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Abstract  

 

This Ph.D. thesis consists of three essays on the sustainable development of the New 

Zealand dairy industry. The first essay focuses on the relationship between dairy yields 

and intensive inputs. The second and third essays are concerned with farm-level 

management practices on nutrient pollution, the interactions between farmers, and the 

impact of farmer choice on the environment. Spatial spillover effects, which are 

considered as important issues at either the regional level or farm-level decision-making, 

are addressed in all three essays. 

 

As the New Zealand dairy industry faces the challenge of increasing productivity and 

dealing with public concerns over nutrient pollution, effective policy needs to address 

regional dependency and differences in productivity and fertiliser use. The first essay 

employs spatial panel data models to establish whether unobserved spatial effects exist 

and investigate how spatial effects influence the relationship between dairy yields and 

intensive farming inputs across regions. Results show positive spatial spillovers for 

most intensive inputs. The high level of effluent use and estimated negative yield 

response to nitrogen suggests that an opportunity exists for the greater use of effluent as 

a substitute for nitrogen fertiliser. Substitution has the potential to reduce dependence 

on fertilisers and contribute to a reduction in nutrient pollution.  

 

The second essay analyses spatial dependence in the adoption of best management 

practices (BMPs) to protect water quality. Bayesian spatial Durbin probit models are 
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applied to survey data collected from dairy farmers in the Waikato Region of New 

Zealand. Results show that farmers located in close proximity to each other exhibit 

similar choice behaviour, indicating that access to industry information is an influential 

determinant of dairy farmers’ adoption of BMPs. In addition, these findings address the 

importance of farmer interactions in adoption decisions because participation in dairy-

related activities is identified as an extension of information acquisition. Financial 

problems are one of the biggest obstacles for farmers to adopt BMPs. Overall, the 

second essay highlights the importance of considering spatial interaction effects in 

farmers’ decisions, which is important to the formulation of agri-environmental policy.  

 

The third essay investigates how dairy farmers’ social interactions influence the 

relationship between their environmental performance and nutrient management 

practices (NMPs). Spatial Durbin error models are employed to analyse farm-level 

sample data in the Waikato region of New Zealand. Social interactions are modelled by 

a spatial weights matrix and an adjacent weights matrix. Results show that dairy 

farmers’ environmental performance is positively influenced by geographically close 

farmers’ and socially close farmers’ NMPs, such as wintering off cows and increasing 

the frequency of soil tests. Results also indicate that encouraging the farmer-to-farmer 

communication improves dairy farmers’ environmental performance. 
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CHAPTER 1. Introduction 

  

 

 

 

This Ph.D. thesis adopts a three-essay format. All three essays contribute to the fields of 

agricultural and environmental economics, and are based on empirical studies focusing 

on nutrient management practices associated with the New Zealand dairy industry. The 

first essay is concerned with the relationship between dairy production and intensive 

dairy farming at the regional level; the second and third essays focus on farm-level 

management practices on nutrient pollution, interactions between farmers, and the 

impact of farmer choice on the environment. Significantly, an important issue is 

addressed in all three essays; notably, that policy aimed at nutrient pollution should 

consider spatial spillovers at either the regional level or farm-level of decision-making.         

 

1.1 Research Background  

 

The dairy industry is a vital contributor to the New Zealand (NZ) economy, but 

unsustainable farming activities have also caused negative environmental impacts. 

Significantly, nutrient pollution from dairy farms, predominantly nitrogen and 

phosphorus, has increasingly become a concern. Although the NZ economy is heavily 

dependent on agriculture, especially the dairy sector, nutrient pollution is a significant 

concern for the NZ government seeking to support sustainable agriculture. Therefore, 
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there is no doubt that the NZ dairy industry should adapt its development strategies to 

sustainable development that has been defined as “development that meets the needs of 

the present without compromising the ability of future generations to meet their own 

needs” (the World Commission on Environment and Development, as cited by 

Department of Prime Minister and Cabinet, 2003, p.6).  

 

To comply with the goal of sustainable growth, the dairy industry faces a great 

challenge. On the one hand, high productivity is regarded as the international 

competitive advantage of the NZ dairy industry. Thus, the dairy industry seeks to 

maintain competitiveness by continued increases in intensification, namely increased 

use of inputs and stocking rates. On the other hand, unsustainable dairy farming 

activities are recognised as being responsible for negative environmental impacts, 

especially the adverse impact on water quality. Therefore, the dairy industry has to 

balance the increasing intensification in pursuit of high production with its 

responsibility for environmental degradation due to nutrient pollution.   

 

1.1.1 Intensive Dairy Farming and the Environmental Impact 

 

The dairy industry has increasingly intensified over the last few decades. From the 

1990s to date, there has been an increase in the number of farms converted to dairy 

farming and farms that provide dairy grazing (Statistics New Zealand, n.d.a). The size 

of dairy farms and the total area of land use in dairy pasture has significantly increased 

(Ministry for the Environment, 2007). Currently, there are 6.4 million dairy cattle in 

New Zealand (up to June, 2015), which is about 21 percent higher than the total of 5.3 

million in 2007 (Statistics New Zealand, 2015). The additional 1.1 million dairy cows 
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will produce about four times the total amount of milk that New Zealanders consume 

each year (Statistics New Zealand, n.d.b). As shown in Figure 1.1, the number of dairy 

cattle has doubled from 2.9 million in 1980 to nearly 6.4 million in June, 2015 

(Statistics New Zealand, n.d.c). The above changes indicate an increase in intensive 

pastoral land use with higher stocking densities.   

 

 

Figure 1.1 The Number of Dairy Cattle from 1980 to 2015  

Data Source: Statistics NZ. 

 

High international demand for dairy products is the main driving force behind the 

increase in dairy cattle numbers (Statistics New Zealand, n.d.a). The value of dairy 

exports, including milk powder, butter, cheese, and casein, grew significantly over the 

past years, with exports increasing by about 71 percent (to $12 billion) since 2007 up to 

June 2015 (Statistics New Zealand, n.d.b). The milksolids price also increased, from 

$4.05 per kilogram in January 2007 to a record high of $7.95 in April 2011 (Statistics 

New Zealand, n.d.b). Since then, the price of milksolids has dropped due to fluctuations 
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in international dairy prices affected by oversupply and Russian sanctions on EU dairy 

exports. The price of milksolids is still expected to reach $5.25 in the 2015/2016 season. 

  

The intensification of dairy farming has led to a significant increase in the use of 

chemical fertilisers, which have increased the nutrient loss from dairy farms. Gross 

agricultural nutrient balances increased by about 35 percent from 1998 to 2004 in NZ1 

(OECD, 2008). Notably, the amount of nitrogen fertiliser use has increased tenfold 

since 1985 and doubled since the mid-1990s to 2007 (Ministry for the Environment, 

2007). As can be seen in Figure 1.2, the average nutrient balance of nitrogen and 

phosphorus of the OECD countries had dropped by 16.9 percent and 37 percent from 

1990 to 2004, respectively. In contrast, the nutrient balance of nitrogen and phosphorus 

had significantly increased by 135.6 percent and 45.9 percent in NZ during the same 

period.  

 

 

 

 

 

 

 

 

 

 

 

1 The nutrient balances are expressed as kg nutrient per hectare of total agricultural land. 
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Figure 1.2 Percentage Changes of Nutrient Balance from 1990 to 2004, NZ and OECD 

Countries  

Data source: OECDiLibrary. 

 

Consequently, there is increasing public concern, expressed both locally and nationally, 

about the adverse environmental impacts of intensive farming, being commensurate 

with the surge in chemical fertiliser use and the increasing dairy cattle numbers. 

According to the survey of the public perceptions of New Zealand’s Environment, the 

percentage of NZ residents, who regard farming as the primary cause of damage to 

fresh waters, increased by about 8 percent. At the regional level, the largest increase (10 
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percentage increase, in 2002, 2007 or 2012, was in the South Island2 (Cullen, Hughey & 

Kerr, 2006; Hughey, Kerr & Cullen, 2013). Since water-quality degradation is linked 

with farming “by-products”, more pressure from the public is expected to be placed on 

the intensive dairy farming in NZ. Accordingly, regulations, such as stock exclusion 

from waterways, are expected from regional councils in response to public demands for 

good water quality (Land and Water Forum, 2015).  

 

 

Figure 1.3 Farming Perceived as the Main Cause of Damage to Fresh Waters, by Region 

Data source:  the public perceptions of New Zealand’s Environment: 2006 (Cullen, Hughey & 

Kerr, 2006), the public perceptions of New Zealand’s Environment: 2013 (Hughey, Kerr & 

Cullen, 2013). 

 

 

2 In the series of surveys, the results were aggregated to three regions, North area of the North Island, 

Central area of the North Island, and the South Island.      
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1.1.2 Farmers’ Dilemma 

 

Dairy farmers play a significant role in the development of policy and managing 

nutrient pollution. Thus, the NZ government has launched various national and regional 

programs to guide farmers for a better use of intensive inputs and to assist farmers in 

controlling nutrient discharge. For example, the “Dairy Clean Waterway Accord”, 

which was designed to achieve improved environmental outcomes at a national level; 

the “Good Management Practices” project and the “Best Practice Dairy Catchments for 

Sustainable Growth” project, opened a new window of monitoring and controlling 

nutrient loss at the catchment level. Likewise, government and research institutions 

have committed to help farmers evaluate the amount of nutrient loss so that farmers can 

efficiently manage nutrient practices.     

  

Notably, there are a large number of mitigation practices available for controlling 

nutrient pollution, but one size does not fit all. Farms are different and the effectiveness 

associated with nutrient management practices depends on the individual farm situation 

(Howarth & Journeaux, 2016). Hence, some farmers are hesitant to implement 

mitigation practices due to the uncertainty associated with the environmental 

performance and the risk of increasing the cost of production.  

 

Moreover, unlike wastewater discharged from factories, nutrient pollution discharged 

from farms is mostly non-point pollution that cannot be accurately measured. In 

addition, it is usually costly to implement mitigation practices as farmers need to invest 

in “hardware”, such as installing fences to keep cattle from waterways, and in 
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“software”, such as self-learning or staff training for knowledge and skills to implement 

the practices. All these facts make it difficult for farmers to implement mitigation 

practices when the mitigation practices cannot be specifically linked to the quantity of 

pollutant discharge.  

 

1.2 Motivation 

 

Spatial spillover effects have been regarded as one of the important factors that 

influence the decision-making of spatial units, such as countries and regions3. This fact 

follows Tobler’s first law of Geography that close observations are more likely to be 

connected to each other than distant observations (Tobler, 1970). Spatial spillover 

effects have been extensively considered in various research fields, such as regional 

science, transportation and agriculture, since it was first proposed and included in 

econometric models in 1979 (Anselin, 2010). In spatial models, the relationship among 

spatial units is captured by using geographical location of the units being observed.   

 

In recent years, many empirical studies have considered spatial spillover effects in the 

fields of agricultural and environmental economics. This is mostly because agricultural 

production is, to some extent, dependent on environmental and geographical resources 

that are closely related to spatial attributes. Consequently, for example, the agricultural 

policy in one region may be influenced by how similar policies are implemented in the 

adjacent regions. Therefore, when analysing regional level data, including spatial 

spillover effects could help to understand the interactions of policies and strategies 

across different regions.  

3 Spatial spillover effects are also called spatial interaction effects or indirect effects, this thesis regards 
the three terms to represent the same meaning. 
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In addition, spatial spillover effects can also be considered in the exploration of 

behaviour of economic agents, such as individuals and firms (Anselin & Bera, 1998). 

Specifically, Akerlof (1997) firstly proposed the concept of “social distance” that can 

be measured either by geographical locations or social network connections among 

economic agents. That is, the closeness of two individuals can be measured by the 

inverse of geographical distance between them while it can also be measured by 

looking at inverse social distance in a social space. In that way, as a special means of 

“spatial spillover” effects, social interactions among individuals could be investigated 

through, while not limited to its neighbours, but also through its friends and other social 

connections.  

 

Therefore, this thesis takes into account spatial spillover effects through essay one to 

essay three, each contributing to policy design aimed at developing NZ’s dairy industry 

sustainably and economically. The thesis proposes that spatial considerations would 

affect the formulation of effective and efficient policy on the sustainable development 

of the dairy industry. It also suggests that the consideration of spatial spillover effects in 

policy-making may help farmers to reduce the cost on accessing information and 

technology on sustainable farming practices, and assist the NZ government to develop 

national regulations by recognising regional dependence and variance. For each essay, 

specifically: in essay one, the inclusion of spatial spillover effects aims to capture 

regional dependence and variation in the relationship between dairy production and the 

use of intensive inputs; essay two employs geographical locations of dairy farms to 

verify whether or not spatial dependence exists in farmers’ decision-making on good 

environmental practices; essay three extends the conventional spatial spillover effects to 

social network effects in dairy groups.  
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1.2.1 Essay One  

 

To maintain the international competitiveness of the NZ dairy industry, it is important to 

understand the relationship between dairy yields and intensive farming inputs regionally 

and nationally, particularly if policy is to facilitate choice of intensive inputs that can 

help to increase dairy yields with the least damage to the environment. The problem is 

that if sufficient nutrients are not provided, then, soil fertility will decrease production. 

Conversely, excessive nutrients contribute to nutrient loadings that impact the 

environment. Significantly, farmers will face the challenge of whether or not high dairy 

yields can be sustained with high intensive inputs, especially on the choice of 

alternative sources of nutrients, such as the use of dairy shed effluent.   

 

In contrast to the experience of the U.S. and the European Union, there are no 

regulations or policy instruments aimed at controlling nutrient pollution in NZ at a 

national level. Policies aimed at controlling nutrient discharge from farms are currently 

being developed by regional units of government in New Zealand4. With the expansion 

of intensive farming from traditional dairy regions to other regions, the challenge is to 

take account of the complexity of regional dependency and regional diversity. On the 

one hand, local conditions influence regional dairy yields. On the other hand, dairy 

yields in one region might be influenced by its own intensive inputs as well as by 

neighbouring regions’ dairy farming activities. For example, a new technology of 

4 The U.S. has had a national Pollutant Discharge Elimination System (NPDES) since 1972 and the 

European Union’s Agri-environmental schemes has become compulsory among member states since 

1992 (United States Environmental Protection Agency, n.d.; European Commission, n.d.). 
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effluent treatment system developed in one region may increase effluent use in another 

region. Effluent use may also increase in the adjacent regions due to technology 

spillovers among regions. Therefore, a good means of dealing with the complexity of 

regional dependence is to recognise spatial interaction effects among regions, because 

dairy yields and intensive inputs relationships are better understood by considering both 

the own region characteristics and spatial spillovers from neighbouring regions.     

 

Therefore, the purpose of essay one is to analyse how dairy yields respond to intensive 

farming inputs, to establish whether unobserved spatial effects exist, and to investigate 

how spatial spillover effects influence the relationship between milk production and 

intensive farming inputs across regions. Moreover, by including interaction terms 

between effluent and fertiliser use, this essay aims to explore whether trade-offs exist 

between fertiliser and effluent use and to further reveal the influence of trade-offs on 

regional dairy yields. 

 

1.2.2 Essay Two  

 

Considering the stochastic characteristic of non-point source pollution, it is impossible 

to accurately estimate emissions (Kerr & Rutherford, 2008). Therefore, farmers may 

hesitate to implement mitigation strategies due to economic and environmental 

uncertainty. In addition, most of the NZ’s nutrient regulation programs operate under 

the premise of voluntary, and the impact of these programs has been doubted. For 

example, Deans & Hackwell (2008) proposed that the voluntary/ non-regulatory 

instrument tend to have little influence on the behaviour of farmers who are not 

interested in changing their practices.  
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Therefore, it is important to understand factors that affect farmers’ choices on the 

adoption of best practices or participation in agri-environmental programs. Although 

many studies have explored factors influencing farmer choice, most have used 

qualitative research methods that provide limited conclusions. Furthermore, the findings 

are of limited generalizability. Moreover, instead of investing in acquiring technologies, 

farmers are willing to “look over the fence”, chat and learn from their neighbours’ 

experience. Thus, the spatial spillover effects among farmers should be considered as an 

important factor that influence farmers’ decision-making.   

 

Therefore, essay two aims to explore determinants of dairy farmers’ willingness to 

adopt best management practices (BMPs) for water quality protection. Except for 

testing commonly used determinants, it will test the hypothesis that spatial effects 

influence farmers’ choices. Bayesian spatial Durbin probit models are applied to sample 

survey data in the Waikato region of NZ. Specifically, this essay will verify the 

hypothesis from two aspects. Firstly, spatial effects will be modelled according to the 

distance from farm to the nearest water bodies. The hypothesis examined is whether 

dairy farmers whose farms are located close to water bodies are more likely to adopt 

BMPs. Secondly, spatial effects will be presented as the existence of spatial 

interdependency in dairy farmers’ decision-making. It is assumed that dairy farmers 

observe or learn from nearby farmers thereby reducing uncertainties associated with the 

performance of BMPs because BMPs are information-intensive farming techniques 

(Läppl & Kelley, 2015).    
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1.2.3 Essay Three 

 

To help farmers make better nutrient management plans, OVERSEER® was developed 

to estimate the amount of nutrient loss to water. Currently, it is applied national-wide by 

most dairy farmers. Nevertheless, some problems associated with OVERSEER® should 

not be ignored. For example, nutrient loss to water is estimated by assuming best 

practices, meaning that any change or transition of on-farm management practices to 

BMPs does not reduce the nutrient loss predicted by OVERSEER®. Meanwhile, for a 

given farm system, OVERSEER® estimates the long-term annual average output, 

assuming the farm management system stays the same (Shepherd et al., 2013). To a 

great extent, this might stop farmers from investing in some management practices 

since they are uncertain about whether or not the investment in those practices could 

improve their environmental performance. Therefore, it is important to investigate 

whether or not nutrient loss estimated by OVERSEER® is relevant to dairy farmers’ real 

nutrient management practices (NMPs).  

 

Social interactions, such as communication with neighbours, dairy group discussions, or 

talking with friends in dairy groups, may also influence farmers’ decision-making. This 

might be evident in a small community, where farmers know and meet with each other 

frequently. Although nutrient management issues are often invisible and difficult to 

monitor, farmers often have a ‘fair idea’ of what each other is doing (Ritchie, 2007). 

Besides, dairy farmers may exchange their experience in dairy groups on a particular 

NMP with other farmers facing a similar choice. Consequently, whenever a dairy 

farmer is making a decision on NMPs, the farmer may compare his/ her own 

13 
 



environmental performance with his/ her peers’ performance. Furthermore, Oreszczyn, 

Lane & Carr (2010) suggest that learning might occur during interaction activities 

among farmers. Hence, we may assume that dairy farmers share or learn from the 

experience on NMPs from other farmers, as they tend to develop farming knowledge 

with observations on other farmers’ practices (Wood et al., 2014).   

 

The aim of the third essay is to explore the relationship between dairy farmers’ 

environmental performance and their NMPs, to understand how social interaction 

effects influence this relationship, and to provide suggestions for the design of nutrient 

control policy. Specifically, it will address the following questions: how does 

environmental performance respond to dairy farmers’ real NMPs? To what extent, has 

one dairy farm’s nutrient loss been influenced by the NMPs of its neighbouring farms? 

And, whether spatial interactions or social network interactions have a greater impact 

on the relationship between nutrient loss and NMPs. It firstly adopts a spatial 

econometric model with typical spatial interaction effects as a point of departure and 

then extends the model to include social network interactions among dairy farmers.  

 

1.3 Structure of the Thesis 

 

The structure of this thesis is shown in Figure 1.4. Followed by the introduction section, 

an overview of method is presented in Chapter 2. Chapter 2 introduces spatial 

econometric models that are used as main analysis methods in all three essays. The 

three essays, in sequence, are presented in Chapters 3, Chapter 4 and Chapter 5. Each 

essay includes an introduction, a relevant review of the literature, empirical analysis, 

and a brief summary. Conclusions for this thesis are presented in Chapter 6, where 
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contributions of each essay are addressed and policy implications are provided 

according to conclusions of the thesis. 

 

 

Figure 1.4 Structure of the Thesis  

 

In the following Chapter, spatial econometric models, which are used in all three essays, 

will be introduced. Specifically, it starts with an introduction of model specifications for 

different spatial models, details model interpretations, and provides some empirical 

applications of spatial econometric models in economics.  

 

 

 

 

CH1: Introduction  

CH2: Overview of Method 

CH3 Essay one 

● Introduction  

● Literature review  

● Data and empirical 

analysis 

● Summary  

  

CH4 Essay Two  
● Introduction  
● Literature review  
● Data and empirical 

analysis 
● Summary  

 

CH5 Essay Three  
● Introduction  
● Literature review  
● Data and empirical 

analysis 
● Summary  

 

CH6: Conclusions and Policy Implications 
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CHAPTER 2. Overview of Method  

 

  

 

 

2.1 Introduction 

 

Spatial econometric methods are employed as the main method of analysis for the 

thesis. This chapter provides a literature review of model specifications of different 

spatial econometric models and gives an overview of model selection methods to 

include appropriate spatial interaction effects. In addition, it specifies different ways to 

construct a spatial weights matrix to model spatial interactions among observations and 

discusses extensions of spatial weights matrix that can be applied to model social 

interaction effects among observations. Finally, it presents some empirical applications 

of spatial econometric methods in economics, particularly in agricultural and 

environmental economics.  

 

2.2 Spatial Econometric Models 

 

Spatial econometric analysis methods have been extensively studied and broadly 

applied in various research fields since it was firstly proposed in 1979 (Anselin, 2010). 

Specifically, spatial econometric models include different spatial interaction effects 

over different geographical units, which can be expressed as point locations (e.g., zip 
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codes, buildings and residences) or aggregated data over specific geographic areas (e.g., 

countries, regions, and land parcels). In addition to geographic units, spatial 

econometric methods can also be used to explore the behaviour of economic agents, 

such as individuals, firms or governments (Anselin, 2010). In the early phase of 

development, the spatial lag model was the main focus of spatial econometric models, 

which is also known as the spatial autoregressive (SAR) model, and the spatial error 

model (SEM)5. The two models are shown in Equation 2.1 and Equation 2.2 for cross-

sectional data, respectively.     

 

(2.1) Y WY Xλ αι β ε= + + +   

 

(2.2) 
,Y X u

u Wu
αι β
ρ ε

= + +
= +

 

 

In Equation 2.1,  Y  is an 1n×  vector of the dependent variable; αι  is the constant term 

with an 1n×  vector of ones ι  associated with the parameter α  to be estimated; X  

denotes an n k×  vector of k  independent variables, with the associated coefficient 

parameters β , and ε  is the disturbance term. Unlike conventional econometric models, 

the SAR model includes an endogenous dependent term WY  representing a linear 

combination of values of the dependent variable Y  constructed from neighbouring 

observations. W  is an n n×  matrix called spatial weights (the detail of which will be 

specified in the next section), and λ  is an unknown spatial parameter to be estimated. 

Different from the SAR model, the SEM model captures the spatial interaction effect in 

5 The acronyms used in this thesis are those most commonly used in the spatial econometrics literature to 

refer to the model specification (see e.g. Elhorst, 2014).   
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a spatially autocorrelated error term u , with the unknown spatial parameter ρ  to be 

estimated.  

 

The spatial lag of X model (SLX), not often been used in empirical studies, provides 

another way to model spatial spillover effects. The SLX model is shown in Equation 2.3, 

where the spatial spillover effect is presented in the form of a spatially lagged 

independent term WX . The spatially lagged independent term is set to capture impacts 

of the neighbouring observations’ characteristics, with the associated coefficient 

parameters θ  to be estimated.  

 

(2.3)                                   Y X WXαι β θ ε= + + +  

 

The above three models include three spatial spillover effects, i.e. a spatially lagged 

dependent term, a spatially autocorrelated error term, and a spatially lagged 

independent term. However, early on researchers started to believe that two or more 

spatial spillover effects could exist in real world applications, and it is possible to 

include those effects in one spatial model. Ideally, one spatial econometric model may 

include all the three effects, called the general nesting spatial (GNS) mode, but most 

studies have agreed that at least one interaction effect should be excluded or else the 

parameters are unidentified. However, divergence in opinion exists with regard to the 

selection of which interaction effects should be included (Elhorst and Fréret, 2009).   

 

LeSage & Pace (2009) and Elhorst (2014) have proposed that the best option for 

empirical studies is to choose the spatial Durbin model (SDM) that excludes the 

spatially autocorrelated error term. LeSage (2014) has further argued that the SDM is 
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the only model specification worth considering for empirical work to measure global 

spillover effects; while the spatial Durbin error model (SDEM) is the only one that 

needs to be estimated if one can narrow down the relationship being investigated as 

reflecting local spillover effects6. As shown in Equation 2.4, the SDM model considers 

two spatial spillover effects, i.e. a spatially lagged dependent term and spatially lagged 

independent variables.  

 

(2.4)                                             Y WY X WXλ αι β θ ε= + + + +
 

 

The SDEM model excludes the endogenous spatially lagged dependent variable and 

includes the spatially lagged independent variables and the spatially autocorrelated error 

term, shown in Equation 2.5.   

 

(2.5) 
Y X WX u
u Wu

αι β θ
ρ ε

= + + +
= +

  

 

A complete description of the relationship between a general linear model/ non-spatial 

model and the extensions to spatial models are shown in Figure 2.1. 

  

 

 

 

6 Please find the details of model selection in LeSage (2014), who has also introduced the SAC model 

that includes both the spatially lagged variable and the spatial autocorrelated error term, and explained 

the disadvantages of the SAC model.   
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Figure 2.1 Relationships between Different Spatial Models for Cross-sectional Data 

 Source: Elhorst & Vega, 2013. 
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According to the relationships depicted in Figure 2.1, diagnostic tests have been 

developed for selecting the appropriate spatial model best fitting the targeted research 

questions and data. Generally, tests can start with the benchmark model, a non-spatial 

linear model at the bottom of Figure 2.1, to test for the spatial spillover effects 

presented as a spatially lagged term of the dependent variable and a spatial 

autocorrelated error term by using both the Lagrange Multiplier (LM) test and the 

robust LM test (Anselin et al., 1996). This testing process is used to determine whether 

or not the non-spatial model needs to include spatial interaction effects. Moran’s I test 

can also be used to test for the existence of spatial autocorrelation in cross-sectional 

data (Moran, 1950).   

 

Except for testing for spatial interaction effects in the non-spatial model, diagnostic 

tests can also start from the top. As spatial models used in empirical studies often 

include two spatial effects, the test can start from, for example, the SDM model. By 

using the Wald test, it is possible to verify the hypothesis whether it is proper to 

simplify the SDM to the SAR as well as the hypothesis whether the SDM can be 

simplified to the SEM (Elhorst & Fréret, 2009).  

