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Abstract

Scheduling tasks onto the processors of a parallel sys-

tem is a crucial part of program parallelisation. Due
to the NP-hard nature of the task scheduling problem,

scheduling algorithms are based on heuristics that try

to produce good rather than optimal schedules. Nev-

ertheless, in certain situations it is desirable to have
optimal schedules, for example for time critical sys-

tems or to evaluate scheduling heuristics. This paper

investigates the task scheduling problem using the A*

search algorithm which is a best-first state space search.

The adaptation of the A* search algorithm for the task
scheduling problem is referred to as the A* schedul-

ing algorithm. The A* scheduling algorithm can pro-

duce optimal schedules in reasonable time for small to

medium sized task graphs with several tens of nodes.
In comparison to a previous approach, the here pre-

sented A* scheduling algorithm has a significantly re-

duced search space due to a much improved consistent

and admissible cost function f(s) and additional prun-

ing techniques. Experimental results show that the cost
function and the various pruning techniques are very ef-

fective for the workload. Last but not least, the results

show that the proposed A* scheduling algorithm signif-

icantly outperforms the previous approach.
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1 Introduction

Parallelisation of a software application involves three
steps, namely task decomposition, dependence analysis

and task scheduling [6]. The assignment of tasks to the

processing units (spatial assignment) and defining their

execution order (temporal assignment) are referred to
as task scheduling [23]. Task scheduling is crucial to

the performance and efficiency of the application. Un-

fortunately, task scheduling in its general form is an

NP-hard problem, e.g. [19], i.e. finding an optimal so-

lution takes exponential time, unless NP = P. Hence,
many heuristics such as list scheduling exist to tackle

the problem of task scheduling [4,7,8,16,18,25,28,29].

For these heuristic algorithms, the program is mod-

eled as a Directed Acyclic Graph (DAG), called a task
graph, where the nodes represent the tasks of the pro-

gram and the edges the communications (dependencies)

between the tasks. While the heuristics usually provide

“good” results, there is no guarantee that the solutions

are close to optimal, especially for task graphs with high
communication costs [26]. There are several scenarios

where even a “good” solution will not suffice and an op-

timal solution is needed. For instance, in time critical

systems where performance is essential, for loop kernels
and for evaluation of the quality of schedules produced

by heuristics.

Given the NP-hardness, finding an optimal solution re-
quires an exhaustive search of the entire solution space.

For scheduling, this solution space is spanned by all pos-

sible processor assignments combined with all possible

task orderings. Clearly this search space grows exponen-
tially with the number of tasks, thus finding an optimal

solution becomes impractical even for very small task

graphs. The only hope for finding an efficient algorithm
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for small to medium sized problems with tens of nodes is

by guiding and pruning the search space with problem

specific knowledge, as recent success in other NP-hard

optimisation problems has shown, e.g. Knapsack [17] or

Travelling Salesman Problem [1].

Depending on the formulation of the problem and its

constraints, different algorithmic techniques to explore

the solution space can be employed. Integer Linear Pro-

gramming or Constraint Programming are such tech-
niques, which have already been applied to the schedul-

ing problem [2,3]. One major drawback of these and

similar techniques for the task scheduling problem is

that the size of the search space does not only depend on

the number of tasks and processors, but also on the val-
ues of the node and edge weights [22]. More promising

seem to be techniques such as branch-and-bound and

specifically A* [5,21,6], where problem specific knowl-

edge can be deeply integrated.

A scheduling algorithm based on the A* search algo-

rithm has been proposed in [10] for the problem of

task scheduling that produces optimal solutions. A* is

a best-first state space search algorithm [5,21]. Every
state s in the search space represents a partial solution

and has an underestimated cost value f associated with

it. This value represents the minimum schedule length

that any complete solution based on the partial solution

represented by s will incur. In every step, the A* algo-
rithm expands the state with the lowest f value. With

this approach, A* can drastically reduce the number of

states it needs to search in order to find the optimal so-

lution. The determining factor in the effectiveness of A*
algorithm is the quality of the underestimated f values.

This paper presents a scheduling algorithm based on

A*, referred to as the A* scheduling algorithm, that

produces optimal schedules for small to medium sized

task graphs with some dozens of nodes. In compari-
son to the only comparable algorithm proposed in [10],

the heuristic for the calculation of f values is drasti-

cally improved. Moreover, new pruning techniques have

been introduced that significantly reduce the number
of states in the state space. Experimental results have

been presented that demonstrate the effectiveness of the

proposed algorithm. The experimental results also give

new insights into the relation between the properties of

a task graph and its scheduling behaviour.

The rest of the paper is organised as follows. Section

2 defines the basics of the task scheduling model. In

Section 3, the proposed A* scheduling algorithm is pre-

sented. Pruning techniques are discussed in Section 4.
The experimental evaluation of the new scheduling al-

gorithm is presented in Section 5. Conclusions and fu-

ture work are presented in Section 6.

2 Task Scheduling Model

A program P to be scheduled is represented by a Di-

rected Acyclic Graph (DAG), G = (V,E, w, c), called a
task graph, where V is the set of nodes representing the

(sub)tasks of P and E is the set of edges representing

the communications (dependencies) between the tasks.

