitation).

Enhanced Ca-P precipitation by increased P loads was also

evident from disproportional accumulation of metastable Ca-

P (Ca-Pmeta) at the high P site. Here, sediments contained on

average 6-fold higher Ca-Pmeta levels compared with the low

P site, although these sediments contained only 2-fold more

total Ca-P than the low P sediments. Phosphorus species dis-

tributions indicated that these elevated Ca-Pmeta levels re-

sulted from transformation of fertilizer-derived Al / Fe-P to

OCP and CFAP in nearshore areas. Formation of CFAP as

well as its precursor, OCP, results in P retention in coastal

zones and can thus lead to substantial inorganic P accumula-

tion in response to anthropogenic P input.

1 Introduction

Desorption and precipitation of phosphate along salinity gra-

dients are influenced by redox potential (Eh) and pH (van

Beusekom and de Jonge, 1997). Typically, Eh decreases and

pH increases from land to the sea (Clarke, 1985; Huang and

Morris, 2005; Sharp et al., 1982). Seawater inundation in-

duces the Eh gradient by limiting oxygen diffusion into the

sediment, thereby initiating anaerobic respiration. Sediments

regularly inundated by seawater tend to have higher pH val-

ues than terrestrial soils because soils naturally acidify due to

vegetation-derived inputs (effects of enhanced carbonic acid

production, root exudate release, litter decomposition, proton

extrusion). Human activities such as N fertilization can also

contribute to soil acidification (Fauzi et al., 2014; Hinsinger

et al., 2009; Richardson et al., 2009). The acid generated is

neutralized downstream by the high alkalinity of seawater.

Changes in pH and Eh facilitate phosphorus (P) desorp-

tion from particulate matter and generally account for the

non-conservative behaviour of dissolved reactive P during

admixing of water along salinity gradients. Particulate P in-

cludes a significant amount of inorganic P, which mainly con-

sists of calcium-bound P (Ca-P; detrital and authigenic) and

aluminium / iron-bound P (Al / Fe-P). The Al / Fe-P fraction
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724 J. F. Oxmann and L. Schwendenmann: Calcium phosphate formation across salinity gradients

contains adsorbed inorganic P (Al / Fe-(hydr)oxide-bound

P), which can be partly released to solution (e.g. Slomp,

2011). The Al / Fe-P fraction of oxidized, acidic sediment

usually comprises relatively large proportions of adsorbed P.

Phosphate desorption induced by pH and Eh gradients gen-

erally results in progressively decreasing concentrations of

the Al / Fe-P from upper to lower intertidal zones (Andrieux-

Loyer et al., 2008; Coelho et al., 2004; Mortimer, 1971; Jor-

dan et al., 2008; Paludan and Morris, 1999; Sutula et al.,

2004).

Decreasing Eh in sediment from upper to lower zones in-

volve critical levels for reduction of ferric iron compounds

(e.g. Gotoh and Patrick, 1974). These critical levels facili-

tate desorption of Fe-(hydr)oxide-bound P due to less effi-

cient sorption of P by iron in the Fe(II) state compared to the

Fe(III) state (Hartzell and Jordan, 2012; Sundareshwar and

Morris, 1999). Desorption from metal (hydr)oxides with in-

creasing pH (Oh et al., 1999; Spiteri et al., 2008), on the other

hand, is driven by the decreasing surface electrostatic poten-

tial with increasing pH (Barrow et al., 1980; Sundareshwar

and Morris, 1999). This effect may be partly offset by the

increasing proportion of the strongly sorbing divalent phos-

phate ion (HPO2−
4 ) with increasing pH until pH 7 (∼pK2,

which decreases with salinity increase; Atlas, 1975). In the

alkaline pH range, however, this offset is less pronounced

thus allowing stronger desorption (Bolan et al., 2003; Bow-

den et al., 1980; Haynes, 1982). Similarly, studies on soils

attributed desorption with pH to increasing competition be-

tween hydroxyl and phosphate ions for sorption sites, or to

less sorption sites due to Al hydroxide precipitation (Anjos

and Roswell, 1987; Smyth and Sanchez, 1980).

The release of P adsorbed on Al / Fe-(hydr)oxide facili-

tates Ca-P formation at higher pH (e.g. during early diage-

nesis in marine sediment; Heggie et al., 1990; Ruttenberg,

2003; Ruttenberg and Berner, 1993; Slomp, 2011). Conse-

quently, desorption at higher pH does not necessarily in-

crease soluble P (van Cappelen and Berner, 1988; Reddy and

Sacco, 1981). This agrees with a switch from low phosphate

concentrations in equilibrium with adsorbed P at acidic pH

to low phosphate concentrations in equilibrium with mineral

Ca-P under alkaline conditions (e.g. Murrmann and Peech,

1969). Low equilibrium concentrations under alkaline condi-

tions are a result of the decreasing solubility of Ca-P phases,

such as carbonate fluorapatite (CFAP) and octacalcium phos-

phate (OCP), with increasing pH (Hinsinger, 2001; Mur-

rmann and Peech, 1969). Precipitation of Ca-P may therefore

mitigate a desorption-derived P release from sediment (e.g.

van Beusekom and de Jonge, 1997). Similarly, Ca-P precipi-

tation is likely to result in the occasionally observed and ap-

parently conflicting decrease of available P by liming to neu-

tral or alkaline pH (Bolan et al., 2003; Haynes, 1982; Naidu

et al., 1990). Accordingly, concentrations of Ca-P usually in-

crease seaward as a consequence of enhanced precipitation

(Andrieux-Loyer et al., 2008; Coelho et al., 2004; Paludan

and Morris, 1999; Sutula et al., 2004).

Authigenic Ca-P is widely dispersed in marine sediment,

but its solubility in seawater remains difficult to predict. Be-

cause seawater has been proposed as being largely undersat-

urated or close to saturation with respect to CFAP, both a

possible formation or dissolution of CFAP in seawater can-

not be entirely excluded at present (Atlas and Pytkowicz,

1977; Baturin, 1981; Bentor, 1980; Faul et al., 2005; Lyons et

al., 2011). In contrast, detrital fluorapatite (FAP) is unlikely

to dissolve in seawater (Ruttenberg, 1990; Howarth et al.,

1995). In addition to the dependence on species-specific sat-

uration states (Atlas, 1975; Gunnars et al., 2004), the occur-

rence of Ca-P minerals depends on their formation kinetics

(Atlas and Pytkowicz, 1977; Gulbrandsen et al., 1984; Gun-

nars et al., 2004; Jahnke et al., 1983; Schenau et al., 2000;

Sheldon, 1981) and inhibitors such as Mg2+ ions (Golubev et

al., 1999; Gunnars et al., 2004; Martens and Harriss, 1970).