 

I follow the above testing processes to choose the best spatial econometric models that 

best fit the data used in each essay. In my first essay, I used the SDM model in a panel 

data setting for regional dairy yields and intensive inputs; a transformed SDM model is 

used in the second essay, where the dependent variable is a binary variable representing 

dairy farmers’ choices on the adoption of best management practices for water 

protection; and an SDEM model is used in essay three, which attempts to explore 

spatial spillover effects (from geographically close neighbours and socially close 
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contacts in dairy groups) of neighbouring farmers’ choices of nutrient management 

practices, and how spillover effects influence farmers’ environmental performance.  

 

2.2.1 Spatial Weights Matrix 

 

As discussed in the previous section, a spatial weights matrix is used in spatial 

econometric models to model the spatial relevance among spatial units. The spatial 

weights matrix ; ,  1, ,( )ijW w i j n=  = …  is an n n×  positive matrix, where each spatial 

unit ijw  appears both in rows and columns. Here, each spatial weight reflects the 

‘‘neighbouring’’ relationship defined for the corresponding observations i and j (LeSage 

& Pace, 2009). It is noted that “self-influence” is excluded by assuming that 0iiw =  for 

all 1, ,i n= … .  

 

There are several ways of building a spatial weights matrix in practice, but all these 

approaches adopt distances and boundaries. Generally, boundary-based weights matrix, 

such as queen contiguity and rook contiguity approach, is used to capture local effects. 

In this case, the usual focus is on interaction effects among the adjacent neighbours 

who share boundaries with each other.  

 

The simplest way to construct a boundary-based weight matrix is the queen contiguity 

approach. If the set of boundary points of spatial unit i is denoted as ( )bin i , then, the 

queen contiguity weights are expressed in Equation 2.6.  

 

(2.6)                                         
1, ( ) ( )
0, ( ) ( )

 
 ij
bin i bin j

w
bin i bin j

∩ ≠ ∅
=  ∩ = ∅
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Although it is straightforward to understand the relationship between two spatial units 

through the above expression, queen contiguity weights define neighbouring units as 

those sharing only a single boundary point, such as a shared corner point on a grid of 

spatial units (Getis, 2009). Thus, a much more powerful approach is developed to 

require that some positive portion of their boundary be shared. As defined in Equation 

2.7, ijl  denotes the length of shared boundary between spatial units i and j, which is 

called the rook contiguity weights.  

 

(2.7)                                               
1, 0

0

  

 , 0
ij

ij
ij

l
w

l

>=  <
 

 

However, sometimes, researchers attempt to model the impact of a neighbour’s 

neighbour or even a neighbour of neighbour’s neighbour so that distance-based weights 

matrix is developed for this purpose. One of the most commonly used distance-based 

matrixes is defined on the basis of a powered inverse distance c
ijd − (c usually equals to 1 

or 2 in empirical studies) between observation i and j ( i j≠  ). Practically, it measures a 

distance decay effect among the spatial units. For example, an inverse distance weights 

matrix may take the form shown in Equation 2.8. 

 

(2.8) 
1,0

0,
ij ij

ij
ij

d d d
w

d d

− ≤ ≤= 
    >

   

 

Here, d denotes a threshold distance beyond which spatial effects are assumed to be 

zero.  
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Another commonly used distance-based approach is thk  nearest neighbours weights 

matrix, which takes the form shown in Equation 2.9.  

 

(2.9)                                              
1, ( )
0,

k
ij

j N i
w

otherwise
  ∈

=    
 

 

where distances from each spatial unit i to other units j ( i j≠  ) can be ranked as: 

(1) (2) (n 1)ij ij ijd d d −≤ ≤ ≤2 . Thus, for each 1, , 1,k n= −2  ( ) { (1), (2), , ( )}iN k j j j k= …  

contains k closest neighbours to i. 

 

In the above two spatial weights matrixes, either the threshold distance or the number 

of thk  nearest neighbours is determined on the basis of several aspects, such as 

requirements to address the research question, size of the data set, and previous 

literature on the specification of distance. By using the distance-based weights matrix, 

the impact of a neighbour’s neighbour can be captured, even though it is assumed to 

decay with the increase of the distance.  

 

Except for boundary-based and distance-based weights matrix, a spatial weights matrix 

based on social connections has extended the use of the conventional spatial scope to 

consider social locations among spatial units. That is, instead of observing physical 

distance, interactions with respect to socioeconomic characteristics are measured and 

modelled by using “economic distance” or “social distance”. For example, inversed 

trade share, inverse distance between GDP per capita, and migration flow information 

are typical indicators to model the interactive relationships between observed countries 

rather than modelling boundary connections among these countries. (e.g.  Crabbé, 2013; 
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Corrado & Fingleton, 2012). The construction of spatial weights matrix based on social 

locations can follow the distance-based weights matrix, shown in Equation 2.8, while 

1
ijd −  is no longer the geographical distance but “economic distance” or “social distance”. 

For example, to measure the “economic distance” between country i and j, the inverse 

distance 1
ijd −  between the two countries can be substituted by using inverse difference 

in GDP per capita between the two countries.  

  

Another example of social-related weights matrix is to consider social network 

connections among individuals. Assuming that there is an individual, who meets and 

makes friend with another individual in a social event on a specific topic. The 

individual’s attitude on this topic may be influenced by that of the friend met in the 

social event (even though this one lives far away) rather than that of the individual’s 

neighbour. Accordingly, a spatial weights matrix can be built according to relationships 

of individuals in different social events, based on the rook contiguity approach shown 

in Equation 2.7.  

 

In empirical studies, “the best” spatial weights matrix is usually determined according 

to comparing indicators of goodness of fit of models, such as R2 or Adjusted R,2 with 

different matrix specifications. However, LeSage (2014) suggests that researchers 

should choose “the best” spatial weights matrix based on the research questions, and a 

simple form of spatial weights matrix is preferred. In this thesis, to select “the best” 

spatial weights matrix for each essay, I firstly consider the focus of the research 

question for each essay. For example, in the first essay, a distance-based spatial weights 

matrix is chosen to model spatial interactions among regions considering only 55 

regions are included. If a boundary-based matrix was used, some regions may be 
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isolated with no neighbours. In the third essay, in order to model social interactions 

among dairy farmers, a boundary-based spatial weights matrix is built to capture 

interactions among geographically close farmers, while a social-related matrix is built 

to capture interactions among farmers in the same dairy groups. Meanwhile, I also 

compare indicators of goodness of fit of models with different spatial weights matrixes. 

Hence, in the first essay, different thresholds of distance are tested and compared 

according to the values of R2. Similarly, in the third essay, the spatial model with a rook 

contiguity weights matrix outperforms other spatial models, indicating the rook 

contiguity weights matrix is “the best” matrix.   

 

2.2.2 Interpreting Direct and Indirect Effects  

 

Spatial econometric models consider spatial spillover effects from neighbouring spatial 

units, which makes it different from results interpretation of conventional least square 

regressions. Considering an SDM model, to better present the impacts of spatial 

spillover effects, Equation 2.4 can be transformed to:  

 

(2.10)                    
-1 -1 -1( - ) ( ) ( - ) ( - )Y I W X WX I W I Wλ β θ λ ια λ ε= + + +  

 

where I is an n n×  identity matrix. Furthermore, Equation 2.10 can be presented as a 

simple form shown in Equation 2.11, where kx  stands for the thk  independent variable.  

 

(2.11)                               
1

( ) ( ) ( )
r

k k
k

Y S W x V W V Wια ε
=

= + +∑  
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where ( ) ( )( )k k kS W V W I Wβ θ= +  and 1 2 2 3 3( ) ( - ) ...V W I W I W W Wλ λ λ λ−= = + + + +  

Specifically, ( )kS W  can be further expanded to: 

 

(2.12)                

11 12 1

21 22 22

1 2

( ) ( ) ... ( )
( ) ( ) ( )

( )

( ) ( ) ( )

k k k n

k k k
k

k n k n k nn

S W S W S W
S W S W S W

S W

S W S W S W

 
 
 =
 
  
 



  



 

 

According to Equation 2.11 and 2.12, derivative of the thi  dependent variable iy  

regarding ikx  does not equal to kβ  but takes the form ( )k iiS W . Thus, in contrast to a 

conventional non-spatial linear model, it is not valid to use the estimated coefficients 

kβ  to interpret the impacts of the explanatory variables. Here, ( )k iiS W  includes the 

impact on the thi  dependent variable iy  from a change in ikx , consisting of direct (of 

own) and indirect effects (of neighbouring spatial units).  

 

Pace and LeSage (2006) firstly proposed a summary measurement method to interpret 

direct and indirect effects, considering the influence of changes in an independent 

variable varies over observations. Thus, a scalar summary measure is based on 

summing the total impacts over the rows (or columns) of the matrix ( )kS W  and taking 

an average over all observations. Specifically, the average total impact to an 

observation is measured as the average of row sums from ( )kS W ;  the average direct 

impact is measured as the average of the diagonal of matrix ( )kS W  ; and the average 

indirect impact is referred to the difference between the average total impact and 
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average direct impact. Details of calculating these effects can be found in the study of 

LeSage & Pace (2009).  

 

Formulas to calculate direct and indirect effects calculation for different spatial model 

specifications are presented in Table 2.1, according to model specifications of the 

spatial models shown from Equation 2.1 to 2.5 and the summary measure method.  

 

Table 2.1 Direct and Indirect Effects of Different Model Specifications 

Effects  

Models  

Direct effects  Indirect effects  

OLS/SEM kβ   0 

SAR/SAC Diagonal elements of 

-1( - ) kI Wλ β   

Off-diagonal elements of

-1( - ) kI Wλ β  

SLX/SDEM kβ  kθ   

SDM/GNS Diagonal elements of 

-1( - ) ( )k kI W Wλ β θ+  

Off-diagonal elements of 

-1( - ) ( )k kI W Wλ β θ+  

Source: Elhorst & Vega (2013)  

 

2.3 Overview of Empirical Applications of Spatial Econometric Models 

 

As stated by Anselin (2010), when reviewing the development of spatial econometric 

models, a significant move can be observed from applications on a small scale of 

research fields, such as urban and regional development, to applications in the 

mainstream of social science studies. In the early stage, spatial econometric models 
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were applied in regional science, environment and geography studies, but barely 

attracted attentions from economists and social scientists. In recent years, however, 

things have changed. Research interest in the application of spatial econometric models, 

especially in the fields of social science, has rapidly increased. Anselin (2010) believes 

that the growth of interest in applied spatial analysis was stimulated by the emergence 

of several articles in econometric journals, such as Econometrica and Econometric 

Reviews and Econometric Theory7. In particular, the Journal of Econometrics held a 

special issue, ‘Analysis of spatially dependent data’, which has facilitated the 

prevalence of the application of spatial econometric models (Baltagi, Kelejian & 

Prucha, 2007).  

 

Spatial econometric models have been applied in almost all the subfields of agricultural 

and environmental economics, such as production economics and land economics. 

Weiss (1996) developed models that incorporate spatial effects to enable incorporation 

of spatial cost and output surfaces into production theory in a study of precision 

farming. Following Weiss’s suggestion, Bongiovanni (2002) and Bullock, Lowenberg‐

DeBoer & Swinton (2002) applied geographical information system (GIS) to control 

for site-specific variable rates of fertiliser application to achieve better management of 

nutrient inputs and to increase crop production. Their results show potential benefits 

from precision agriculture by allowing for spatially customized rates of fertiliser 

application. Using spatial econometric models in a case study of site-specific nitrogen 

application in corn production, Anselin, Bongiovanni & Lowenberg-DeBoer (2004) 

also demonstrated the potential for improving nitrogen management. Their results show 

7 A list was made by Anselin, Florax & Rey (2004) on theoretical and empirical studies in the main 

econometrics journals from the late 1990s to the early 21st century.  
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that nitrogen response differs by landscape position, and the returns for nitrogen use 

and site-specific management practices are different when analysed in spatial models 

and non-spatial models, where all spatial models indicate profitability while the non-

spatial models do not.    

 

Spatial econometric models have also been used to examine the impact of climate 

change on agricultural production. For example, Baylis, Paulson & Piras (2011) use a 

spatial panel data model, incorporating climatic factors, such as annual rainfall, to 

capture the spatial variance in climate change. Their results indicate great potential for 

the application of spatial panel econometric models for applied researchers. Cai, Yu & 

Oppenheimer (2014) used a spatially weighted model to examine the impact of weather 

variation on corn yields across different regions in the US. Their results show that corn 

yields negatively respond to temperature in warmer regions but positively respond to 

temperature in cooler regions, indicating spatially heterogeneous impacts of regional 

temperature.  

 

The above studies are good examples that show the advantages of including spatial 

information in the study of agricultural and environmental economics, and furthermore, 

illustrate the potential of extending spatial analysis to other topics.  

 

Furthermore, although few, some empirical studies have started to employ spatial 

econometric models built for discrete dependent variables to model spatial dependence 

in farmer choice or behaviour. According to the concept of neighbourhood effect 

defined by Manski (1993), spatial dependence means that farmers located nearby show 

similar choice preferences. The dependence might be due to communication between 
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farmers, which may raise awareness or reduce information costs, for example. Case 

(1992) was one of the first to apply a spatial probit model to explore the neighbourhood 

effect on Indonesian farmers’ adoption of the sickle. In recent studies, spatial 

dependence has also been considered in spatial econometric models in farmers’ 

adoption of organic farming. For example, Wollni & Andersson (2014) use survey data 

to analyse factors affecting farmers’ decision on organic conversion in Honduras; 

Lewis, Barham & Robinson (2011) examine the neighbourhood effect in the organic 

conversion decision in southwestern Wisconsin of the U.S; and La¨pple & Kelley (2015) 

apply Bayesian spatial Durbin probit models to account for spatial dependence in Irish 

drystock farmers’ adoption of organic farming. Results of all these articles indicate that 

significant spatial dependence exists in farmer choice, and suggest that policy 

implications might be biased if spatial effects are ignored.  

 

Applications of the spatial econometric models, presented in the above, imply the 

importance and potential benefits of taking into account spatial spillover effects in 

econometric models. Significantly, these studies illustrate why it is important to 

consider spatial issues in agricultural and environmental economics studies: for 

example, agricultural production is highly dependent on geographical and 

environmental resources; and farmers’ farming practices are observable when they are 

located in close proximity. Spatial issues, therefore, should not be ignored in empirical 

studies focusing on agricultural and environmental economics.   

 

Hence, in Chapter 3, I will apply spatial econometric models in the first essay to 

address the importance of spatial effects in the relationship between regional dairy 

yields and intensive inputs.  
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CHAPTER 3. Essay One: Spatial Analysis of 

Dairy Yields Response to Intensive Farming in 

New Zealand 

 

 

 

 

3.1 Introduction 

 

3.1.1 Background 

 

Following the removal of export incentive subsidies in the 1980s, New Zealand (NZ) 

experienced an “agricultural revolution” (Baskaran, Cullen & Colombo, 2009). 

Meanwhile, in recent years, international demand for dairy products has further fuelled 

the expansion of the NZ dairy sector (Tímár, 2011). Significantly, the dairy industry has 

expanded from traditional dairy regions, such as the central North Island and the east 

coast of South Island, to other regions (Clark et al., 2007). This has led to more 

intensive dairy farming, represented by higher stocking densities as well as a significant 

increase in the use of chemical fertilisers (Evans, 2004). While there is a wide public 

recognition of the benefits associated with increasing production and the sector’s 

contribution to the economy, there are growing concerns about environmental 

degradation. Currently, the dairy industry is facing tremendous pressure from the public 
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arising from an increasing public awareness of water quality degradation associated 

with intensive farming (Land and Water Forum, 2015). According to surveys of the 

public’s perception of New Zealand’s Environment, the proportion of NZ residents, 

who regard farming as the major cause of damage to freshwaters, increased from 48% 

in 2002 to 57% in 2013 (Cullen, Hughey & Kerr, 2006; Hughey, Kerr & Cullen, 2013). 

Thus, controlling nutrient discharge from dairy farms is now a crucial issue for regional 

and central government.  

 

In order to maintain the international competitiveness of the NZ dairy industry, it is 

important to understand the relationship between dairy production and intensive 

farming regionally and nationally, particularly if policy is to facilitate choice of 

intensive inputs that can help increase dairy yields with the least damage to the 

environment. If sufficient nutrients are not provided then, soil fertility and production 

will decrease, which affects profits. Conversely, if excessive nutrients are provided, 

there can be negative effects on the environment. Specifically, farmers will face the 

challenge of whether or not high dairy yields can be sustained with high intensive 

inputs, particularly in respect to the choice of alternative sources of nutrients.  

 

Farmers have the option of choosing between using more chemical fertilisers, such as 

nitrogenous fertiliser, and more farm effluent. In particular, as shown in Figure 3.1 and 

Figure 3.2, the price of chemical fertiliser has increased from 369 NZD per hectare per 

year (36,761 NZD per farm per year) in 2000 to 607 NZD per hectare per year (86,711 

NZD per farm per year) in 2014 (DairyNZ, 2015). Alternatively, farmers can use 

effluent to supply nutrients to pasture, as it contains various nutrients, including 

nitrogen, phosphorus, potassium, and magnesium. Moreover, when appropriately 
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applied on land, effluent can substitute chemical fertilisers with a lower cost. Based on 

the fertiliser prices in 2010, the effluent of one hundred dairy cows can help farmers to 

save up to 2,200 NZD in fertiliser per year (Waikato Regional Council, n.d.). In the 

meantime, the cost of installing and maintaining on effluent pond has decreased with 

the development of new technologies. Meanwhile, new technologies for effluent 

management have presented the potential to reduce environmental degradation 

(DairyNZ, 2014). According to an analysis result of the Good Management Practices 

project, there are some improvements in water quality because of an increase in the use 

of farm effluent sprayed over land during a ten-year period (NIWA, 2016)8.  

 

Therefore, by substituting manufactured sources of fertiliser with dairy effluent, 

farmers may be able to lower on-farm costs and contribute to improved water quality. 

In that way, improved understanding of the relationship between dairy yields and 

intensive farming practices may assist the dairy industry to optimize intensive inputs, 

ensure increased milk production, and contribute to improvements in water quality. 

 

 

 

 

 

 

 

8 The Good Management Practices (GMP) is a voluntary project, which was launched in 2001. It aims to 
develop and/or implement good management practices to maintain acceptable water quality standards at 
catchment-level. The project includes five catchments in Taranaki, Waikato, Canterbury, West Coast, 
and Southland. 
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Figure 3.1 Fertiliser Cost $ Per Effective Hectare from Season 2001/ 2002 to Season 2013/ 

2014 

Source: DairyNZ 

 

 

Figure 3.2 Fertiliser Cost $ Per Farm from Season 2001/ 2002 to Season 2013/ 2014 

Source: DairyNZ 
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Policies aimed at controlling nutrient influx from intensive dairy farming are currently 

being developed by regional units of government in New Zealand. To better inform 

policy, the challenge is to take account of the complexity of regional dependence and 

regional diversity. On the one hand, dairy yields in one region might be influenced by 

its own intensive inputs and by neighbouring regions’ dairy yields and intensive inputs. 

On the other hand, the variety of regional conditions could also influence regional dairy 

yields. Thus, a good means of dealing with the complexity is to recognise the impacts 

of spatial interaction effects, because dairy yields and intensive inputs relationships are 

better understood by considering both the own region characteristics and spatial 

spillovers from neighbouring regions.     

 

3.1.2 Literature Review 

 

Literature on the relationship between dairy yields, productivity and intensive inputs is 

summarized as follows. In the field of agriculture and the environment, most studies 

focus on the scientific or technical aspects of intensive farming and its impacts on 

production and productivity. These studies typically utilize an average dairy farm 

system or example farm system for a given region to assess production and 

environmental impacts. These impacts are quantified as environmental efficiency which 

is measured in terms of greenhouse gas emissions or nitrate leached per ton of 

milksolids. From the perspective of environmental emissions, Ledgard et al. (2003) and  

Ledgard et al. (2004) used a life-cycle method to evaluate resource use efficiency of the 

average Waikato dairy farm, and compared environmental efficiency with a typical 

Swedish dairy farm. The conclusions show that the difference in environmental 

efficiency between the two farming systems is small while the Swedish dairy farming 
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system was more energy efficient. Basset-Mens, Ledgard & Boyes (2009) compared 

the average NZ dairy farm system with three other dairy systems of various ranges of 

intensification. Low-input systems in some areas of New Zealand using innovative 

energy use technologies were shown to represent a promising option for intensive 

farming. Similarly, Matthew, Horne & Baker (2010) observed and evaluated two 

examples of dairy farms specifying the evolution of intensification and nitrogen loss 

during the past thirty years in New Zealand. Their results showed a significant increase 

in production as well as nitrogen loss. Significantly, the results also indicated the 

importance of a change in effluent disposal management, which offsets nitrogen loss 

and increases environment-efficiency.  

 

In contrast, economic studies have not only focused on production and environmental 

impacts but also economic efficiency. Typically, stochastic frontier analysis and data 

envelope analysis have been used to investigate the relationship between dairy 

production, technical efficiency, and environmental efficiency. Apart from labour and 

capital inputs, some studies also considered environmentally detrimental indicators, 

including stocking rates, effective farming areas, and nitrogen fertiliser use (De Koeijer 

et al., 2003; Reinhard, Lovell & Thijssen, 2000; Reinhard, Lovell & Thijssen, 2002). 

These studies arrived at similar conclusions, notably, that better farm management 

practices can improve both economic and environmental efficiency. Using a sample of 

Australian dairy farms, Graham (2004) employed a dynamic fixed effects panel model 

to estimate the environmental effects of undesirable inputs, where nitrogen surplus is 

treated as a detrimental input associated with dairy farms. The results show that it is 

possible to ensure that higher dairy production is associated with environment-friendly 

farming activities.  
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However, all the above studies do not consider spatial issues, although some have used 

climatic factors, for example, annual rainfall, to model spatial variations (Baylis, 

Paulson & Piras, 2011). Intuitively, with the expansion of the dairy industry from 

traditional dairy regions to other regions, dairy yields as well as intensive inputs in 

those regions may be influenced by the spillovers from traditional regions. Thus, 

ignoring spatial effects may cause inaccuracy in the analysis of regional dairy yields 

response to intensive inputs. Indeed, spatial econometric methods have been applied in 

production economics for crops, such as corn and wheat. For example, using spatial 

econometric models in a case study of site-specific nitrogen application in corn 

production, Anselin, Bongiovanni & Lowenberg-DeBoer (2004) demonstrated the 

potential for improving nitrogen management with the consideration of spatial effects. 

Their results show that nitrogen response differs by landscape position, and the returns 

for nitrogen use and site-specific management practices are different when analysed in 

spatial models and non-spatial models, where all spatial models indicate profitability 

while the non-spatial models do not. Cai, Yu & Oppenheimer (2014) used a spatially 

weighted model to examine the impact of weather variation on corn yields across 

different regions in the US. Their results show that there are spatially heterogeneous 

effects of regional temperature on corn yields, as corn yields negatively respond to 

temperature in warmer regions but positively respond to temperature in cooler regions. 

Although not focusing on the dairy industry, the above studies are good examples that 

show the advantages of including spatial information in the study of production-

intensive agriculture, and furthermore, illustrate the potential of using spatial 

econometric models to analyse the response of dairy yields to intensive inputs.  

 

Only a few papers have related spatial issues to dairy production at a regional level. 

38 
 



 

Peterson (2002) has employed spatial econometric models to examine the impacts of 

environmental regulations and traditional location factors in determining county-level 

dairy production in the U.S. Their results show that dairy production levels are 

positively correlated across different counties in the U.S. Importantly, the results 

indicate that the extent to which current changes in dairy production levels have been 

influenced by differences in the environmental regulations across the U.S. states. 

Furthermore, Mosnier & Wieck (2010) have reviewed studies emphasizing spatial 

dynamic and the determinants of regional dairy production. The review proposes that 

research focusing on the change of farm structure and regional production may assist to 

better understand regional production changes. Up to now, there has been no study on 

the relationship between dairy production and intensive inputs in NZ that considers 

spatial effects. Thus, by testing for the existence of the spatial effects in the relationship 

between regional dairy yields and intensive inputs in NZ, this essay can contribute to 

the formation of regional environmental regulation.  

 

In this essay I seek to analyse how dairy yields respond to intensive farming inputs, to 

establish whether unobserved spatial effects exist, and to investigate how spatial 

spillover effects influence the relationship between dairy yields and intensive farming 

across different NZ regions9. This essay contributes to the existing literature in two 

ways. First, this is the first empirical application of spatial econometric methods to 

examine the spatial relevance of dairy yields and intensive inputs in NZ. In particular, 

the spatial panel data model accounts for cross-sectional dependence and controls for 

heterogeneity. Second, the essay not only takes into account traditional intensive inputs 

but also innovatively includes the areas of effluent sprayed over effective farm areas as 

9 In this paper, regions refer to territorial units of government. 
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one of the intensive farming indicators10. By including effluent and nitrogen use in the 

model, I can indicate whether or not there are trade-offs between these two intensive 

inputs and further reveal the influence of trade-offs regarding dairy yield. The results 

contribute to an understanding of how farmers can improve their management of 

intensive inputs and contribute to the formation of regional environmental policy that 

recognises regional dependence and heterogeneity. 

 

3.1.3 Structure of Essay One  

 

This essay is structured as follows. In section 3.2, it details the approach of spatial 

econometric modelling. Section 3.3 describes the data, presents the empirical models, 

and selects the best model. Section 3.4 gives results of the empirical models. Section 

3.5 concludes and provides policy suggestions. 

 

3.2 Model Specifications 

 

The application of spatial econometric models in policy analysis typically calls for the 

inclusion of more than one spatial interaction relationship. For example, a policy 

change by one regional unit of government may not only directly influence its own 

economy but indirectly affect the economy of the neighbouring regions, and vice versa. 

In this context, the spatial Durbin model (SDM) allows for the inclusion of both 

spatially lagged dependent and independent variables (e.g., Mur & Angulo, 2006; 

Elhorst & Fréret, 2009; Beer & Riedl, 2012). This is especially applicable in policy 

10 For simplicity, effluent application and effluent use are also used in this essay, which represent “areas 

of effluent sprayed over effective farm areas”. 
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analysis when the research interest focuses on estimating the impacts of neighbouring 

policy in terms of two spatial interaction effects in contrast to a spatial lag model (SAR) 

that includes only an endogenously spatially lagged dependent variable, and the spatial 

error model (SEM) where the spatial autoregressive error terms may not give 

meaningful interpretations (Anselin, 2010). Moreover, the inclusion of the spatially 

lagged independent variables in the SDM could help to avoid omitted variable issues in 

empirical studies. Therefore, the SDM is chosen for empirical analysis since I am 

concerned about not only the impacts of one region’s own intensive farming practice on 

its dairy production but also impacts from the neighbouring regions’ intensive farming 

activities. 

