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Out-of-Plane Dynamic Stability of Unre-�

inforced Masonry Walls in One-Way Bend-�

ing: Shake Table Testing�

Osmar Penner1 and Kenneth J. Elwood2, M.EERI�

Given sufficient anchorage to the diaphragms, an unreinforced masonry (URM) wall�

subjected to out-of-plane inertial forces will likely develop a horizontal crack at an inter-�

mediate height about which the wall will rock as semi-rigid bodies. The effect of wall�

slenderness on out-of-plane stability has been demonstrated in past studies, but treatment�

of the effects of diaphragm flexibility and ground motion variability has been limited. This	

paper presents an experimental study examining the out-of-plane stability under seismic�


loading of URM walls connected to flexible diaphragms. Five full-scale unreinforced solid��

clay brick wall specimens spanning one storey were subjected to earthquake ground mo-��

tions using a shake table. The top and bottom of the walls were independently connected��

to the shake table through coil springs, simulating the flexibility of diaphragms. Variables��

examined experimentally included diaphragm stiffness and wall height. Both the amount of��

rocking observed as well as the ground motion scale causing collapse varied significantly��

with changes in the diaphragm properties. The test results provided data used for validation��

of a rigid-body rocking model, enabling an extensive parametric study on wall stability and��

the development of new assessment guidelines in a companion paper.�	

INTRODUCTION

A significant stock of unreinforced masonry (URM) buildings is present throughout the�


world, including seismically active regions in Canada, the United States, and New Zealand.��

URM buildings from these regions and representative of those considered in this study were��

constructed in the late 1800s to early 1900s, and typically have a simple, usually rectangular��

footprint with minimal vertical irregularities. Exterior walls are constructed of clay brick��

and consist of multiple wythes (vertical sections of masonry one brick thick). Bricks could��
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be laid in a number of possible bond patterns, but the wythes are tied together intermittently��

by headers (bricks laid perpendicular to the wall, so that one brick spans two wythes).��

This study focuses on URM bearing wall buildings with flexible timber diaphragms; for��

the typology considered, diaphragms are typically timber joists (or trusses) sheathed with��

narrow (∼ 150mm) boards nailed to the joists. These flexible diagrams impact the seismic��

performance of URM buildings in numerous ways, including: modifying the fundamental��

period; varying displacements along the length of out of plane walls; and, interacting with��

walls during out of plane rocking response. The latter is the focus of this study.��

EARTHQUAKE PERFORMANCE OF URM BUILDINGS

URM buildings have performed consistently poorly in past earthquakes. Typical dam-�	

age includes chimney, parapet, and gable failures, in-plane wall failures due to sliding or�


diagonal shear, toe crushing, or rocking, and out-of-plane wall failures. Past earthquakes��

have demonstrated out-of-plane wall failure to be the most common failure mode as well��

as the mode presenting the greatest life safety hazard [Bruneau and Lamontagne, 1994,��

Dizhur et al., 2011]. Extensive in-plane damage has also been observed, particularly shear��

cracking in piers and spandrels. While such damage affects the lateral load-carrying capac-	�

ity of a building, gravity loads can remain supported even under large lateral displacements	�

[Russell et al., 2013]. In-plane damage by itself thus often does not lead to collapse without	�

excessive deformations or accompanying out-of-plane failure.	�

Vintage URM buildings often have limited or no lateral connections between load-		

bearing walls and floor and roof diaphragms. This leads to walls essentially falling off the	


building by tipping over when subjected to ground shaking, in what is termed a ‘cantilever’	�

out-of-plane failure. If walls are adequately anchored to diaphragms at each level, this	�

failure mode is prevented, and out-of-plane failures occur by bending of the wall between	�

support points. Where limited vertical supports are present between floors, such as in long	�

walls or in piers between windows, walls can fail in one-way vertical bending — spanning
�

between adjacent diaphragms. Where vertical supports are significant (e.g., cross walls,
�

corners), walls can fail in two-way bending. All three failure modes (cantilever, one-way
�

and two-way bending) have been observed in the field [Dizhur et al., 2011].
�

Walls prone to cantilever failure collapse at far lower excitations compared to those
	

limited to one- or two-way bending: Doherty et al. [2002] showed that the stability of a





cantilever wall is approximately equivalent to that of a simply-supported wall four times��

more slender. The relatively low cost of installing wall-to-diaphragm anchors is therefore��

easily justified by the significant improvements in out-of-plane stability provided [Sharif��

et al., 2007]. Accordingly, the present study focuses on URM walls that have been appro-��

priately anchored to diaphragms, particularly on the least resilient case of one-way bending.��

PREVIOUS TESTING

Early experimental work on the topic of out-of-plane URM wall response was restricted��

to quasi-static testing [Anderson, 1984, Haseltine et al., 1977, Yokel and Dikkers, 1971].��

Dynamic testing began with the large-scale programme carried out by ABK Joint Venture�	