In general, the first solid to form is the one which is ther-

modynamically least favoured (Ostwald step rule; see Morse

and Casey, 1988 and Nancollas et al., 1989).

Given slow or inhibited direct nucleation (Golubev et al.,

1999; Gunnars et al., 2004; Martens and Harriss, 1970),

species of the apatite group may form by transformation of

metastable precursors that are less susceptible to inhibitory

effects of Mg2+ such as OCP (Oxmann, 2014; Oxmann and

Schwendenmann, 2014). Precursor phases form more readily

(e.g. days to weeks for OCP; Bell and Black, 1970) and can

promote successive crystallization until the thermodynami-

cally favoured but kinetically slow apatite formation occurs

(ten to some thousand years; Schenau et al., 2000; Jahnke

et al., 1983; Gulbrandsen et al., 1984). Several studies pre-

sented field and experimental evidence for this mode of ap-

atite formation in sediment systems (Gunnars et al., 2004;

Jahnke et al., 1983; Krajewski et al., 1994; Oxmann and

Schwendenmann, 2014; Schenau et al., 2000; van Cappellen

and Berner, 1988). A systematic comparison of P K-edge

XANES (X-ray absorption near-edge structure spectroscopy)

fingerprints from reference materials and marine sediment

particles also provided evidence for the occurrence of OCP

in sediment (Oxmann, 2014). However, despite significant

progress in the determination of different matrix-enclosed

Ca-P phases, it is not yet clear whether specific conditions

at certain locations facilitate successive or direct crystalliza-

tion of apatite (Slomp, 2011).

Provided more soluble Ca-P minerals such as OCP or less

stable CFAP form in coastal environments, these minerals

might mirror short-term changes of human alterations to the

P cycle. Conversely, sparingly soluble apatite minerals may

reflect long-term changes due to slow precipitation. Hence,

the proportion of more soluble Ca-P should increase relative

to total Ca-P in response to increased P inputs. This human

alteration to the solid-phase P speciation may have impli-

cations for P fluxes and burial. To better describe P trans-

formations from terrestrial to marine systems and to track

the fate of anthropogenic P inputs, we analysed effects on P

fractions and species across different ecosystems of a high P

Biogeosciences, 12, 723–738, 2015 www.biogeosciences.net/12/723/2015/
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Figure 1. Study area. (a) Location of the Firth of Thames, North Island, New Zealand. The area of the catchment area, which is predominantly

used for pastoral agriculture (1.3 million ha), is shown in green. (b) Firth of Thames transects across different ecosystems. (c) Plots (n= 28)

along transects were located in the following ecosystems: bay (dark blue), tidal flat (blue), mangrove (light green), salt marsh (green) and

pasture (dark green). Tidal flat plots close to mangrove forests included mangrove seedlings. Five additional plots were located at rivers

(grey). Isolines indicate elevations in metres below mean sea level. Google Earth images for areas from pasture to tidal flat in (c).

site (Firth of Thames, New Zealand). We then compared the

findings with results from a low P site (Saigon River delta,

Vietnam) to distinguish speciation differences related to in-

creased P loads. Octacalcium phosphate, authigenic apatite

and detrital apatite were determined using a recently val-

idated conversion–extraction method (CONVEX; Oxmann

and Schwendenmann, 2014).

2 Materials and methods

2.1 Study area, Firth of Thames, New Zealand

The Firth of Thames, a meso-tidal, low-wave energy es-

tuary of the Waikato region rivers Waihou and Piako, is

located at the southern end of the Hauraki Gulf (37◦ S,

175.4◦ E; Fig. 1). It is the largest shallow marine embay-

ment in New Zealand (800 km2; < 35 m depth). The tides are

semi-diurnal with a spring tide range of 2.8 m and a neap tide

range of 2.0 m (Eisma, 1997). The southern shore of the bay

(∼ 7800 ha) is listed as a wetland of international importance

under the Ramsar Convention. The Firth of Thames encom-

passes large tidal flats (up to 4 km wide) and extensive ar-

eas of mangroves (Avicennia marina subsp. australasica) at

the southern end of the embayment (Brownell, 2004). Man-

groves have been expanding seawards leading to a 10-fold

increase in area since the mid-1900s (Swales et al., 2007).

Mangrove expansion has been related to sediment accumula-

tion and nutrient enrichment but may also coincide with cli-

matic conditions (Lovelock et al., 2010; Swales et al., 2007).

The upper coastal intertidal zone is covered by salt marshes.

Behind the levee ca. 1.3 million ha is used for pastoral agri-

culture (∼ half of the total area of the Waikato region; Hill

and Borman, 2011; Fig. 1a).

2.2 Sampling, field measurements and sample

preparation

We established 28 plots along three transects (Fig. 1b, c).

Transects extended across the entire tidal inundation gradi-

ent and across different ecosystems including bay (n= 4),

tidal flat (n= 6), mangrove (n= 9), salt marsh (n= 6) and

pasture (n= 3). Transects were at least 300 m from rivers to

exclude areas affected by sediment aeration. Five additional

plots were located along rivers. Sediment cores were taken

during low tide using a polycarbonate corer (one core per

plot; length: 40 cm; diameter: 9 cm). Immediately after core

sampling, sediment pH, Eh and temperature were measured

www.biogeosciences.net/12/723/2015/ Biogeosciences, 12, 723–738, 2015



726 J. F. Oxmann and L. Schwendenmann: Calcium phosphate formation across salinity gradients

in situ at 0–5, 10–15, 30–35 and 35–40 cm depth intervals.

Cores were divided into the following surface, intermedi-

ate and deeper sections: 0–5, 10–15, 30–35 and 35–40 cm.

Longer core sections reduce vertical variability and were

chosen for the relatively coarse vertical sampling because the

focus of this study was on geochemical changes along the

land–sea continuum. Samples were kept on ice and subse-

quently frozen until further processing. After thawing roots

were removed from the sediment samples. Subsamples were

then taken for particle size and salinity analysis. The remain-

ing material was dried, ground and sieved (37 ◦C; < 300 µm

mesh; PM 100; Retsch, Haan, Germany) for P and nitrogen

analyses.

Temperature, pH and Eh were measured with a Pt-100

temperature sensor, sulfide resistant SensoLyt SEA/PtA elec-

trodes and pH/Cond340i and pH 3310 mV meters (WTW,

Weilheim, Germany). The mV meters were connected to a

computer with optoisolators (USB-isolator; Serial: 289554B;

Acromag Inc., Wixom, USA) for data visualization and log-

ging (MultiLab pilot; WTW, Weilheim, Germany). Topo-

graphic elevation at the plots was measured with a total sta-

tion (SET530R; Sokkia Co., Atsugi, Japan) relative to a refer-

ence point and converted to geo-referenced elevation using a

global navigation satellite system (Trimble R8; Trimble Nav-

igation Ltd., Sunnyvale, USA). Inundation duration was cal-

culated from measured elevation above mean sea level and

local tide tables (Waikato Regional Council, Hamilton East,

New Zealand).