 

For this essay, I consider a fixed effects model, including spatial fixed effects 

(individual effects) and time fixed effects, to be appropriate for the following reasons11. 

Firstly, spatial fixed effects are designed to control for time-invariant variables, and 

time fixed effects to control for spatial-invariant variables. Thus, excluding spatial fixed 

effects may lead to bias in cross-sectional studies, and omitting time fixed effects may 

cause bias in time-series studies (Baltagi, Song & Koh, 2003). Additionally, the random 

effects model is particularly restrictive. One of the strictest assumptions for random 

effects model is zero correlation between the random effects terms and the explanatory 

variables. This, however, may not be satisfied in empirical studies (Debarsy & Ertur, 

2010). Furthermore, there are no time-invariant variables included in the analysis, but 

this is usually the main reason for most empirical studies that include random effects in 

order to avoid the problem of omitting time-invariant variables (Elhorst, 2014). 

 

11 I will also use hypothesis tests to support the choice in the following section. 
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To date, many empirical studies have used coefficient estimation to test whether or not 

spatial spillover effects exist, and to derive inferences regarding the significance of 

spillover effects. Nevertheless, some recent studies, including LeSage & Pace (2009), 

LeSage (2014) and Elhorst (2014), have demonstrated that erroneous interpretations 

and conclusions may be made based on coefficient estimation. According to LeSage & 

Pace (2009), a scalar summary approach, which measures the average direct impact 

from own region and the average indirect effect from neighbouring regions, may be 

more valid. This essay will follow the estimation method proposed by LeSage & 

Fischer (2008) and Elhorst (2014), and the empirical analysis will report direct effects, 

indirect effects (spatial spillover effects) and total effects (the summation of direct 

effects and indirect effects) for the response of regional dairy yields to intensive inputs. 

 

3.2.1 Empirical Models   

 

For comparison purposes, I have four empirical regression models: the non-spatial 

pooled linear model with no fixed effects in the form of Equation 3.1, the one-way 

SDM with time fixed effects included, the one-way SDM with spatial fixed effects 

included, and the two-way SDM with time and spatial specific effects included (the 

following three models are in the form of Equation 3.2). 

 

Following the specifications of Elhorst (2014), a non-spatial pooled linear regression 

model, shown in Equation 3.1 in a panel setting, can be extended to an SDM as shown 

in Equation 3.2. Here, spatial interaction effects of the SDM are presented as a spatially 

lagged endogenous variable and exogenous independent variables, and the fixed effects 

include both spatial fixed effects and time fixed effects.    
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(3.1)                                              t n t tY Xαι β ε= + +   

 

(3.2)               ( ) ( )t t n t t t tY WY X WX optional optionalλ αι β θ µ δ ε= + + + + + +  

  

Here, ( )1, 2, ,,  , ,  t tt n tY y y y…=  is the 1n ×  vector of the dependent variable representing 

the dairy yield for all regions in period ( )1, ,t t T= … ; and tWY  is the spatially lagged 

term representing the values of dependent variables in neighbouring observations, 

where ; ,  1, ,( )ijW w i j n=  = …  is a n n×  positive spatial weights matrix and each spatial 

weight ijw
 reflects connections for the corresponding observations i and j according to 

either boundary or distance (LeSage & Pace, 2009). Due to an incomplete coverage of 

the NZ regions included in this essay, I consider a distance-based weights matrix 

instead of boundary-based matrix. I employ an inversed distance weights matrix, as 

shown in Equation 2.8 in Chapter 2, to keep the weight matrix simple (LeSage, 2014). 

The threshold distance chosen is 92 km indicating travel distance among regions 

according to comparing indicators of goodness of fit, such as R2, of models with a 

distance radius ranging from 50 km to 120 km; λ  is the corresponding spatial 

parameter of the interaction effect; nαι  is the constant term, with an 1n ×  unit vector nι  

associated with the parameter α  to be estimated; and tX  denotes an n k×  vector of 

exogenous variables, describing its own characteristics, associated with an n k×  

coefficient vector β  to be estimated. Accordingly, tWX  denotes the neighbouring 

region’s characteristics, with θ as the unknown coefficient parameter; 

1 2( , ,..., )nµ µ µ µ=  and tδ  represents the spatial specific and time-period effects, 
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respectively, and tε  is an error term (i.i.d.) with zero mean and variance 2σ . 

 

In addition, considering trade-offs between the quantity of chemical fertiliser applied 

and the area of irrigated effluent, I allow for interactive terms between fertiliser 

application and effluent use by centring these variables. In other words, effects of 

chemical fertiliser application on dairy yields depend on the level of effluent sprayed 

over effective areas, and vice versa. For example, the interactive term for nitrogen 

fertiliser ( N ) and effluent use ( E ) can be formulated from Equation 3.3 to Equation 

3.5. In that way, the impact of nitrogen on dairy yields is interpreted given an average 

level of effluent application (i.e. the average level has a score of 0 on the centred 

effluent variable), and vice versa. The interactive terms between the other three 

chemical fertiliser variables, i.e. phosphorus, potassium, and lime ( ,  ,  P K L  ), and 

effluent use are formed following the same process as for nitrogen and effluent. 

 

(3.3) 
1

-
n

centred i i
i

N N N
=

= ∑  

 

(3.4) 
1

-
n

centred i i
i

E E E
=

= ∑  

 

(3.5) centred centredNE N E= ×   

 

3.2.2 Model Selection   

 

I follow three commonly used testing processes in the spatial econometric literature to 
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verify that the two-way SDM best fits our data12. 

 

I firstly start with the benchmark model, a non-spatial pooled linear model shown in 

Equation 3.1, to test for two spatial interaction effects presented as a spatially lagged 

term of the dependent variable and a spatial autocorrelated error term by using both the 

Lagrange Multiplier (LM) test and the robust LM test (Anselin et al., 1996; Elhorst, 

2014)13. This testing process is used to determine whether or not the benchmark model 

needs to include the two spatial interaction effects. Table 3.1 reports the estimation 

results of a non-spatial model to determine whether it should be extended to a spatial 

lag model or a spatial error model. When employing the LM tests, both the hypothesis 

of no spatially lagged term and no spatial autocorrelated error must be rejected at the 5 

percent level of significance, regardless of the inclusion of spatial fixed effects and/ or 

time fixed effects. Similarly, when adopting the robust LM tests, the hypothesis of no 

spatially lagged term must be rejected at the 5 percent level of significance. 

Nevertheless, the hypothesis of no spatial error term cannot be rejected at the 5 percent 

level of significance, provided that no fixed effects, or either spatial fixed effects or 

time fixed effects are included.  

 

 

 

 

12 Except for the test processes listed below, this paper also uses Moran’s I test, developed for cross-

sectional data, to test for the existence of spatial autocorrelation in regional dairy yields for the year 2002, 

2007 and 2012, respectively. Results of Moran’s I test indicate the existence of spatial autocorrelation in 

the data, details of the results are presented in the Appendix. 

13 I take the base-10 Logarithms of both dependent and independent variables. 

45 
 

                                                      



 

 

Table 3.1 LM and Robust LM Test for Panel Data Models without Spatial Interaction 

Effects  

 

Explanatory variables 

Pooled 

OLS 

Time fixed 

effects  

Spatial fixed 

effects 

Spatial and 

time 

fixed effects 

Spatial fixed effects NO YES NO YES 

Time fixed effects NO NO YES YES 

Log L 298.91 380.29 327.72 873.82 

LM spatial lag 56.42 

(p=0.021) 

133.73 

(p<0.012) 

34.05 

(p<0.032) 

64.08 

(p<0.018) 

LM spatial error 134.1 

(p=0.016) 

213.28 

(p=0.011) 

74.65 

(p=0.026) 

47.29 

(p=0.02) 

Robust LM spatial lag 68.29 

(p=0.036) 

33.22 

(p=0.02) 

1.98 

(p=0.038) 

3.18 

(p=0.022) 

Robust LM spatial error 1.65 

(p=0.056) 

1.01 

(p=0.089) 

1.97 

(p=0.051) 

1.02 

(p=0.062) 

 

Except for testing for the two spatial interaction effects from the benchmark model, I 

can also start from the two-way SDM. By using the Wald test, I can verify the 

hypothesis whether it is proper to simplify the SDM to the SAR as well as the 

hypothesis whether the SDM can be simplified to the SEM. The Wald test for the 

spatially lagged term (64.08, p=0.018) indicates that the hypothesis that SDM can be 

simplified to the SAR must be rejected at the 5 percent significance. Additionally, the 

hypothesis of SDM can be simplified to the SEM must also be rejected at the 5 percent 

significance (47.29, p=0.02). These results confirm that both the SAR and SEM must 

be rejected in favour of the SDM.  

 

Lastly, I test for the appropriateness of including fixed effects and determine which 

fixed effects (spatial fixed effects and/ or time fixed effects) should be included. I use 
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Hausman’s specification test to test for the random effects model against the fixed 

effects model. The results (40.96, p<0.01) show that the random effects model must be 

rejected. Also, the likelihood ratio (LR) test on the two-way SDM is used to test for the 

null hypothesis that the spatial fixed effects are not jointly significant. The results 

(935.21, p<0.05) indicate that this hypothesis must be rejected. Similarly, the null 

hypothesis that the time fixed effects are not jointly significant must also be rejected 

(27.72, p<0.05). These further justify the inclusion of spatial fixed effects and time 

fixed effects for the SDM specification. The above test results point to use the SDM 

with two-way fixed effects that is called the two-way SDM. 

 

3.3 Data 

 

Data used in this essay come from three main sources, the agricultural production 

census (Statistics NZ), dairy statistics (DairyNZ), and the national climate database (the 

National Institute of Water and Atmospheric Research (NIWA)). I utilize 2002, 2007 

and 2012 data from fifty-five NZ regional authorities. Statistics NZ ran a full 

agricultural production census in 2002, 2007 and 2012, which is consistent with the 

data obtained from DairyNZ. The annual climate data of the year 2002, 2007 and 2012 

is from the combined statistics calculated from regional observation stations by NIWA. 

 

Fifty-five out of sixty-seven regions are included in the analysis due to information 

being incomplete for the other eleven territories. In this essay, I use kilogram milk 

solids per hectare (kg MS/ ha) to measure dairy yields, i.e. the dependent variable. Kg 

MS/ ha is the most commonly used variable in empirical studies of dairy production 

(e.g. Ledgard et al., 2004; Jay & Meorad, 2007; Basset-Mens, Ledgard & Boyes, 2009; 
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Bryant et al., 2010). Variables representing regional intensive farming inputs are 

average stocking rate, fertiliser use (including nitrogen, phosphorus, lime, and 

potassium) and effluent use 14. Theses independent variables are also measured per 

hectare corresponding to the dependent variable. In addition, except for regional 

intensive input variables, I also include two commonly used climate variables, which 

are annual (total) rainfall and average soil moisture (December to February). To some 

extent, these two variables may control for regional climate variation, particularly the 

average soil moisture in summer season that may capture the impact of summer drought 

on dairy yields15. Descriptions and descriptive statistics of the variables are shown in 

Table 3.2 and Table 3.3, respectively.  

 

 

 

 

 

 

 

 

 

 

 

14 Although labour and machinery are important inputs to dairy yields, there are no territorial level data 

on those indicators. Thus, this study does not include these as explanatory variables.  

15 Note that I intend to use climate variables to control for regional climate variance, but do not declare 

that the results reflect the effects of climate change on regional dairy yields in NZ. 
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Table 3.2 Descriptions of Variables 

Variable name Descriptions Data Source 

Dairy yields (Y) kilogram milksolids per hectare (kg MS/ ha) DairyNZ 

Nitrogen fertiliser (N) 
Total urea use and all other nitrogen 

containing fertilisers (tonnes/ ha). 
Statistics NZ 

Phosphorus fertiliser (P) 

Total phosphatic fertiliser, diammonium 

phosphate and ammonium sulphate (tonnes/ 

ha). 

Statistics NZ 

Lime (L) Total lime use (tonnes/ ha). Statistics NZ 

Potassic fertiliser (K) Total potassic fertiliser (tonnes/ ha). Statistics NZ 

Effluent use (E) 
Areas sprayed by effluent over total effective 

farm areas (percentage). 
Statistics NZ 

Average stocking rate (SR) 
Regional average number of peak cows 

milked divided by effective areas.  
DairyNZ 

Annual rainfall (RF) Annual (total) rainfall (millimetres). NIWA 

Average soil moisture (SM) Average soil moisture in summer season (%). NIWA 
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Table 3.3 Descriptive Statistics of Variables 

Variable name Counts Min. Max. Mean S.D. 

Y  165 496 1436 918.50 176.20 

N 165 0.01 0.78 0.45 0.43 

P 165 0.006 16.46 0.58 0.61 

L 165 0.009 4.08 0.63 0.59 

K 165 0.001 3.27 0.36 0.33 

E 165 0.05 1 0.28 0.22 

SR 165 1.89 3.56 2.71 0.32 

RF 165 335.30 6715.40 1364.33 1284.54 

SM 165 6.43 51.23 24.34 10.69 

 

3.3.2 Visualization of Dairy Production and Intensive Farming 

 

Maps are used to visualize the spatial distribution of regional dairy yields and some 

intensive inputs16. Figure 3.3 is the map of dairy yields distribution coloured according 

to kg MS/ ha of fifty-five New Zealand territorial authorities, where the darker colour 

represents higher production. Similarly, in Figure 3.4, Figures 3.5 and Figure 3.6, the 

average stocking rate, nitrogen and effluent use mapped with the darker colour stands 

for higher level of intensive inputs, respectively.  

 

 

16 In the maps, the regional dairy yields and intensive inputs are the average of those in the year 2002, 

2007 and 2012.  
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Figure 3.3 Average Dairy Yields     
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Figure 3.4 Average Stocking Rates 
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Figure 3.5 Average Nitrogen Use    
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Figure 3.6 Average Effluent Use 
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The maps illustrate the following facts. Firstly, there is a significant variation in dairy 

yields. Regions with low dairy production are in the far north, the east coast of the 

North Island, and the west coast of the South Island, while regions with high production 

are in the central and the south area of the North Island and the east coast of the South 

Island. Additionally, a spatially clustered pattern can be observed. For example, dairy 

yields in the far north show a low-low clustered pattern while those in the central and 

southern areas show a high-high clustered pattern. Thirdly, comparing the shade of 

colours in Figures 3.4-3.6 with that in Figure 3.3, a similar spatial distribution can be 

clearly discerned. To some degree, the spatial distribution of regional stocking rates 

shows a pattern most similar to regional dairy yields, which might indicate a highly 

correlated relationship between regional dairy yields and stocking rates. However, for 

the other two intensive inputs, differences can be discerned with regard to dairy yields. 

For example, nitrogen use at an average level is in the northern areas of the North 

Island, even though the dairy yields are low; effluent use in the south-east areas of the 

North Island is low given high levels of dairy production. Lastly, dairy yields are 

characterized by differences between South Island and North Island. It can be observed 

that the average regional dairy yield in the South Island is higher than that in the North 

Island, which might be considered as a consequence of land use practices and intensive 

inputs.  

 

These observations indicate that spatial variance exists in regional dairy yields and 

intensive farming inputs. The obvious spatial patterns shown in the maps further 

confirm to use spatial econometric methods to analyse the data used in this essay.  
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3.4 Results and Discussions 

 

3.4.1 Coefficient Estimation Results   

 

Although I have already verified that the two-way SDM specification best suits the 

data, I list coefficient estimation results of the four empirical models for comparison 

purposes. As shown in Table 3.4, the pooled model (the non-spatial model) results are 

estimated using OLS and the other three spatial models are all regressed using 

maximum likelihood estimation.   

 

Table 3.4 shows that the two-way SDM outperforms the other models in terms of R2 

(0.96), adjusted R2 (0.89), and log-likelihood value (425.24), which is consistent with 

the test results shown in section 3.2.2 for model selection. The spatial autoregressive 

parameter λ  is statistically significant in all three spatial models, which implies the 

existence of spatial dependence in regional dairy yields. Also, differences between the 

coefficient estimates of the pooled OLS and the two-way SDM are obvious. For 

example, the sign of nitrogen use in the non-spatial model is not as expected and 

opposite to those of the spatial models. All these indicate that ignoring spatial 

interaction effects can result in biased estimates and lead to inaccurate interpretations of 

the relationship between dairy yields and intensive inputs.  
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Table 3.4 Coefficient Estimation Results for Regional Dairy Yields Response to Intensive 

Inputs  

 

Explanatory 

variables 

Pooled OLS One-way SDM 

(time fixed 

effects) 

One-way SDM 

(spatial fixed 

effects) 

Two-way SDM  

(spatial and 

time 

fixed effects) 

Intercept 1.91***  

(11.08)          

- - -  

N -3.60e-02** 

(-2.35) 

1.68e-01 

(1.18) 

2.75e-01*       

 (1.71)  

3.09e-01*        

(2.08)  

P 4.67e-03     

(4.28e-01) 

1.96e-02*        

(1.86) 

6.58e-02***         

(4.04) 

8.04e-02***         

(4.12) 

L 2.09e-02 

(1.29) 

1.49e-02 

(9.31e-01) 

3.59e-02 

(1.12)  

3.58e-02         

(1.21) 

K -9.05e-03 

(-8.79e-01) 

-1.59e-02 

(-1.45) 

3.40e-02***        

(2.73e-02) 

2.81e-02**        

(2.17) 

E 3.45e-01***         

(3.09) 

4.09e-01***         

(3.53) 

5.83e-01***         

(3.33) 

6.21e-01***         

(3.49) 

SR 1.29e-01*** 

(15.58) 

1.07*** 

(11.55) 

9.97e-01***         

(5.34)   

9.95e-01**         

(5.31) 

NE -1.09e-01*** 

(-4.66) 

-1.04e-01** 

(-4.83) 

-1.47e-01*** 

(-6.51) 

-1.45e-01*** 

(-6.35) 

PE -9.01e-03 

(-4.25e-01) 

-5.55e-03 

(-2.71e-02) 

-5.17e-02** 

(-2.19) 

-5.07e-02** 

(-2.16) 

LE -7.23e-02** 

(-3.05) 

-6.71e-02*** 

(-3.21) 

-1.09e-02*** 

(-3.04) 

-1.11e-02*** 

(-3.08) 

KE -4.34e-02*** 

(-2.79) 

-3.09-02** 

(-2.23) 

-1.95e-02 

(-1.07e-01) 

-1.41e-02 

(-2.22e-01) 

RF 6.31e-02 

(1.53) 

2.28e-03 

(5.13e-01) 

1.76e-02 

(2.44e-01) 

1.29e-02 

(2.22e-01) 

SM 2.03e-02*** 

(2.76) 

3.23e-02*** 

(2.38) 

3.91e-02* 

(1.98) 

3.27e-02** 

(2.34) 
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Table 3.4 Coefficient Estimation Results for Regional Dairy Yields Response to Intensive 

Inputs (continued) 

W*N  2.15e-01 

(1.05) 

3.04e-02* 

(1.76) 

2.85e-02* 

(1.83) 

W*P  5.21e-02**         

(3.19) 

2.79e-02*         

 (1.91) 

2.87e-02** 

 (1.96) 

W*L  3.05e-02         

(1.15) 

1.09e-02         

 (4.05e-01) 

1.39e-02 

(4.67e-01) 

W*K  2.93e-02 

(1.49) 

1.86e-02 

(1.04) 

2.20e-02 

(1.22) 

W*E  2.98e-02*         

(1.69) 

6.21e-02 

(3.65e-01)  

3.95e-02** 

(2.67) 

W*SR  5.47e-01 

(7.43e-01) 

1.71e-01 

(1.34) 

1.62e-01* 

(1.89) 

W*NE  -2.02e-02 

(-3.85e-01) 

-4.45e-02 

(-2.27e-01) 

-4.75e-02 

(-8.90e-01) 

W* PE  -3.89e-02 

(-1.32) 

-3.76e-02 

(-1.42) 

-3.92e-02 

(-1.37) 

W*LE  -1.73e-02 

(-8.12e-01) 

-1.82e-02 

(-9.63e-01) 

-1.79e-02 

(-6.23e-01) 

W*KE  -1.93e-02 

(-1.32) 

-4.09e-02*** 

(-3.01) 

-4.21e-02** 

(-2.18) 

W*RF  1.88e-02 

(1.49e-01)   

1.66e-02 

(1.58e-01)          

1.59e-02 

(1.43e-01)       

W*SM  2.16e-02* 

(1.72)    

1.72e-02* 

(1.81)         

1.91e-02* 

(1.98)        

Lambda  - 4.08e-01*** 

(4.01) 

2.23e-01*         

(1.91) 

3.78e-01**       

(3.01) 

R2 0.87 0.89 0.95 0.96 

Adjusted R2 0.81 0.83 0.87 0.89 

Log L 312.91 353.81 432.22 439.93 

Source: author’s elaboration based on Matlab software; ‘***’, ‘**’, ‘*’ indicate 

coefficients that are significant at 1%, 5% and 10%, respectively; figures in parentheses 

represent t-values. 
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3.4.2 Effects Estimation and Interpretation 

 

To investigate magnitude of the differences between the non-spatial model and the two-

way SDM, one can compare coefficient estimates of the pooled OLS in Table 3.4 to 

those of the effects estimated in Table 3.5. Significantly, it is invalid to compare 

coefficient estimates in the non-spatial model with their counterparts in the two-way 

SDM in Table 3.4. That is because the parameter estimates in the non-spatial model 

represent the marginal effect of a change in intensive inputs on dairy yields, but the 

coefficients in the SDM do not (the reason has already been detailed in section 2.2.2, 

chapter two). Fortunately, I can use effects estimation of the two-way SDM to explore 

the marginal effect of a change in intensive inputs on regional dairy yields. The direct 

and indirect effects are derived using the methods of LeSage and Pace (2009). Results 

of the effects estimation are reported in Table 3.5.  

 

Direct effects measure the own impacts of intensive inputs and own regional 

characteristics on one region’s dairy yield, and the indirect effects measure the 

neighbouring impacts on dairy yield of this region. Thus, if I interpret the coefficients 

estimation results from the pooled OLS model, I will draw incorrect conclusions. For 

example, I will mistakenly conclude that higher nitrogen use could lead to lower 

regional dairy yields given an average effluent use. Another example is that, though 

obtaining the same sign for effluent use, I would underestimate its impact by about 0.6 

percent (comparing the coefficient of effluent in the pooled OLS in Table 3.4 and the 

total effect of effluent use in Table 3.5). The difference is due to inaccurate coefficient 

estimations of the pooled OLS as well as the omission of spatial spillover effects.  
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Table 3.5 Direct, Indirect and Total Effects Estimates Based on the Coefficient Estimates 

of the Two-Way SDM Model Reported in Table 3.4    

Explanatory variables Direct effects Indirect effects Total effects 

N 3.10e-01*        

(2.11)  

2.89e-01* 

(1.89) 

5.99e-01** 

(2.74) 

P 8.63e-02***         

(3.96) 

2.93e-02** 

 (1.99) 

1.16e-01*** 

(3.83) 

L 3.89e-02 

(1.27) 

1.32e-02 

(6.72e-01) 

5.21e-02 

(5.70e-01) 

K 2.61e-02** 

(2.51) 

2.32e-02 

(1.13) 

4.93e-02 

(1.39) 

E 6.34e-01***         

(3.58) 

3.49e-01* 

(2.81) 

9.83e-01** 

(2.90) 

SR 9.96e-01***         

(5.03) 

1.92e-01** 

(2.89) 

1.19** 

(4.14)  

NE -1.35e-01*** 

(-5.90) 

-4.42e-02 

(-8.68e-01) 

-1.97e-01** 

(-3.19) 

PE -5.52e-02*** 

(-3.58) 

-4.94e-02** 

(-3.23) 

-1.05e-01* 

(-2.35) 

LE -1.21e-02* 

(-2.68) 

-4.81e-02 

(6.16e-01) 

-6.02e-02* 

(-2.06) 

KE -1.40e-02 

(-2.87e-01) 

-4.09e-02* 

(-1.12) 

-5.49e-02* 

(-2.61) 

RF 1.42e-02 

(1.02) 

2.09e-02 

(2.43e-01)         

3.51e-02 

(5.13e-01) 

SM 3.53e-02*** 

(2.62) 

2.11e-02** 

(2.31)        

5.64e-02** 

(2.38) 

Source: author’s elaboration based on Matlab software; ‘***’, ‘**’, ‘*’ indicate 

coefficients that are significant at 0%, 1% and 5%, respectively; figures in parentheses 

represent t-values. 
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According to results of the effects estimation presented in Table 3.5, I firstly look at the 

impacts of intensive inputs on dairy yields. Total effects of most of the intensive input 

variables are positive and statistically significant. Furthermore, there are also 

significantly positive spillover effects of the intensive input variables across regions, 

except for lime and potassic fertiliser. These imply that regional dairy yields highly 

depend on intensive inputs, and spatial dependence exists in regional intensive dairy 

farming. Specifically, among all the intensive input variables, stocking rate has the 

greatest influence on regional dairy production, with regional dairy yields increase 1.2 

percent in response to 1 percent increase in stocking rate.  

 

The interpretation of the magnitude of chemical fertiliser use should be considered 

together with the interactive terms between fertiliser and effluent use. For nitrogen and 

phosphorus use, direct, indirect and total effects of the two fertilisers are all positive 

and statistically significant given an average level of effluent use (E equals 0). In 

particular, the total effect of nitrogen on dairy yields increases by 0.6 percent for a 1 

percentage increase in nitrogen use, where the total effect can be decomposed to 0.3 

percent direct effect and 0.3 percent indirect effect. And associated with a 1 percentage 

increase in the use of phosphorus fertiliser, there is a 0.11 percent total effect on dairy 

yields, coming from a positive direct effect (0.8 percent) and a positive indirect effect 

(0.3 percent). However, when the proportion of effluent irrigation areas increases, I find 

that the positive response of yields to either nitrogen or phosphorus turns out to be 

negative, considering the negative interactive terms (NE and PE). Meanwhile, regional 

dairy yields increase by about 1 percent for 1 percent increase in effluent irrigation 

areas, given the average level of nitrogen and phosphorus use. Similarly, when either 

nitrogen or phosphorus use is increased, the results show that the response of dairy 
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yields to effluent use are negative due to the negative interactive term (NE and PE). 