An edge eij ∈ E represents the communication from

node ni to node nj where ni, nj ∈ V. The positive
weight w(n) of node n ∈ V represents its computation

cost and the non-negative weight c(eij) of edge eij ∈ E

represents its communication cost. Figure 1 illustrates

a task graph with four nodes.
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Fig. 1 A directed acyclic graph (task graph) with four nodes
(tasks)

To schedule a task graph G onto a target parallel sys-

tem with a set of processors P, each node n ∈ V must
be associated with a start time ts(n), i.e. temporal as-

signment, and be assigned to a processor proc(n) = P ,

where P ∈ P, i.e. spatial assignment. Alternatively, a

complete schedule for a task graph is the association of

the function pair (ts, proc) to each node n ∈ V. The
following classical assumptions are made about the tar-

get parallel system [23]: i) the system is dedicated, i.e.

no other program is executed while G is executed; ii)

tasks are non-preemptive; iii) local communication is
cost free; iv) there is a communication subsystem, i.e.

processors are not involved in communication; v) com-

munications can be performed concurrently, i.e. there

is no contention for communication resources; vi) the

processors are fully connected; vii) the processors are
identical.

Based on these properties of the target system, the
finish time, tf , of any node n ∈ V can be defined

as its start time plus its computation cost, formally,

tf (n) = ts(n) + w(n).

Furthermore, two sets of constraints apply to the

scheduling of a task graph G onto a target system P.

They are referred to as processor and precedence con-
straints. Processor constraints ensure that any proces-

sor in the parallel system can execute only one task

at a time. Precedence constraints impose the execution
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order of the nodes in light of their communications (de-

pendencies), i.e. a node nj can only start execution af-

ter all its predecessors, pred(nj) = {ni ∈ V : eij ∈ E},
have completed execution plus communication time if

the predecessors are executed on different processors,
i.e. For ni, nj ∈ V, eij ∈ E and i 6= j:

ts(nj) ≥ tf (ni)+

{

0 if proc(ni) = proc(nj)

c(eij) otherwise
. (1)

Figure 2 shows a feasible (left) and an optimal schedule

(right) for the task graph represented in Figure 1 on

two processors.
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Fig. 2 A feasible (left) and an optimal (right) schedule for the
task graph shown in Fig. 1

A feasible schedule is a schedule that adheres to pro-

cessor and precedence constraints. The schedule length,

sl, of a complete and feasible schedule S, i.e. the exe-

cution time of G, is the finish time of the last node
assuming that the first node starts at time unit 0. This

can be expressed as sl(S) = max
n∈V

{tf(n)}. In Figure 2,

the length of the feasible schedule is nine time units

and the length of the optimal schedule is eight time

units. The finish time of a processor P ∈ P is defined
as tf (P ) = max

n∈V:proc(n)=P
{tf (n)}. In Fig. 2, the fin-

ish times of P1 and P2 of the feasible schedule (left)

are five and nine respectively. Since all schedules con-

sidered in this paper are feasible schedules, the term

“feasible” is implied and therefore will not be explic-
itly stated from now on. An optimal schedule is a com-

plete schedule that has the shortest possible sched-

ule length. There can be several complete and opti-

mal schedules for a given task graph G on target sys-
tem P. The set of optimal schedules, optimal(G), is a

subset of the set of complete schedules, complete(G),

i.e. optimal(G) ⊂ complete(G). Finding the optimal

schedule for a given task graph and for a given number

of processors is the problem addressed in this paper.

This problem is known to be NP-hard [19], i.e. finding

an optimal schedule takes exponential time unless NP

= P.

The task graph (DAG) depicted in Fig. 1 can be used to

define some basic graph terminologies/properties [23].

The length of a path p in G is the sum of the weights

of its nodes and edges:

len(p) =
∑

n∈p,V

w(n) +
∑

e∈p,E

c(e). (2)

The computation length of a path p in G is the sum of

the weights of its nodes, i.e. lenw(p) =
∑

n∈p,V w(n).
A critical path is a longest path in the task graph. The

computation critical path is a longest computation path

in a task graph G, i.e. lenw(cpw) = max
p∈G

{lenw(p)}. The

computation critical path, cpw, provides a lower bound
on the schedule length such that any schedule S of G

on target system P adheres to:

sl(S) ≥ lenw(cpw). (3)

The bottom level of n, bl(n), is the length of the longest

path starting with n:

bl(n) = max
ni∈desc(n)∩sink(G)

{len(p(n → ni))} (4)

where sink(G) = {v ∈ V : succ(v) = ∅} (succ(ni) =

{nj ∈ V : eij ∈ E}), i.e. set of nodes that have no

successors, and desc(n) = {v ∈ V : ∃p(n → v) ∈ G},
i.e. a node v is a descendant of n if there is a path p

from n to v. If desc(n) = ∅, then bl(n) = w(n). The
top level of n, tl(n), is the length of the longest path

ending in n, excluding w(n):

tl(n) = max
ni∈ance(n)∩source(G)

{len(p(ni → n))} − w(n)

(5)

where source(G) = {v ∈ V : pred(v) = ∅}, i.e. set
of nodes that have no predecessors, and ance(n) =

{v ∈ V : ∃p(v → n) ∈ G}, i.e. a node v is an ancestor

of n if there is a path p from v to n. If ance(n) = ∅,
then tl(n) = 0.