2.3 Sediment analyses

Phosphorus fractions and total P were analysed using three

different methods. (i) The relative proportion of more solu-

ble Ca-P was determined by preferential extraction of this

fraction using the Morgan test method (Morgan, 1941); (ii)

Al / Fe-P and Ca-P fractions were determined by sequential

extraction of P after Kurmies (1972); and (iii) total P (TP)

was analysed after Andersen (1976) as modified by Ostrof-

sky (2012). The Morgan test, commonly used to determine

available P, preferentially extracts more soluble Ca-P phases

using a pH 4.8 buffered acetic acid (see Sect. 4.4). Hence,

the term metastable Ca-P (Ca-Pmeta) is used for Morgan P

in this paper. The method of Kurmies includes initial wash

steps with KCl / EtOH to eliminate OCP precipitation prior

to the alkaline extraction and Na2SO4 extractions to avoid re-

adsorption. It therefore provides an accurate means of deter-

mining Al / Fe-P and Ca-P using NaOH and H2SO4, respec-

tively (Supplement Fig. S2c; steps 2a–3c). Total inorganic P

(TIP) was defined as the sum of inorganic P fractions (Ca-P,

Al / Fe-P). Organic P was calculated by subtracting TIP from

TP.

Octacalcium phosphate, CFAP (authigenic apatite) and

FAP (detrital apatite) were quantitated using the CONVEX

method (Oxmann and Schwendenmann, 2014). This method

employs a conversion procedure by parallel incubation of

sediment subsamples at different pH values (approximate

pH range 3 to 8) in 0.01 M CaCl2 for differential dissolu-

tion of OCP, CFAP and FAP (Fig. S2c). The concentration

of OCP, CFAP and FAP is determined by the difference of

Ca-P concentrations before and after differential dissolution

of OCP, CFAP and FAP, respectively. These Ca-P concen-

trations are determined by the method of Kurmies. Differ-

ential dissolution was verified by standard addition exper-

iments. For these experiments, reference compounds were

added to the sediment subsamples before incubation using

polyethylene caps loaded with 2 µmol P g−1 (ultra-micro bal-

ance XP6U; Mettler Toledo GmbH, Greifensee, Switzer-

land). Reference compounds included OCP, hydroxylapatite

(HAP), various CFAP specimens, FAP and biogenic apatite.

Methodology, instrumentation and the suite of reference min-

erals are described in Oxmann and Schwendenmann (2014).

CONVEX analysis was conducted for seven sediment sam-

ples (differential dissolution shown in Fig. S2a, b), which

covered the observed pH gradient and included sediments

from each ecosystem. The sum of OCP and CFAP represents

more soluble Ca-P (similar to Ca-Pmeta) and was termed Ca-

POCP+CFAP. Phosphate concentrations in chemical extracts

were determined after Murphy and Riley (1962) using a

UV–visible spectrophotometer (Cintra 2020; GBC Scientific

Equipment, Dandenong, Australia).

Particle size was analysed using laser diffractometry (Mas-

tersizer, 2000; Malvern Instruments Ltd., Malvern, UK; sed-

iment dispersed in 10 % sodium hexametaphosphate solu-

tion). Salinity was determined by means of a TetraCon

325 electrode (WTW, Weilheim, Germany; wet sediment to

deionized water ratio: 1 : 5). Nitrogen content was measured

using a C / N elemental analyzer (TruSpec CNS; LECO soil

1016 for calibration; LECO Corp., St. Joseph, USA).

Concentrations of P fractions and proportions of more sol-

uble Ca-P phases in sediments of the Firth of Thames site

were compared with those of a contrasting low P site in the

Saigon River delta (Oxmann et al., 2008, 2010). The site was

located in the UNESCO Biosphere Reserve Can Gio close to

the South China Sea and was not significantly influenced by

anthropogenic P inputs. The region is not used for agricul-

ture and the Saigon River downriver from Ho Chi Minh City

(ca. 50 km from the study site) did not contain high levels of

P (Schwendenmann et al., unpublished data). In contrast, the

physical–chemical sediment characteristics measured at the

two sites were comparable. For example, pH, Eh and salinity

showed similar gradients along the land–sea transects of both

sites and these parameters had similar ranges and mean val-

ues for mangrove sediments of both sites (Sect. 3.4). An area

of acid sulfate sediments at the low P site was analysed sep-

arately and confirmed results of the site comparison despite

its significantly lower pH values (Sect. 3.4).

Biogeosciences, 12, 723–738, 2015 www.biogeosciences.net/12/723/2015/
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Figure 2. Physical–chemical sediment characteristics – (a): pH; (b): Eh – and sediment phosphorus fractions – (c): Ca-P; (d): Al / Fe-P –

across ecosystems at the Firth of Thames. Each depth interval includes average values of several plots of each ecosystem across the entire site

(all transects; see Table S1 for the number of averaged data and their values). Mean values of all depth intervals (112 samples) are also shown

for each parameter. Mean fraction concentrations in % of total inorganic P (TIP) are given in (c) and (d); x axis labels include mean distance

(Dist, metres, mangrove seaward margin is set as zero) and mean inundation durations (ID; days yr−1); r and p values for correlations among

these parameters are given in Table 1.

3 Results

3.1 Particle size, pH and Eh

Inundation duration ranged from 365 days yr−1 in the bay to

0 days yr−1 in the pastures (Supplement Table S1). Clay, silt

and sand fractions varied between 0 and 20, 60 and 80 and 0

and 30 %, respectively (not shown). Particle size distribution

differed only slightly among transects. In contrast, consider-

able differences in particle size distribution were found along

transects with higher silt and lower sand contents in man-

grove plots. Salinity decreased from the bay (32 ‰) to tidal

flats (21 ‰). The highest values were measured in the man-

groves (35 ‰), which declined to 25 ‰ in the salt marshes

and 0 ‰ in the pastures (Table S1). Sediment water content

ranged between 60 and 70 % in the bay, tidal flat and man-

grove fringe plots and decreased to 20–30 % in the pastures

(not shown).

Sediment pH ranged from 5.18 in the pastures to 7.4 in the

bay (Fig. 2a, b; Table S1). Redox potential varied between

621 mV in the pastures and −141 mV in the bay (Fig. 2a,

b; Table S1). This pronounced and relatively constant pH

increase and Eh decrease towards the bay was closely cor-

related with inundation duration (Fig. 2a, b; p < 0.0001).