These can be interpreted as trade-offs between nitrogen and effluent use and trade-offs 

between phosphorus and effluent use, indicating that there is no need to apply as much 

as nitrogen and phosphorus when effluent use can achieve the expected level of dairy 

yields.  

 

There is no spatial spillover effect associated with potassic fertiliser use on dairy yields; 

regional dairy yields increase by 0.3 percent due to a 1 percent increase in own region 

use. None of the three effects (direct, indirect and total effects) are statistically 

significant for lime use. According to the results, there is no influence of regional 

rainfall on dairy yields, indicating that total annual rainfall may not explain the variance 

of regional dairy yields. This is because dairy yields vary with changes in seasonal 

rainfall patterns to a large extent (García-Ispierto et al., 2007). Both the direct and 

indirect impacts of soil moisture on dairy yields are statistically significant. 

Specifically, with 1 percent rise in the average soil moisture in summer, regional dairy 

yields are expected to increase by 0.06 percent, with 0.04 percent direct effect and 0.02 

percent spillover effect. 

 

3.4.3 Effects Estimation for North Island and South Island  

 

Bearing in mind that land area, climate, and development status differ in the North 

Island and South Island, the impacts of different intensive inputs on dairy yields may 

also vary (Tables of the descriptive statistics of variables for the North Island and South 

Island can be found in the Appendix). Thus, I present and compare effects estimation 

results for the North Island and South Island and observe whether the variation exists. 
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Table 3.6 and Table 3.7 show direct, indirect and total effects estimation for the North 

Island and South Island, respectively. 

 

Table 3.6 Direct, Indirect and Total Effects Estimation-North Island  

Explanatory variables Direct effects Indirect effects Total effects 

N 3.09e-01*        

(2.23)  

1.99e-01* 

(2.01) 

5.09e-01** 

(2.74) 

P 7.31e-02***         

(3.62) 

2.37e-02** 

 (1.99) 

9.68e-02*** 

(3.73) 

L 3.23e-02 

(1.07) 

1.31e-02 

(5.22e-01) 

4.54e-02 

(4.01e-01) 

K 2.11e-02* 

(2.23) 

1.76e-02 

(1.03) 

3.87e-02 

(1.39) 

E 6.28e-01***         

(3.81) 

3.21e-01* 

(2.81) 

9.49e-01** 

(2.90) 

SR 9.99e-01***         

(5.22) 

1.98e-01** 

(2.89) 

1.18** 

(5.11)  

NE -1.33e-01*** 

(-5.92) 

-4.22e-02 

(-7.28e-01) 

-1.75e-01** 

(-3.19) 

PE -4.98e-02*** 

(-3.62) 

-4.74e-02** 

(-3.03) 

-9.72e-01* 

(-2.51) 

LE -1.11e-02* 

(-2.28) 

-5.12e-02 

(-8.16e-01) 

-6.23e-02* 

(-2.11) 

KE -1.40e-02 

(-2.87e-01) 

-4.09e-02* 

(-1.12) 

-5.49e-02* 

(-2.61) 

RF 1.41e-02 

(1.00) 

2.09e-02 

(2.48e-01)         

3.50e-02 

(5.15e-01) 

SM 3.46e-02*** 

(2.63) 

2.09e-02** 

(2.32)        

5.55e-02** 

(2.38) 

Source: author’s elaboration based on Matlab software; ‘***’, ‘**’, ‘*’ indicate coefficients 

that are significant at 0%, 1% and 5%, respectively; figures in parentheses represent t-

values. 
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Table 3.7 Direct, Indirect and Total Effects Estimation-South Island     

Explanatory variables Direct effects Indirect effects Total effects 

N 4.67e-01*        

(2.31)  

3.09e-01* 

(1.92) 

7.67e-01** 

(2.89) 

P 9.38e-02***         

(3.96) 

3.01e-02** 

 (1.99) 

1.24e-01*** 

(3.83) 

L 4.89e-02 

(1.07) 

1.28e-02 

(4.22e-01) 

6.17e-02 

(5.70e-01) 

K 3.25e-02*** 

(3.51) 

1.21e-02 

(1.13) 

4.46e-02 

(1.29) 

E 8.13e-01***         

(4.16) 

4.91e-01* 

(2.83) 

1.30e-01** 

(2.90) 

SR 9.99e-01***         

(6.21) 

2.02e-01** 

(3.01) 

1.21** 

(3.14)  

NE -1.01e-01*** 

(-4.86) 

-3.13e-02 

(-7.21e-01) 

-1.14e-01** 

(-3.19) 

PE -5.42e-02 

(-3.18) 

-3.24e-02** 

(-3.43) 

-8.66e-02* 

(-2.37) 

LE -1.12e-02* 

(-2.48) 

-5.81e-02 

(8.22e-01) 

-6.93e-02* 

(-2.06) 

KE -1.78e-02 

(-3.87e-01) 

-3.45e-02* 

(-1.35) 

-5.23e-02* 

(-2.61) 

RF 2.09e-02 

(1.07) 

1.12e-02 

(4.35e-01)         

4.21e-02 

(5.13e-01) 

SM 4.34e-02*** 

(3.09) 

2.11e-02** 

(2.52)        

6.45e-02** 

(2.38) 

Source: author’s elaboration based on Matlab software; ‘***’, ‘**’, ‘*’ indicate 

coefficients that are significant at 0%, 1% and 5%, respectively; figures in parentheses 

represent t-values. 
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Comparing Table 3.6 and Table 3.7 to Table 3.5, the estimation results present 

consistency. It can be observed that either the signs or the level of statistical 

significance show a similar trend as those in Table 3.5.  Likewise, ups and downs of the 

magnitudes of the effects are not significant, around 0.1 to 0.3 percent. Except for lime 

and potassic fertiliser, total effects of the intensive input variables are positive and 

statistically significant for both North Island and South Island. Similarly, for all the 

intensive input variables, stocking rate still has a great impact on regional dairy 

production, no matter for North Island or South Island, with regional dairy yields 

increase about 1.2 percent in response to 1 percent increase in stocking rate. Trade-offs 

exist between nitrogen, phosphorus use and effluent use in both North Island and South 

Island.  

 

However, although not significant, differences can be observed from the results shown 

in Table 3.6 and Table 3.7. Intensive inputs, including nitrogen, phosphorus and effluent 

use, seem to be more influential to regional dairy yields in North Island than those in 

South Island. This finding is consistent with Jiang (2011), results of which indicate that 

dairy farming in South Island is associated with higher fertiliser elasticity. Given an 

average level of effluent use, regional dairy yields increase by 0.5 percent in North 

Island but 0.7 percent in South Island in regard to 1 percent increase in nitrogen use. In 

the same way, increases in the use of phosphorus contribute more to the increase in 

dairy yields in South Island, of about 0.3 percent. Given an average level of chemical 

fertiliser use, 1 percent increase in effluent use leads to 0.95 percent increase in milk 

production in North Island. Significantly, the same amount of increase in effluent use 

contributes to about 1.3 percent increase in dairy production in South Island. However, 

this estimate might be overestimated due to the lack of data on technology. As indicated 
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by Jiang (2011) farming technology in South Island is more technologically advanced 

compared to that in North Island. Lastly, regional dairy yields in North Island are more 

dependent on stocking rate, with about 1.2 percent increase in dairy yield in response to 

1 percent increase in stocking rate.  

 

3.5 Summary  

 

In essay one, I analysed the response of regional dairy yields to intensive farming 

inputs spatially in New Zealand. Regional dairy yields are characterized by substantial 

differences in regard to intensive inputs including chemical fertiliser use, stocking rates, 

effluent use and regional climate factors. To avoid biased estimates, I applied spatial 

panel data models to the data and compared the results to those obtained from the non-

spatial model. The results clearly show that all the three spatial panel data models (the 

one-way SDM with time fixed effects, the one-way SDM with spatial fixed effects and 

the two-way SDM) perform better than the non-spatial model for the analysis of the 

relationship between regional dairy yields and intensive inputs. Ignoring spatial 

interaction effects among regions can provide misleading estimates of the impacts of 

intensive inputs on regional dairy yields. The results also show that there are significant 

spatial spillover effects associated with dairy yield, nitrogen use, effluent use and 

stocking rate. Moreover, South Island dairy farming gets more in return through 

increasing intensive inputs.   

 

This essay leads to several conclusions for policy, as well. To begin with, I find 

significant spatial spillover effects on regional dairy yields regarding some intensive 

inputs. This indicates that although the regional governments might have different 
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policies and regulations, spatial dependence exists between neighbouring regions. From 

a national perspective, to reduce nutrient pollution, results of this essay indicate that 

policy makers should take into account interactive influence between neighbouring 

regions. Consequently, political decisions may not only affect the region to which they 

are targeted but also neighbouring regions. This calls for political cooperation between 

different regional authorities. In addition, the significant and positive impacts of 

intensive inputs, especially stocking rate, indicate a close relationship between dairy 

yields and intensification of dairy farming. This reminds policy makers to consider the 

balance between the pursuit of dairy production and pollution regulation, as intensive 

inputs are significant factors for achieving higher dairy yields. Fortunately, however, 

results of the essay indicate trade-offs between the use of chemical fertilisers and 

effluent use. Considering the trade-off, the high level of effluent use and estimated 

negative yield response to nitrogen and phosphorus suggests that an opportunity exists 

for greater use of effluent as a substitute for chemical fertilisers. This, from a regional 

level, verifies the conclusion of Matthew, Horne & Baker (2010), who found out that a 

change in effluent disposal management could offset nitrogen loss and increases 

environmental efficiency at the individual farm level. Particularly, in South Island, the 

use of effluent can provides an alternative source to keep soil fertile and offer irrigation 

water for dairy pasture. Thus, it is wise for regional governments to highlight the trade-

off in the policy making process, as rational utilization of effluent may help dairy 

farmers to save money on chemical fertilisers and help the dairy industry to better 

maintain its international competitive advantage.  

 

The existence of spatial dependence in farmer choice of good management practices 

may lead to positive spillovers of good management practices from one region to 
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another region. Furthermore, understanding the determinants of farmer choice 

associated with different mitigation practices may promote positive regional spillovers. 

Thus, in the following chapter, essay two will extend the exploration of spatial spillover 

effects from the regional level to farm-level, and investigate the impacts of spatial 

spillover effects on farmers’ adoption of good management practices for water 

protection.   
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CHAPTER 4. Essay Two: Spatial Dependence 

and Determinants of Dairy Farmers’ Adoption of 

Best Management Practices for Water Protection 

 

 

 

 

4.1 Introduction  

 

4.1.1 Background  

 

The clean-and-green image of NZ is well known internationally and is regarded as a 

marketing strategy attracting tourists all over the world (Abell, Hamilton & Paterson, 

2011). The “green icon” is also connected with pure, safety and healthy food products, 

such as dairy and meat. Nevertheless, unsustainable dairy farming activities do not 

always complement this reputation (The Treasury, N. Z., 2009). It is undeniable that the 

NZ economy is heavily dependent on agriculture, especially dairy sector, but the 

increasing nutrient pollution discharged from dairy farms is a threat to the water quality 

of lakes, stream and rivers (Abell, Hamilton & Paterson, 2011). According to a report 

by NIWA, water quality in NZ’s major rivers declined between 1989 and 2007. In 

particular, nutrient loadings (predominantly nitrogen and phosphorus) increased greatly 
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at many monitor sites (NIWA, 2010a). Moreover, algal blooms in some NZ’s iconic 

lakes, such as Lake Taupo and Lake Rotorua, have also become a concern of the public 

(Petch et al., 2002). Significantly, lakes surrounded by farmland fared worst. It is 

believed that more than a third of NZ’s lakes carry excessive nutrient loads (NIWA, 

2010b).   

 

Therefore, the dairy industry is under increasing pressure to make a commitment to 

improving the environmental performance of farming practices to protect water quality 

in waterways. Among all the good practices, keeping stock out of waterways and 

riparian planting are regarded as the most direct and efficient practices for the NZ dairy 

farmers. The former avoids direct pollution of cow dung and urine to waterways, and 

the latter assists by filtering cow dung and slowing the flow of effluent and   chemical 

fertilisers to waterways. In 2013, the dairy industry agreed to set a new voluntary 

project called “sustainable dairying: Water Accord” (the new Accord) to support the 

sustainable development of the NZ’s economy (Dairy NZ, n.d.a)17. Compared to the 

old Accord, the new Accord continues to focus on protecting water quality in 

waterways but with broader and more stringent requirements. Previously, dairy farmers 

were required to have stock excluded from waterways that are “deeper than a red band 

gumboot (ankle deep), wider than a stride, and permanently flowing” (the Ministry for 

Primary Industries, 2013). It set a target that 90 percent exclusion of stock from 

waterways be met by 31st May 2012, but only 87 percent exclusion was achieved (the 

17 The new Accord is in accordance of the “the Dairying and Clean Streams Accord” (the Accord), which 

was launched in 2003 and expired in 2012. The old accord was agreed to by Fonterra Co-operative 

Group Ltd, the Ministry for the Environment, the Ministry of Agriculture and Forestry (Now the 

Ministry for Primary Industries), and regional councils. 
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Ministry for Primary Industries, 2013). The new Accord, however, has clearly defined 

waterways as “rivers, streams, drains and springs over one metre wide and 30 

centimetres deep that permanently contain water, all lakes, and wetlands”. The new 

Accord target is set at 100 percent exclusion of stock from waterways by 31st May 2017. 

Moreover, farmers are expected to prepare riparian planting plans to adopt to protect 

water quality (Dairy NZ, n.d.a). 

   

Under the new Accord, dairy farmers have greater responsibilities to comply with Best 

Management Practices (BMPs) to meet the new targets for sustainable growth. Hence, 

farmer’s choice behaviour should be considered as one of the most important 

determinants of the success of policy aimed at water quality protection. In this way, 

farmers may face a significant challenge of balancing profitability and the cost of 

adopting BMPs. However, the main focus of water quality protection has been on the 

public’s opinion on the impacts of dairy farming on water quality. Studies have paid 

attentions to either the public’s perception of environmental degradation due to 

unsustainable agricultural practices or the NZ residents’ willingness to pay for water 

quality protection (e.g. Tait et al., 2011; Marsh, Mkwara & Scarpa, 2011; Hughey, Kerr 

& Cullen, 2013). However, it is equally important to explore the issues associated with 

water quality degradation from the perspective of dairy farmers and to understand what 

factors influence farmers’ decisions as to their compliance with water protection 

requirements. Failing to understand this may make it difficult to reach the new Accord 

targets by the expected date. 

 

To explore reasons for farmers’ adoption and non-adoption of BMPs, literature on this 

question provides insights into a number of determinants (Knowler & Bradshaw, 2007). 
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These determinants can be summarized in several categories, including farmers’ 

perceptions of environmental practices, farm characteristics, household characteristics, 

and other contextual factors (e.g. Vanslembrouck, Van Huylenbroeck & Verbeke, 2002; 

Moon & Cocklin, 2011; Seo & Mendelsohn, 2008). Notably, recent studies have started 

to focus on location effects (or spatial effects) on individual’s choice, as individuals 

who benefit from environment improvement are located across a geographical area 

(Jørgensen, 2013). For policy makers, therefore, the choice of an instrument to regulate 

nutrient pollution should be considered in a spatial context because of differences in the 

physical environment in a given region (Whittaker et al., 2003). The importance of 

spatial effects has also been addressed in the literature on distance decay effects on 

individual’s recreation demand for non-market products, such as clean rivers and free-

entry parks. For example, willingness to pay to improve water quality has been shown 

to decrease with the distance from residents’ houses to rivers, as there are distance 

decay effects in their recreation demand for water quality (e.g. Sutherland & Walsh, 

1985; Jørgensen, 2013). For the same reason, I assume that dairy farmers’ willingness 

to adopt/ improve BMPs may also decrease with the distance from farm to the nearest 

water bodies as some farmers have hedonic demands for beautiful views or household 

water demands for clean groundwater quality. In other words, the distance from the 

dairy farm to water bodies will be considered as one of the determinants of dairy 

farmers’ choices when considering the adoption of BMPs. 

 

Another spatial effect to be considered comes from spatial spillover effects regarding 

neighbouring farmers’ choices. Although the geographical location farms can be used 

to model the spatial dependence of choice between farmers, it is usually ignored 

(Kogler, 2015). Recently, some studies have begun to address spatial spillover effects 
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in farmers’ decision-making on participation in agri-environmental programs, farmers’ 

adoption of clean technology and organic dairy farming (e.g. Lewis, Barham & 

Robinson, 2011; Läppl & Kelley, 2015). These studies imply that spatial spillover 

effects may reduce the fixed cost of learning about BMPs because farmers may 

economise by learning from their neighbours. Spatial spillover effects may also reduce 

farmers’ uncertainty of the environmental performance of BMPs after talking to their 

neighbours. Thus, interdependence in farmers’ decisions should be considered when 

exploring dairy farmers’ adoption of BMPs.   

 

Therefore, the aim of this essay is to explore determinants of dairy farmers’ willingness 

to adopt BMPs for water quality protection. In addition, except for testing the 

commonly used determinants, such as farm characteristics, it will test the hypothesis 

that spatial effects influence farmers’ choices. Bayesian spatial Durbin probit models 

are applied to sample survey data in the Waikato region of NZ. Specifically, this essay 

will verify the above hypothesis from two aspects. Firstly, spatial effects will be 

modelled according to the distance from the farm to the nearest water bodies. It is 

assumed that dairy farmers whose farms are located close to water bodies are more 

inclined to be willing to adopt BMPs. Secondly, spatial effects will be presented as the 

existence of spatial interdependency in dairy farmers’ decision-making. It is 

hypothesised that dairy farmers observe or learn from nearby farmers thereby reducing 

the uncertainty of the performance of BMPs since BMPs are information-intensive 

farming techniques (Läppl & Kelley, 2015).    
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4.1.2 Structure of Essay Two 

 

This essay is structured as follows. Relevant literature is reviewed in section 4.2. 

Section 4.3 details the econometric models, including a basic probit model of farmer 

choice and a spatial Durbin probit model of farmer choice with spatial spillover effects 

considered. Section 4.4 describes empirical models and data. Section 4.5 presents 

results and discussions. Conclusions are presented in section 4.6.  

  

4.2 Literature Review  

 

An abundance of studies use qualitative research methods based on interviews to 

explore factors affecting farmers’ willingness to adopt best (good) environmental 

practices or participate in agri-environmental programs18. These studies propose the 

following determinants are worthy of attention. Firstly, it is proposed that farmers’ 

cognitions or perceptions of given environmental policies or management practices are 

decisive factors to implement programs on BMPs successfully (Schoon & Te 

Grotenhuis, 2000; Moon & Cocklin, 2011; Blackstock et al., 2010). Likewise, it is 

believed that farmers hold various goals that lead to different motivations to take part in 

agri-environmental programs (Fairweather, 1999; Bergevoet et al., 2004;). Also, 

farmers’ attitude–behaviour differences are associated with the heterogeneity of 

18 The terms “good management practices” and “best management practices”, referring to management 

practices used on farm to protect the environment, are interchangeably used in studies. For simplicity 

purpose, the abbreviation BMPs will be used to represent either good management practices or best 

management practices. 
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socioeconomic attributes. In addition, factor analysis and segmentation analysis were 

usually combined with interviews in some studies. Result of these studies revealed that 

heterogeneous farm characteristics affect farmers’ decision-making differently (e.g. 

Farmar-Bowers & Lane, 2009, Zalidis et al., 2004; Prager & Nagel, 2008; Wilson, 

Harper & Darling, 2013).  

 

In short, qualitative studies, to some extent, provide an intuition for understanding the 

relationship between farmer’s choice behaviour and farmer’s willingness to adopt best 

BMPs. Moreover, these studies agree that policies should focus on farmer’s attitudes, 

values, cognitions, and the decision-making process. Hence, conclusions of these 

studies may be of significance for re-estimating environmental protection programs and 

shed light on future policy making. Nevertheless, the conclusions are usually limited by 

the research methods because almost all the above studies used a limited number of 

interviews with farmers, which greatly restricted the size of the research population and 

limited the generalizability of the results.  

 

Choice modelling analysis is another commonly used method in the literature on 

farmers’ adoption of BMPs or participation in agri-environmental programs. In choice 

modelling studies, heterogeneity of farmer choice can be demonstrated by estimating 

farmers’ utility functions according to farm and household characteristics and other 

attributes (Haile & Slangen, 2009).  A number of empirical studies have illustrated that 

farm and household characteristics, the quantity of production, policy changes, as well 

as farmers’ perceptions of given programs, all contributed to the uptake of BMPs (e.g. 

Rahelizatovo & Gillespie, 2004; Hassan & Nhemachena, 2008; Kurkalova & Wade, 

2013). Nevertheless, despite offering valuable insights into the factors that influence the 

75 
 



 

adoption of BMPs, the above studies ignore spatial dependence that is important for 

farmers’ adoption decisions. 

 

Literature of empirical analysis of spatial dependence in farmers’ adoption behaviours 

is quite thin. Spatial dependence means that farmers located nearby show similar choice 

preferences, which is also known as the neighbourhood effect (Manski, 1993). The 

dependence might be due to communication between farmers, which may raise 

awareness or reduce information costs, for example. Case (1992) was one of the first to 

apply a spatial probit model to explore the neighbourhood effect on Indonesian farmers’ 

adoption of sickle. In addition to farmers’ adoption of agricultural technology, spatial 

dependence has also been considered in adopting organic farming in some recent 

studies. Examples include Wollni & Andersson (2014) who uses survey data to analyse 

factors affecting farmers’ decisions on organic conversion in Honduras. Lewis, Barham 

& Robinson (2011) examine the neighbourhood effect in organic conversions in 

southwestern Wisconsin of the U.S. La¨pple & Kelley (2015) applied Bayesian spatial 

Durbin probit models to account for spatial dependence in Irish drystock farmers’ 

adoption of organic farming. The latter two articles show that farmers tend to get 

technical information from other organic farmers to reduce the uncertainty of organic 

conversion since organic farming is an information-intensive farming technique. 

Results of all these articles indicate that significant spatial dependence exists in farmer 

choice, and suggest that policy implications might be biased if spatial spillover effects 

are ignored.  

 

A few studies focus on the NZ farmers’ attitudes on sustainable agriculture or farmers’ 

willingness to adopt BMPs. Earlier studies used qualitative methods based on 
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interviews and some recent studies attempted to use simple linear regressions to analyse 

factors affecting farmers’ choices. For example, Parminter, Tarbotton & Kokich (1998) 

interviewed 60 farmers to identify their attitudes to riparian management practices, and 

how different criteria influence their choice of riparian management practices. Their 

results show that farmers’ adoption of riparian management practices would happen 

only if the practices were regarded to be feasible and not to increase the difficulty of 

implementation in management. Similarly, Bewsell, Monaghan & Kaine (2007) used 

qualitative methods to collect data from 30 dairy farmers in four NZ catchments to 

analyse the factors affecting dairy farmers’ willingness to adopt stream fencing 

practices. Results of this study indicated that farm contextual factors, resulting from 

local government guidelines, influenced farmer’s decision-making on the adoption of 

stream fencing. Notably, there are only two papers investigating determinants of 

farmers’ adoption of BMPs using econometric methods. Rhodes, Leland & Niven 

(2002) applied simple linear regression to assess the effectiveness of environmental 

information on farmers’ choices of riparian management practices in the Otago region 

and Southland region of NZ. They also examined the relationships between financial 

assistance for riparian planting and willingness to adopt the practice. The results 

showed positive but weak associations between information and the three response 

variables (attitude, knowledge, and adoption intention). A positive correlation was 

observed between the access to information and money and the adoption of riparian 

management. Significantly, financial issues were the most influential factor that 

hindered farmers from adopting permanent fencing. Fairweather et al. (2009) employed 

a two-way analysis of variance (ANOVA) and cluster analysis to examine conventional 

farmers in their evaluation of farm practices and environmental orientation for NZ’s 

sheep and beef, dairy, and horticulture sectors. Their results showed that the 
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development of environmental orientation is found in farmers’ exposure to best-

practice audits and policy regulation.  

 

The above studies in NZ provide insights into the factors that should be considered in 

the analysis of farmers’ adoption of BMPs. Notably, except for commonly considered 

factors, such as farm and household characteristics, financial and information issues are 

highlighted in some of the studies (Rhodes, Leland & Niven, 2002; Bewsell, Monaghan 

& Kaine, 2007; Fairweather et al., 2009). Nonetheless, the qualitative studies based on 

interviews only have limited number of observations, and results derived from the 

studies may lack generalizability. Moreover, although some studies attempted to 

quantify environmental orientation according to farmers’ environmental practices, these 

studies used either simple linear regressions or ANOVA method, which cannot 

accurately measure to what degree the factors influence farmer’s willingness to adopt 

BMPs.  

 

This essay contributes to the literature in the following aspects. First, it contributes to 

the empirical literature on the determinants of farmer’s adoption of BMPs in NZ by 

using spatial econometric analysis methods, which considers various determinants, 

including drivers and barriers for farmers to adopt BMPs, farm and household 

characteristics as well as spatial issues19. Significantly, dairy farms are geographically 

located. Thus, spatial effects are presented as the distance from the farm to the nearest 

water bodies and neighbourhood effect, which is measured according to spatial 

relationships among dairy farms. Secondly, direct impacts (from own characteristics) 

and indirect impacts (from neighbours’ characteristics) will be captured because I 

19 The BMPs in this essay refer to fencing off stocks from water and riparian practices.   
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examine the determinants of adoption by using a spatial Durbin probit model that 

allows for the inclusion of direct and indirect effects of each independent variable on 

the probability of adoption.  

 

4.3 Econometric Models  

 

4.3.1 Modelling Framework   

 

This essay assumes that dairy farmers make decisions on the adoption BMPs according 

to the difference in utility derived from the adoption and non-adoption of BMPs. Thus, 

for the thi  farmer, the difference in utility is constructed by *
1 0i i iy U U= − , where 1iU  

and 0iU  is the utility associated with observed 1 (to adopt BMPs) and 0 (not to adopt 

BMPs) indicators. *
iy  is an 1n×  latent variable that cannot be observed, and (0,1)iy   

denotes the binary outcome variable that can be observed and expressed in Equation 4.1: 

 

(4.1)  
*

*

1, 0

0, 0
i i

i i

y if y

y if y

 =    ≥


=    <
   

  

According to a traditional choice model, *
iy  is assumed as a function of the observed 

decision-making characteristics and farm characteristics. These characteristics are 

denoted by an n k×  matrix iX . Figure 4.1 shows the modelling framework of farmers’ 

decision-making (on adoption/ non-adoption) under the circumstance of a standard 

choice modelling context, and the extension of farmer choice in a spatial context. Here, 

the terms in blue rectangles represent unobservable variables, while those in orange 
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boxes represent observable variables. The relationships between *
iy , iy  and iX  in a 

standard choice model are depicted in the upper portion of Figure 4.1.   