The computation bottom level of a node n, blw(n), is

defined as the computation length of the longest path

p leaving n. For instance, node B in Fig. 1 has a com-

putation bottom level of five, blw(B) = 5. The interest-
ing property of the computation bottom level is that it

gives a lower bound on the schedule length, i.e. a sched-

ule cannot finish earlier than the start time of any of
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its nodes plus the corresponding computation bottom

level:

sl(S) ≥ ts(n) + blw(n) ∀n ∈ V. (6)

This is due to the precedence constraints in (1) imposed

by the edges of the task graph G.

The sequential length of a task graph G is the execu-

tion time of G on one processor only, i.e. seq(G) =
∑

n∈V w(n).

A common heuristic technique used to tackle the task

scheduling problem is list scheduling. List scheduling

in its simplest form consists of two parts. Firstly, the

technique involves sorting the nodes of the task graph

based on a priority scheme while adhering to its prece-
dence constraints. Following that it involves succes-

sively scheduling the nodes to a chosen processor. An

algorithm applying the list scheduling technique has the

freedom to define the two criteria: the priority scheme
for the nodes and the choice criterion for the processor.

The priority scheme for the nodes is usually based on

bottom/top level. Sometimes dynamic priority schemes

are also used. And the processor chosen is usually the

one that allows the earliest start time for the node.
List scheduling generally produces good schedules but

there is no guarantee that the solutions are close to

optimal, especially for task graphs with high communi-

cation costs[23].

3 Task Scheduling with A*

The task scheduling problem is tackled with the A*

algorithm which is a best-first state space search algo-

rithm [21]. Hence, the task scheduling problem is first
formulated as a state space search problem. Following

that the A* algorithm is employed to search through

the state space and the cost function used by the A*

algorithm is discussed.

3.1 State space search formulation

A state space represents the abstract space of solutions

which must be searched to find an optimal solution for
a problem. Hence, it is sometimes referred to as a so-

lution space. In the case of task scheduling, each state

represents a schedule. The following components con-

tribute to formulating the state space:

– Initial state: The state in which no nodes have

been scheduled, i.e. an empty schedule. The A* al-

gorithm commences its search from this state.

– Expansion operator: An operator that deter-

mines a scheme for expanding existing states to cre-

ate new states in the state space. In this case, new

states are created from a state s by taking the par-

tial schedule represented by s and scheduling all free
nodes to every available processor. A node sched-

uled on a processor gives rise to a new state, i.e.

each node-processor pairing gives rise to one new

state.
– Goal state: The goal state is a complete sched-

ule. The algorithm terminates its search through the

state space when a goal state is reached.

Figure 3 shows a partial state space for the task graph
depicted in Fig. 1. The state space shows all the possible

ways of assigning the first three nodes to the two target

processors. Figure 3 indicates that the state space can

explode in size very quickly. Hence, it is vital to prune

the state space to ensure the efficiency of the scheduling
algorithm.

3.2 A* search algorithm

The A* algorithm maintains two lists, OPEN and

CLOSED, to search the state space. The OPEN list

holds all the states that are awaiting expansion. The
CLOSED list holds the states that have been fully ex-

panded. The following is the A* algorithm in its general

form:

1. Put the initial state sinit in the OPEN list. The
states in the OPEN list are sorted according to cost

function f(s).

2. Remove from OPEN the state s with the best f

value.
3. Test s for the goal condition. If true, then a solution

has been found and the algorithm terminates.

4. i) Expand s to form new states.

ii) For each new state check whether it is present in

either the CLOSED or OPEN list. If yes discard the
state, otherwise, insert it into the OPEN list.

iii) Place s in the CLOSED list.

5. Go to Step 2.

The A* algorithm guides its search through the state
space using the f(s) function. The exact minimum cost

of a solution from the initial state to the goal state

via a state s is denoted by f*(s). f(s) function is an

underestimate of the function f*(s). In other words, if
the function f(s) satisfies the condition f(s) ≤ f*(s)

for any state s, it is called an admissible function. The

f(s) function is made up of two components: the cost
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Fig. 3 A partial state space for the task graph depicted in Fig. 1

from the initial state to state s, g(s), and the estimated

cost function from state s to the goal state, h(s). For-

mally, f(s) = g(s)+h(s). Since g(s) can be determined
precisely for any state s, h(s) function is the heuristic

component and directly influences f(s). The exact cost

from a state s to the goal state is represented by h*(s)

and h(s) is an underestimate of h*(s), i.e. h(s) ≤ h*(s).
This condition implicitly ensures that the f(s) function

remains admissible.

The informativeness of the h(s) function determines the

number of states that the A* algorithm examines. A

well informed h(s) function is a function that is close to

h*(s), i.e. if h1(s) < h2(s) then h2(s) is strictly more in-
formed provided it is admissible and will result in fewer

states being examined. The more informed the h(s)

function, i.e. the closer the h(s) to h∗(s), the less the

number of states that have to be examined [15]. In the
ideal case, h(s) = h*(s). Conversely, if the h(s) function

were to be underestimated to zero in all cases, then the

A* search algorithm effectively degenerates to uniform

cost search [21]. Another case is when h1(s) ≤ h2(s),

which means that h2(s) is still a more informed function
than h1(s), but not strictly. In general, an A* algorithm

using h2(s) will examine fewer states than an algorithm

using h1(s), however this is not guaranteed and under

certain conditions using h2(s) can occasionally lead to
more states being examined (Section 5). Nevertheless,

it is the aim to have an as well informed function as

possible.