While systematic differences among depth intervals were

less apparent for pH, Eh typically decreased with increasing

sediment depth (Fig. 2b).

3.2 Phosphorus fractions: transformations

Ecosystem-averaged Ca-P concentrations varied consider-

ably and ranged from 3.37 µmol g−1 (pastures, 0–5 cm)

www.biogeosciences.net/12/723/2015/ Biogeosciences, 12, 723–738, 2015
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Table 1. Correlations between physical–chemical sediment characteristics and P fractions at P-enriched transects of the Firth of Thames,

New Zealand.

Correlation n Subseta r pb

pH vs. Eh 112 −0.83561 2.2× 10−30

Ca-P vs. pH 112 0.60525 1.6× 10−12

Ca-P vs. Ca-Pmeta 112 0.57074 5.0× 10−11

Al/Fe-P vs. Eh 112 0.54742 4.2× 10−10

Al/Fe-P vs. pH 28 0–5 cm −0.81043 1.7× 10−07c

Ca-Pmeta vs. pH 112 0.44885 6.9× 10−07

Al/Fe-P vs. pH 112 −0.43497 1.6× 10−06c

Al/Fe-P vs. Eh 77 pH > 6.6 0.50890 2.3× 10−06

Al/Fe-P vs. Eh 28 Surface 0.75979 2.7× 10−06

Al/Fe-P vs. pH 77 pH > 6.6 −0.48749 6.9× 10−06

Ca-P vs. Salinity 112 0.39824 1.4× 10−05

Ca-Pmeta vs. Eh 112 −0.26717 4.4× 10−03

Ca-P vs. Al/Fe-P 112 −0.26236 5.2× 10−03d

Al/Fe-P vs. Eh 35 pH < 6.6 0.15496 NS

Al/Fe-P vs. Ca-Pmeta 112 0.09103 NS

Al/Fe-P vs. Salinity 112 −0.13359 NS

Al/Fe-P: Al/Fe-bound P; Ca-P: calcium-bound P; Ca-Pmeta: metastable Ca-P. a Blank rows indicate

complete sample set analysed. b All correlations with organic P non-significant. c Surface layer showed

a stronger correlation between Al / Fe-P and pH than the complete data set because other depth intervals

showed a peak at pH 6.6 (see Fig. 3c). d Note that r and p values of Ca-P vs. Al / Fe-P strongly depend

on selected pH intervals (cf. Fig. 3c). NS: non-significant

Table 2. Phosphorus fractions at different pH intervals in sediments of the high P site (Firth of Thames) and low P site (Saigon River delta).a

Site n pH Ca-P Al / Fe-P

µmol g−1 µmol g−1

< 6.6 > 6.6 < 6.6 > 6.6 < 6.6 > 6.6 < 6.6 > 6.6

High P 35 72 5.9 7.0 5.92 7.69 13.65 8.90

Low P 66 23 6.0 6.9 3.55 4.10 8.03 7.89

% Increase +49 + 88 + 70 +13

Ca-P: calcium-bound P (mean); Al / Fe-P: Al / Fe-bound P (mean). a The analysis was restricted to

sediments at overlapping pH intervals for both sites (pH < 6.6: 4.83–5.99; pH > 6.6: 6.01–7.47) to compare

the increase for similar mean pH values at the lower (average pH∼ 6) and upper (average pH∼ 7) pH

intervals. Note the pH-dependent accumulation of Al / Fe-P and Ca-P (bold; Sect. 4.4).

to 11.37 µmol g−1 (bay, 10–15 cm) (Fig. 2c, d; Ta-

ble S1). In contrast, Al / Fe-P was highest in the pas-

tures (17.9 µmol g−1; 0–5 cm) and lowest in the bay

(3.94 µmol g−1; 30–35 cm). On average, the lowest Ca-P

and the highest Al / Fe-P concentrations were measured in

0–5 cm depth (Fig. 2c, d). Averaged percentages of Ca-

P (% of TIP) steadily increased and averaged percentages

Al / Fe-P (% of TIP) steadily decreased from pastures to

bay (Fig. 2c, d). Along the marked downstream transition

from Al / Fe-P (2.7-fold decrease) to Ca-P (2.6-fold in-

crease), the average drop in Al / Fe-P from pastures to bay

approximately matched the average Ca-P increase (−8.27

vs. +6.73 µmol g−1; averages across all plots and depth in-

tervals of each ecosystem; Table S1). Furthermore, mean

Al / Fe-P concentrations in the different systems were neg-

atively correlated with those of Ca-P (r =−0.66, p < 0.001;

Table S1). In addition, the decline in Al / Fe-P with depth

was counterbalanced by the Ca-P increase with depth (−1.16

vs. +1.18 µmol g−1; Table S1). Pastures were excluded from

estimating these changes with depth because here the large

loss of Al / Fe-P with depth was not counterbalanced by Ca-

P (apparent surface runoff: −6.00 vs. +0.69 µmol g−1; Ta-

ble S1).

3.3 Phosphorus fractions: P load, pH and Eh effects

Mean sediment Ca-P concentration at the high P site was

approximately twice the level of Ca-P at the low P site

(Fig. 3a). Mean sediment Al / Fe-P concentration was ap-

proximately 30 % higher at the high P site compared to the

low P site. However, at both sites Ca-P increased strongly

with pH (Fig. 3a). Al / Fe-P showed a peak at ∼ pH 6.6
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Table 3. Phosphorus fractions in mangrove sediments of the high P site (Firth of Thames) and low P site (Saigon River delta).

Mangrove n pH Eh Ca-P Al / Fe-P Ca-Pmeta Ca-Pmeta

site mV µmol g−1 µmol g−1 µmol g−1 (% of Ca-P)

High P 48 6.8 95 6.91 10.44 2.35 34

Low P 64 6.4 66 3.85 8.36 0.40 10

Low Pa
acid

(32) (5.0) (240) (2.78) (6.26) (0.27) (10)

% Increaseb +80 (+150) +25 (+65) +482 (+800) +240 (+240)

Ca-P: calcium-bound P (mean); Al / Fe-P: Al / Fe-bound P (mean); Ca-Pmeta: metastable Ca-P (mean). a Area of acid sulfate

sediments in mangroves of the low P site. b Percentages of P fraction increase at the high P site in comparison to the low P site (bold),

which had similar pH and Eh values. Values for a comparison of the high P site with an area of acid sulfate sediments (Low Pacid) in

parentheses.