 

 

Figure 4.1 Modelling Framework of Farmers’ Decision-making 

 

The interpretation of the relationships between *
iy , iy  and iX  depend on utility 

maximization that the thi  farmer chooses to adopt BMPs when:  

 

(4.2) *
1 0Pr( 1) Pr( 0) Pr( 0)i i i iy U U y= = − ≥ = ≥    

 

Therefore, as illustrated in the upper part of Figure 4.1, the relationships can be 

regressed on the basis of Equation 4.3, in a non-spatial choice model.  

 

(4.3) *
i i iy X β ε= +    

 

Individual farm 
characteristics  

Un-observed latent 
variable: ,  

difference in utilities  

Observed 
decision-making 
on adoption/ 
non-adoption: 

(=1 or =0) 

Standard 
choice 
model 

Spatial 
dependence 

included 

Contextual 
factors: ,  
neighbouring 
farm 
characteristics  

 

Spatial dependence 
between farmers:

 

Neighbouring 
farmers’ 

decisions:  

(=1 or =0) 
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where ( )1kβ ×  are the unknown regression coefficients to be estimated, 2~ 0( ),i N εε σ  

is an error term (i.i.d.) with zero mean and variance 2
εσ . Then, when (.)Φ  denotes the 

cumulative density function of the normal distribution, the probability of the thi  

farmer’s adoption of BMPs can be expressed as Pr( 1) ( )i iy X β= = Φ . 

  

The lower portion of Figure 4.1 describes the contextual factors (also known as 

contextual effects in the sociological literature), i.e. characteristics of neighbouring 

farms, and spatial spillover effects from neighbouring farmers’ decisions. In other 

words, *
iy  depends on the own farm and household characteristics as well as on the 

spatial dependence between the farmer and his/ her neighbours. Then, *
iy  can be 

constructed as:  

 

(4.4) * *( , )i i i iy U X S η= +    

 

Here, *
iS  represents the unobservable impacts of spatial dependence, which exists 

between farmer i and farmers located in close proximity, on farmer i’s decision. 

Although it is unobserved, it may depend on contextual factors, for example, the extent 

of farming intensification in the neighbourhood, and on the adoption/ non-adoption 

decisions of farmer i’s neighbouring farmers. Therefore, *
iS  can be expressed as:  

 

(4.5) ( )*     , ( )i k j iS S Z y i ζ+=    
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Here, kZ  denotes the vector of the exogenous characteristics of the group k or in the 

area k to which farm i belongs, and ( )jy i  denotes the vector of decisions of his/ her 

neighbours ( i j≠ ). Notably, when the spatial dependence is included, the decisions of 

farmer i’s neighbours influence his/ her decision that, in return, affects the decisions of 

the neighbours. It is called the feedback effect, as shown in red arrow in Figure 4.1. 

 

4.3.2 Spatial Durbin Probit Model  

 

As illustrated in the previous section, this essay uses a spatial Durbin probit model 

(SDM probit model) to analyse how interdependence in farmers’ decisions contributes 

to their adoption of BMPs. The SDM probit model was designed by LeSage and Pace 

(2009) to include spatial dependence that takes the form shown in Equation 4.6. 

 

(4.6) * *
i i i i iy Wy X WXλ β γ ε= + + +    

  

In the above Equation, except for farmer i’s own characteristics iX β  that have been 

introduced in the previous section, two spatial terms, *
iWyλ  and iWX γ , are also 

considered. In particular, *
iWy  is the spatially lagged dependent variable with an n n×   

spatial weights matrix W  defined on the basis of the inverse distance between farmer i 

and farmer j ( i j≠  ):  

 

(4.7) 
1, 0

0,
ij ij

ij
ij

d d d
w

d d

−  ≤ ≤= 
     >
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d denotes a threshold distance beyond which spatial spillover effects are assumed to be 

zero. Considering the data size of this study, the threshold distance is set such that each 

farmer in the data set has at least one neighbour. According to this definition, therefore, 

the impacts of farmer j on farmer i decay with the distance between them. Thus, *
iWy  

represents the weighted average neighbouring farmers’ utility that captures the spatial 

dependence of adoption choice among farmers. The scalar spatial parameter λ  

measures the strength of the spatial dependence, which is to be estimated. Similarly, 

iWX  is the spatially lagged independent variables, which captures the weighted average 

characteristics of neighbouring farms, with ( )1kγ ×  as the unknown regression 

coefficients to be estimated.  

 

In this essay, the SDM probit model is regressed by using the Bayesian Markov Chain 

Monte Carlo (MCMC) estimation, and a detailed description of the estimation 

procedure for the model is provided in LeSage and Pace (2009) and LeSage (2014). 

Regarding the choice of the most appropriate spatial weights matrix, several models 

with different thresholds d are run and compared using posterior model probability 

(LeSage and Pace, 2009). The range of the threshold values is from 1.5 km to 4 km (in 

intervals of 0.5 km), which is chosen on the basis of the distance band calculation in 

Arc GIS 10.2. This range is consistent with previous studies, such as van Meijl & van 

Tongeren (1998) and Srinivasan, Shankar & Holloway (2002) who indicate a 

reasonable radius for technology spillover is 2 to 3 km in rural areas. The model with 

the highest posterior probability with a threshold value of 1.5 km is the preferred model 

fitting the data best (results will be shown in section 4.5.1).  

 

 

83 
 



 

 

4.4 Data  

 

This essay is based on a cross-sectional survey of data in the Waikato region of NZ. 

The data are used to empirically test and verify the hypothesis that spatial dependence 

exists in farmers’ decision-making by using an SDM probit model presented in the 

previous section. The data are collected as a part of the study of the Upper Waikato 

Sustainable Milk Project held by DairyNZ. In this project, dairy farmers voluntarily 

committed to adopting BMPs at the beginning, and the reasons for adoption or non-

adoption of the BMPs were collected by the means of face to face interview at the end 

of the project. Over 200 questionnaires were collected in 2013 by DairyNZ and 171 

questionnaires were considered usable. The dependent variable is a binary variable, 

indicating farmer choice on the adoption or non-adoption of BMPs: coded as 1 

representing the farmer has adopted BMPs as committed, and coded as 0 indicating the 

farmer has not adopted BMPs (set as the base category).  

 

In addition to farmers’ adoption and non-adoption choices, dairy farmers also gave 

answers on what motivates them to adopt BMPs and what prevents them from 

implementing BMPs. Hence, drivers and barriers associated with the adoption choices 

are grouped to form categorical variables considered as explanatory variables in this 

essay. There are three main drivers, including self-initiated, access to industry 

information (such as access to the advice of experts, access to the knowledge of BMPs, 

and access to local government plans for BMPs), and other motivations. Also, there are 

three main barriers, including financial problems (such as capital shortage and high 

expenditures), lack of information, and personal reasons and others. Other explanatory 
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variables include farm and household characteristics. The survey data on farm 

characteristics included farm size, farm contour and participation in dairy-related social 

activities. Unfortunately, the survey did not cover household characteristics, which are 

regarded as important factors affecting farmers’ decision-making. Meshblock data from 

the NZ 2013 census are used for the purpose of capturing household characteristics. 

Although the meshblock data cannot completely describe the variance of the individual 

(farm-level) data, 141 counts are collected from the meshblock data20. The 171 farms 

are located in rural areas instead of city blocks in the Waikato region. Thus, it is not a 

perfect but acceptable alternative to represent household characteristics. Three types of 

spatial variables are also included as explanatory variables: the lagged dependent 

variable *
iWy , the lagged explanatory variables iWX  (shown in Equation 4.6), and the 

distance from the farm to the nearest water bodies, which are calculated in Arc GIS 

10.2 using the coordinates of the 171 dairy farms21. A detailed description of all the 

explanatory variables is shown in Table 4.1. Accordingly, the expected signs of the 

coefficients associated with the variables are also given in the third column of Table 4.1.  

Where it is a priori difficult to set the expected sign of coefficients, “+ or –” and “– or +” 

are used. However, the preference for the signs is offered given the orders. For example, 

DR1, “+ or –” indicates self-motivated farmers are more likely to adopt BMPs 

compared to farmers who find other reasons as the primary motivation to adopt BMPs. 

20 A Meshblock is defined as the smallest geographic unit for which statistical data is collected by 

Statistics NZ. Meshblocks vary in size from part of a city block to large areas of rural land.  

21 Here, different from the definition of waterways in the Accord, water bodies used to calculate the 

distance from the farm to water bodies in refer to observable streams, rivers, and lakes in Google map 

with the scale of 1:8000 that is seen as an appropriate scale to see small road 

(http://wiki.openstreetmap.org/wiki/Zoom_levels).  
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Statistics descriptions of the dependent and explanatory variables are presented in Table 

4.2.   

 

Table 4.1 Descriptions of Variables 

Explanatory variables   Descriptions  Expected 

signs  

Drivers for adopting 

BMPs (DR) 

Categorical variables:  

DR1: self-initiated, coded as 1. 

DR2: industry information, coded as 2. 

DR3: others, coded as 3 (set as the base). 

 

+ or - 

+ or - 

Barriers to adopting 

BMPs (BA) 

Categorical variables:  

BA1: financial problems, coded as 1. 

BA2: lack of information, coded as 2. 

BA3: personal reasons and others, coded as 3 (set 

as the base). 

 

- or + 

- or + 

Farm size  Effective areas of dairy farms (hectares). + 

Farm contour Percentage of flat areas over total farm areas.  - 

Social activities The number of dairy-related activities, such as 

discussion group and field days that farmers 

participated in the past year (2012). 

+ 

Distance The distance from the dairy farm to the nearest 

water bodies (km). To control for the non-linear 

relationship between distance and the farmer’s 

adoption of BMPs, the distance is natural log 

transformed in the empirical analysis. 

- 

Staff training Binary variable=1, if there are staffs who have 

been trained or are being trained toward BMPs. 

+ 

Income (Proximity) The median income of people (in 1000 dollar), 

who are greater than 16, in meshblocks. 

+ 

Age (Proximity)  The average age of people, who are greater than 

16, in meshblocks.  

- 

Education level 

(Proximity) 

Education level, which is the proportion of people 

(who are greater than 16) educated at and over 

level 5, in meshblocks. 

+ 
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Table 4.2 Statistics Descriptions of Variables 

Variable name Min.  Max.  Mean  SD.  

Dependent variable  0 1 0.41 0.49 

DR1 0 1 0.24 0.35 

DR2 0 1 0.39 0.49 

DR3 0 1 0.37 0.48 

BA1 0 1 0.51 0.39 

BA2 0 1 0.28 0.45 

BA3 0 1 0.21 0.41 

Farm Size 25 874 169.63 122.88 

Farm Contour 0 100 38.94 33.25 

Social event 0 33 4.83 7.10 

Distance  0.55 11.10 3.93 2.44 

Staff training  0 1 0.46 0.34 

Income  36700 125000 82833.13 18678.13 

Age  17.5 57.2 36.10 7.84 

Education  0 0.46 0.24 0.12 

  

4.5 Results and Discussions 

 

4.5.1 Model Comparison and Coefficient Estimation  

 

As discussed in section 4.3.2, an SDM probit model with a 1.5 km threshold d is chosen 

as the preferred model due to the highest posterior model probability. Table 4.3 

presents results of the posterior model probabilities comparing alternative SDM probit 

models with threshold values ranging from 1 km to 4 km (in intervals of 0.5 km). The 

results indicate that spatial spillover effects are assumed to be zero beyond the 1.5 km 

threshold distance. Comparing parameters across different model specifications, it is 

observed that as d increased, and thus increasingly distant farmers included into the 
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neighborhood, the parameter λ  in relation to the spatially lagged dependent variable 

decreases in statistical significance and magnitude.  

 

Table 4.3 Comparison of Models with Different Threshold Values   

Threshold values  Model probability The coefficient values of λ  

1d =  0.467 0.389 ( 0.011p = ) 

1.5d =  0.621 0.412 ( 0.021p = ) 

2d =  0.214 0.121  ( 0.051p = ) 

2.5d =  0.098 0.098  ( 0.064p = ) 

3d =  0.0842 0.088  ( 0.095p = ) 

3.5d =  0.0594 0.046  ( 0.112p = ) 

4d =  0.0623 0.048  ( 0.123p = ) 

 

The comparison of different spatial model specifications is given in Table 4.4. 

Similarly, the posterior model probabilities of the spatial autoregressive (SAR) probit 

model, spatial error (SEM) probit model, the spatial lag of X (SLX) probit model and 

the SDM probit are compared, with a threshold value of 1.5 km. Model specifications 

of the other three spatial models are shown in section 2.2, Chapter 2. 

 

Table 4.4 Comparison of Spatial Models  

Spatial models Model probability 

The SAR probit model 0.513 

The SEM probit model 0.414 

The SLX probit model 0.398 

The SDM probit model 0.621 
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The coefficient estimates for the parameters β , λ , and γ  in the preferred SDM probit 

model are shown in Table 4.5. It is noted that λ  is statistically significant at the 1 

percent level indicating the existence of spatial dependence in the adoption of BMPs 

among dairy farmers. Moreover, the positive sign of λ  implies that a dairy farmer is 

more likely to adopt if his/ her neighbours are also BMPs adopters. Furthermore, most 

of the explanatory variables are statistically significant at different statistically 

significant levels (1 percent, 5 percent and 10 percent level as shown in the fourth 

column in Table 4.5), and the signs of the coefficients are as expected in Table 4.1.  
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Table 4.5 Coefficient Estimates of the SDM Probit Model 

Variable  Coefficient Std. dev.  P value  

Constant  1.161 0.401 0.003 

Drivers and barriers     

DR1: self-initiated 0.345 0.421 0.002 

DR2: industry information 0.231 0.378 0.005 

BA1: financial problems -0.421 1.231 0.012 

BA2: lack of information -0.123 0.987 0.048 

Own farm characteristics    

Farm size 0.056 0.024 0.065 

Farm contour -0.004 0.042 0.026 

Social activities 0.312 0.876 0.035 

Log Distance -4.42 0.029 0.085 

Staff training 0.765 1.345 0.007 

Income (Proximity) 0.004 0.005 0.102 

Age (Proximity) -0.038 0.021 0.098 

Education level (Proximity) 0.173 0.324 0.078 

the Spatially lagged independent terms 

(Neighbours’ characteristics) 

   

W-DR1: self-initiated 0.125 0.214 0.052 

W-DR2: industry information 0.013 0.178 0.015 

W-BA1: financial problems -0.182 0.965 0.056 

W-BA2: lack of information -0.076 0.047 0.038 

W-Farm size 0.066 0.004 0.123 

W-Farm contour -0.002 0.003 0.216 

W-Social activities 0.112 0.679 0.095 

W-Log Distance -1.26 0.004 0.078 

W-Staff training 0.378 1.032 0.023 

W-Income 0.002 0.003 0.241 

W-Age -0.014 0.002 0.145 

W-Education level 0.084 0.015 0.098 

the Spatially lagged dependent term λ  0.412 0.021 0.001 

Source: author’s elaboration based on Matlab software. 

 

90 
 



 

Although the statistical inference of magnitudes of the explanatory variables cannot be 

made according to the coefficient estimates shown in Table 4.5, expectations on the 

signs of the coefficients, which is made in Table 4.1 in the previous section, can be 

verified. With respect to the drivers to adopt BMPs, the results in Table 4.5 show, as 

expected, that self-motivated farmers and those who get access to industry information, 

including access to the advice of specialist and knowledge of regional council plans, are 

more likely to adopt BMPs. Regarding the barriers, financial problems and difficulty to 

get information decrease the likelihood of BMPs adoption. In line with these findings, 

the positive sign of the social activities variable indicates that participating in dairy-

related activities seem to be another way that farmers gain access to information on 

BMPs.  

 

Different farm characteristics have different impacts on the adoption of BMPs. Farmers 

operating bigger farms in terms of farm area are more likely to adopt BMPs, while 

farmers whose farms have flat contour tend not to adopt BMPs. Staff training is a 

positive indicator of BMPs adapter. According to the negative sign of the distance 

variable, the distance decay effect exists in the adoption of BMPs.  

 

All three household characteristics, except for median income, have a significant effect 

on the choice to adopt BMPs. As expected, younger farmers are more likely to adopt 

BMPs, and farmers with higher education are more likely to adopt BMPs. This accords 

with intuition as new technologies are often more readily adopted by younger farmers. 

Likewise, educated farmers might pay more attention to the environmental impacts of 

unsustainable dairy farming and be willing to adopt good practices for water protection.  
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Lastly, most of the spatially lagged independent variables are statistically significant, 

indicating that a farmer’s adoption of BMPs is affected by his/ her neighbours’ 

characteristics. Discussions on magnitudes of the effects of the explanatory variables on 

the adoption of BMPs are detailed in the following section.   

 

4.5.2 Effects Estimation  

 

In the non-spatial probit model, marginal effects are estimated at the mean for 

continuous variables and for a change from zero to one for dummy variables. The SDM 

probit model, however, accounts for both direct and indirect effects (LeSage, 2014). 

The direct effects represent the impact of a change in the explanatory variables of 

farmer i on the adoption probability of farmer i, and the indirect effects (spatial 

spillovers) express the cumulative effect of a change in the explanatory variables of 

neighbouring farms on the adoption probability of farmer i. The indirect effects come 

from the interdependence in decision-making among farmers, i.e., a change in the 

independent variable has an effect on farmer j's probability to adopt BMPs and thereby 

also on farmer i's probability to adopt. To what extent changes in the neighbourhood 

influence the adoption probability of farmer i depends on the spatial proximity defined 

by the spatial weights matrix. The total effect of an explanatory variable is thus the sum 

of its direct effect and its indirect effect (LeSage and Pace, 2009).  

 

Table 4.6 shows the marginal effect estimates, including direct, indirect and total 

effects as well as Bayesian 95 percent credible intervals for total effect estimates. The 

results show that for all explanatory variables, direct effects are about 1.5 times larger 

than the indirect effects, on average. According to magnitudes of the total effects, the 
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most influential determinants are access to industry information (in the category of 

drivers), financial problems (in the category of barriers), participation in dairy related 

social activities, and staff training.  

 

Table 4.6 Direct, Indirect and Total Effects Estimates of the SDM Probit Model 

Variable Direct effects  Indirect effects   Total effects 

DR1: self-initiated 0.123 0.082 0.205 [0.005, 0.405] 

DR2: industry information 0.223 0.041 0.264 [0.236, 0.702] 

BA1: financial problems -0.367 -0.098 -0.465 [-0.585, -0.345] 

BA2: lack of information -0.049 -0.017 -0.066 [-0.089, -0.043] 

Farm size 0.062 0.031 0.093 [0.001, 0.185] 

Farm contour -0.014 -0.009 -0.023 [-0.053, 0.007] 

Social activities 0.313 0.021 0.334 [0.114, 0.554] 

Log Distance -4.42 -1.95 -6.37 [-8.18, -4.16] 

Staff training 0.173 0.115 0.288 [0.101, 0.475] 

Income 0.004 0.002 0.006 [-0.002, 0.014] 

Age -0.041 -0.019 -0.06 [-0.08, -0.04] 

Education level 0.016 0.010 0.027 [0.015, 0.039] 

Source: author’s elaboration based on Matlab software. 

 

Driver and Barrier Variables:  

 

Among all the drivers, access to industry information is regarded as the most important 

determinant of dairy farmers’ adoption of BMPs. Compared to farmers choosing other 

motivations, farmers, who regard access to industry information as the most important 

driver, are 26.4 percent more likely to adopt BMPs. The 26.4 percent total effects can 

be further broken down to 22.3 percent direct effects and 4.1 percent indirect effects. 

This finding is consistent with results of previous studies on technology adoption as 

information exchange between neighbours is an important determinant of technology 
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diffusion (e.g. Bandiera & Rasul, 2006; Case, 1992; Wollni & Andersson, 2014). 

Likewise, self-motivated farmers’ adoption probability increases by 20.5 percent, with 

about 8 percent coming from the spillovers of self-motivated neighbours.  

 

Relative to personal and other reasons, financial problems, such as capital shortage and 

high expenditures, seem to be the biggest obstacle that prevents dairy farmers from 

adopting BMPs. Farmers who have financial difficulties are 46.5 percent less possible 

to adopt BMPs, and about 9.8 percent is from impacts of the neighbouring farmers who 

are also constrained by their budget. Although less influential, lack of information 

could also decrease farmers’ adoption probability by 6.6 percent.  

  

Farm Characteristic Variables: 

 

Among all the farm characteristics, staff training and participation in social activities 

that are related to dairy farming, such as discussion groups and workshops, are 

important determinants of farmers’ decision-making on the adoption of BMPs. A 

farmer’s adoption likelihood increases by 33.4 percent in total when he/ she 

participated in one more social activities in the previous year. This finding indicates 

that farmers may exchange experience and knowledge on BMPs in these social 

activities. Being an alternative channel for information acquisition, participating in 

social events provides opportunities for dairy farmers to reduce the risk of adoption by 

learning from people they meet at social events. Staff training is also a positive 

indicator of a farmer’s adoption of BMPs. A farmer, whose staff have been trained or 

are being trained to master BMPs, is 28.8 percent more likely to adopt BMPs. Part of 
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the increase in the probability, about 40 percent (indirect effects divided by total effect), 

is because the farmers’ neighbours are also keen to train staff on the merits of BMPs.  

 

The impacts of the physical characteristics of farms, including farm size and farm 

contour, are less significant compared to the above variables. The likelihood of a 

farmer’s adoption choice rises by 9.3 percent with an increase of one hectare of the 

effective farm area, but it decreases with an increase in one percent of flat areas over 

total farm areas. A possible reason to explain the positive response of farmer’s adoption 

choice to farm area is that large farms demand better management. Thus, fencing stocks 

off waterways may be seen as one of the good management practices either to protect 

water quality or to prevent the lost of livestock. In addition, farmers may focus on soil-

water conservation, and thus, concern more about sustainable development of their 

farms, if most of their farm land is rolling or steep.   

 

As expected, the hypothesis that farmers who live closer to water bodies tend to be 

more willing to adopt BMPs to protect water quality cannot be neglected. Here, with 

one-kilometer increase in the distance from a farm to the nearest water bodies, the 

probability of the farmer’s adoption of BMPs decreases by about 6.4 percent. This 

finding confirms the existence of distance decay effect of farmers’ demands for clean 

waterways. 

 

Household Characteristic Variables  

 

Higher education level and median income have positive impacts on farmers’ adoption 

of BMPs. In particular, education level has the greatest impact. With a 1 percent 
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increase in education level, a farmer located in the meshblock is 2.7 percent more likely 

to adopt BMPs. The adoption probability only increases by 0.6 percent with a rise in 

$1000 in median income in the meshblock. On the contrary, the average age negatively 

affects the adoption of BMPs. 6 percent decrease is observed in the probability of 

adoption due to one year increase in age.    

 

4.6 Summary 

 

This essay uses a spatial Durbin probit model to empirically analyse spatial dependence 

and determinants of dairy farmers’ adoption of BMPs. Data used in this essay were 

obtained from a survey of 171 farms in the Waikato region of New Zealand; 

socioeconomic data were drawn from the 2013 Census. The advantage of the SDM 

probit model is that it allows for the inclusion of both the spatially lagged dependent 

variable and spatially lagged independent variables, which takes account of impacts of 

the neighbouring farmers’ decisions as well as neighbouring farmers’ characteristics. 

Therefore, different from non-spatial probit models,  the SDM probit model accounts 

for both direct and indirect effects. Significantly, the indirect effects (spatial spillovers) 

help to measure to what extent a change in the neighbouring farmers’ characteristics 

affect the adoption probability of a dairy farmer. The statistically significant and 

positive parameter λ  indicates that spatial spillover effects exist, and farmers are more 

likely to adopt BMPs if their neighbours are also adopters. Spatial spillover effects are 

also observed through impacts of the neighbouring farmers’ characteristics. In addition, 

a farmer’s willingness to adopt BMPs decay with the increase in the distance from the 

farm to the nearest water bodies.  
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This essay also highlights the importance of information acquisition for dairy farmers 

to adopt BMPs. Firstly, the existence of spatial dependence in decision-making between 

farmers indicates the information exchange among farmers. Secondly, the results show 

that access to industry information, as a driver, has the greatest impact on farmers’ 

adoption of BMPs. Thirdly, participation in different (dairy-related) social activities 

also promotes farmers’ adoption of BMPs, as it is another way of obtaining relative 

knowledge and exchanging information with others.  

 

Based on the results and findings presented in this essay, policy implications can be 

made as follows. To begin with, an understanding of dairy farmers’ drivers and barriers 

to adopting BMPs could assist policy makers to focus on specific strategies and deliver 

support to solve problems that are badly in the need of help. For example, financial 

problems are regarded as the biggest obstacle for farmers to adopt BMPs in the 

empirical analysis, which is consistent with reality not only in the Waikato region but 

elsewhere of NZ. Thus, it is worthwhile for regional governments to figure out ways of 

reducing the cost of dairy farmers to adopt BMPs, such as offering free channels for 

information acquisition, which could significantly reduce the uncertainty of adoption 

BMPs. Also, the importance of information availability in the neighbourhood network 

and social activities suggests that policies and strategies that address the whole 

community may be more efficient than targeting individual farmers to induce 

behavioural changes in adopting BMPs. Joint neighbourhood initiatives are also most 

appropriate to address the positive externalities of sustainable management practices. 

Although individual farmers could not internalize the full benefits of the adoption of 

BMPs and, therefore, incline to delay adoption, integrated activities in one community 

can help to overcome such problems of collective action. Assuming all farmers in a 
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neighbourhood commit to implementing mitigation practices against water pollution, 

individuals do not have to fear that neighbouring farmers may free ride on their 

investments into BMPs. Lastly, the existence of a distance decay effect in dairy farmers’ 

adoption of BMPs provides a different point of view of education as a vehicle for 

regional governments to use in the promotion of BMPs. That is, during the education 

and promotion process, instead of treating dairy farmers as polluters, they could also be 

seen as individuals who also demand good water quality for recreation purposes. 

Stimulating dairy farmers’ desire for clean waterways may encourage them to re-

evaluate their farming practices and adjust to the requirements of sustainable dairy 

farming.   