[1981], in which 22 wall specimens with different overburden loads and height to thick-�


ness (h/t) ratios were tested under dynamic loading. The tests were carried out using��

displacement-controlled actuators at both the top and bottom of the walls. The issue of��

diaphragm flexibility was addressed by inputting computer-modelled diaphragm response��

histories at adjacent levels to the actuators. Cracking was observed near mid-height and at��

the base of walls, and it was noted that a stable rocking response was possible at relative��

mid-height displacements significantly in excess of those at crack initiation.��

The ABK tests formed the basis for the URM wall assessment procedures in the seis-��

mic rehabilitation standard ASCE 41 [ASCE, 2013]. For walls sufficiently anchored to��

diaphragms, the standard stipulates allowable h/t ratios as a function of the design spectral�	

acceleration, Sa, at a period of 1 s. Several curves are provided based on a wall’s location�


in the building (Figure 1).��

Significant additional testing — dynamic, pseudo-dynamic, and static — has been car-��

ried out since the ABK project. Shake table tests by Griffith et al. [2004] showed that for��

rigid-support conditions, the static force-displacement relationship is a reasonable bound��

of the dynamic hysteretic behaviour, and that wall rocking frequency and damping are both��

displacement dependent. Meisl et al. [2007] demonstrated that wall rocking behaviour is��

largely independent of the quality of the collar joints. Tests by Dazio [2008] and Sim-��

sir [2004] illustrated the importance of axial load and the manner in which it is applied.��

Derakhshan et al. [2014] concluded that arching action in walls due to vintage timber di-�	

aphragms is negligible, and that the force-displacement characterization obtained in the�


lab was representative of in-situ conditions. Magenes et al. [2014] subjected three full-��



scale stone masonry houses with flexible timber diaphragms to shake table testing. The��

specimens were retrofitted to various degrees; the observed improvement of the seismic��

performance in the retrofitted specimens was more attributable to the wall-diaphragm con-��

nections than to the stiffening of the diaphragms.��

STUDY OBJECTIVES

This study aims to better characterize the out-of-plane seismic response of URM walls,��

with a focus on the effect of diaphragm flexibility. The study consists of two phases—��

experimental and numerical. This paper reports on the experimental phase, in which full-��

scale URM wall specimens were subjected to earthquake ground motions using a shake��

table, with varying diaphragm stiffness configurations. A companion paper [Penner and�	

Elwood, 2015] presents a numerical study in which the experimental results were used to�


validate a numerical model, which was in turn used to conduct a large-scale parametric��

study aimed at improving the assessment of URM walls to out-of-plane excitation. The��

following sections describe the testing apparatus, the testing protocol, and the shake table��

test results.��

TEST DESCRIPTION

Wall specimens were intended to represent a portion of a top-storey wall in an early 1900s���

load-bearing URM building in British Columbia. To represent the deterioration of the���

mortar in existing buildings, a Type O mortar mix (1:2:9 cement:lime:sand by volume) was���

selected due to its low compressive strength. Brick units were solid clay and measured���

64 mm × 89 mm × 191 mm. Brick units were placed dry to further minimize the bond��	

strength. While the workmanship in older buildings may be variable, this factor can be��


difficult to quantify. To achieve reasonable consistency among specimens in this regard,���

it was therefore decided to employ good construction practices — bricks were precisely���

placed and collar joints were slushed in all specimens. The age of the walls at testing���

varied between approximately 2 and 10 months. A detailed description of the specimens���

and test setup is provided in Penner [2014]; a summary of key features is provided below.���

Four 3-wythe walls and one 2-wythe wall were constructed. American bond was used���

in all walls with a single header course at every sixth course. Specimens are named by���

diaphragm condition ([F]lexible, [S]tiff, or [R]igid at top and bottom) and the number of���



wythes in the wall specimen (e.g. specimen FR-3 was three wythes thick with a flexible���

connection at the top of the wall and a rigid connection at the base). A summary of the���

specimen masses and material properties determined from laboratory testing is provided in���

Table 1.���

The walls were tested on a displacement-controlled single degree of freedom shake���

table in the Earthquake Engineering Research Facility (EERF) at the University of British���

Columbia (UBC) using a purpose-built test frame (Figure 2). The test frame imposed��	

a simplified representation of flexible diaphragm boundary conditions on the wall. A stiff���

steel braced frame, representing the in-plane walls, was constructed on the shake table. The���

table motion was transferred to the top of this frame with minimal amplification [Penner,��


2014]. The inclusion of in-plane wall flexibility was outside the scope of the experimental���

work. It was instead assumed that the flexibility of the in-plane walls could be considered���

negligible compared to that of the flexible timber diaphragms.���

Top and bottom diaphragms were represented by rolling steel carriages connected to���

the frame by coil springs. Each coil spring assembly consisted of a pair of springs mounted���

on a shaft; pre-loading the springs to half-capacity resulted in a system with no ‘slop’���

when transitioning from positive to negative displacement. The carriages were able to roll�
	

parallel to the direction of motion of the shake table. Spring stiffnesses were selected to�
�

achieve natural periods of vibration in the test setup representative of first-mode in-plane�
�

behaviour of typical diaphragm-wall assemblies [Penner, 2014]. The total stiffnesses for�



each of the top and bottom carriages were 37.0 and 39.4 kN/m respectively for the flexible�
�

springs, and 147 and 142 kN/m respectively for the stiff springs. Each carriage could also�
�

be ‘locked out’ to simulate a rigid diaphragm condition by connecting the carriage to the�
�

braced frame with threaded steel rods. The top and bottom of the wall were connected to�
�

the respective carriages. The total carriage masses were estimated to be 663 and 591 kg for�
�

the top and bottom, respectively.�
�

The connections between the wall and the carriages constrained the wall’s horizontal��	

displacements to match those of the respective carriages, while allowing free vertical dis-���

placement and rotation of the wall at both the top and the base. At the base, this was���

achieved using a stiff rubber spacer, with sliding surfaces lined with low-friction ultra high��


molecular weight (UHMW) polyethylene. In actual buildings, out-of-plane action on walls���

would be transmitted partially through the diaphragm and through the wall in the storey be-���



low; however, establishing the relative contributions of these two mechanisms was beyond���

the scope of this study. The experimental conditions represent most of the demand being���

transmitted through the diaphragm. At the top of the wall, a steel assembly bolted to the���

wall contained pins protruding past the ends of the wall. The pins travelled within vertical���

slots in plates mounted to the top carriage. No provisions were made in the test frame���

for the application of overburden load to the wall beyond that imposed by the steel channel���

assembly bolted to the top of the wall, which had a mass of approximately 179 kg. The sim-��	

ulations instead concentrated on the worst-case stability conditions found in upper-storey��


walls with minimal tributary gravity loads.���

Instrumentation consisted of displacement transducers and accelerometers, measuring���

the response of the shake table, test frame, carriages, and the wall specimen. Complete���

raw and processed data sets as well as project documentation describing the test setup nd���

instrumentation are archived in the NEES repository [Penner and Elwood, 2014a,b,c,d,e].���

All data sets are publicly accessible.���

GROUND MOTIONS

Two ground motions were used as input to the shake table, with one motion selected for���

significant long-period spectral response and the other for a dominant short-period spectral���

response. The long-period motion selected (CHHC1) was recorded during the 22 February��	

2011 earthquake in Christchurch, New Zealand at the Christchurch Hospital. The short-��


period motion selected (NGA0763) was recorded during the 18 October 1989 Loma Prieta���

earthquake at the Gavilan College in Gilroy, California. Acceleration response spectra as���

recorded on the shake table are shown in Figure 3 along with design spectra for Seattle,���

WA, USA and Victoria, BC, Canada, for relative reference. Displacement time histories of���

the two motions as recorded on the shake table are shown in Figure 4. Scale factors are���

shown relative to the original motion as recorded during the earthquake, and reference the���

amplitude of the displacement time history. Wall specimens were full scale, thus no scaling���

was needed for similitude. The in-plane walls were assumed to be very stiff compared with���

the diaphragms; the ground motions were therefore not modified for the in-plane response��	

of the building [Penner, 2014].��




SHAKE TABLE TESTS

The mortar used in the construction of the test walls (Type O) is of significantly lower���

strength than that used in modern structural masonry. However, in particular the flexural���

bond strength of walls found in early 1900s buildings may be weaker still than that of the���

test walls. It was therefore decided not to rely on the cracking resistance of the test walls���

in assessing their dynamic stability on the shake table, but rather to assume that the walls���

would experience cracking at very low levels of excitation.���

Accordingly, to ensure that walls would remain stable after crack initiation, allowing���

further tests to be carried out, cracking was initiated by running the NGA0763 motion with���

both top and bottom carriages locked out (rigid diaphragm conditions). After cracking was��	

achieved, the carriage connections were adjusted for the desired diaphragm conditions,��


and subsequent runs were made using the CHHC1 motion at increasing amplitude of input���

motion until collapse was observed.���

VISUAL OBSERVATIONS

Each of the five wall specimens developed a single horizontal crack near mid-height���

during the tests in which the carriages were locked out. In every case, the crack occurred���

at the brick-mortar interface, but the crack location varied between the specimens. In wall���

RR-3, the crack was located at a height of 0.74 times the wall height, while in the other four���

specimens the crack height varied between 0.47 and 0.55 times the wall height (the wall���

height used to normalize the crack height is taken as the distance from the base of the wall���

to the centerline of the top pin). Cracks occurred both at header courses and at common��	

courses. In Walls FF-3, FR-3, and SS-3, the crack was located in a single horizontal plane��


across the entire wall section. In walls FF-2 and RR-3, the crack stepped down by one���

course. Even after sustained rocking in later runs, all cracks consistently closed up without���

horizontal offset and with minimal spalling of mortar or brick.���

Prior to undergoing significant rigid-body rocking, cracks were visually nearly imper-���

ceptible. Walls FF-2 and RR-3 underwent the greatest amount of rigid body rocking, and���

correspondingly also sustained the most spalling damage at the crack. The most severe���

spalling was limited to roughly the size of a mortar joint; in most walls it was less than	��

this. Every wall underwent rocking about the [wall]-[base beam] interface. No cracking	��



was observed within the wall near the base. At sufficiently high input motion intensities,���

each wall specimen eventually underwent rigid-body rocking. Since only a single crack���

was formed in each wall, the rocking was clearly defined as occurring between two bodies:���

the lower wall block, from the base beam to the horizontal crack, and the upper wall block,���

from the crack to the top pin connection. This is illustrated in a video frame of wall FR-3���

just before collapse (Figure 5).���

CRACKED RESPONSE SUMMARY

The crack height, system period, and motion scales at collapse and in the run prior to���

collapse for each specimen are listed in Table 2. The system period is defined independently��	

for the top and bottom of each wall, and should be interpreted as an indicator of the stiffness�
�

of each support rather than a true period of response, since the modes of this multi-degree-�



of-freedom sytem link both the top and bottom responses. In addition, the height of the�
�

crack affects the distribution of tributary mass to the top and bottom diaphragms, and once�
�

the wall is cracked it no longer exhibits a periodic response [Makris and Konstantinidis,�
�

2003]. For consistency and simplicity, each of these periods is calculated as that of a single�
�

degree of freedom linear elastic oscillator using exactly half of the total wall mass plus the�
�

mass of the respective carriage system along with the total respective spring stiffness; the�
�

period is thus independent of the crack height.�
�

DISPLACEMENT RESPONSE

Once cracked, the wall behaves as two rigid bodies. In the test specimens, the combi-�
	

nation of surface friction and potential interlock effect due to a non-planar crack surface���

effectively prevented any notable sliding at the crack interface. For analysis purposes, the��


two wall segments were thus assumed to be linked at the crack location. The relative dis-���

placements of the wall ends were assumed to be equal to those of the carriages at the base���

and the top of the wall, which is consistent with the observed performance of the wall-���

carriage connections during testing.���

Displacements of the carriages were measured relative to the table, while displace-���

ments of the wall headers were measured relative to the ground (absolute). Displacement���

nomenclature is illustrated in Figure 6. Rocking displacement, drock, is defined as the dif-���

ference between the measured horizontal displacement of the wall at the crack height and��	

the straight-line interpolation between the top and bottom of the wall at the same height.���



The normalized rocking displacement, drocknorm , is simply the rocking displacement divided���

by the wall thickness.���

Two rocking modes are possible for a wall with a single crack and at least one flexible���

diaphragm (Figure 7). The main difference between the two cases is the location of the���

contact point between the upper and lower blocks. In Case 1, the contact point is such that���

the weight of the upper block acts to stabilize the lower block. In Case 2, the weight of the���

upper block destabilizes the lower block. While Case 2 rocking can contribute momentum���

to the lower block that will push it towards collapse, for realistic values of diaphragm���

stiffness the top block will always flip back into the Case 1 mode before collapse [Penner,��	

2014].��


Displacement time history results of run 10 of wall FF-2 are shown in Figure 8. This���

run illustrates sustained rocking behaviour. Three time instants of interest are indicated���

by the dotted vertical lines. The displacement profiles of the wall at these instants are���

shown in Figure 9. It can be observed that the rocking displacement becomes zero when���

the top and bottom rotations are equal, at which point the relative displacement at the crack���

falls between the top and bottom relative displacements. The largest rocking displacement���

occurs concurrently with the largest difference in rotations (e.g., at time C, Figure 9c). Note���

that large rocking displacements can occur while the bottom block is near vertical (e.g., at���

time A, Figure 9a).��	

The normalized rocking displacement is plotted for two runs for wall FF-2 in Figure 10:��


the highest stable run, and the run causing collapse. This plot illustrates the abrupt change���

in performance at the out-of-plane wall stability threshold observed in the tests — the���

response between the two runs is similar in the early portion of the test, until a pulse of���

sufficiently large magnitude is experienced for the rocking response in the higher run to���

become unstable, at which point the response histories of the two runs diverge rapidly.���

In Figure 11, peak rocking displacement is plotted against the intensity of the ground���

motion in each post-cracking run. Significant rocking without collapse was observed in���

four of the five specimens. Wall FR-3, with rigid bottom diaphragm condition (e.g. a���

one-storey building), underwent limited rocking in all runs prior to the collapse run despite��	

large displacements of the top carriage. Of the remaining walls, FF-3 displayed the least��


rocking in the run prior to collapse, but presumably this is in large part because the change���

in intensity was larger between the last two runs for this wall than for the others (20% vs.���



5-10%).���

The rocking displacement at the crack is compared to the top carriage displacement in���

Figure 12. The spectral displacement at 1 s is indicated on the y-axis on the right side. The���

rocking displacements are shown by the heavy solid lines, while the top carriage displace-���

ments are shown by the light dashed lines. This plot illustrates that while the carriage (i.e.���

diaphragm) displacements roughly follow the spectral displacement linearly, the rocking���

response is fundamentally different.���

Makris and Konstantinidis [2003] showed that the rocking response of a simple rect-��	

angular block subjected to ground shaking can not be characterized by a single degree��


of freedom system with a fixed period. Griffith et al. [2004] further determined that the���

rocking frequency of a cracked wall is displacement dependent. Neither Griffith et al. nor���

Makris and Konstantinidis had considered the effect of flexible supports in their work.���

The ‘period’ of the rocking response of the walls in the current tests was evaluated���

by considering each rocking excursion separately. One rocking excursion was defined as���

the response between adjacent points at which drock = 0. The period of an excursion was���

defined as two times the duration of the excursion, with one excursion approximating a���

half-cycle sine pulse. The amplitude of the excursion was recorded as the peak rocking���

displacement. Amplitudes of less than 5 mm were eliminated due to the limited precision��	

of the measurements from which the rocking displacement was derived. The highest stable��


run from each wall was considered, with the exception of wall FR-3, due the lack of rocking���

observed. The observed periods are plotted against the corresponding normalized rocking���

displacements in Figure 13.���

The rocking response of all walls follows generally the same trend: the minimum ob-���

served period increases as the rocking amplitude increases. For a given rocking amplitude���

(at moderate values), wall RR-3 exhibits the overall shortest rocking periods, while the���

walls with flexible diaphragms exhibit generally longer periods. Wall RR-3 also produces���

the most consistently sine-like rocking oscillations; the shape of the rocking excursions of���

walls with flexible diphragms are more irregular, and one or more direction reversal cycles��	

may be contained within a single rocking excursion. This corresponds with the increased��


scatter present in Figure 13 for these walls relative to wall RR-3.���

At smaller rocking amplitudes, the more flexible diaphragms have the capacity to allow���



longer rocking periods, but also create greater variability in the rocking period. As the���

rocking excursions become larger, the effect of diaphragm flexibility becomes less impor-���

tant.���

ACCELERATION RESPONSE

A detail of the time history results of run 10 of wall SS-3 are shown in Figure 14. This���

run illustrates a large rocking excursion and the associated impact when the crack closes���

up. Three time instants of interest are indicated by the vertical dashed lines. Figures 14a���

and 14b show the relative displacements and the rocking displacement, respectively, while�		

Figure 14c shows the accelerations of the top and bottom carriages and the calculated mean�	


acceleration at the crack.�	�

The acceleration time history during rocking is characterized by periods of relatively�	�

smoothly varying accelerations during rocking excursions followed by periods of rapid�	�

variation following the impacts caused by the crack closing up. Peak accelerations at the�	�

crack and at the carriages occur at impact times.�	�

At the peak of the large rocking excursion (time A, Figure 14), relative velocities of the�	�

carriages and of the crack are small, and the crack acceleration is in the opposite direction�	�

of the carriage accelerations—they are accelerating towards closing up the crack. The ac-�	�

celerations slowly converge as the crack closes up, until roughly 0.015 s before the impact�
	

point (time B), at which point the acceleration profile is fairly uniform. The crack is now�



moving in the negative direction with considerable velocity, while the carriages are moving�
�

slightly in the positive direction. As the crack now closes, the wall at crack height quickly�
�

picks up positive acceleration (slowing its negative travel) while the carriages pick up neg-�
�

ative acceleration. Peak acceleration is reached roughly 0.015 s after the crack has closed�
�

(time C). The rocking response of the wall has therefore dragged the carriages ‘along for�
�

the ride’, demonstrating that significant two-way interaction can occur between walls and�
�

diaphragms under the right conditions.�
�

In this case, the carriages were lighter than the wall, facilitating this two-way interac-�
�

tion. If the carriages had been much heavier than the wall, the carriage motions would��	

have approached that predicted for SDOF oscillators, and the wall would have been ‘along��


for the ride’ instead. It is likely that in this case, there would have been a larger rocking���

excursion following the main excursion, as the cracked wall would snap through between���



the carriages while they would carry on moving in their original (opposite) direction. It���

is expected that this characteristic would reduce the overall stability of the system. This���

hypothesis is supported by analysis of the high mass diaphragm condition [Penner, 2014].���

The peak accelerations calculated at the crack height are shown in Figure 15 for each���

post-cracking run. Peak crack accelerations increased mainly monotonically for walls���

FF-3, FF-2, and SS-3, and remained fairly constant for walls FR-3 and RR-3. The lack���

of large increases for FR-3 are again likely due to the lack of large rocking impacts. In con-��	

trast, wall RR-3 was subject to large rocking impacts without significant increases in crack��


accelerations. The fixed diaphragm conditions appear to dampen the acceleration peaks by���

preventing the ‘flicking’ effect at snap-through that is allowed by the flexible diaphragms.���

With a fixed diaphragm, a wall segment pivots about the diaphragm connection, while with���

a flexible diaphragm, the effective pivot is located within the wall segment, allowing snap-���

through to occur more violently by accelerating both ends of the wall segment in opposite���

directions.���

FORCE RESPONSE

The acceleration profile of a cracked wall is the sum of several components, as illus-���

trated in Figure 16. The total force is the integration of this profile along with the mass���

density over the height; as such it is a high-level quantity, and consequently details about��	

the response can be hidden within it. Two significantly different acceleration profiles can��


produce the same total force. For example, a uniform profile equal to zero everywhere on���

the wall and a profile with large accelerations at the crack and at each carriage, where the���

crack acceleration has the opposite sign as that at the carriages, can both produce a total���

force that is equal to zero even though the wall response is very different at those two times.���

Peak total force demands for each post-cracking run, as calculated from measured wall���

accelerations, are plotted in Figure 17. Forces are presented as normalized to the wall���

weight in units of ‘g’, thus indicating the equivalent inertial force. In general, trends for���

each wall are fairly linear, with some ‘softening’ possible towards the collapse run (i.e. the���

point for the collapse run exhibits a lower maximum force than a linear extrapolation from��	

the other runs would suggest). Wall FF-3 showed the greatest deviation from linearity in��


the collapse run, while in other walls the effect was less notable. The specimens with the���

flexible springs (FF-3, FR-3, and FF-2) showed a generally lower rate of change of force���



with respect to motion intensity than the stiff and rigid specimens, with FR-3 showing the���

lowest rate by a significant margin.���

Individual connection forces were calculated based on carriage displacement and spring���

rates, with a correction for carriage inertial force. This was only possible for non-rigid���

diaphragm conditions—when a carriage is locked into the rigid mode, the stiffness is too���

high and the displacements are too low to reliably measure the spring force. For specimens���

with non-rigid connections at both top and bottom, total force demands were calculated as���

the sum of the connection demands. These results generally agreed closely with total force��	

demands calculated from wall inertia [Penner, 2014].��


Peak demands calculated using both methods (as applicable) are listed for the high-���

est stable run and for the collapse run in Table 3. Here, total forces are normalized to���

the total wall weight, while individual connection forces are normalized to 50% of the wall���

weight—representative of the way in which tributary wall weights would be assigned in the���

assessment of a real building. Motion scales for the runs noted are listed in Table 2. Since���

calculated connection forces are based on displacement measurements, they tend to smooth���

off short duration force peaks. Total wall forces based on acceleration measurements cap-���

ture such force peaks more accurately, resulting in some discrepancy between peak forces���

calculated by the two methods in runs with large rocking impacts. Discrepancies were only��	

significant in some of the runs causing collapse; in stable runs, where connection demands��


are of concern, the two methods produced very similar results.���

The maximum recorded total normalized force for a cracked wall calculated by either���

method, in any run, is 0.61 g. This includes forces caused by impact when cracks close up,���

and includes collapse runs (up to a rocking displacement of just over one wall thickness).���

Peak force demands were compared with those predicted using the spectral accelera-���

tion of the shake table motion at the diaphragm period. Damping values obtained from���

calibration of a numerical model were used [Penner and Elwood, 2015]. Periods, damping���

ratios, and Sa values at 100% scale are shown in Table 4. Note that these damping ratios are���

strictly intended to represent the testing apparatus; a consensus on appropriate damping ra-��	

tios for timber diaphragms in real buildings has yet to be reached. Wilson [2012] suggested��


a value of 5 % may be appropriate, while in-situ testing by Giongo et al. [2015] indicated���

values of 10 to 30 % may be more realistic. Using the experimental parameters, the force���

demands listed in Table 3 are compared to the corresponding scaled Sa values in Table 5.���



The results indicate that the spectral acceleration is in general a reasonable approximate���

predictor of demands.���

However, forces significantly higher than those predicted by this method were observed,���

particularly for the bottom connection demand. In stable runs, connection force demands���

up to 1.5 times higher than predicted were observed. These high demands appear to be���

caused by the impacts induced when the crack closes up after large rocking excursions.���

Although somewhat higher force amplification factors were observed in runs causing col-���

lapse, peak demands in stable runs are of primary interest for the design of connections.���

These observations emphasize that rocking cannot be relied upon to reduce anchorage de-��	

mands, but rather that the impacts caused by rocking can potentially amplify anchorage��


demands. In addition, the capability of anchors to accommodate the rotation of the wall���

during rocking without deterioration should be considered during design; the experimental���

testing did not account for anchor deformation limitations.���

FORCE DEMANDS AT CRACKING

Cracking was initiated in each wall by subjecting it to the NGA0763 motion with both���

carriages locked into the rigid mode. Total wall forces were calculated in these runs based	��

on wall inertia. The time of crack initiation was calculated based on the shape of the	��

acceleration profile—a distinct change from a curved to bilinear shape was observed in	��

each wall [Penner, 2014]. In the cracking runs, the local force peak at the time of crack	��

initiation is not necessarily the maximum force attained in that run. This suggests that	�	

cracks are formed progressively—some damage is caused during the large initial force	�


peaks, but not enough to propagate the crack through the entire wall thickness. Subsequent	��

force peaks, though smaller, cause further damage until eventually the crack has propagated	��

through the wall.	��

The total wall forces in the cracking run are compared with those measured in the two	��

highest cracked runs for each wall in Table 6. Maximum forces for each wall are shown	��

in bold. For cracking runs, both the peak force at the time of crack initiation and the	��

maximum force recorded during the entire run (which in some cases occurred well before	��

crack intiation) are listed. Maximum forces attained in the highest stable rocking runs were	��

lower in each case than those attained during the cracking runs. During collapse runs, force	�	

levels in walls FF-3 and SS-3 exceeded those attained during the respective cracking runs.	�




In all cases, maximum wall forces recorded were between 0.5 and 0.6 g.���

The wall forces in the cracking runs in Table 6 are equal to the sum of the top and bottom���

connection demands, which are representative of the demands on wall-to-diaphragm an-���

chors. By assuming the wall to be pin supported at the connections, the total force demand���

was calculated to be allocated to the top and bottom connections as between 50%/50% and���

60% top/40% bottom. Note that these allocations are based on the observed values from���

this particular test apparatus only, and they do not necessarily reflect conditions that may���

be encountered in real buildings.��	

Flexural cracking, as observed in the test specimens, is initiated when the tensile bond���

strength of the wall is exceeded. Axial stresses across the height and thickness of the wall��


were calculated through simple statics at each measured time step for the cracking runs���

[Penner, 2014]. The location of the peak tensile stress varies significantly, and is plotted���

as a function of the stress for wall FF-3 in Figure 18, for all measurement points occurring���

prior to cracking.���

The height of the point of peak tensile stress consistently decreases as the stress in-�	�

creases. At the largest stresses (those that would initiate cracking), the peak stress oc-�	�

curs at approximately 55% of the wall height. This trend, including the location at high�	�

stresses, was consistent among all specimens. This indicates that the variability in crack�		

height among specimens (Table 2) can likely be attributed to the details of each wall’s�	�

construction—the strength of each joint in the wall will not be the same due to construction�	


variability and errors—rather than to a significant difference in demands imposed upon the�	�

wall.�	�

Peak tensile stresses at crack initiation showed good agreement with flexural tensile�	�

strength values obtained from bond wrench testing [Penner, 2014]. It is concluded that the�	�

maximum force demands imposed on wall-diaphragm connections by an uncracked wall���

can be assumed to be governed by the wall’s design flexural tensile strength. Connection���

capacities should be checked against the maximum demands imposed by both uncracked���

and cracked walls.��	



CONCLUSIONS

A dynamic testing programme was developed and conducted at the University of British���

Columbia’s Earthquake Engineering Research Facility with the objective of generating a���

data set to be used for validation of a numerical model. Five full-scale unreinforced solid���

clay brick wall specimens spanning one storey were subjected to earthquake ground mo-���

tions on a shake table. The top and bottom of the walls were connected to the shake table���

through coil springs, simulating the flexibility of the diaphragms. The apparatus allowed���

the wall supports to undergo large absolute displacements, as well as out-of-phase top and���

bottom displacements, consistent with the expected performance of URM buildings with���

timber diaphragms. Variables examined included diaphragm stiffness and wall height.��	

Walls were cracked by applying a ground motion under rigid diaphragm conditions,��


then tested to failure with flexible diaphragm conditions by incrementally increasing the���

intensity of the applied ground motion. All walls sustained horizontal cracks at an inter-���

mediate height, with four out of five walls cracking between 0.47 and 0.55 times the wall���

height, and one wall cracking at 0.74 times the wall height. It was determined that the���

maximum force demands imposed on wall-diaphragm connections by an uncracked wall���

can be assumed to be governed by the wall’s design flexural tensile strength.���

The ground motion intensity at collapse varied widely among the walls with different���

boundary conditions. The lowest level causing collapse was 65% of the as-recorded ampli-���

tude, while the highest was 120%. In general, walls connected to more flexible diaphragms��	

sustained higher motion intensities before collapse; however, this observation is specific��


to the single ground motion used in the testing programme and should not be interpreted���

as representative of a general trend for all ground motions. The effect of ground motion���

variability is examined in depth in the companion paper [Penner and Elwood, 2015].���

Extensive stable rocking was observed in some specimens, while in others the amount���

of rocking was limited. The specimen with rigid diaphragm conditions exhibited the most���

rocking cycles in the run prior to collapse. The specimen with a flexible top diaphragm and���

rigid bottom diaphragm exhibited effectively no rocking until collapse, yet withstood the���

highest intensity of ground motion.���

Force demands on wall-diaphragm connections at the top and base of walls in stable��	

runs were observed to be up to 1.5 times those predicted from the spectral acceleration��




of the input ground motion at the period of the diaphragm-wall systems. Demands on���

the bottom connection were consistently larger than on the top connection, which may���

be due in part to the base moment exerted by the self-weight of the wall with respect���

to the corner contact point. These observations emphasize that rocking cannot be relied���

upon to reduce anchorage demands, but rather that the impacts caused by rocking can���

amplify anchorage demands. Further study is required to determine if this amplification���

is consistent for other ground motions and wall conditions. Anchor capacities should be���

checked against the maximum demands imposed by both uncracked and cracked walls, and���

the capability of anchors to accommodate the rotation of the wall during rocking without��	

deterioration should be considered.��


In the second phase of this study, the experimental results described herein were used���

to validate a numerical model, which in turn was used to conduct a large-scale parametric���

study on out-of-plane wall stability. The scope of the numerical study includes the effects���

of ground motion variability and numerous parameters that could not be examined as part���

the experimental study. The numerical study is described in a companion paper [Penner���

and Elwood, 2015].���
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TABLE 1: Specimen properties

Mortar Masonry Flexural Wall Wall

compression[a] compression[b] bond[c] mass dimensions

f ′j cv f ′m cv f ′f b cv L×W ×H
Walls (MPa) (MPa) (MPa) (kg) (mm)

FF-3
4.0 0.23 33 0.20 0.38 0.42

3627 1509×291×3947

FR-3 3614 1500×291×3984

FF-2 1739 1504×191×2790

SS-3
4.2 0.35 46 0.13 0.55 0.31

3833 1518×300×3985

RR-3 3768 1513×296×3973

[a] CAN/CSA A179-04 (R2009) [CSA, 2009]
[b] ASTM C1314 - 11a [ASTM, 2011]
[c] ASTM C1072 - 10 [ASTM, 2010]



TABLE 2: Results summary

Period (s) Motion scale

Wall

Normalized

crack height Top Bottom

Highest

stable run Collapse run

FF-3 0.47 1.63 1.55 80% 100%

FR-3 0.55 1.62 0 110% 120%

FF-2 0.49 1.28 1.21 110% 120%

SS-3 0.51 0.83 0.83 75% 80%

RR-3 0.74 0 0 60% 65%



TABLE 3: Peak normalized force demands (g)

Highest stable run Collapse run

Wall Connection Wall Connection

Wall Run Total Total Top Bot. Run Total Total Top Bot.

FF-3 12 0.26 0.28 0.23 0.38 13 0.58 0.47 0.41 0.53

FR-3 9 0.31 — 0.31 — 10 0.33 — 0.33 —

FF-2 10 0.35 0.36 0.25 0.49 11 0.39 0.38 0.35 0.55

SS-3 12 0.44 0.42 0.34 0.52 13 0.58 0.50 0.39 0.61

RR-3 5 0.30 — — — 7 0.33 — — —

Maximum: 0.44 0.42 0.34 0.52 0.58 0.50 0.41 0.61

Total wall forces are normalized to total wall weight

Top and bottom connection forces are each normalized to one-half of the wall weight

For wall RR-3, Run 6 was run at a lower amplitude than than the preceding Run 5 to obtain an

additional data point prior to collapse



TABLE 4: Period, damping, and full-scale Sa values

Wall Ts (s) ζ Sa(Ts)100% (g)

FF-3 1.59 0.08 0.35

FR-3 1.59 0.08 0.35

FF-2 1.24 0.12 0.31

SS-3 0.83 0.08 0.49

RR-3 0 0.08 0.50[a]

[a] PGA



TABLE 5: Ratio of peak normalized force demands to Sa(Ts)

Highest stable run Collapse run

Wall Connection Wall Connection

Wall Run Total Total Top Bot. Run Total Total Top Bot.

FF-3 12 0.94 1.03 0.84 1.39 13 1.69 1.36 1.17 1.54

FR-3 9 0.81 — 0.82 — 10 0.78 — 0.80 —

FF-2 10 1.04 1.08 0.75 1.46 11 1.05 1.04 0.94 1.50

SS-3 12 1.20 1.15 0.93 1.42 13 1.49 1.28 1.00 1.56

RR-3 5 1.00 — — — 7 1.01 — — —

Maximum: 1.20 1.15 0.93 1.46 1.69 1.36 1.17 1.56

Total wall forces are normalized to total wall weight

Top and bottom connection forces are each normalized to one-half of the wall weight



TABLE 6: Peak normalized forces in cracking run and cracked runs (g)

Cracking run Cracked runs

Wall Initiation Entire run Highest stable Collapse

FF-3 0.39 0.40 0.26 0.58
FR-3 0.36 0.52 0.31 0.33

FF-2 0.58 0.58 0.35 0.39

SS-3 0.30 0.49 0.44 0.58
RR-3 0.49 0.50 0.30 0.33
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FIG. 5: Wall rocking before collapse
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