Table 4. Correlation coefficients (for p < 0.05) between concentrations of P fractions, OCP, CFAP, FAP and pH in sediments analysed for

particular Ca-P species.a

Al / Fe-P Res. P pH FAP CFAP OCP Ca-P OCP+CFAP Ca-Pmeta

Res. P 0.88∗∗∗∗

pH b –

FAP – – –

CFAP – 0.69∗∗ – –

OCP – – – – –

Ca-P b – 0.68* – 0.77∗∗ 0.81∗∗∗

OCP+CFAP – – 0.88∗∗∗∗ – 0.65∗ 0.67∗ 0.79∗∗

Ca-Pmeta – – – – 0.84∗∗c – 0.76∗c 0.74∗c

TIP 0.95∗∗∗∗ 0.91∗∗∗∗ – – 0.66∗ – – – 0.69∗c

TIP: total inorganic P; Al / Fe-P: Al / Fe-bound P; Ca-P: calcium-bound P; Ca-Pmeta: metastable Ca-P; OCP: octacalcium phosphate; CFAP: carbonate

fluorapatite; FAP: fluorapatite; Res. P: residual P. NS is non-significant; ∗ is 0.05 level; ∗∗ is 0.01 level; ∗∗∗ is 0.001 level; ∗∗∗∗ is 0.0001 level. a Species

distributions shown in Fig. 5. b See Fig. 3 for correlations among Ca-P, Al / Fe-P and pH using a larger set of fraction data. c n= 9; for all other correlations

n= 13.

(Fig. 3b). Thus, despite large differences in P fraction con-

centrations between the two sites pH dependencies of both

fractions were similar, except for Al / Fe-P concentrations

in 0–5 cm depth. Concentrations of Al / Fe-P in this depth

range showed a continuous decrease with pH at the high P

site due to high Al / Fe-P levels in acidic surface sediment of

the pastures (linear regression in Fig. 3b; Table 1; r =−0.81,

p < 0.0001).

In sediments with pH < 6.6 the average concentration of

Al / Fe-P was 70 % higher at the high P site than at the low

P site (Table 2; Fig. 3b). Despite these largely elevated levels

of Al / Fe-P at topographically higher areas, Al / Fe-P was

only slightly increased (13 %) in the lower intertidal zones

and the bay (pH > 6.6; Table 2; Fig. 3b). Calcium phosphate

in contrast showed the opposite pattern of enrichment at the

high P site. In comparison to the low P site the average con-

centration of Ca-P was only 49 % higher in the upper inter-

tidal zones and pastures (pH < 6.6) but increased by 88 %

in the lower intertidal zones and the bay (pH > 6.6; Table 2;

Fig. 3a).

Although Ca-P and Al / Fe-P clearly showed opposite

trends along the three transects of the high P site (Fig. 2c,

d), both fractions increased strongly with pH below pH 6.6

(Fig. 3a, b). Both fractions were positively correlated at

pH < 6.6 (shown in Fig. 3c for lower depth of both sites). At

pH > 6.6, however, Ca-P increased further, whereas Al / Fe-

P abruptly decreased (cf. Fig. 3a and b). Because this switch

occurred in the landward to seaward direction, it is in agree-

ment with the observed Ca-P increase and Al / Fe-P decrease

towards the bay (Fig. 2c, d).

3.4 Metastable calcium phosphate

Metastable Ca-P (Ca-Pmeta) increased strongly with pH

(Fig. 4a; Firth of Thames cross-data-set correlations in Ta-

ble 1), similar to Ca-P (Fig. 3a), and correlated with Ca-P

at both sites (Fig. 4b; Table 1). Yet sediments of the high

P site contained on average 6-fold higher concentrations of

Ca-Pmeta compared with the low P site (Fig. 4c). In contrast,

sediments of the high P site contained only 2-fold more total

Ca-P than those of the low P site (Fig. 3a). On average, Ca-

Pmeta comprised ca. 35 % of total Ca-P at the high P site and

only 10 % at the low P site (Fig. 4d).

To verify that the higher Ca-Pmeta concentrations were

not a consequence of site-specific differences in vegetation

or physical–chemical sediment conditions we restricted the

comparison to mangrove plots, which showed similar ranges

and mean values of pH, Eh and salinity at both sites (Firth of
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Figure 3. Changes of sediment phosphorus fractions (Al / Fe-P; Ca-P) as a function of pH and Eh variations at transects at the Firth of

Thames (NZ) and Saigon River delta (VN) site. (a) Ca-P increase with pH (exponential; both sites, all samples). Mean Ca-P concentration

of Firth of Thames samples ca. twice that of Saigon River delta samples. (b) Al / Fe-P peak at ∼ pH 6.6 due to increase below and decrease

above that value (exponential; both sites, all samples). (c) Linear regressions between Al / Fe-P and Ca-P at deeper depths (30–35, 35–40 cm)

for different pH intervals (cf. Fig. 3a, b). Arrows indicate switch from Al / Fe-P to Ca-P with increasing pH (seaward direction). (d) Eh vs.

pH (NZ; all samples). Different symbols denote surface (0–5 cm), intermediate (10–15 cm) and deeper depth intervals (30–35, 35–40 cm) in

(a), (b) and (d). Symbols for VN data marked with cross in (c). Smoothing by averaging 10 adjacent Eh values of pH sorted data in (d). See

text for linear regression in (b).

Thames: pH 5.8–7.1,−160–450 mV, 25–50 ‰; Saigon River

delta: pH 5.7–7.0, −180–400 mV; 25–40 ‰; Table 3). This

adjustment did not change the results. The difference in Ca-

Pmeta concentrations between mangrove plots of the two sites

was just as disproportionate when compared to the difference

in total Ca-P concentrations between those plots (6-fold vs.

2-fold). The portion of Ca-Pmeta was still ca. 35 % at the high

P site and 10 % at the low P site (Table 3). Moreover, the

proportion of Ca-Pmeta to total Ca-P was equally low for an

area of acid sulfate sediments of the low P site (10 %) de-

spite its very different average pH and Eh values (Table 3).

In summary, comparatively large amounts of metastable Ca-

P accumulated at the high P site.