 

Social interactions among farmers can be captured through both geographical distances 

and social network connections among farmers. Thus, in the next chapter, essay three 

will extend the exploration of social interactions among farmers from spatial 

interactions to social network interactions. Furthermore, it will investigate how social 

interactions among farmers affect environmental performance.  
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CHAPTER 5. Essay Three: Social Interaction 

Effects on the Relationship between Dairy 

Farmers’ Environmental Performance and 

Nutrient Management Practices 

  

 

 

 

5.1 Introduction  

 

5.1.1 Background  

 

Sustainable development of the NZ dairy industry needs active participation by dairy 

farmers in best management practices and policy support. The current decline in 

international dairy price has impacted profitability of the NZ dairy industry. Dairy 

farmers also face the challenge of maintaining high productivity and minimizing 

environmental pollution due to intensive farming activities. Thus, farmers have to use 

intensive inputs efficiently to control cost and avoid adverse environmental impacts. 

Indeed, the National Policy Statement for Freshwater Management (NPS), which was 

issued in 2011 by the NZ government, requires all regional councils to set quality limits 
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on all water bodies within their regions by December 2030 22  (Ministry for the 

Environment, 2011). This regulation indicates that nutrient loss to water, predominantly 

nitrate leaching and phosphate loss, needs to be better managed to protect water quality. 

Consequently, a drive can be expected for dairy farmers to improve their nutrient 

management practices (NMPs) to meet imminent regulations.  

 

Nevertheless, due to the uncertainty of economic and environmental performance 

associated with changes in management plans, dairy farmers may be cautiously hesitant 

when it comes to the implementation of NMPs. This is because attempts to improve 

NMPs and reduce nutrient loss might have an adverse impact on production or 

profitability. Currently, most of the NZ dairy farmers manage their nutrient plans and 

budgets on OVERSEER®, which produces both production and environmental indices 

to help assess whether productive or environmental outcomes are being met. 

OVERSEER® is seen as a reliable tool applied nationally because it reduces 

unnecessary cost associated with implementing NMPs23. 

 

OVERSEER® estimates nutrient loss to water based on the assumption of best practices, 

where any change or transition of on-farm management practice does not reduce the 

nutrient loss predicted by OVERSEER®. For example, OVERSEER® considers fencing 

22 In this statement a water body refers to anything that holds water, whether water is: still, such as lake, 

wetland, on-farm dam, pond; flowing, such as stream, creek, river; manmade, such as drain; intermittent 

only holds water in wet periods or over the winter; and underground/ sub-surface, e.g. aquifer (Ministry 

for the Environment, 2011). 

23 Overseer® was developed in New Zealand for NZ farming systems in the early 1990s, firstly named 

Overseer, and has since undergone repeated revisions to improve the model as new science and 

knowledge is incorporated. 
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off waterways and wetland as effective methods to avoid nutrient loss to water 

(OVERSEER Management Services, 2015). Nevertheless, some management practices, 

such as fencing cattle out of puddles on farm at any time, do not count as valid method 

to achieve best environmental performance in OVERSEER®. For a given farm system, 

OVERSEER® estimates the long-term annual average outputs, assuming the farm 

management system stays the same (Shepherd et al., 2013). For example, increasing 

soil test frequency helps farmers to understand soil conditions on farm, particularly 

during the year of extreme climate events such as floods or droughts. But it will not 

change the nutrient loss predicted by OVERSEER®. To a great extent, this might stop 

farmers from investing in some NMPs since they are uncertain about whether or not the 

investment in NMPs could improve their environmental performance. Therefore, it is 

important to investigate whether or not the nutrient loss estimated by OVERSEER®  is 

relevant to dairy farmers’ real NMPs.  

 

Another non-ignorable factor, which may influence dairy farmers’ environmental 

performance, is social interactions among dairy farmers. This can arise when dairy 

farmers’ choices of NMPs are highly likely influenced by their peers’ opinions. It is 

especially evident in a small community, where farmers know and meet with each other 

frequently. Although nutrient management issues are often invisible and difficult to 

monitor, farmers often have a ‘fair idea’ of what each other is doing (Ritchie, 2007). 

Besides, social networks, often established by fielddays and discussion groups, 

provides another source of ideas regarding nutrient management. Dairy farmers may 

exchange their experience in dairy farming with other farmers who take part in the 

same dairy groups. Furthermore, as proposed by Oreszczyn, Lane & Carr (2010), 

learning might occur during interaction activities among farmers. Consequently, 
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whenever a dairy farmer is making a decision on NMPs, it is possible that the farmer 

may compare his/ her own environmental performance with that of his/ her peers’ 

environmental performance. Hence, we may assume that dairy farmers share or learn 

from the experience in NMPs from other farmers.   

  

This essay uses a spatial analysis method to explore the relationship between dairy 

farmers’ environmental performance and their NMPs, to understand how social 

interaction effects influence this relationship, and to provide suggestions for the design 

of nutrient control policy. Specifically, the essay will address the following questions: 

how does environmental performance respond to dairy farmers’ NMPs? To what extent, 

has one dairy farm’s nutrient loss been influenced by the NMPs of its neighbouring 

farms 24 ? And, whether spatial interactions or social network interactions have an 

impact on the relationship between nutrient loss and NMPs. I firstly adopt a spatial 

econometric model with typical spatial interaction effects as a point of departure and 

extend the model to include social network interactions among dairy farmers.  

 

5.1.2 Framework 

 

Figure 5.1 shows the framework for this essay. Dairy farmers’ NMPs are represented by 

three categories, including six types of NMP variables on the upper left; four intensive 

inputs are shown on the upper right. Both may influence nutrient loss to water, which is 

the primary indicator to estimate the relationship between dairy farmers’ environmental 

performance and farmers’ own NMPs and intensive inputs. Notably, social interaction 

24 Neighbouring farms/ farmers in this essay refer to farms/ farmers that are geographically close and 

socially close.  
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effects are considered from both a spatial interaction and a social network perspective. 

Accordingly, a spatial weights matrix and adjacent weights matrix are used to create 

social effects variables as well as social autocorrelated error term, which will be 

specified in section 5.3, to model how environmental performance responds to their 

neighbours’ NMPs and intensive inputs.  

 

 

Figure 5.1 Framework for Essay Three  
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5.1.3 Structure of Essay Three 

 

The remainder part of the essay is organized as follows. Relevant literature is reviewed 

in section 5.2. Section 5.3 describes the method of constructing a spatial weights matrix 

and adjacent weights matrix to model social interaction effects among dairy farmers 

and details the spatial econometric models. Section 5.4 describes the data and variables 

for empirical analysis. Section 5.5 presents results and discussions. Conclusions are 

presented in section 5.6.  

 

5.2 Literature Review   

 

There are two parts to this section. First, literature on the relationship between dairy 

farmers’ environmental performance and NMPs, including the definition of 

environmental performance and different approaches applied in the analysis of the 

relationship is reviewed. The second part provides an overview of the literature on how 

social interaction effects influence farmers’ decision-making and how social interaction 

effects can be used in the analysis of the relationship between dairy farmers’ 

environmental performance and NMPs.  

 

5.2.1 Environmental Performance  

 

From an input-oriented perspective, good environmental performance implies the use of 

intensive inputs, such as nitrogen, to achieve a given level of output at low levels of 

nutrient pollution. One of the most commonly used indicators is nitrogen surplus, 
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which is the difference between external nitrogen inputs and nitrogen contained in 

outputs (e.g. milk and meat). Nitrogen surplus is regarded as a good means of 

measuring resource use efficiency, where all the intensive inputs such as manure and 

nitrogenous fertiliser use are included as detrimental inputs (Reinhard, Lovell 

& Thijssen, 1999). Another traditional indicator is nitrogen conversion rate, which can 

be represented in different forms. Three commonly used forms include: (1) feed 

conversion rate = nitrogen in milk/ nitrogen consumed as feed by cows, (2) manure and 

fertiliser conversion rate = nitrogen uptake by crops and pasture/ manure and fertiliser 

use, and (3) whole-farm nitrogen conversion rate = sum of nitrogen exported off-farm/ 

sum of nitrogen imported to farm (Powell et al., 2010). These indicators provide 

insights into understanding nitrogen use efficiency by relating intensive inputs to 

desired nitrogen outputs. However, these indicators may not directly measure the 

impacts of intensive inputs on the environment.    

 

Environmental efficiency indicators, from an output-oriented perspective, offer another 

means of evaluating dairy farmers’ environmental performance. In the field of 

agricultural and environmental studies, scientists are interested in measuring or 

estimating the quantity of nutrient loss to water, and use these environmental indices to 

evaluate environmental performance. Thus, low nutrient pollution is related to good 

environmental performance. In contrast, an economic framework views off-farm 

practices as an external cost associated with milk production. Whether the external cost 

is sufficient to warrant policy interruption is, of course, an empirical matter. 

Specifically, research on the regulation of greenhouse gas emissions have used 

emission indicators to assess environmental performance. Here, the emission indicator 

is calculated by using greenhouse gas emissions divided by milk production (Zaim & 
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Taskin, 2000). A similar approach used a ratio of nitrate leaching to milk production as 

an indicator to compare environmental efficiency between different dairy farms 

(Ledgard et al. 2004). Therefore, a reduction in this ratio indicates a decrease in nitrate 

leaching per kilogram milk solids.  

 

This essay uses the ratio of nitrate leaching to milk production to assess dairy farmers’ 

environmental performance. This is mostly because the output-oriented perspective is 

regarded as the main measure to assess environmental performance in NZ, for both 

dairy farmers and regional councils. For example, to measure the reduction of nutrient 

pollution, farmers and regional governments primarily rely on estimations by 

OVERSEER®, which is output-oriented. Thus, the ratios can help to directly measure 

the adverse impacts of nutrient pollution on the environment as well as relate undesired 

products with milk production.  

 

5.2.2 The Relationship between Environmental Performance and NMPs 

 

Optimization and econometric methods are two main approaches used to analyse the 

relationship between dairy farmers’ environmental performance and NMPs.   

 

A number of studies have examined the connection between farmers’ environmental 

performance and NMPs using optimization methods, where the abatement cost of 

pollution is estimated under the assumption of farm profit maximization (e.g. Bratt, 

2002; Brady, 2003; Ekman, 2005). In New Zealand, most studies have used a cost-

minimized framework to test for changes in nutrient loss or abatement cost under 

different policy scenarios. From this perspective, three main approaches have been 
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developed to integrate farmer’s environmental performance at a catchment level by 

using linear/ non-linear programming methods. One is to use the NZ Whole Farm 

Model and extensions of the model. For example, Ramilan et al. (2011) developed a 

hybrid model to simulate different impacts of nutrient control policies on nutrient loss 

at a catchment level. They have further derived the farm-level marginal abatement cost 

by considering three types of farm systems, which are labelled as extensive, moderate 

and intensive systems. They found that abatement costs for intensive farms are lower 

for moderate and extensive farming systems, and either a compulsory standard or 

threshold tax outperforms a standard emissions tax 25. However, Doole (2012) and 

Holland & Doole (2014) have argued that the NZ Whole Farm Model ignored the 

heterogeneous characteristics of dairy farms. Thus, they have estimated the relationship 

between farm characteristics and abatement level under a differentiated policy, a 

uniform policy, and a thresholds policy26. Their conclusions have emphasized the need 

to consider heterogeneity among dairy farms, and the lowest abatement cost was 

achieved under the differentiated policy. Motu Economic and Public Policy Research 

focused on the application of nutrient trading prototype to control nutrient loss at Lake 

Taupo and the Lake Rotorua catchment. These studies have simulated groundwater lags 

for nutrient loss travelling to ground water, and shown the importance of considering a 

25 The three policies are: a compulsory standard sets standard tax on emissions; a threshold tax sets a tax 

on emissions above the allowable standard; a standard emission sets tax on the allowable level of 

emissions.  

26  The differentiated policy sets different abatement level for each farm; the uniform policy sets a 

uniform abatement level for every farm; and a thresholds policy set a same threshold for every farm. 
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time-frame in the analysis of farm-level environmental performance and NMPs 27 

(McDonald & Kerr, 2011; Anastasiadis et al., 2011).  

 

All the above studies used optimization methods to simulate farmers’ environmental 

performance under different policy scenarios. Problem is, however, to aggregate up to 

catchment/ regional level, which assumes that catchment/ regional level is appropriate 

for considering environmental impacts, but NMP decisions are ideally related to farm-

level decision-making. Moreover, simulations used in these studies may be indicative 

but may not reflect true relationships between environmental performance and farmers’ 

NMP decisions.  

 

Studies using econometric methods have focused on measuring the correlation between 

good management practices and nutrient input efficiency, such as nitrogenous fertiliser 

use and effluent use. Stochastic frontier analysis (SFA) and data envelopment analysis 

(DEA) have been used to measure technical efficiency or environmental efficiency by 

comparing the distance of the individual farms to the frontier (e.g. Reinhard, Lovell & 

Thijssen, 2000; Graham, 2004; Picazo-Tadeo, Gómez-Limón & Reig-Martínez, 2011). 

For example, De Koeijer et al. (2003) applied DEA to assess the relationship of nutrient 

management and nitrogen use efficiency in a sample of Dutch arable farms in 

Netherlands. Their results show a significant positive correlation between nutrient 

management practices and nitrogen use efficiency. Most of these studies have 

concluded that better farm management practices improve both economic and 

environmental efficiency. Meanwhile, some studies have found that good environment 

27 It is estimated that it would take at most 150-200 years for nutrient loss travelling to Lake Rotorua 

because of groundwater lags.  
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performance is negatively correlated with the increased use of nitrogen fertiliser or 

maize silage (e.g. Basset-Mens, Ledgard & Boyes, 2009; Cederberg & Mattsson, 2000).   

 

The above studies illustrate the importance of relating NMPs and heterogeneous farm 

characteristics to environmental performance. They also suggest various nutrient 

abatement policies for different NMPs. However, they ignore the possibility that a dairy 

farmer’s decision-making on NMPs is influenced not only by his/ her own judgement 

but also by his/ her neighbours’ experience. Therefore, ignoring social interaction 

effects among dairy farmers may lead to inaccurate estimations on the relationship 

between environmental performance and farmers’ NMPs.  

 

5.2.3 Social Interaction Effects on Farmers’ Decision-making   

 

A small number of studies show the significance of considering social interactions 

among farmers in the analysis of farmers’ decision-making. Rijswijk (2013) has 

reviewed four surveys undertaken by the Pasture Renewal Leadership Group (PRLG) 

among its members, dairy farmers, seed retailers and contractors. This study focused on 

the social interactions between respondent groups and explored how interactions among 

farmers influence their pasture renewal practices. It found that farmers’ decision-

making is influenced by the social interactions on the basis of their perceived credibility 

of the information sources. Small, Brown & Montes de Oca Munguia (2013) quantified 

farmers’ social interactions according to the size of their social network, defined as the 

number of participation in dairy-related events.  In this study, farmers participating in 

six or more farming activities in a year are regarded as socially connected to other 

farmers. They employed probit models to investigate social connections among farmers 

109 
 



 

for various types of farmers, including sheep and beef farmers and dairy farmers. 

Notably, this research revealed that dairy farmers are significantly more connected by 

the means of their social networks than other farmers. These studies confirmed the 

necessity of modelling social interactions among farmers, but they did not indicated to 

what extent and how the social interaction effects influence dairy farmers’ 

environmental performance.  

 

Social interaction effects are usually modelled in terms of spatial interactive 

relationships and social network relationships among observations. Specifically, spatial 

interactions are constructed in the form of a spatial weights matrix to capture interactive 

relationships over observations in spatial econometric literature. Following Tobler’s 

first law of Geography, close observations are more likely to be connected to each other 

than distant observations (Tobler, 1970). Thus, dairy farmers’ NMPs may be influenced 

by neighbouring farmers. In contrast to interactions derived from geographical 

characteristics, some social science studies have stated that observations, which are 

economically similar, are more likely to have an influence on each other than those 

geographically related (Case, 1991). Notably, in economics studies, neighbouring 

interactive relationships have been extended to a broader definition, where social 

network relationships can also be seen as another form of spatial interaction. That is, 

instead of observing physical distance, interactions with respect to socioeconomic 

characteristics are measured and modelled by using “economic distance” or “social 

distance”. For example, inverse trade share, inverse distance between GDP per capita, 

and migration flow information are typical indicators to model the interactive 

relationships between observed countries rather than modelling boundary connections 

among these countries. (Crabbé, 2013; Corrado & Fingleton, 2012). These studies have 
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concluded that the inclusion of socioeconomic information in spatial analysis deepens 

the understanding of social interactive relationships among observations.   

 

5.2.4 Contributions to Existing Literature  

 

This essay contributes to the existing literature as follows. Firstly, for studies on the 

relationship between environmental performance/ nutrient loss and NMPs, it 

contributes to the literature on the application of spatial analysis methods to examine 

the correlates between nutrient loss and NMPs. Compared to studies using optimization 

simulation, survey data are used in this essay to reflect farmers’ revealed-preference on 

NMPs, and its impact on their environmental performance. Social interactions among 

dairy farmers are considered as a way of reducing fixed cost of acquiring knowledge on 

NMPs.  Additionally, this essay quantitatively models social interactions among dairy 

farmers according to spatial interactions and social network interactions. This gives 

insights into a different perspective on regulating nutrient loss, not only focusing on 

better NMPs in a geographical area but also promoting better nutrient management 

through different dairy-related social events or social groups. Neighbouring farms are 

not only referred as farms geographically close but also those belonging to the same 

social groups. In other words, in addition to model spatial interactions, this essay also 

considers modelling farmers’ interactions through their participation in dairy groups 

and dairy-related activities. Hence, it indicates how the influence of geographically 

neighbouring farmers is different from the influence of socially neighbouring farmers 

on environmental performance.       
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5.3 Model Specifications 

 

5.3.1 Modelling Social Interactions among Farmers  

 

Dairy farmers’ social interactions are modelled in two ways in this study. It firstly 

utilizes a spatial weights matrix to model social interactions among neighbouring 

farmers, according to geographical positions.  

 

Spatial Interactions-Spatial Weights Matrix: I firstly construct an n n×  spatial 

weights matrix ; ,  1, ,( )ijW w i j n=  = … , where each spatial weight ijw  captures the 

spatial interactive relationship of the corresponding farms i  and j . It is noted that “self-

influence” is excluded by assuming 0ijw =  for all ,  1, ,i j n = … . As stated in Chapter 2, 

the boundary-based and distance-based approaches are commonly used to construct the 

spatial weights matrix, where the former defines neighbours according to shared 

boundary among spatial units and the latter defines neighbours according to distance 

among spatial units.  

 

The “best spatial weights matrix” should be selected with the consideration of 

requirements addressed in the research question, data size of the empirical analysis and 

comparison of the goodness of fit of models with different spatial weights matrixes. In 

reality, dairy farmers can directly observe other farmers’ NMPs when they share a 

common boundary. Therefore, I assume that the boundary-based approach is 

appropriate to model spatial interactions among dairy farmers in this analysis. In 

addition, the best fitting spatial weights matrix is the rook contiguity weights matrix, 
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which is chosen by comparing the goodness of fit of spatial models using different 

spatial weight matrixes. Comparison of the results are shown in Appendix.  

 

It is straightforward to understand the spatial relationship between two spatial units 

through the expression of rook contiguity weights, where dairy farms share a positive 

portion of the boundary. As defined in Equation 5.1, ijl  denotes the length of shared 

boundary between farm i  and j , when it is greater than zero they are neighbours to 

each other. I assume that farmer i  could interact with farmer j  more often than farmer i   

does with other distant farmers.   

 

(5.1) 
 0

0,

1,

0

lij
wij

lij

>

 

 = 
<

  

 

Furthermore, this essay uses an adjacent weights matrix to model social interactions 

among farmers in terms of their participation in different dairy groups or dairy-related 

events. For simplicity, I will use dairy group(s) to represent both dairy groups and 

dairy-related events in the following part of this essay. Eleven kinds of dairy groups are 

included in this study. When participating in these dairy groups, dairy farmers are able 

to learn various knowledge on dairy farming as well as to share their experience with 

other farmers. Descriptions of these groups are listed as follows. (More details of the 

dairy groups can be found at http://www.dairynz.co.nz/events/).  

  

• Dairy Conference, such as farmers’ Forum and the Once-a-Day Milking 

Conference. 

• Farm system group is designed for discussion of topics on farm systems.  
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• Field day is usually a one-day event where dairy farmers learn about up-to-date 

information on dairy-related technologies or progress of dairy programmes. 

Topics are various, including nutrient efficiency on farm and farm profit. 

• Focus Farm is set up by a committee of farmers to demonstrate the profitability 

gains and sustainable development on different dairy farms. Meetings are 

usually held on focus farms. 

• Meeting is similar to Field day. The difference is that this event may consist of 

a series of meetings, where farmers may have in-depth knowledge of given 

topics, such as a series of 7 meetings on the issue of healthy rivers. 

• Pasture plus provides grazing decision makers with opportunities to discuss 

about their local areas and take advantage of the planning tools and advice.   

• Progression group is for farmers who would like to enhance their business 

skills and career options. 

• Rapid response is specified for discussion on issues which need timely 

response, such as dry conditions and emergency herd test. 

• Regional project meeting is for dairy farmers participating in regional projects 

to meet and discuss about their experience on the project. They are also 

informed of achievements of the project by experts and staffs who are 

responsible for the project. 

• Specialist group provides a forum for group members and guest speakers who 

have relevant experience on the given topic to discuss and share experiences. 

• Workshop offers courses and discussions on various topics.   

 

Social Network Interactions-Adjacent Weights Matrix: I use an n n×  adjacent 

matrix ; ,  1, ,( )ijA i j na=  = …  to model the social network connections obtained from 

114 
 



 

participating in dairy groups between farmer i  and j . It is also assumed that 0ija =  for 

all ,  1, ,i j n = …  to exclude “self-influence”. As shown in Equation 5.2, it indicates 

farmer i  and j  are in the same dairy group g , when 1ija = ; 0ija = , otherwise. Notably, 

the adjacent matrix used in this essay is undirected, meaning ij jia a= . Thus, 

1ij jia a= =  means farmer i ’s decision-making is influenced by farmer j  and vice 

versa.  

 

(5.2) 
0,

1,  

, 

,
ij

if i g j g
a

i g jif g

 ∈ ∈
=

∉ ∉ 





  

 

Furthermore, instead of using “1s” to model the undirected interactions among dairy 

farmers, I extend Equation 5.2 to Equation 5.3 so as to model the closeness among 

farmers within the same dairy group. In Equation 5.3, c ( 1, 2,...,c k= ) represents the 

number of same groups to which both farm i  and j  belong, where a larger c indicates a 

closer relationship between farmer i  and j .  

 

(5.3) 
1 2 1 2,  , ,...,

0,

, , ,...,

,

k
ij

kc if i g g g j g g

if

g
a

i g j g

 ∈ ∈= 
∉ ∉  

   

 

For example, according to Equation 5.3, an adjacent weights matrix can be formed for a 

small social network with six farmers who participate in dairy groups. The social 

interactive relationship is modelled by the adjacent weights matrix shown in Equation 

5.4. The “2” in row one column two indicates that farmer 1 and farmer 2 participate in 

two of the same dairy groups; the “1” in row two column three indicates that farmer 2 
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and farmer 3 participate in one of the same dairy groups; the “0” in row one column 

three indicates that farm 1 and farm 3 are not neighbours to each other, as they do not 

go to the same dairy group. 

 

(5.4) 
0 2 0
2 0 1
0 1 0

A
 
 
 
 
 

=  

 

5.3.2 Econometric Models  

 

Nutrient loss to water is regarded as a by-product for dairy farms. I model the 

relationship between nutrient loss and NMPs using a Cobb-Douglas production 

function ( , )Y f M I= , where nutrient loss Y  varies with changes in intensive inputs I   

and NMPs M . According to the production function, the “contribution” of intensive 

inputs and NMPs to nutrient loss can be estimated using a linear regression model 

presented in Equation 5.5.  

 

(5.5) 1 2ln( )Y I Mαι β β ε= + + +   

 

The linear regression model can be extended to include social interaction effects among 

farmers by using a spatial analysis approach. A spatial Durbin error model (SDEM) is 

employed to explore the influence of social interaction effects on the relationship of 

farmers’ environmental performance and NMPs28. Particularly, two empirical models 

are specified with a spatial weights matrix W  shown in Equation 5.6 and an adjacent 

28 Explanations and test results for choosing different spatial models are presented in the Appendix. 
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weights matrix A  shown in Equation 5.7, respectively. The SDEM models the spatial 

interaction effects (also known as spatial spillover effects) in two ways, i.e. the spatially 

lagged independent variables WXθ  as in Equation 5.6 ( AXθ  as in Equation 5.7) and 

the spatial autocorrelated error term u . For simplicity, X  is used to represent all 

independent variables, including NMPs M  and intensive inputs I  .  

 

(5.6) 
ln( )Y X WX u
u Wu

αι β θ
ρ ε

= + + +
= +

  

 

(5.7)   

 

Here,  is an  vector of the dependent variable representing dairy 

farmers’ environmental performance (nitrate leaching/ kg MS);  is the constant term, 

with an  unit vector  associated with the parameter  to be estimated;  denotes 

an  vector of independent variables, describing farmers’ own intensive inputs and 

NMPs, associated with an  coefficient vector  to be estimated. Accordingly, 

( ) denotes the neighbouring farmers’ intensive inputs and NMPs, with  as the 

unknown coefficient parameter;  is the spatial autocorrelated error term expressed 

with the spatial lag term ( ).  is the corresponding spatial parameter of this 

interaction effect, and  is an independently and identically distributed error term with 

zero mean and variance .   

 

 

 

ln( )Y X AX u
u Au

αι β θ
ρ ε

= + + +
= +

( )1 2,  , ,  ny yY y …= 1n×

αι

1n× ι α X

n k×

n k× β
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Wu Au ρ

ε
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5.4 Data 

 

The Waikato region is regarded as the heart of NZ’s dairy industry. The majority of 

dairy herds (76%) are in the North Island, with the greatest concentration (30%) 

situated in the Waikato Region (DairyNZ, 2014). Significantly, nutrient loss from dairy 

farms is a concern for the Waikato region. Currently, a variety of environmental 

protection practices have already been planned or operated in this region. Among all 

the projects, the Upper Waikato Sustainable Milk Project is the largest environmental 

good practice project ever undertaken by the dairy industry. With $685,000 co-funded 

by DairyNZ, central government and the Waikato River Authority, the project provides 

free, one-on-one advice and support to dairy farms in the Upper Waikato catchment 

over three years (2012-2015), to control nutrient loss going into the Waikato River as 

well as to improve water use efficiency on farm (DairyNZ, n.d.b).  Farmers voluntarily 

made commitments to adopting mitigation practices at the start of the project. Follow-

ups are made by face to face interviews and questionnaires to see if farmers have 

completed their commitments.   