Another desirable property of the heuristic function,

h(s), is consistency (also called monotonicity). A con-

sistent heuristic function is a function that holds the
following property for all states si and sj such that sj

is a descendant of si [12]:

h(si) − h(sj) ≤ g(sj) − g(si) (7)

In other words, the f value along any path in the state

space should be monotonically non-decreasing, i.e. the

f value can either remain the same or increase but never
decrease along a path in the state space. The A* algo-

rithm is guaranteed to find an optimal solution with an

admissible and consistent f(s) function.

3.3 Adapting A* for task scheduling

In [10], it was proposed to use the A* algorithm for the

problem of task scheduling. The initial state sinit is the

empty schedule where no node has been scheduled yet.

New states are expanded from a state s by taking the

partial schedule represented by s and scheduling all free

nodes to every available processor. The number of new

states generated from a state s depends on the number

of nodes that are free to be scheduled in state s and

the number of target processors available. A node nj is
free to be scheduled if all of its predecessors are already

part of the partial schedule S of s, i.e.

free(s) = {nj ∈ V : nj /∈ S(s) ∧ pred(nj) ⊆ S(s)} (8)

Each free node can be scheduled on each target proces-

sor following the nodes that have already been sched-

uled. Thus, the maximum number of new states that
can be created from s is the product of the number of

free nodes and the number of target processors, i.e.

new(s) = |free(s)| × |P| (9)

Newly created states are added to the OPEN list. The

goal state is a complete schedule. A complete schedule
will inevitably be an optimal schedule due to the fact

that the A* algorithm will return an optimal solution

when a consistent and admissible f(s) function is used.
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The f(s) function proposed in [10], here designated as

fKA(s), is calculated as follows: Let nmax be the node in

the partial schedule S associated with s that has the lat-

est finish time nmax = n ∈ S : tf (n) = max
ni∈S(s)

{tf (ni)}:

fKA (s) = tf (nmax) + max
n∈succ(nmax)

{blw (n)} (10)

So, fKA(s) is defined as the sum of the schedule length

of the partial schedule S of s, since sl(S) = tf (nmax),

and the maximum computation bottom level of all suc-
cessors of nmax. In terms of g(s) and h(s) we have:

g(s) = tf (nmax) and hKA(s) = max
n∈succ(nmax)

{blw (n)}.

Per definition of the computation bottom level, this is

identical to the start time of nmax plus its computation
bottom level, i.e. fKA(s) = ts(nmax)+blw(nmax). With

the lower bound on the schedule length established in

(6), this function is clearly admissible, since the value

of f∗
KA(s) is the length of a complete schedule. How-

ever, the fKA(s) function is not consistent as desired,
because the last node to finish, nmax, can change from

state to state and hKA(s) changes with the node in a

non-monotonic way. But, in the case of the task schedul-

ing problem only an admissible cost function suffices as
states representing the same schedule have the same f

value because the path taken to achieve a particular

schedule is irrelevant for the f value.

Thus, the A* algorithm has been adapted to the task
scheduling problem in [10]. The A* algorithm adapted

for the task scheduling problem is referred to as the

A* scheduling algorithm from here on. In this paper,

several optimisation and pruning techniques have been

implemented to the A* scheduling algorithm to improve
the efficiency of the implementation. In addition, the

f(s) function has been improved significantly which is

detailed in the following section.

3.4 Proposed f(s) function

The f(s) function proposed in this paper is based not

only on the last node that finishes in the partial sched-
ule but on all the nodes in the partial schedule. This

makes the f(s) more informed and at the same time

consistent. To further improve the informedness of our

f(s) two additional components are proposed, thus our
f(s) function is derived from three components: the

computation bottom level, idle time and data ready

time.

Computation bottom level

The computation bottom level of all nodes in the partial

schedule are considered in deriving this component of

the f(s) function as follows:

fblw(s) = max
n∈S

{ts(n) + blw(n)} (11)

Clearly, fblw(s) is admissible considering the lower
bound on the schedule length established in (6). It is

intuitive that fblw(s) is more accurate than fKA(s) as

the latest finishing node in a partial schedule does not

necessarily have the highest computation bottom level.
In fact the following holds for any state s:

fKA(s) ≤ fblw (s) ≤ f∗(s) (12)

i.e. fblw(s) is tighter than fKA(s) and therefore an im-

plementation of the A* scheduling algorithm using the

fblw(s) function needs to expand fewer states in gen-
eral as opposed to the same implementation using the

fKA(s) function. This is shown in experimental results

in Section 5.3.

In order to have a fast A* scheduling algorithm, it is
also important that the calculation of the f value of

a state is fast. The definition of fblw(s) in (11) needs

to consider all nodes of the partial schedule which is

O(|V|) for each calculation of fblw(s). However, fblw(s)
can be calculated incrementally. Let nlast be the last

node that was added to the partial schedule of s and

sparent the parent state of s. Then, fblw can be redefined

as

fblw(s) = max {fblw(sparent), ts(nlast) + blw(nlast)} .