3.5 Octacalcium phosphate and authigenic apatite

Distributions of OCP, authigenic apatite and detrital apatite

were related to the pH at both sites. Strongly acidic sediments

(∼ pH < 4) contained just detrital apatite (FAP), whereas

slightly acidic sediments (∼ pH 4–7) contained also authi-

genic apatite (CFAP). Octacalcium phosphate was addition-

ally present in alkaline mangrove, river, bay and tidal flat

Biogeosciences, 12, 723–738, 2015 www.biogeosciences.net/12/723/2015/



J. F. Oxmann and L. Schwendenmann: Calcium phosphate formation across salinity gradients 731

Figure 4. Accumulation and pH dependence of metastable Ca-P (Ca-Pmeta) along transects at the Firth of Thames (NZ) site compared to

the Saigon River delta (VN) site. (a) Increase of Ca-Pmeta with pH (exponential; 30–35 cm). (b) Linear regressions of Ca-Pmeta vs. total

Ca-P (all plots and depths; NZ: r = 0.57, p < 0.0001; VN: r = 0.50, p < 0.0001). (c) Ca-Pmeta vs. pH (all plots and depths). Mean Ca-Pmeta

concentration at the Firth of Thames site ca. 6 times that of the Saigon River delta site. (d) Ca-Pmeta in % of total Ca-P vs. pH (all plots and

depths). Mean percentage ca. 3.5 times higher for the Firth of Thames site. Note different axis ranges for the two sites in (a) and (b).

sediments. Hence, the concentration of more soluble Ca-

POCP+CFAP (hatched area in Fig. 5) significantly increased

with pH (r = 0.88, p < 0.0001; Table 4). However, the por-

tion of Ca-POCP+CFAP as a percentage of total Ca-P was sig-

nificantly larger (70.5± 17.5 %; numbers above columns in

Fig. 5) for sediments of the high P site compared to the low P

site (29.5± 26.0 %, t(11)= 3.346, p = 0.0065). This larger

portion of Ca-POCP+CFAP provided supporting evidence for

the larger portion of Ca-Pmeta in sediments of the high P

site (cf. Sect. 3.4). Overall, more soluble Ca-P determined

by the two independent methods (CONVEX method: Ca-

POCP+CFAP; Morgan test: Ca-Pmeta) yielded comparable re-

sults. Accordingly, corresponding values obtained by the two

methods were significantly correlated (r = 0.74, p < 0.05;

Table 4).

4 Discussion

4.1 Phosphorus status, Firth of Thames

The Firth of Thames sediments were high in P compared to

the Saigon River delta site and sediments from other coastal

areas (Tables 3 and S3; Figs. 3, 4). Total P concentrations

measured along the three transects are classified as enriched

(> 16 µmol P g−1) and very enriched (> 32 µmol P g−1) ac-

cording to the New Zealand classification system (Robertson

and Stevens, 2009; Sorensen and Milne, 2009). This is due

largely to high P fertilizer application rates, which constitute

the main P source (∼ 90 %) to the watershed (Waikato re-

gion; total input: 41 Gg P yr−1; fertilizer: 37 Gg P yr−1; rate:

28 kg P ha−1 yr−1; atmosphere and weathering: 4 Gg P yr−1;

Parfitt et al., 2008). A significant increase in TP is correlated

with intensification of pastoral farming and contributes to
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Figure 5. Phosphorus species distributions in sediments of different ecosystems at the Firth of Thames (NZ) and Saigon River delta (VN),

ordered by pH (all concentrations in µmol P g−1). The top axis shows the sampling site (N: NZ, New Zealand; V: VN, Vietnam) and depth

interval (cm). The portion of more soluble Ca-POCP+CFAP (hatched area) is given as a percentage of total Ca-P above columns (NZ values in

bold). A typical decrease of adsorbed P and increase of OCP with increasing pH from 6.7 to 7.3 suggests a reversible transformation in that

range (arrows; adsorption–precipitation switch). Strong Al / Fe-P predominance in acidic surface sediment of the pasture is denoted (star).

Org. P: total organic P; Inorg. P: total inorganic P; OCP: octacalcium phosphate; CFAP: carbonate fluorapatite; FAP: fluorapatite; Res. P:

residual P; Man∗: strongly acidic mangrove; Man: mangrove; Past: pasture; TiFl: tidal flat; Rive: river. Residual P correlated with Al / Fe-P

at a significance level of 0.0001 (asterisks). See Table 4 for all correlations among species distributions.

the deterioration of the river water quality by surface runoff

(Vant and Smith, 2004). Further, elevated levels of P and ni-

trogen in groundwater at coastal farmlands agreed with spe-

cific fertilizer application rates (Brownell, 2004). The appli-

cation rates and previous findings strongly suggest that the

P accumulation measured in this study was largely related to

P fertilization practices. Hence, the Firth of Thames site is

characterized by anthropogenic P enrichment.

4.2 Phosphorus fractions

Phosphorus fractions showed a strong and continuous in-

crease of Ca-P and decrease of Al / Fe-P with increasing in-

undation duration (Fig. 2). These changes were driven by pH

and Eh gradients (Fig. 2). Salinity had no detectable effect

on Al / Fe-P (Table 1), similar to findings of Maher and De-

Vries (1994). Both an increase in Ca-P (decreasing solubility

of calcium phosphates with increasing pH; Lindsay et al.,

1989; Hinsinger, 2001) and a decline in Al / Fe-P (desorp-

tion of P from metal (hydr)oxides with increasing pH or de-

creasing Eh; e.g. Mortimer, 1971) commonly occur across

estuarine inundation gradients. A similar seaward redistri-

bution of sediment P fractions has been observed, for ex-

ample, in marsh systems in Portugal (Coelho et al., 2004)

and South Carolina (Paludan and Morris, 1999), estuarine

zones of a French river (Andrieux-Loyer et al., 2008) and

an estuarine transect from the Mississippi River to the Gulf

of Mexico (Sutula et al., 2004). In the latter case, the op-

posing landward-to-seaward changes in sediments (Sutula et

al., 2004) were mirrored by similar changes in corresponding

samples of surface water particulate matter. Furthermore, the

same trends were observed along a continuum from agricul-

tural soils across hard-water stream sediments to lake sedi-

ments (Noll et al., 2009).

The pH dependence of the solubility of Ca-P phases was

mirrored by the increase in Ca-P with decreasing acidity
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(Fig. 3a). In contrast, concentrations of Al / Fe-P showed

a maximum amount of adsorbed P at pH 6.6 (Fig. 3b) and

therefore agreed with the commonly occurring maximum P

availability at pH 6.5 in agricultural soils (e.g. Chapin III

et al., 2011). This maximum P availability is caused by the

highest P solubility in equilibrium with various P minerals at

pH 6.5 (Lindsay et al., 1989). Considering that low amounts

of P are precipitated with Ca, Fe and Al at pH 6.5 (e.g.

Chapin III et al., 2011), large amounts of soluble reactive

P could be available for adsorption on metal (hydr)oxides.

Further, Ca-P phases predominated in alkaline downstream

environments and may undergo dissolution after upstream

transport by tides with an accompanying increase in P ad-

sorption (cf. Fig. 2a, c, d; De Jonge and Villerius; 1989). If

these phases are transported to close locations of ∼ pH 6.5

and subsequently dissolve, the phosphate released can be ad-

sorbed on more oxidized sediment, thereby contributing to

the elevated Al / Fe-P concentrations at this pH.