 

The data used in this essay come from the Upper Waikato Sustainable Milk Project. 

There are 163 observations in the data, including environmental performance, NMPs, 

and intensive inputs. The NMPs data are from 163 questionnaires randomly collected 

from the face to face interviews in 2014, and it is coded to form NMP variables. In the 

questionnaires, dairy farmers gave answers about their NMPs from several aspects, 

including nutrient management, land management and waterways management. I 

choose six NMP variables to present dairy farmers’ NMPs considering the usability of 
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the questionnaires and the advice offered by experts from DairyNZ. Environmental 

performance data (the nitrate leaching to water) are from the 2012-2013 estimation by 

OVERSEER®. Data on intensive inputs were abstracted from DairyNZ.  

 

5.4.1 Variables 

 

The dependent variable describes dairy farmers’ environmental performance, which is 

the nitrate leaching to water (kg/ ha) divided by per kg MS per hectare per year29. The 

independent variables include the NMP variables, intensive input variables and social 

interaction variables.   

 

All the NMP variables are categorical variables that describe NMPs from three aspects, 

including nutrient management, land management and waterways management. In 

particular, nutrient management includes variables on nutrient budgets & nutrient plans 

and variables on effluent management; land management includes variables on 

wintering off cows and variables on soil test frequency; waterways management 

includes variables on fencing off cows from waterways and variables on riparian 

planting. Here, waterways is defined according to the statement of NPS that waterways 

are not only limited to rivers, streams, drains and springs over one metre wide and 30 

centimeters deep that permanently contain water, all lakes, and wetlands, but also 

referred to any wet areas that may cause nutrient pollution.  

  

In accordance with the NMPs sorted from the 163 questionnaires, four intensive inputs 

29 For simplicity, nitrate leaching will be used to substitute the nitrate leaching to water per kg MS per 

hectare per year in the following parts of the essay.   
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are included, which are regarded as the most influential factors contributing to nitrate 

leaching. These variables are nitrogenous fertiliser use, effluent discharge rate, stocking 

rate and imported supplements. The above variables represent dairy farmer’s own 

NMPs and intensive inputs, while social interaction variables denote the weighted 

average neighbouring farmers’ NMPs and intensive inputs. Taking stocking rate as an 

example, S*stocking rate, as one of the social interaction variables, presents the average 

stocking rate of neighbouring farms. S represents social interactions among dairy 

farmers, which has been specified in section 5.3.1. Detailed explanations of all 

variables are presented in Table 5.1, and statistic descriptions of NMPs and intensive 

inputs are reported in Table 5.2.  
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Table 5.1 Descriptions of Variables 

Variable name  Descriptions  

The dependent variable 

(Nitrate leaching)  

Nitrate leaching to water per kg MS per hectare per year, 

which is calculated by nitrate leaching (kg/ ha/ yr) divided 

by MS (kg/ ha/ yr). 

NMP variables  Six types of NMPs (Categorical variable) 

Nutrient budgets & plans 

(NU) 

NU1, have neither had an up to date nutrient budget nor 

completed a nutrient management plan, coded as 1 (set as 

base). 

NU2, have either an up to date nutrient budget or has 

already completed a nutrient management plan, coded as 2.  

NU3, have not only had an up to date nutrient budget but 

also have already completed a nutrient management plan, 

coded as 3.   

Winter off cows (WIFF) WIFF1, no cows wintered off, coded as 1 (set as base). 

WIFF2, a part of cows wintered off, coded as 2. 

WIFF3, all cows wintered off, coded as 3. 

Soil test frequency (ST) ST1, soil test frequency is more than two years, coded as 1 

(set as base). 

ST2, soil test frequency is between 1 year and two years, 

coded as 2. 

ST3, the frequency is less or equal to 1 year, coded as 3. 

Waterways management 

(WW) 

WW1, no waterways fenced, coded as 1 (set as base). 

WW2, parts of the significant waterways fenced, coded as 2.  

WW3, all significant waterways fenced, coded as 2.  

Riparian plant (RP) RP1, no riparian plant plan, coded as 1 (set as base). 

RP2, having riparian plant plan, coded as 2. 

Effluent management (EM) EM1, the limit of effluent discharge (150 kg N/ ha/ yr) is not 

satisfied, coded as 1 (set as base). 

EM2, the limit is satisfied, coded as 1.  
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Table 5.1 Descriptions of Variables (continued) 

Intensive input variables  Four intensive input variables  

Effluent discharges rate 

(EFF) 

Farm effluent irrigation areas (hectares)/ effective areas 

(hectares). 

Stocking rate (SR) Peak cow numbers/ effective areas.  

Average nitrogen use (AN) Whole farm average nitrogenous fertiliser use (kg/ ha/ yr). 

Supplements  (SP) The amount of imported supplements (tonnes). 

Social interaction 

variables 

NMPs and Intensive input Variables of neighbouring 

farms  

S* Nutrient budgets & 

plans 

S*NU1:  neighbouring farmers have neither had an up to date 

nutrient budget nor completed a nutrient management plan, 

coded as 1 (set as base). 

S*NU2, neighbouring farmers have either an up to date 

nutrient budget or has already completed a nutrient 

management plan, coded as 2. 

S*NU3, neighbouring farmers have not only had an up to 

date nutrient budget but also have already completed a 

nutrient management plan, coded as 3.   

S*Winter off cows  S*WIFF1, neighbouring farmers have no cows wintered off, 

coded as 1 (set as base). 

S*WIFF2, neighbouring farmers have a part of cows 

wintered off, coded as 2. 

S*WIFF3, neighbouring farmers have all cows wintered off, 

coded as 3. 

S*Soil test frequency  S*ST1, soil test frequency of neighbouring farmers is more 

than 2 years, coded as 1 (set as base). 

S*ST2, soil test frequency of neighbouring farmers is 

between 1 year and two years, coded as 2. 

S*ST3, the frequency of neighbouring farmers is less or equal 

to 1 year, coded as 3. 
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Table 5.1 Descriptions of Variables (continued) 

S*Waterways management S*WW1, neighbouring farmers have no waterways fenced, 

coded as 1 (set as base). 

S*WW2, neighbouring farmers have parts of the significant 

waterways fenced, coded as 2. 

S*WW3, neighbouring farmers have all significant 

waterways fenced, coded as 2.  

S*Riparian plant S*RP1, neighbouring farmers have no riparian plant plan, 

coded as 1 (set as base). 

S*RP2, neighbouring farmers have riparian plant plan, coded 

as 2.  

S*Effluent management  S*EM1, neighbouring farmers do not achieve the limit of 

effluent discharge (150 kg N/ha/yr), coded as 1 (set as base). 

S*EM2, neighbouring farmers achieve the limit, coded as 1.  

S*EFF Average Effluent discharges rate (percentage) of 

neighbouring farms.  

S*SR Average stocking rate of neighbouring farms.  

S*AN Average whole farm average nitrogen use (kg/ ha/ yr) of 

neighbouring farms.  

S*SP 
Average imported supplements (tonnes) of neighbouring 

farms.  
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Table 5.2 Statistics Description of Variables  

Variable name Min.  Max.  Mean  SD.  

Nutrient loss  2.03e-03 0.26 4.56e-03 4.33e-03 

NU1  0 1 0.24 0.39 

NU2 0 1 0.39 0.49 

NU3 0 1 0.37 0.48 

WIFF1 0 1 0.51 0.39 

WIFF2 0 1 0.28 0.45 

WIFF3 0 1 0.21 0.41 

ST1 0 1 0.20 0.42 

ST2 0 1 0.33 0.47 

ST3 0 1 0.47 0.49 

WW1 0 1 0.30 0.43 

WW2 0 1 0.23 0.42 

WW3 0 1 0.47 0.49 

RP1 0 1 0.65 0.49 

RP2 0 1 0.35 0.48 

EM1 0 1 0.25 0.37 

EM2 0 1 0.75 0.43 

EFF 0 100 25.63 17.34 

SR 1.29 4.05 2.80 0.51 

AN  10.00 250.00 115.81 49.66 

SP 0.10 1966 358.04 363.71 
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5.5 Results and Discussions  

 

For comparison purposes, I list results of the three empirical models in Table 5.3. The 

first model is the linear non-spatial model. The SDEM-W model is the SDEM 

regressed with the spatial weights matrix, and the SDEM-A model is the SDEM 

regressed with the adjacent weights matrix. The non-spatial model is estimated using 

OLS and the other two SDEM models are regressed using maximum likelihood 

estimation.    

  

Table 5.3 shows that the SDEM models outperform the non-spatial model in terms of

, adjusted 2R  and log-likelihood value. Meanwhile, the spatial autocorrelation 

coefficient parameter ρ  is statistically significant in the SDEM models. Moreover, 

most of the coefficient estimates of social interaction variables in the SDEM models are 

statistically significant as indicated by t−statistics values at different levels. All these 

suggest that ignoring social interaction effects (spatial effects and social network 

effects) in the data might result in biased and inefficient estimates. For example, in the 

non-spatial model, nitrate leaching from a dairy farm where parts of cows have been 

wintered off is 11 percent lower than that from farms where cows have not been 

wintered off. However, this number is 7.9 percent and 8 percent in the SDEM-W and 

SDEM-A model, respectively, suggesting that the coefficient is overestimated for about 

3 percent in the non-spatial model. Thus, choosing the non-spatial model may lead to 

inaccurate estimations and interpretations. 

 

 

2R
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Table 5.3 Coefficient Estimation Results for Nutrient Loss Response to NMPs and 

Intensive Inputs   

 

Explanatory 

variables 

OLS 

 

SDEM-W 

 

SDEM-A 

Intercept -1.74*** (-8.61)         -1.67*** (-6.56 ) -1.24*** (-3.69) 

NU2 -5.58e-02 (0.77) -3.95e-02  (-0.51) -3.83e-02 (-0.49)  

NU3 -2.92e-02 (0.38) -4.44e-03 (-0.58) -4.05e-02 (-0.29) 

WIFF2 -1.84e-02 (-0.24) - 2.18e-02* (-1.62) -2.23e-02* (-1.73) 

WIFF3 -0.11** (-2.18) -7.98e-02** (-2.48) -8.03e-02** (-2.84)  

ST2  -9.16e-02* (-2.06) -7.83 e-02** (-2.38) -7.91e-02** (-2.32) 

ST3 -5.23e-02*** (-3.08) -4.05e-02*** (-3.56) -4.01e-02*** (-3.17) 

WW2 -1.36e-02 (-0.16) -5.29e-02 (-0.64) -5.25e-02(-0.85)  

WW3 -7.91e-02* (-1.98) -5.04e-02** (-2.18) -5.13e-02* (-1.84) 

RP 6.49e-02 (1.03) -4.30e-02 (-0.69) -4.07e-02 (-0.93) 

EM -7.26e-02* (-2.01) -6.11e-02* (-1.75) -7.02e-02* (-1.76) 

EFF 5.77e-03*** (3.43) 5.56e-03*** (3.38) 5.74e-03*** (3.75) 

SR 1.76e-02**(2.85) 5.17e-02** (2.40) 5.29 e-02** (2.18) 

AN  4.40e-02* (2.02) 1.52e-02* (1.89) 1.54e-02* (1.79) 

SP 3.38e-04***(4.40) 3.23e-03*** (4.59) 3.42e-03*** (2.82)   

S*NU2 - -0.31(-1.55) -0.59 (-0.83) 

S*NU3 - 9.04e-02 (0.43) -0.38 (-0.67) 

S*WIFF2 - -1.35e-02 (-0.48) -2.02e-02* (-1.92) 

S*WIFF3 - -2.02e-02* (-1.91) -1.33e-02** (-2.00) 

S*ST2 - -1.51e-02 (-0.69) -1.71e-02* (-1.86) 

S*ST3 - -2.24e-02** (-1.97) -3.33e-02** (-2.89) 

S*WW2 - -2.03e-03 (-0.12) -1.11e-02* (-1.79) 

S*WW3 - -2.22* (-1.90) -2.44e-02* (-1.81) 

S*RP - 0.16 (0.99) 0.49 (1.03) 

S*EM - -1.04** (-2.03) -2.61e-02* (-1.91) 

S*EFF - 2.19e-03 (0.58) 8.26e-02 (1.07) 
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Table 5.3 Coefficient Estimation Results for Nutrient Loss Response to NMPs and 

Intensive Inputs (Continued) 

S*SR - 1.53e-02*** (3.83) 5.78e-02 (1.01) 

S*AN  - 2.79e-02 (0.59) 0.29 (0.47)   

S*SP - 3.90e-03** (2.29) 3.29 (0.59) 

Rho   - 0.21*** (5.07) 0.32*** (7.44) 

R2 0.68 0.76 0.79 

Adjusted R2 0.63 0.71 0.73 

Log L -368.9 -452.1 -579.72 

Source: author’s elaboration based on Matlab software; ‘***’, ‘**’, ‘*’ indicate coefficients 

that are significant at 1%, 5% and 10%, respectively; figures in parentheses represent t-

values. 

 

Considering the SDEM models outperform the non-spatial model, I only interpret the 

coefficients estimated in the SDEM models. The SDEM model allows to use measures 

of dispersion such as the t-statistic for these regression parameters as a basis for 

inference regarding significance of the direct impacts (from farmers’ own NMPs and 

intensive inputs) and indirect impacts (from neighbouring farmers’ NMPs and intensive 

inputs).  

 

5.5.1 Direct Impacts - Farmers’ Own NMPs and Intensive Inputs 

 

According to the estimation results in Table 5.3, most of the NMP variables (except for 

nutrient budget & plan and riparian plant) and all of the intensive input variables are 

statistically significant, and the signs of these coefficients are as expected in both of the 

two spatial models. Magnitudes of these coefficients represent the direct impacts of 

dairy farmers’ own NMPs and intensive inputs on environmental performance. Notably, 

there are only small differences between the NMP coefficient estimates and intensive 
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input variables in the SDEM-W model and those in the SDEM-A model. For example, 

coefficient estimated for WIFF2 is -2.18e-02 in the SDEM-W model and -2.23e-02 in 

the SDEM-A model. Thus, the estimation results for the direct effects of NMPs and 

intensive inputs are consistent in the two spatial models. Figure 4.2 shows the direct 

effects in regard to farmers’ own NMPs and intensive inputs on nitrate leaching.   

 

 

Figure 5.2 Dairy Farmers’ Nitrate Leaching Response to Their Own NMPs and Intensive 

Inputs 

 

NMP Variables: As shown in Figure 5.2, the coefficients estimated for NMPs, 

including wintering off cows, soil tests, fencing off all cows and effluent management, 

are statistically significant. Specifically, when wintering off a part or all of the cows, 

dairy farmers’ nitrate leaching is about 2.2 and 8 percent lower, respectively, than that 

of farmers who have no cows wintered off. When soil test frequency is between one 

and two years, nitrate leaching is about 7.8 percent lower than that of farmers who have 
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soil tested longer than 2 years. Similarly, with a soil test frequency less than, or equals 

to one year, nitrate leaching may be 4 percent lower than that of farmers having lower 

soil test frequency. Farmers, who have fenced off all cows from waterways, achieved 

nitrate leaching that is 5 percent lower compared to that of those who have no cows 

fenced. Lastly, when effluent discharge satisfying the regulation (150 kg N/ ha/ yr) 

imposed by the Waikato regional council, nitrate leaching is about 6 to 7 percent lower 

than that of farmers whose effluent discharge do not satisfy the requirement of effluent 

discharge regulation.   

 

Intensive Input Variables: All the coefficient estimates for intensive input variables 

are positive and statistically significant. Positive signs of the coefficients indicate that 

high intensive inputs lead to an increase in nitrate leaching. Particularly, nitrate 

leaching rises by 0.6 and 5 percent with one percent increase in effluent discharge rate 

and stocking rate, respectively. 1.5 percent and 0.3 percent increase in nitrate leaching 

is associated with an increase in 1 kg nitrogen use per hectare and 1 tonne imported 

supplements.  

 

5.5.2 Indirect Impacts - Social Interaction Effects 

 

Indirect impacts (also known as spatial spillover effects) from neighbouring farmers are 

measured by social effects variables in the two spatial models. Magnitudes of these 

coefficients represent the indirect impacts of neighbouring farmers’ NMPs and 

intensive inputs. As shown in Table 5.3, the estimated coefficients of the social 

interaction effects variables in the two spatial models are different, as those in the 

SDEM-W model explain the social interaction effects from ‘real’ neighbours 
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(geographically), while those in the SDEM-A model present the influence from socially 

close neighbours. These facts indicate that the extent of influence from geographically 

close farmers and socially close farmers are different. Figure 5.3 presents how nitrate 

leaching responds to geographically close farmers’ and socially close farmers’ NMPs 

and intensive inputs. I will interpret the indirect effects regarding neighbouring farmers’ 

NMPs and intensive inputs for the SDEM-W model and the SDEM-A model separately.  

 

 

Figure 5.3 Dairy Farmers’ Nitrate Leaching Response to Their Neighbours’ NMPs and 

Intensive Inputs 

  

Spatial Interaction Effects: As shown in the SDEM-W model in Table 5.3, dairy 

farmers’ NMPs are positively influenced by neighbouring farmers’ NMPs in the 

following aspects. Firstly, when surrounded by neighbours who have all cows wintered 

off, dairy farmers’ nitrate leaching is 2 percent lower than that of farmers whose 

neighbours have no cows wintered off. In addition, compared to farmers whose 

neighbours have soil tested over 2 years, dairy farmers’ nitrate leaching is 1.5 and 2.2 

percent lower if their neighbours have a shorter soil tests frequency (test frequency is 
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between 1 to 2 years and less than or equal to 1 year). Dairy farmers may also observe 

and learn from their neighbours’ waterways and effluent management practices. A 2.2 

percent decrease in nitrate leaching may be associated with neighbours’ good 

waterways management practices, i.e. fencing all cows off waterways. When 

neighbours have met the effluent discharge limit (150 kg N/ ha/ yr) imposed by the 

Waikato regional council, nitrate leaching is 1 percent lower than that of farmers whose 

neighbours’ effluent discharge exceed the effluent regulation. Likewise, spatial 

dependency exists in intensive input variables, including stocking rate and imported 

supplements, but there are no spatial spillover effects in nitrogen use and effluent 

discharge rate. This is mostly because it may be easy for farmers to observe their 

geographical neighbours’ choices on stocking rate and imported supplements, while it 

may not easy for them to observe their neighbours’ choice of nitrogen use and effluent 

application. In particular, around 1.5 percent increase in nitrate leaching is associated 

with 1 percent increase in neighbouring farmers’ stocking rate; and 0.4 percent rise in 

nitrate leaching is due to 1 tonne increase in neighbouring farmers’ imported 

supplements.  

 

Social Network Effects: Positive influence of socially close neighbours’ good NMPs 

are also observed in the SDEM-A model in Table 5.3. For dairy farmers who are 

connected to farmers having a part or all cows wintered off, the average nitrate leaching 

is 2 and 1.3 percent lower than that of farmers whose social contacts choose not to 

winter off cows.  It is also true for soil tests, waterways management and effluent 

management. When socially close farmers’ soil test frequency is between 1 and 2 years 

or less than 1 year, nitrate leaching is 1.7 and 3.3 percent lower than that of dairy 

farmers whose social contacts have soil test frequency over 2 years. Dairy farmers, 
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whose socially close neighbours fence a part or all cows off waterways, produce nitrate 

leaching 1.1 and 2.4 percent less than that of farmers whose socially close neighbours 

have no waterways management practices. Additionally, there is about 2.6 percent 

difference between nitrate leaching of dairy farmers whose social contacts satisfy the 

Waikato regional council’s effluent discharge limit and that of farmers whose contacts 

does not. The latter’s nitrate leaching is greater than that of the former. Notably, 

socially close farmers’ choices on intensive inputs have no impact on dairy farmers’ 

intensive inputs, as all the estimates for social interaction variables in regard to 

intensive inputs are not statistically significant.  

 

5.6 Summary 

 

This essay aims to use a spatial analysis approach to explore the relationship between 

nutrient loss and NMPs, and to investigate whether or not social interactions between 

farmers influence this relationship considering heterogeneous intensive inputs of farms 

in the Waikato region of New Zealand. Social interaction effects are modelled in terms 

of a spatial weights matrix capturing neighbouring farmers’ impacts as well as an 

adjacent weights matrix capturing the influence from farmers participating in the same 

dairy groups. To avoid biased and inefficient estimates, I applied spatial econometric 

models to the data and compared the results to the non-spatial model results. Results of 

the essay clearly show that the spatial Durbin error model suits the data best.  

 

Results of this essay also show that good NMPs are positively associated with 

environmental performance that is measured by kg nitrate leaching divided by kg 

milksolids. With the application of various good NMPs, nitrate leaching is lower than 
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(ranging from 1 percent to 8 percent) that of farmers who have no good NMPs. 

Although some NMPs, such as soil test frequency, are not considered contributing to 

reducing nutrient loss estimated by OVERSEER®. Those practices, however, are 

actually associated with good environmental performance. This fact indicates the 

requirement of adjustment of the OVERSEER® estimation. For example, during the 

time of extreme climate events such as floods or droughts, increasing soil test 

frequency can assist farmers to adapt to special weather conditions, which should be 

taken into account of the OVERSEER® estimation for nutrient loss to water.  

 

Moreover, the results demonstrate that spatial dependence exists among geographically 

close farmers and socially close farmers, as significantly positive spillover effects are 

observed from geographically close farmers and farmers participating in the same dairy 

groups. Notably, environmental performance is negatively influenced by an increase in 

stocking rate and imported supplements of geographically close farmers, but there is no 

significant influence from socially close farmers. This indicates that dairy farmers may 

observe geographically close farmers’ farming activities, such as their stocking rate, 

and make decisions on the choice of their own intensive inputs.  

 

Furthermore, the results suggest a role of government policy to motivate more farm-

level communication and cooperation. Additionally, interactive activities are not 

restricted to a small area, such as one catchment or region but also broader dairy groups, 

which may facilitate learning among farmers. This finding also implies that social 

network interactions among farmers may promote positive spillovers of good NMPs 

from regions to regions, which explains one of the important reasons of regional level 

spillovers stated in the first essay.   
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For the Waikato regional council, particularly, dairy groups may be a proper place to 

test for dairy farmers’ response to more rigid regulations for nutrient pollution or new 

technologies on NMPs that are expected to implement in the near future. Except for 

interactive discussions in dairy groups, dairy farmers may also spread what they have 

discussed and what they have learnt from dairy groups to their neighbouring farmers. 

The regional council may also consider developing different ways to facilitate social 

interactions among dairy farmers. For example, dairy farmers, especially young farmers, 

may prefer to communicate with others through social media, such as Facebook and 

Twitter.   
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CHAPTER 6. Conclusions and Policy 

Implications 

 

 

 

 

6.1 Introduction  

 

High productivity is the core competitiveness of the NZ dairy industry, while the “100% 

pure and healthy” brand keeps attracting international demand for dairy products. With 

these advantages, the NZ dairy industry has rapidly developed and expanded over the 

past few decades. Nevertheless, the expansion of the dairy industry has been 

accompanied with concerns about negative impacts of intensive dairy farming on the 

environment. Criticisms have concentrated on the side effects of increasing stocking 

density, chemical fertiliser use and effluent discharge on water quality of the NZ’s 

waterways. Improved understanding of the relationship between dairy yields and 

intensive farming practices may assist the dairy industry to meet the challenge of 

ensuring high yields with the least damage to the environment. 

  

High production may be achieved by a continued increase in stocking rate and fertiliser 

use, but unsustainable activities associated with intensive farming may cost farmers. 

Currently, unsustainable farming practices have been labelled as “dirty dairy”. To 
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control for nutrient pollution, regional councils in NZ have already issued regulations 

and implemented projects in response to “dirty dairy”. More stringent regulations are 

expected to be implemented in some dairy intensive regions, such as the Waikato 

region (DairyNZ, n.d.c).  

 

For dairy farmers, being blind to these problems is neither sustainable nor 

economically efficient. In recent years, some farmers have already paid the price. In 

2010, a dairy company was given a $120,000 fine for repeated breaches discharging 

effluent to tributaries of the Whataroa River (TVNZ, 2010); in 2015, the largest fine of 

$66,000 was given to a farmer who discharged effluent into ground water and a stream 

on one of his farms in the Taranaki region (Slater, 2015). Fonterra, the largest dairy 

exporter in the world, has developed “The Supply Fonterra Programme” to help its 

suppliers on the continuous improvement of sustainable milk production. According to 

the programme, Fonterra may refuse to collect milk from non-compliant farms in 

regard to their nutrient management performance (Swannfriday, 2009). Therefore, one 

must question is dairy farmers need to be equipped with the knowledge on nutrient 

management in order to upgrade farm management systems sustainably in response to 

the increasingly stringent regulations.  

 

Considering the situations as stated above, this Ph.D. thesis contributes three essays on 

agricultural and environmental economics regarding sustainable development of the NZ 

dairy industry. Particularly, the three essays are empirical studies addressing the 

impacts of spatial spillover effects on regional dairy yields, intensive farming practices 

and farmers’ decision-making on good environmental practices. To conclude the thesis, 

I will present main findings and highlight the contributions of each essay in section 6.2, 
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and provide policy implications of this thesis for the regulation of nutrient pollution and 

sustainable development of the NZ dairy industry in section 6.4. 

 

6.2 Summary of Contributions to Literature  

 

6.2.1 Essay one  

 

The first essay analysed the relationship between regional dairy yields and intensive 

inputs in New Zealand. Previous studies on this question focused on estimating dairy 

production and assessing environmental impacts under different scenarios by using the 

average farm system in a given region in NZ. Results of these studies are helpful for 

sustainable development of individual farms, but the results are limited to the specific 

situations of the given farm system and the given region. To extend the relationship to a 

broader level, this essay used spatial econometric models to analyse aggregated 

regional data to address regional dependence and differences in regard to intensive 

inputs, such as chemical fertiliser use, stocking rate, and effluent application.  

 

The expansion of dairy industry has led to growing conversion of land use from, for 

example forestry, to dairy pasture. During this process, intensive dairy farming has 

expanded to unconventional dairy regions. Indeed, spatial effects may play an 

important role in this process. Thus, when analysing regional dairy yields response to 

intensive farming, this essay innovatively proposed to consider potential spatial 

spillover effects among regions, which assists to capture spatial dependence in regional 

dairy yields and spillovers from neighbouring regions’ intensive practices.  
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Until now, there has been no research on the relationship between dairy yields and 

intensive inputs in NZ that considers spatial spillover effects. Hence, by testing for the 

existence of the spatial spillover effects in the relationship between regional dairy 

yields and intensive inputs, this essay can establish whether unobserved spatial effects 

exist, and to investigate how spatial spillover effects influence the relationship between 

dairy yields and intensive farming across regions. 