(13)

This is equivalent to (11) but only the last node nlast

has to be considered for each new state. Hence, the
calculation of fblw(s) is O(1) which is the same as for

fKA(s).

Idle time

While the computation bottom level is very useful to
establish a quite accurate lower bound on the schedule

length in structured task graphs with a medium to high

number of edges, it is not very useful for graphs with

few edges or graphs with several sink (exit) nodes. The
reason is that the computation bottom level is a path

metric which is less useful when there are relatively few

edges and therefore relatively few and short paths in
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the task graph. Therefore, an additional metric, Idle

time, for the calculation of the f(s) function is proposed

which is not derived from a path metric.

Due to precedence constraints, any given schedule can

have idle times, i.e. times between the execution of two

consecutive nodes (or before the execution of the first

node) where a processor runs idle. For example, the
optimal schedule depicted in Figure 2 (right) has an

idle period of three time units on processor P2 before

node B is executed. Let idle(S) be the total idle time,

i.e. the sum of all idle periods of all processors of a

schedule S. The schedule length is then bounded by the
sum of idle(S) and the total weight (execution time) of

all nodes divided by the number of processors, i.e.

sl(S) ≥

(

idle(S) +
∑

n∈V

w(n)

)

/|P|

fIT (s) =

(

idle(S) +
∑

n∈V

w(n)

)

/|P|. (14)

The bound is tight if and only if all processors finish at

the same time, i.e. their last nodes finish at the same

time. The fIT (s) function never decreases for a larger

partial schedule as new nodes are scheduled after al-

ready scheduled nodes during node expansion and not
inserted into idle periods. fIT (s) can be calculated in-

crementally and therefore the calculation complexity of

fIT (s) is O(1).

Data Ready Time

The Data Ready Time (DRT) of a node nj ∈ V on

processor P is

tdr(nj , P ) = max
ni∈pred(nj)

{tf(ni) +

{

0 if proc(ni) = proc(nj)

c(eij) otherwise
(15)

If pred(nj) = ∅, i.e. nj is a source node,

tdr(nj) = tdr(nj , P ) = 0 ∀P ∈ P [23]. Note that the
DRT can be determined for any processor P ∈ P

independently of the processor to which nj is

allocated. The minimum DRT of a node n ∈ V on all

processors in P is:

tdr(n) = min
P∈P

{tdr(n, P )}. (16)

This introduces a DRT lower bound on the start time

of a node n:

ts(n) ≥ tdr(n). (17)

Alternatively, a node cannot start execution before

all data is ready. Condition (17) can be further ex-

tended to define the earliest possible start time tsmin

of a node n ∈ V on processor P ∈ P: tsmin
(n, P ) =

max(tdr(n, P ), tf (P )) where tf (P ) is the finish time of
processor P ∈ P. Then, the earliest start time of n on

all target processors is tsmin
(n) = min

P∈P
{tsmin

(n, P )}.

This provides yet another tighter lower bound on the

start time of a node:

ts(n) ≥ tsmin
(n). (18)

The DRT component of the f(s) function, fDRT (s), can

be expressed as:

fDRT (s) = max
n∈free(s)

{tdr(n) + blw(n)} . (19)

Equations (11) and (19) can be combined to produce a

general case as follows:

max
n∈S(s)∪free(s)

{

ts(n) if n ∈ S(s)

tdr(n) otherwise
+ blw(n). (20)

Figure 4 illustrates the concept of using the data ready

time of a node to calculate the f value of a state. In this

case, the minimum data ready time of free node D on
all processors, tsmin

(D) is five. Hence, the f value of a

state representing the partial schedule shown in Figure

4 can be increased to seven using fDRT (s).
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Fig. 4 Using the data ready time method to calculate the f

value of a state. Dotted lines indicate the data ready time of free
node D on each processor

The preceding equation is admissible considering Con-

ditions (6) and (18). The complexity of calculating
fDRT (s) is O(|free(s)| · |P|) per state as the DRT is

calculated for all free nodes in s with respect to all tar-

get processors. However, when traversing a state space,

i.e. going from the initial state to a goal state, the num-
ber of free nodes cumulatively is exactly the number

of nodes in the task graph, i.e. |V|. Since there are

|V| states from an initial state to a goal state along
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any path in the state space it averages to one node

per state. To calculate the DRT of one node all the in-

coming edges to the node have to be checked which on

average is the density of the task graph. The density

of a task graph representing any practical program is
normally a small constant and does not grow with the

size of the task graph. Hence, the complexity amortises

to the number of processors, i.e. O(|P|). For a fixed tar-

get system, this is constant. Therefore, the complexity
of calculating fDRT (s) can be considered O(1) just like

fKA(s). The data ready time metric like the computa-

tion bottom level metric is useful for task graphs that

are structured with medium to high number of edges.

The preceding three components can be combined to

give the following:

f(s) = max{fblw(s), fIT (s), fDRT (s)} (21)

The preceding f(s) function takes into account the par-
ent state’s f value denoted by f(sparent) as it incorpo-

rates the value of fblw(sparent). This maximising ap-

proach also ensures that the f(s) function remains con-

sistent. Note that the fKA(s) function is an inconsistent
function. The f value of the initial state, f(sinit), rep-

resenting an empty schedule can also be increased from

zero (as suggested in [10]) to the following:

f(sinit) = max

((

∑

n∈V

w(n)

)

/|P|, lenw(cpw)

)

(22)

The preceding function is admissible considering Con-
ditions in (3) and (14). The following holds for any state

s:

fKA(s) ≤ f(s) ≤ f∗(s) (23)

This shows that the f(s) function is more informed (not
strictly) than the fKA(s) function.