The maximum amount of adsorbed P at pH 6.6 also in-

dicated that Eh, which showed the maximum decline at

∼ pH 6.6 (Fig. 3d), did not cause significant desorption of

P at this pH. Below this pH, Al / Fe-P did not decline with

Eh (cf. Fig. 3b and d) and these parameters were not cor-

related (Table 1), suggesting that a release of P adsorbed

to ferric iron compounds did not occur in the correspond-

ing sediments. Yet, both Eh and Al / Fe-P decreased above

pH 6.6 (cf. Fig. 3b and d) and were correlated in this range

(Table 1). Because the drop in Al / Fe-P correlated also with

an increase in pH (Table 1, Fig. 3b), effects of pH and Eh

on P desorption could not be distinguished above pH 6.6.

The decreasing amount of adsorbed P at near-neutral to alka-

line pH may therefore be due to (i) charge changes of metal

(hydr)oxides with pH (Oh et al., 1999; Spiteri et al., 2008;

Barrow et al., 1980; Sundareshwar and Morris, 1999), (ii)

less efficient sorption by iron in the Fe(II) state compared

to the Fe(III) state (e.g. Sundareshwar and Morris, 1999), or

(iii) a combination of charge changes and Fe reduction.

Critical redox potentials reported for reduction of ferric

iron compounds are around 300 mV at pH 5 and 100 mV

at pH 7 (Gotoh and Patrick, 1974; Husson, 2013; Yu et al.,

2007). These levels match very well with critical Eh lev-

els for desorption of Fe-(hydr)oxide-bound P, including a

similar pH dependence of those levels (compare Delaune et

al., 1981 with Gotoh and Patrick, 1974). As Fig. 3d shows,

Eh values that did not correlate with Al / Fe-P (sediments

with pH < 6.6) were above the critical Eh threshold, whereas

Eh values that correlated with Al / Fe-P (sediments with

pH > 6.6) were below the critical Eh threshold. This implies

that reductive dissolution and related desorption of P could

have contributed to the downstream transition from Al / Fe-

P to Ca-P. Interestingly, the physicochemically induced P

redistribution largely agreed with that from the low P site

despite considerable differences of P fraction concentrations

between both sites (Fig. 3a, b). This suggests that the effects

of physical–chemical sediment characteristics were indepen-

dent of the site-specific total P status.

4.3 Transformation of phosphorus fractions

The increase in Ca-P along transects, which correlated with

an equivalent decrease in Al / Fe-P, strongly suggests that

Ca-P formed at the expense of adsorbed P along the salin-

ity gradient. By plotting Al / Fe-P and Ca-P concentrations

on a pH scale (Fig. 3a, b) it became evident that the down-

stream transition from Al / Fe-P to Ca-P was related to a pro-

nounced switch from P adsorption to Ca-P precipitation at

∼ pH 6.6 (see also Fig. 3c). Above this pH, reduction pro-

cesses are less important for P desorption (Reddy and De-

Laune, 2008), P adsorption is usually less pronounced (Mur-

rmann and Peech, 1969) and thermodynamically less stable

Ca-P phases such as OCP may form (Bell and Black, 1970;

Oxmann and Schwendenmann, 2014).

A similar switch has been suggested for observed fraction

changes with increasing sediment depth in non-upwelling

continental margin environments, but from organic P to au-

thigenic Ca-P (Ruttenberg and Berner, 1993). This switch

was partly explained by the redox state, which could be the

controlling parameter for diagenetic redistribution and re-

lated downcore changes of P fractions in marine environ-

ments. The main difference between the P redistribution in

this study and results of Ruttenberg and Berner (1993) re-

lates to the P source to the formation of authigenic Ca-P. Our

results show strong interactions between inorganic P forms,

with Al / Fe-P being a significant P source for Ca-P. In con-

trast to these strong interactions between Al / Fe-P and Ca-P

all correlations with organic P were not significant.

However, the P redistribution along marine sediment cores

may strongly differ from that across intertidal zones. The

marked fraction changes suggest that the pH regulates an al-

ternative switch between Al / Fe-P and Ca-P at the coastal

sites investigated here. This pH-driven P redistribution could

be a common mechanism at coastal pH gradients because

it took place along different transects, comprising diverse

ecosystems, and it was independent of the site-specific to-

tal P status (Fig. 3a, b). Hence, this mechanism could also

be important for processes of P accumulation by increased P

loads, as discussed next.

4.4 Phosphorus accumulation processes

The anthropogenic P input at the high P site caused two dif-

ferent location-dependent accumulation mechanisms, which

mainly resulted in elevated Al / Fe-P at pH < 6.6 (landward)

and elevated Ca-P at pH > 6.6 (seaward). The between-

site comparison (high vs. low P site) therefore implies that

fertilizer-derived P was largely included in the Al / Fe-P frac-

tion (adsorbed P) of acidic landward sediments. Phospho-

rus inputs by runoff or erosion to downstream areas appar-

ently led to enhanced precipitation of Ca-P by increasing pH.
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The accumulation pattern in this site comparison therefore

corresponds to location-dependent transformations between

Al / Fe-P and Ca-P, which are to be expected from the P re-

distribution at individual sites (Sect. 4.3).

We hypothesize that more soluble Ca-P minerals accu-

mulate relative to total Ca-P due to anthropogenic P inputs

because the formation of sparingly soluble Ca-P minerals

is too slow for balancing increased formation rates of ther-

modynamically less stable Ca-P minerals. This hypothesis is

consistent with comparatively large amounts of metastable

Ca-P, which apparently accumulated at the high P site due

to external factors (Sect. 3.4, Table 3; Fig. 4c, d). Our find-

ings showed that Morgan’s weakly acidic acetate–acetic acid

solution preferentially extracts metastable Ca-P phases. Be-

cause sparingly soluble Ca-P minerals, such as detrital ap-

atite, are unlikely to dissolve in Morgan’s solution (pH 4.8;

cf. Ruttenberg, 1992), the correlations between Morgan P

(Ca-Pmeta) and Ca-P (p < 0.0001 at both sites; Fig. 4b) are

attributable to more soluble Ca-P minerals. This conclu-

sion is supported by other studies which have indicated that

the Morgan test preferentially extracts more soluble Ca-P

phases, whereas most other available P tests preferentially

extract adsorbed P (cf. Ahmad et al., 1968; Curran, 1984;

Curran and Ballard, 1984; Dabin, 1980; Herlihy and Mc-

Carthy, 2006).