 

The first essay contributes to the existing literature in two ways. First, this is the first 

empirical application of spatial econometric methods to examine the spatial relevance 

of dairy yields and intensive farming in New Zealand. Particularly, the spatial panel 

data model accounts for cross-sectional dependence and controls for heterogeneity. 

Second, the essay not only takes into account traditional intensive inputs but also 

innovatively includes the areas of effluent sprayed over farms as one of the intensive 

farming indicators. By including the interaction term of effluent and nitrogen use in the 

model, results of the first essay indicate that there are trade-offs between these two 

intensive inputs and further reveal the influence of trade-offs on regional dairy yield. 

The results contribute to an understanding of how farmers can improve their 

management of intensive inputs and contribute to the formation of regional 

environmental policy that recognises regional dependence and heterogeneity.   

 

6.2.2 Essay Two  

 

Dairy farmers play an important role in the implementation of water protection projects. 

However, considering the cost and uncertain performance associated with different 

environmental practices, dairy farmers may be hesitant to apply BMPs to comply with 

138 
 



 

the requirements for controlling nutrient pollution. Therefore, understanding the impact 

of determinants of farmers’ decision-making on the adoption of BMPs could help to 

assist farmers to better comply with water protection requirements, such as those stated 

in the new water accord.   

 

Previous studies provided a wide scope of factors, including farmers’ attitudes, 

perceptions, and farm and household characteristics, which may influence farmers’ 

decision-making on BMPs. These studies failed to address spatial interactions that play 

a crucial role in farmers’ decision-making. Significantly, knowledge on BMPs is 

information intensive. Interactions among farmers may reduce their fixed cost on 

acquiring BMPs information and reduce risks associated with the implementation of 

BMPs.  

 

The second essay, therefore, used a spatial Durbin probit model to empirically analyse 

the spatial dependence and determinants of dairy farmers’ adoption of BMPs. The 

results show that spatial dependence exists in farmers’ adoption of BMPS, and spatial 

spillovers are also observed through the impacts of neighbouring farmers’ 

characteristics. In addition, a farmer’s willingness to adopt BMPs decay with the 

increase in the distance from the farm to the nearest water bodies. The results also show 

that information acquisition is the most important driver for farmers to adopt BMPs, 

while financial problems, to the greatest extent, hinder dairy farmers’ adoption of 

BMPs. 

 

The second essay contributes to the literature as follows. First, it contributes to the 

empirical literature on the determinants of farmer’s adoption of BMPs in NZ by using 
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spatial econometric methods, which considers various determinants, including drivers 

and barriers for farmers to adopt BMPs, farm and household characteristics. 

Significantly, this essay addressed that spatial effects should be considered as one of 

the determinants. When dairy farms are geographically located, spatial effects are 

presented as the distance from the farm to the nearest water bodies, and the 

neighbourhood effect that exists in farmers’ adoption choices. Secondly, direct effects 

(from own characteristics) and spatial spillover effects (from neighbours’ 

characteristics) of the determinants are captured. When adopting the SDM probit model, 

this essay examined to what extent the direct and indirect effects of each determinant 

affects the probability to adopt BMPs. 

 

6.2.3 Essay Three  

 

Currently in NZ, dairy farmers’ environmental performances are evaluated by the 

results estimated by OVERSEER®, which is the only tool applied nationally. The 

output-oriented results estimated by OVERSEER® help farmers manage their nutrient 

budget and assist regional councils to set standards for controlling nutrient pollution. 

Debates, however, often come from doubts on the reliability of the estimation results 

since OVERSEER® estimates nutrient loss to water based on the assumption of best 

practices. Additionally, concerns have also concentrated on the consistency of 

OVERSEER® estimations, considering it has kept upgrading to higher versions (the 

most recent version is Version 6.2). Thus, it is necessary to explore the relationship 

between nutrient loss and NMPs implemented by farmers, especially for those NMPs 

that have not been included in OVERSEER®.  
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When analysing this relationship, social interactions among dairy farmers should also 

be included. As indicated in the second essay, spatial dependence exists in farmers’ 

adoption of BMPs. It also indicated that participating in dairy-related activities could 

facilitate farmers’ adoption of BMPs. Consequently, dairy farmers’ decisions on NMPs 

may also be influenced by their neighbours.  

 

The third essay extends social interactions among farmers from those, who are 

geographically close, to farmers in the same dairy group, who are socially close. It used 

a spatial analysis approach to explore the relationship between nutrient loss and NMPs, 

and to investigate whether or not social interactions between farmers affect this 

relationship considering heterogeneous intensive inputs of farms. Results of the third 

essay show that dairy farmers’ good NMPs is positively associated with their 

environmental performance. Although some NMPs, such as soil test frequency, are not 

considered contributing to reducing nutrient loss estimated by OVERSEER®, they are 

actually associated with good environmental performance. The results also demonstrate 

that positive spatial spillover effects exist in NMPs among geographically close farmers 

and socially close farmers.  

 

Contributions of the third essay to the literature are shown as follows. To begin with, 

for studies on the relationship between environmental performance/ nutrient loss and 

NMPs, it contributes to the literature on the application of spatial analysis methods to 

examine the correlates between nutrient loss and NMPs. It verified that some NMPs 

that are not considered as BMPs by OVERSEER® do influence farmers’ environmental 

performance. Additionally, this essay quantitatively modelled social interactions among 

dairy farmers and examined how social interactions influence dairy farmers’ 
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environmental performance. In addition to model spatial interactions among farmers, 

this essay also considered farmers’ interactions through their participating in dairy-

related activities, as neighbouring farms are not only referred to farms geographically 

close but also those belonging to the same dairy groups. According to the results, the 

influence of geographically close farmers on environmental performance is different 

from that of socially close farmers.       

 

6.3 Policy Implications  

 

This thesis leads to several policy implications regarding nutrient regulation and 

sustainable development of the dairy industry in NZ. Significantly, the existence of 

spatial dependence in regional dairy yields and the use of intensive inputs indicates the 

use of spatial spillover effects in regulations on regional nutrient management. For 

example, the effect of nutrient pollution regulation in one region may be spilled to its 

neighbouring regions. The thesis also finds out trade-offs between the use of 

nitrogenous fertiliser and effluent use and the positive response of environmental 

performance to good NMPs, which lead to policies associated with effluent 

management and the use of OVERSEER®. Moreover, the existence of social 

interactions among dairy farmers may shed a light on promoting sustainable milk 

production. An example of utilizing the interactions in policy-making is to explore 

different ways, through which farmers communicate with each other, and to understand 

how farmers learn and exchange experience in different social situations. This section 

will specify policy implications associated with the main findings of this thesis.    
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6.3.1 Spatial Dependency and Heterogeneity in Nutrient Pollution Regulation 

 

The Resource Management Act (RMA) is the primary legislation in NZ setting rules on 

how to manage the environment and the natural resources at a national level. Moreover, 

in 2009, the central government announced a new strategy for the management of NZ’s 

freshwater resources. The RMA, however, has not specified a national-level regulation 

for controlling nutrient pollutions. Instead, rules and regulations that must be consistent 

with the goals set by the RMA have been made by regional and territorial councils. 

According to the RMA, regional councils can regulate nutrient discharges to land and 

water and regulate activities that can lead to nutrient discharges. The good side is that 

regional strategies can provide local knowledge, accountability, and flexibility to 

regulate nutrient pollution. However, it is not easy to evaluate performance of nutrient 

pollution control at a national level, considering differences of regulations and projects 

across regions.  

 

It is possible to form a national policy to control nutrient pollution considering the 

existence of positive spillover effects in regional dairy yields and the use of intensive 

inputs. Although the regional governments have different policies and regulations, 

spatial dependence exists between neighbouring regions. From a national perspective, 

to reduce nutrient pollution, policy makers should take into account the spillover effects 

between regions. Specifically, a maximal limit on farm-gate nutrient discharge could be 

set at a national level for water protection. The limit provides a standard to evaluate 

regional environmental performance along with the water quality data monitored across 

NZ’s waterways. Cooperation is needed for setting the limit. A reliable tool, which can 
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be applied, accepted and interpreted nationally, for estimating farm-gate nutrient loss is 

also a necessity. OVERSEER® is a wise choice, even though it still needs to be 

improved. 

 

Meanwhile, regional variation has to be considered when setting a national limit. In 

Europe, the measures of Good Agricultural and Environmental Condition impose 

minimum conditions but leave considerable implementation leverage for every member 

state (Mosnier & Wieck, 2010). In NZ, more stringent limits can be set in dairy 

intensification regions. Since 2014, the Horizons regional council, Environment Bay of 

Plenty and Environment Canterbury have had nitrogen targets in place for specific parts 

of their catchments. It is expected that the impacts of these targets will spillover to 

adjacent areas and regions.  

 

Another good example of considering regional differences is the “Nutrient vulnerable 

zone” policy in the UK, which aims to better manage the use of nitrogen fertiliser or 

manure. The NZ government can also identifies “nutrient vulnerable zone” or “nutrient 

sensitive zone”, which helps regions within the zone to set higher standards for water 

quality protection. Actually, an innovative move has been made in two nutrient 

vulnerable areas, Lake Taupo catchment and Lake Rotorua. A nutrient trading system 

was firstly introduced to Lake Taupo catchment, where the Lake Taupo Protection Trust 

was established with a goal of a 20 percent permanent reduction in nitrogen leaching by 

2018 (Duhon & Kerr, 2012). Under a benchmark assessed by OVERSEER®, farmers 

can either choose to mitigate nutrient loss or negotiate with others or the Lake Taupo 

Trust (to buy or sell allowances). The system used in Lake Rotorua catchment adopts 

the essence of the Lake Taupo project and extends the trading to include phosphorus 
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loss (McDonald & Kerr, 2011). It is clearly that successful implementation of the Lake 

Taupo nutrient trading system set forth a new move to regulate nutrient emissions, 

which stimulated the development of trading prototype in Lake Rotorua catchment. It is 

very possible that other nutrient sensitive areas may follow the steps of these two 

catchments.  

 

6.3.2 Effluent Use for High Milk Production with the Least Damage to the 

Environment 

 

Results of this thesis, illustrated in the first essay, indicate trade-offs between chemical 

fertilisers and effluent use. Considering the trade-off, the high level of effluent use and 

estimated negative yield response to nitrogen and phosphorus suggests that an 

opportunity exists for greater use of effluent as a substitute for chemical fertilisers. 

Particularly, the use of effluent can, on one hand, provides an alternative source for 

fertilization. On the other hand, it also offers irrigation water for pasture.  

 

Indeed, this finding is consistent with the conclusions made by Matthew, Horne & 

Baker (2010), who found out that a change in effluent disposal management could 

offset nitrogen loss and increases environmental efficiency at the individual farm level. 

Also, Lowe, Cass & Horswell (2016) propose that farm dairy effluent has the potential 

to benefit productivity land and contribute to improved waterways quality.  

 

Specifically, according to the Waikato Regional Council (n.d.), assuming that the 

maximum amount of N from effluent (150 kg N/ per hectare/ year) is applied, dairy 

shed effluent may provide the amount of nutrients shown as follows:  
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• 20 kg of phosphate per hectare. 

• 117 kg of potassium per hectare. 

• Approximately 20-30 kg of sulphur per hectare. 

• Smaller amounts of magnesium and calcium. 

 

Thus, it is wise for regional governments to highlight the trade-off in policy making 

process. Notably, wastewater treatment systems have increasingly developed, and 

currently, some systems require less capital outlay, which may make effluent treatment 

systems become more acceptable by dairy farmers. Rational utilization of effluent may 

help dairy farmers to save money on chemical fertilisers and help the dairy industry to 

better maintain the high productivity. Notably, special care should also be taken into 

account in the process of effluent application, especially when applying effluent in 

winter.  

 

6.3.3 Improvements in OVERSEER® 

 

The OVERSEER® nutrient budget model was developed by Agresearch and has been 

upgraded according to actual conditions over the past decade (Wheeler et al., 2010).  

Most farmers use OVERSEER®  to make nutrient plans, and regional governments use 

it to formulate regulations for nutrient pollution, as it is the only tool applied in NZ, 

nationally.  

 

However, as stated in essay two, OVERSEER®  estimate nutrient loss to water on the 

basis of BMPs, even though some good NMPs do positively related to environmental 
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performance. Adjustments, therefore, are necessary to be made for more accurate 

estimations of nutrient loss. One suggestion for the adjustment is that special variables 

or parameters are suggested to adapt for extreme weather events. For example, in the 

year of drought or flood, climate and soil parameters could be variable instead of stable 

long-term readings. Gary et al. (2016) suggest that some individual components of farm 

systems can be taken into account to be included or updated in OVERSEER®. 

 

Although debates and doubts exist in the accuracy of nutrient loss estimated by 

OVERSEER®, quite a lot of researchers see it as the best tool currently available for 

estimating nutrient loss across the diversity and complexity of farming systems in NZ. I 

do believe it is wise to improve OVERSEER® instead of inventing new tools, 

considering time and money invested in the development process. Furthermore, it is 

easier and faster for farmers to accept an updated OVERSEER® and to get it work, 

compared to learning new tools.  

 

It is promising to set a national-level standard for nutrient pollution when the 

accountability of OVERSEER® is ensured. At present, some scientists are working on 

the consistency of the estimations made by different versions of OVERSEER®. 

Additionally, a collaborative project is now underway to offer guidance on the better 

use of OVERSEER® information in policy, planning and compliance. This project is 

governed by various members including five regional councils, the Ministry for 

Primary Industries, the Ministry for the Environment, OVERSEER Management 

Services, Dairy companies Associated of NZ, Beef & Lamb NZ, HortNZ and the 

Foundation for Arable Research (Murray et al., 2016). Besides, spillovers from the five 

regional councils in participating in the project may further impact adjacent or similar 
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regions to improve the understanding of OVERSEER®. 

 

6.3.4 The Role of Social Interactions in Farmers’ Adoption of BMPs 

 

A good understanding of dairy farmers’ drivers and barriers to adopting BMPs could 

assist policy makers to specify strategies and deliver support to solve the problems that 

are most in the need of help. As stated in this thesis, for example, financial problems 

are regarded as the largest obstacle for farmers to adopt good practices in the Waikato 

region, while access to industry information facilitates farmers’ adoption of BMPs.  

 

Social interactions between farmers are found to be another important driver for 

farmers to adopt BMPs. The existence of social interactions in decision-making 

between farmers, which is stated in the second and third essay, indicates the 

information exchange among farmers. The second essay addresses that spatial 

dependence exists in decision-making among farmer who live in close proximity, and 

the third essay further states that spatial dependence also exists in the choice of NMPs 

between socially close farmers, who participate in the same dairy groups. Furthermore, 

access to industry information, as one of the drivers, is found to has the greatest impact 

on farmers’ adoption of BMPs. Participation in different (dairy-related) social activities, 

as another means of getting information, also facilitates farmers to adopt BMPs. 

 

All these findings highlight the importance of information acquisition for dairy farmers 

to adopt BMPs, as it could reduce the cost for dairy farmers to adopt BMPs. Thus, the 

NZ government may consider offering free channels for information acquisition, which 

could significantly reduce risks and uncertainties associated with the adoption of BMPs. 
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Moreover, joint neighbourhood initiatives are also appropriate to address the positive 

externalities of sustainable management practices. That is to say, interactive activities 

are not restricted to a small area, such as one catchment or region but can be extended 

to broader dairy groups, which may facilitate learning among farmers across regions. 

While individual farmers cannot internalize the full benefits of their adoption decisions 

and, therefore, tend to delay adoption, coordinated activities can help to overcome such 

problems of collective action. If all farmers in a neighbourhood commit to establishing 

measures against water pollution, individuals do not have to fear that neighbouring 

farmers may free ride on their investments into good management practices.  

 

It is noted that, although policy implications made in this section are based on the 

analysis in the Waikato region, it can be tested and applied to elsewhere in NZ. The 

only difference is that different regional councils may develop different ways to 

facilitate social interactions among dairy farmers. For the Waikato regional council, it 

may be appropriate to test for, in dairy groups, farmers’ response to more rigid nutrient 

loss regulations or new technologies on nutrient management that are expected to 

implement in the near future. In addition, social media, such as Facebook and Twitter, 

may be a practical information source for farmers to acquire and exchange information 

on sustainable milk production. Regional governments may target different dairy 

groups in social media, explore characteristics of the groups and promote sustainable 

development projects.  

 

Lastly, the existence of distance decay effect in dairy farmers’ adoption of BMPs 

provides a different point of view of education as a vehicle for regional governments to 

use in the promotion of BMPs. That is, during the education and promotion process, 
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instead of treating dairy farmers as polluters, they could also be seen as individuals who 

also demand good water quality for recreation purposes. Stimulating dairy farmers’ 

desire for clean waterways may encourage them to re-evaluate their farming practices 

and adjust to the requirements of sustainable dairy farming.   

  

6.4 Future Research  

 

Overall, this thesis contributes three essays on agricultural and environmental 

economics with the application of different spatial econometric models. Results of the 

thesis lead to many policy implications regarding nutrient pollution control and 

sustainable development of the NZ dairy industry. In particular, essay one provides 

insights into the understanding of how regional dairy yields respond to intensive inputs, 

and how to use the spillovers among regions to control nutrient pollution. One limit of 

the first essay comes from the accessibility of data, as variables such as labour and 

machine input are not included in the model. It would be worthwhile to include those 

variables when the data are available. The second essay verifies the existence of spatial 

spillover effects in decision-making of farmers’ adoption of BMPs, while the third 

essay extends the spatial spillovers to social network effects among dairy farmers. 

Furthermore, results of these two essays confirm the conclusion that a good 

understanding of spatial spillover effects among regions could assist to design policies 

for nutrient pollution control, as farmers may play an important role in the spillover of 

regional regulations. A future direction to further these two essays is to extend the study 

of farmer decisions at a national level with more observations, which could help to 

draw more powerful conclusions. Another direction is to explore connections among 
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farmers through the internet, considering social media has become an increasingly 

acceptable form of communication.  

 

In regard to spatial spillover effects, future research could consider using the flow 

direction of waterways to model spatial interactions among regions. The geographical 

location of farms can also be related to upstream, midstream and downstream of nearby 

waterways. This is another way to model spatial effects, which may also influence dairy 

farmers’ choices of BMPs.  
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Appendix 

 

 

 

 

Appendix lists all the tables, test results (with explanations), statistical tests, and 

estimation methods stated in the thesis in orders. Contents shown in A1 are for essay 

one, A2 for essay two, and A3 for essay three.  

 

A1. Essay one  

 

Effluent as a Natural Source of Fertiliser 

 

In the first essay, I proposed that effluent, when appropriately applied on land, can be 

seen as a substitution of chemical fertiliser to supply nutrients to pasture.  It contains 

various nutrients, such as nitrogen, phosphorus, potassium, magnesium, sulphur and 

trace elements, which are required for the growth of pasture. Appendix Table 1 

indicates the potential nutrient contents within different sources of dairy effluent.  
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Appendix Table 1 Nutrient Contents of Different Sources of Effluent  

         Nutrient content 

Effluent source 
% dry matter kg N/m3 kg P/m3 kg K/m3 

Dairy shed effluent 0.8 0.45 0.06 0.35 

Feed pad and dairy effluent 

sludge 
4.0 1.35 0.3 1.05 

Effluent from unstirred pond 

or effluent after separation 
0.3 0.25 0.03 0.35 

Separated solids 20 4.5 0.72 2.1 

Solids from wintering barn 40 5.0 1.5 5.6 

Source: Waikato Regional Council 

 

Descriptive Statistics of Variables: Appendix Table 2 and Table 3 shows the 

descriptive statistics of variables for North Island and South Island in essay one, 

respectively.  

 

Appendix Table 2 Descriptive Statistics of Variables-North Island 

Variable name Counts Min. Max. Mean S.D. 

Y  108 496 1336 918.50 175.10 

N 108 0.02 0.78 0.44 0.41 

P 108 0.006 16.46 0.56 0.60 

L 108 0.009 4.08 0.63 0.59 

K 108 0.001 3.27 0.39 0.34 

E 108 0.05 1 0.30 0.21 

SR 108 1.89 3.56 2.92 0.33 

RF 108 338.87 6715.40 1464.67 1332.14 

SM 108 6.78 51.23 28.46 12.95 
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Appendix Table 3 Descriptive Statistics of Variables- South Island 

Variable name Counts Min. Max. Mean S.D. 

Y  57 534 1436 1005.80 179.43 

N 57 0.01 0.76 0.43 0.42 

P 57 0.006 16.46 0.58 0.61 

L 57 0.008 4.07 0.62 0.57 

K 57 0.001 3.21 0.34 0.32 

E 57 0.04 1 0.26 0.20 

SR 57 1.89 3.51 2.70 0.31 

RF 57 335.30 6315.40 1345.23 1267.14 

SM 57 6.03 48.06 20.15 9.98 

 

Results and Explanations of Moran’s I Test  

 

Moran’s I test is used to test for the existence of spatial dependence in cross-sectional 

data. The null hypothesis is that there is no spatial autocorrelation. The test statistic 

Moran’s I is shown in Equation A.1. 
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Where, iy  and jy  are the levels of regional dairy yields of region i and j, ijw  is one of 

the elements constituting a spatial weights matrix, which indicates the spatial 

interaction between region i and j, and Z  is the sum of ijw . 
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I test for the existence of spatial autocorrelation in regional dairy yields. Although the 

test is developed to explore the spatial interaction for cross-sectional data, I calculate it 

for the years of 2002, 2007 and 2012, respectively. The results of Moran’s I test are 

presented in Appendix Table 4. By observing the p-values, the results are statistically 

significant, indicating the existence of spatial dependence of dairy yields across regions. 

Thus, a spatially lagged dependent term should be included in the model. 

 

Appendix Table 4 Moran's I Test for Regional Dairy Yields 

Year Moran's I p-value 

2002 0.4101 1.07e-05 
2007 0.5400 1.55e-08 
2012 0.4336 3.35e-06 

Source: author’s elaboration based on ArcGIS 10.2. 

 

A2. Essay Two 

 

Bayesian MCMC Estimation 

 

In essay two, the SDM probit model is regressed by using the Bayesian MCMC 

estimation. Here, I only give a simple description of Bayesian MCMC estimation 

methods. A detailed description of the estimation procedure for the model can be found 

in LeSage and Pace (2009). 

 

As stated in essay two, y  is the binary dependent variable representing farmer choice of 

adoption or non-adoption of BMPs, *y  is an 1n×  latent variable that cannot be 

observed, and , ,β θ λ  are all unknown parameters.  
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Bayesian estimation methods are based on a combination of the likelihood of the 

model ( )p y τ  and prior distributional assumptions ( )p τ , where ( , , )τ β θ λ= are 

unknown parameters. The prior distribution indicates how likely different values of the 

parameters are, before observing the data. Prior distributions for the parameters have to 

be specified, which will yield ( )p yτ : ( ) ( ) ( )p y p y pτ τ τ∝ , when combined with the 

likelihood according to Bayesian rule. According to LeSage and Pace (2009), for the 

spatial probit model, sampling from the resulting posterior distribution needs to use an 

MCMC sampler approach. In that way, conditional posterior distributions for the 

parameters are derived and sampled sequentially. 

 

To model binary choice models, the Bayesian method treats the observed binary 

dependent variable  as an indicator of unobserved utility . Hence, the sampled 

continuous values  are used instead of the observed binary values . If  is 

known, it follows that * *( , , ) ( , , , )p y p y yβ θ λ β θ λ=  that allows estimation of the 

remaining parameters using the same conditional posterior distributions as for a 

continuous model. The insight here is that if  is seen as an additional set of 

parameters to be estimated, then the conditional posterior distribution for the model 

parameters , ,β θ λ  takes the same form as a Bayesian regression problem involving a 

continuous dependent variable rather than the problem involving the discrete-valued 

vector y . Given the resulting conditional posterior distributions for the spatial probit 

model, the model is estimated in several steps. That is, the MCMC technique samples 

from the conditional posterior distributions for the model parameters, starting with 

arbitrary values.  

 

y *y

*y y *y

*y
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A3. Essay Three 

 

Test Results and Explanations of Choosing Different Spatial Models  

 

Test results for model selection in essay three are shown in Appendix Table 5. 

According to the test result of LM spatial and Robust LM spatial lag, the hypothesis of 

no spatial lag term cannot be rejected at the 5 percent level of significance; according to 

the test result of LM spatial error and Robust LM spatial error, the hypothesis of no 

spatial autocorrelated error must be rejected at 5 percent. These results indicate that a 

spatial lagged dependent variable should not be included while the spatial error term 

should be considered. 

 

Appendix Table 5 LM and Robust LM Test for Spatial Effects in Non-Spatial Model 

 

Additionally, I use the Wald test to verify the hypothesis whether it is proper to 

simplify the SDEM model to the spatial lag of X model (SLX, only the spatially lagged 

independent variables be considered) as well as the hypothesis whether the SDEM 

model can be simplified to the spatial error model (SEM). The Wald test for the joint 

significance of spatially lagged independent variables (42.25, p=0.001) indicates that 

the hypothesis that SDEM model can be simplified to the SLX must be rejected at 5 

LM and Robust LM Test Tests Results 

LM spatial lag 1.21 (p=0.11) 

LM spatial error 36.11 (p=0.006) 

Robust LM spatial lag 0.98 (p=0.021) 

Robust LM spatial error 6.65 (p=0.034) 

Source: author’s elaboration based on Matlab software. 
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percent significance. Meanwhile, the hypothesis of SDEM simplified to the SEM must 

also be rejected at 5 percent significance (37.56, p=0.01). These results confirm that 

both the SLX and SEM model must be rejected in favour of the SDEM.  

 

Test Results for Choosing Spatial Weights Matrix  

 

As shown in Appendix Table 6, according to the values of Log L, R2 and Adjusted R2, the 

rook contiguity weights matrix is chosen to be used in the SDEM model in essay three to 

capture spatial interactions among dairy farmers.  

 

Appendix Table 6 Estimation Results for SDEM Models with Different Spatial Weights 

Matrix 

 

 

 

 

 

 

Weights 

 

Indicators 

Model 

-rook contiguity 

Model 

-Queen 

contiguity 

Model 

- 5 nearest 

neighbours 

Model 

- 10 nearest 

neighbours 

Log L -452.1 -383.2 -215.9 -324.6 

R2 0.71 0.70 0.67 0.69 

Adjusted R2 0.76 0.74 0.71 0.73 

Source: author’s elaboration based on Matlab software. 
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