4 Pruning Techniques

Pruning is a process that eliminates unpromising sub-

trees in the search space. The rationale is that if it is

possible to determine that a subtree will not lead to an

optimal solution then it is not worth maintaining it in

in the search space. This implicitly means that a re-
quirement on any pruning technique is that it does not

jeopardise the ability of the algorithm to find an op-

timal solution. The advantages of pruning are reduced

memory consumption of the A* scheduling algorithm
and the reduction in the number of states that need

to be expanded thereby improving the efficiency of the

scheduling algorithm.

4.1 Processor normalisation

Two processors are isomorphic if they are both empty,

i.e. no nodes are already scheduled to them [10]. Each
free node needs only to be scheduled to one of all iso-

morphic processors. For fully connected and homoge-

neous target systems, the concept of processor isomor-

phism can be generalised. To illustrate this, consider

the two schedules S1 (left) and S2 (right) shown in Fig-
ure 5. Observe that the start times of the nodes are the

same across the schedules, e.g. B starts at time unit 2

in both schedules. Schedule S2 becomes identical to S1

when the processors P1 and P2 are renamed to P2 and
P1 respectively in S2. This is valid for the scheduling

problem considered here as all processors are identical

and the target system is fully connected (Section 2).
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Fig. 5 Processor normalisation: the two schedules are identical
after swapping the processor names for one of the schedules

To benefit from this observation, it is proposed here to

normalise the processor names according to the nodes

which are assigned to them. Having the nodes in a fixed
order, the processor to which the first node is assigned

is named P1. The processor of the next node, that is

not on P1, is named P2 and so on. For partial sched-

ules, unscheduled nodes are simply skipped. This pro-
cess normalises any permutation of the processor names

to a single one. After the normalisation, duplicates can

be easily detected using the OPEN and CLOSED lists

and eliminated. Note that processor name normalisa-

tion can also be used in scheduling algorithms based on
stochastic search techniques, e.g. Genetic Algorithms

(GA) [27,29], in order to reduce the size of the search

space.

4.2 Partial expansion

The number of new states created from a given state s

is affected by the number of target processors and free
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nodes as shown in (9). However, it is not necessary that

all the free nodes in s are scheduled exhaustively with

all the available target processors. Instead, each free

node is scheduled to all the target processors and once

the f value of any of the new states that are created
is found to be equal to that of s then the rest of the

free nodes are not scheduled for the time being. The

rationale is that s has been chosen for expansion by the

A* scheduling algorithm as it has the lowest f value in
the state space. Therefore, any new state that is created

with the same f value as s also has the lowest f value.

Since the newly created state will have one more node

scheduled than s it is within the reasoning of A* to

immediately continue with that node. Hence, there is
no need to exhaustively schedule all the remaining free

nodes in this iteration. It is to be noted that s is left in

the OPEN list until it is completely expanded, i.e. all

of its free nodes have been scheduled.

Partial expansion reduces the explosion of states that

can otherwise occur. This pruning technique is most

effective when the f(s) value is equal to C∗, where C∗

is the cost of the optimal solution path to the goal,

i.e. f(s) = C∗. Note that this pruning technique can

occasionally increase the number of states examined.

This is because a full expansion could have resulted in

the algorithm potentially picking a different child state
than that picked if there are multiple states with the

same f(s) value.

4.3 Node equivalence

The number of free nodes in a state s has an effect on

the number of new states created when expanding s as

shown in (9). However, this factor can be reduced when
equivalent nodes are detected. Two nodes ni and nj are

said to be equivalent when the following conditions are

true:

– w(ni) = w(nj) - they have the same computation

costs.

– pred(ni) = pred(nj) - they have the same set of
predecessors.

– succ(ni) = succ(nj) - they have the same set of

successors.

– c(epi) = c(epj) ∀np ∈ pred(ni) - the corresponding

edge weights to the predecessors are equal.
– c(eis) = c(ejs) ∀ns ∈ succ(ni) - the corresponding

edge weights to the successors are equal.

When equivalent nodes are present in the list of free

nodes then only one order of the equivalent nodes needs

to be considered as the new states created from it would

be representative of the states obtained from scheduling

the equivalent nodes in any order. Hence, an explosion

of states is avoided. This pruning technique is imple-

mented by first pre-analysing the task graph to detect
all the equivalent nodes. This pruning technique is very

effective for specific task graph structures as shown in

the experimental results in Section 5.5. Note that the

preceding five conditions to determine node equivalence
differs from the set of conditions defined in [10].

5 Experimental Results

The evaluation of the proposed task scheduling algo-
rithm was carried out on a machine running at 1.86

GHz. The scheduling algorithm was implemented using

Java and executed on one processor whereby the Java

Virtual Machine was allocated 2.5 GB of heap space.

5.1 Workload

To comprehensively evaluate the performance of the

task scheduling algorithm and the pruning techniques
presented, a large set of task graphs differing in proper-

ties such as the task graph structure, number of nodes

(4 - 40), density, Communication to Computation Ratio

(CCR is the sum of all edge weights divided by sum of
all node weights), weight type and maximum branching

factor were generated [22].