Our hypothesis is also consistent with concentrations of

OCP, CFAP and FAP, which were separately determined for

sediments of both sites (Fig. 5). Sediments of the high P site

showed a significantly larger portion of Ca-POCP+CFAP com-

pared to the low P site. Results of both independent meth-

ods, which were significantly correlated (Table 4), there-

fore provide strong evidence for the proposed accumulation

of thermodynamically less stable Ca-P by anthropogenic P

inputs. Less stable Ca-P may thus be a useful parameter

to monitor anthropogenic accumulations of inorganic P in

coastal regions. Because physical–chemical sediment char-

acteristics influence Ca-P formation, an important caveat is

the between-site comparability of data. In this study, there

was between-site comparability of both the sediment char-

acteristics and the general response of each of the P frac-

tions and P species to the sediment characteristics at differ-

ent depth intervals along the land–sea continuum (Figs. 3a,

b, 4a, b, 5).

A dominant proportion of more soluble Ca-P was con-

tributed by OCP in alkaline sediments (Fig. 5). These OCP

concentrations therefore suggest authigenic apatite forma-

tion by initial precipitation of OCP in alkaline mangrove,

river, bay and tidal flat sediments. Octacalcium phosphate

was detected in surface marine sediment using XANES (Ox-

mann, 2014; XANES spectra of Brandes et al., 2007), which

requires minimal sample preparation and is minimally af-

fected by common sample matrices. Results of the CON-

VEX method, which was validated by the matrix effect-free

method of standard addition (Oxmann and Schwendenmann,

2014), therefore agree with field and experimental evidence

for the occurrence of OCP in sediment (see also Gunnars et

al., 2004; Jahnke et al., 1983; Krajewski et al., 1994; Morse

and Casey, 1988; Nancollas et al., 1989; Schenau et al., 2000;

van Cappellen and Berner, 1988).

We conclude that OCP plays a crucial role in the redistri-

bution of sediment P (see arrows in Fig. 5), including the pH-

dependent switch from adsorbed P to Ca-P in the landward

to seaward direction, the potential reverse transformation af-

ter upstream transport, and the pH-dependent accumulation

processes. Further, apatite formation by successive crystal-

lization is possibly mainly restricted to alkaline sediments.

Octacalcium phosphate is an important intermediate in the

formation of apatite in alkaline environments, including cal-

careous soil (Alt et al., 2013; Beauchemin et al., 2003; Grossl

and Inskeep, 1992), lake sediment (e.g. Avnimelech, 1983)

and marine sediment (see above references). In agreement

with the high OCP concentrations found in this study (Fig. 5),

solid-state nuclear magnetic resonance (NMR) and XANES

spectroscopy-based studies implied that OCP does belong

not only to the most commonly reported but also to the most

prevalent inorganic P forms in alkaline environments (Beau-

chemin et al., 2003; Kizewski et al., 2011; Oxmann, 2014).

In general, the established Ca-P precipitation in sedi-

ments across salinity gradients provides some insight into

the relevance of factors influencing this precipitation such

as changes in salinity, dissolved phosphate and pH. In fact,

as the ionic strength increases with increasing salinity for a

given phosphate concentration and pH, the apparent Ca-P

solubility increases strongly (cf. Atlas, 1975). Yet, increas-

ing Ca-P concentrations imply that the salt effect is usually

more than offset by the rise in pH, redox-driven phosphate

desorption from iron oxyhydroxides and other potential fac-

tors in interstitial waters across salinity gradients. For exam-

ple, Ca2+ concentrations generally increase from land to sea

and, hence, increase the saturation state with respect to cal-

cium phosphates (normal seawater and sediment pore water:

ca. 10 mM; river water, global average: ca. 0.4 mM; soil pore

water, average of temperate region soils: ca. 1.5 mM; Girard,

2004; Lerman and Wu, 2008; Lower et al., 1999; Rengel,

2006; Sun and Turchyn, 2014). Although the correlation of

salinity with Al / Fe-P was not significant, the correlation

with Ca-P was decreased but still significant (Table 1), indi-

cating that increasing Ca2+ concentrations from land to sea

may also contribute to Ca-P formation.

Our results imply that when P enters the marine environ-

ment, enhanced Ca-P formation takes place in nearshore en-

vironments. Given the possibility that CFAP or other less

stable Ca-P phases do not readily dissolve in alkaline sea-

water (Faul et al., 2005; Lyons et al., 2011; Sheldon, 1981;

see also Gulbrandsen et al., 1984 as cited in Slomp, 2011),

some non-detrital Ca-P at sites further offshore could be de-

rived from Ca-P-generating areas of the lower intertidal zone

or even from freshwater environments (see e.g. Raimonet et

al., 2013).
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5 Conclusions

Our results show a pH-induced switch from P adsorption

to Ca-P precipitation at near-neutral pH, which apparently

leads to inorganic P accumulation in nearshore sediments.

The decrease in Eh and increase in Ca2+ concentrations from

land to the sea likely contribute to this switch. Further, this

P redistribution is apparently driven by OCP formation and

enhanced by anthropogenic P inputs. Hence, a significant

proportion of authigenic Ca-P may be derived from anthro-

pogenic sources in some coastal regions.

The proposed mechanism, including relatively rapid for-

mation of an apatite precursor, explains several independent

observations: the downstream transition from Al / Fe-P to

Ca-P at ∼ pH 6.6, the Ca-P formation at the expense of ad-

sorbed P, the large increase of Ca-Pmeta with increasing pH,

the dominant proportion of OCP in alkaline sediments, the

pH-dependent accumulation mechanisms of Al / Fe-P and

Ca-P, and the accumulation of Ca-Pmeta and Ca-POCP+CFAP

at the high P site. The suggested switch appears to be a very

common mechanism because it was observed across different

ecosystems and it was independent of the site-specific total

P status. Further evidence that this mechanism operates in

different environments comes from similar downstream tran-

sitions reported by several studies.

Less stable Ca-P is mainly formed and buried during sed-

imentation rather than being allochthonous material. Hence,

CFAP and OCP act as diagenetic sinks for P at the investi-

gated sites and are mainly responsible for the accumulation

of inorganic P in the lower intertidal zone and bay. Some au-

thigenic Ca-P, however, could be dissolved when physical–

chemical conditions of the sediment change (e.g. altered

pH/Eh due to land reclamation) or after upstream transport

by tides. Some of it could also be resuspended and trans-

ported further offshore, similar to detrital FAP. In general,

OCP formation may mitigate a desorption-derived P release

from sediment and seems to occur when P adsorption is usu-

ally less pronounced – that is, under alkaline conditions.

The Supplement related to this article is available online

at doi:10.5194/bg-12-723-2015-supplement.
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