Ten different task graph structures, namely indepen-

dent, out tree, in tree, fork, join, fork-join, pipeline (Di-

amond) [9], stencil [11], series-parallel (SP-graphs) and
random were generated [22]. These task graph struc-

tures are explained in [23].

It is to be noted that certain properties do not apply

to certain task graph structures. For example, it is not

possible to vary the density of a fork, join or a fork-join
graph as the density of these structures are determined

by the number of nodes present in the task graph.

In total, the workload comprises 2834 task graphs. All

the task graphs in the workload are scheduled on a

two, four and eight processor target machine. Hence,
8502 runs of each implementation of the A* schedul-

ing algorithm were carried out. A timeout parameter

with a practical value of one minute was used to ter-

minate runs. A task graph run that took more than a
minute is referred to as a “timeout”. The runs that did

not timeout are referred to as complete runs. Note that

the data analysed in this section only includes complete
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runs, i.e. runs that completed in the implementations

that are compared.

5.2 Measure for performance evaluation

Classically, evaluations of scheduling algorithms com-

pare the lengths of the produced schedules [13,14,20].

Yet, all schedules are guaranteed to be optimal so we
are interested in the scheduling time. As this time is

hardware and implementation dependent, the measure

used to evaluate the implemented A* scheduling algo-

rithm and the pruning techniques is the total number
of created states, which is hardware and implementa-

tion independent. Another beneficial property of this

measure is that the number of states created is roughly

proportional to the runtime of the algorithm for the

workload used [22].

For the purposes of evaluation, the percentage differ-
ence of the number of created states is used as the

measure to determine the effectiveness of the proposed

cost function, f(s), and the pruning techniques. The

percentage difference in the number of created states is

calculated using

(

NB − NA

NA

)

× 100 (24)

where NA and NB are the numbers of created states

when using algorithm/technique A and B, respectively.

In the following, the baseline algorithm/technique A is

usually the full featured proposed algorithm with all

pruning techniques.

5.3 Cost function evaluation

The cost function f(s) plays an important role in the

performance of the A* scheduling algorithm as dis-

cussed in Section 3.2. The f(s) function proposed in

(21) is compared with the fKA(s) function presented

in (10) that was initially proposed in [10]. All pruning
techniques presented in Section 4 are employed in both

cases. Figure 6 shows the average percentage difference

of the number of created states when using fKA(s) in-

stead of the proposed f(s) function (f(s) is baseline).
As can be observed, fKA(s) creates dramatically more

states, in other words the new f(s) function reduces

the number of created states dramatically for the task

Fig. 6 Difference of number of created states between using
fKA(s) and the proposed f(s) (baseline)

graphs in the workload. The new f(s) function is ap-

parently a much closer underestimate of f∗(s), i.e. more

informed.

In addition, the effect of using the Data Ready Time

(DRT) component in the f(s) function is analysed, i.e.

the number of states created when using the f(s) func-
tion in (21) is compared with the number of states cre-

ated when using the same function without the DRT

component, fDRT (s) (with DRT component is base-

line). The average percentage difference of the number

of created states due to the DRT component is shown
in Fig. 7.

Fig. 7 Difference of number of created states without/with DRT
component in the proposed f(s) function (baseline is with DRT
component)

5.4 Task graph scheduling difficulty

The results presented in [10] suggest that the number of

tasks present in the task graph is the determining factor

that affects the difficulty of finding an optimal schedule
for a task graph. Figure 8 shows the average number

of created states for ten node task graphs across vari-

ous task graph structures in the workload. Intuitively,

one might expect that the average number of states
created will be more or less consistent across various

task graph structures as only a uniform task graph size

of ten nodes are considered. However, the graph shows
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that the average number of created states vary dramati-

cally across various task graph structures. Note that the

chart has an exponential scale. It shows that the task

graph structure plays an important role in determining

the difficulty of scheduling a task graph.
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Fig. 8 A* scheduling algorithm performance based on task graph
structure for ten node task graphs

5.5 Pruning technique evaluation

The pruning techniques discussed in Section 4 are eval-

uated to analyse the performance gain due to each of

them.

Partial expansion

The partial expansion technique is discussed in Section
4.2. The reduction in the average number of created

states when using the partial expansion technique as

opposed to full expansion is shown in Table 1. The “Ra-

tio” column indicates the number of states created using

full expansion divided by the number of states created
using partial expansion. The “Complete runs” column

indicates the number of complete runs from which the

data was obtained. Note that the number of complete

runs are significantly lower for larger task graphs due
to the increased difficulty in scheduling them. In ad-

dition, it is to be noted that there are not an equal

number of task graphs for each task graph size. For

example, a five node pipeline task graph was not gener-

ated as a pipeline structure cannot be maintained with
five nodes. The “Ratio” column indicates that partial

expansion decreases the number of states created for a

vast majority of cases. Thus, partial expansion is an ef-

fective pruning technique for the workload used. Note
that only a few runs completed (due to the timeout

used) in the last three rows of Table 1 which is possibly

the cause for the corresponding high ratio values.

Node equivalence

Node equivalence is discussed in detail in Section 4.3.

The average percentage difference of the number of cre-

ated states when using the node equivalence pruning
technique as opposed to not using it is shown in Figure

9 (a) (baseline is with node equivalence pruning). The

graph indicates that the number of states created is re-

duced significantly for a large set of task graphs when

the node equivalence pruning technique is used.

Figure 9 (b) shows that the node equivalence pruning

technique is most effective for independent task graphs.

This can be quite intuitively explained as the only fac-
tor determining node equivalence is the computation

costs of the nodes for independent task graphs. Thus,

the likelihood of identifying equivalent nodes in inde-

pendent task graphs increases which in turn signifi-
cantly reduces the number of created states.

The significant difference in the number of created

states as shown in Fig. 9 (a) and the wide range of
task graphs for which this pruning technique is effective

as shown in Fig. 9 (b) indicate that the node equiva-

lence pruning technique is very effective for the work-

load used.

Processor normalisation

The processor normalisation pruning technique is dis-

cussed in Section 4.1. An implementation of the A*
scheduling algorithm that uses the processor normal-

isation pruning technique is compared to the same im-

plementation without the pruning technique. The pro-

cessor isomorphism pruning technique was used in both

the implementations compared. Figure 10 shows the av-
erage percentage difference of the number of created

states without/with the processor normalisation prun-

ing technique (baseline with processor normalisation).

The graph shows three curves, one for the workload
scheduled on two, four and eight processors respectively.

As expected, the difference of the number of states cre-

ated is most dramatic for eight processors and least sig-

nificant for two processors. This is because more states

are created with a large set of target processors as de-
fined in (9). Therefore, when the processor normalisa-

tion pruning technique reduces the factor |P| in (9) the

reduction in the number of states is dramatic.

5.6 CLOSED list evaluation

The CLOSED list contains all states that have been

fully expanded and is used for duplicate detection. In
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Nodes Complete runs Avg. states - Partial Avg. states - Full Ratio

4 414 13 14 1.03909

5 366 34 36 1.05226

6 414 112 116 1.03386

7 366 526 532 1.01056

8 414 3773 3791 1.00495

9 414 27997 28123 1.00449

10 411 98231 98362 1.00134

11 353 274802 274972 1.00062

12 377 229518 231499 1.00863

13 299 653911 653276 0.99903

14 312 782655 827532 1.05734

15 263 828528 764515 0.92274

16 219 714680 775942 1.08572

18 183 706968 773825 1.09457

21 116 689447 751499 1.09000

24 88 386768 630398 1.62991

27 53 435208 761059 1.74872

30 38 362559 713847 1.96892

33 27 110435 946660 8.57211

36 32 30637 389056 12.69892

40 26 114606 839364 7.32394

Table 1 Comparing partial expansion technique to full expansion

(a) (b)

Fig. 9 Difference of number of created states without/with node equivalence pruning (baseline is with node equivalence pruning)

Fig. 10 Difference of number of created states without/with pro-
cessor normalisation pruning technique (baseline is with proces-
sor normalisation)

[24], an implementation of the A* scheduling algorithm

without the CLOSED list was implemented. Here, an

implementation of the A* scheduling algorithm with

the CLOSED list is compared to the same implemen-
tation without the CLOSED list, i.e. only OPEN list.

The intention is to ascertain the effectiveness of the

CLOSED list. Figure 11 shows the average percentage

difference of the number of created states without/with

the CLOSED list. As can be observed, not using the

CLOSED list significantly increases the number of cre-

ated states.

Fig. 11 Difference of number of created states without/with
CLOSED list (baseline is with CLOSED list)

It is to be noted that the reduction in the number of

created states comes at a cost of storing extra states

in memory. Therefore, the maximum number of states
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that are stored in memory is compared between the two

implementations to ascertain that the extra memory

used is not so great that it offsets the gain from reduc-

ing the number of created states. Figure 12 shows that

the implementation using the CLOSED list stores on
average less than two times the number of states stored

when using the implementation with only the OPEN

list. Thus, with only twice the memory consumption the

implementation with the CLOSED list is able to reduce
the number of created states dramatically as shown in

Fig. 11. Thus, using the CLOSED list is vital for an ef-

ficient implementation of the A* scheduling algorithm.

Fig. 12 Additional states in memory when using the CLOSED
list as opposed to no using it

6 Conclusions

This paper presented a new task scheduling algorithm

based on the best-first search algorithm A*. Following

from the properties of A* and the consistency and ad-
missibility of the proposed cost function f(s), the pro-

duced schedules have optimal length with a reasonable

runtime (less than two minutes in most cases) for small

to medium sized task graphs with up to 40 nodes. In
comparison to a previous approach, the proposed al-

gorithm offers significant improvements in two crucial

areas. First, the much improved cost function f(s) dra-

matically reduces the search space of the algorithm.
Second, several pruning techniques further reduce the

search space significantly. Experimental results demon-

strated these improvements. They also showed for the

first time the relation between the runtime of the A*

scheduling algorithm and the structure of scheduled
task graphs.

In the future, we believe that further significant im-

provements can be made to the proposed A* schedul-

ing algorithm. First, we still see significant potential for
improving the cost function f(s). Second, more pruning

techniques should exploit the freedom in local node or-

dering. And last but not least, it will also be beneficial

to parallelise the A* scheduling algorithm for a reduced

runtime.
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