http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Development of a microarray for *Potyvirus* detection and Identification

Ting Wei

PhD Thesis 2008
Development of a microarray
for Potyvirus detection and Identification

A thesis presented in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy in Biological Sciences
The University of Auckland, New Zealand

Ting Wei

2008
Abstract

Potyvirus is the largest and one of the most economically important of the virus genera infecting plants. The complexities of potyvirus identification resulting from many different species, mixed infections, emerging new viruses, new hosts, and new vectors, etc., often requires the use of multiple detection methods which is time consumable and costly. Therefore an assay that can test for a range of potyviruses simultaneously, with good specificity and sensitivity, is desirable. This study looked at the feasibility of producing an oligonucleotide microarray for detection and identification of potyviruses at both species and strain level.

Thirty plant samples with suspected potyvirus infections were collected from field and research laboratories in New Zealand and partial NIb gene, complete CP gene and 3’UTR were sequenced. Twelve definitive potyviruses, one tentative potyvirus, one non-potyvirus, and one novel potyvirus-like sequence were identified, six of which were first records for New Zealand.

Sequence analysis showed that NIb and CP genes and the 3’UTR contained both conserved and variable sequences which were used to design both species and strain level specific probes. Four Potyvirus species were chosen for a “proof of concept” study and probes were designed using two different software programs (ROSO and CAG software). A total of eighty five probes including 33 perfect-match and 52 mismatch probes were selected to represent the four targeted potyviruses. Each probe was synthesized with spacers of either 6 or 12 poly-cytosine or poly-thymine at the 5’ terminus. Arrays showed high specificity to the targets when tested using nineteen different geographically diverse potyvirus isolates representing the four target species, four distinct but closely related New Zealand potyviruses, and four healthy plant species. Factors affecting the hybridization efficiency, e.g. the size of the target fragments, secondary structure of probes and targets, label type, strandedness, Tm and GC content of probes, were also investigated.

The approaches and protocols developed in this study should form a useful basis for developing other potyviruses arrays and the results also provide useful insights into issues of generic interest for the development of arrays for detecting other pathogens.
Acknowledgements

I would particularly like to express my sincere thanks and appreciations to the following people and institutions who gave the advice, support, help and encouragement to complete this PhD thesis.

My chief supervisor, associate professor Dr. Mike N. Pearson, for offering me this opportunity and guiding and support throughout the whole PhD study.

My co-supervisor, Dr. Dave Saul for advice on the problems of sequence analysis.

Dr. Karen Armstrong, for advice and support, especially the introduction of microarray expert professor Dietmar Blohm for help in the microarray development.

Professor Dietmar Blohm, the chairman of Centrum für Angewandte Genesensorik (CAG, Centre of Applied Microarray), Bremen University, Germany, for his kind help and support on the development of microarray.

Dr. Manfred Nölte, from Bioinformatic Department, Bremen University, Germany, for the design of probes using their proprietary software (CAG software).

Dr. Sascha Todt, from The Centre of Applied Microarray, Bremen University, Germany, and Dr. Lei Zhan, from The Dental Research Institute, University of California, Los Angeles, for advice and discussion on the problems of microarray hybridisation and data analysis.

Mr. Frank Meyerjürgens and Mr. Sven Roll, from Department of Biotechnology and Molecular Genetic, Bremen University, Germany) for assistance in printing the arrays.

My colleague, PhD student Kelvin Lau, for help in the use of probe design ROSO software, microarray scanning machine and microarray hybridisation procedure. Dr. Franz Pichler for discussing the problems from microarray hybridisation.

Associate professor Cristin Print, from Department of Molecular Medicine & Pathology, The University of Auckland, for discussing microarray data analysis.

Dr. Francisco M. Ochoa-Corona from Investigation and Diagnostic Centre, Biosecurity, Ministry of Agriculture and Forestry, New Zealand, Dr. Dan Cohen from HortResearch, Auckland, New Zealand and Dr. John D. Fletcher from Crop & Food Research, Christchurch, New Zealand, for providing suspected virus infecting plant samples.
My colleagues, Catia Delmiglio and Scott Harper for their kind assistances in many experimental and computing analysis issues; Kristine Boxen for sequencing service; Terry Gruijters for computer assistance.

National centre for advanced bio-protection technologies, for providing me this PhD funding.

Department of School of Biological Sciences, Auckland University, for providing research facilities.

The last but not the least, I would like to thank my dear parents, my husband Guangjin Lu, my two daughters, my relatives and good friends, for their love and support throughout the whole process of this study.
Table of Contents

Abstract..i
Acknowledgements...ii
Table of Contents...iv
List of Figures..x
List of Tables...xiv
Abbreviations..xvi

Chapter 1. General Introduction...1

1.1. Literature review...1

1.1.1 Introduction of plant virus disease...1
 1.1.1.1 History and development of plant virus disease.................................1
 1.1.1.2 Impact of plant virus diseases...3
 1.1.1.3 Infection and transmission...3
 1.1.1.4 Control...5
1.1.2 Potyvirus...5
 1.1.2.1 Introduction...5
 1.1.2.2 Potyvirus genome...7
 1.1.2.3 Potyvirus taxonomy...8
 1.1.2.4 Potyviruses in New Zealand..9
1.1.3 Plant virus diseases diagnosis...11
 1.1.3.1 Development of techniques for plant virus disease diagnosis.........11
 1.1.3.2 Problems with current plant virus detection and identification with particular reference to potyviruses..14
1.1.4 DNA Microarray..17
 1.1.4.1 Introduction of DNA microarray...17
 1.1.4.2 Application of DNA microarray..19

2. Project overview..20
Chapter 2. Collection and identification of potyviruses

2A. General information on potyvirus collection and identification

2A.1. Introduction

2A.2. Materials and methods

2A.2.1 Source of virus isolates

2A.2.1.1 Virus infected plant samples

2A.2.1.2 RNA samples

2A.2.1.3 Control samples

2A.2.2 Antisera

2A.2.3 Mechanical inoculation of herbaceous hosts

2A.2.4 Enzyme-linked immunosorbent assay (ELISA)

2A.2.5 RNA extraction and cDNA synthesis

2A.2.6 Polymerase chain reaction (PCR)

2A.2.6.1 Potyvirus universal primers

2A.2.6.2 Virus specific primers

2A.2.6.3 PCR

2A.2.7 Cloning, sequencing and data analysis

2A.2.8 Submission of sequences to GenBank

2A.3. Results

2A.3.1 Plant inoculations

2A.3.2 ELISA results

2A.3.2.1 Results of samples from Pukekohe, Auckland, New Zealand

2A.3.2.2 Results of samples from HortResearch and Crop & Food Research

2A.3.4 Results from molecular biological tests

2A.3.4.1 Results of RT-PCR

2A.3.4.2 Sequence results

2A.3.4.3 Sequence analysis

2A.3.4.4 New primer design and the consequent PCR and sequencing results

2A.4. Discussion
2B. Further investigation of particular sequences identified from section 2A…47

2B.1. Introduction...47

2B.2. Materials and methods...48

2B.2.1 Plant samples...48

2B.2.2 Antisera..48

2B.2.3 Purification of virus from infected garlic leaves...48

2B.2.4 Serological tests..49

2B.2.4.1 ELISA...49

2B.2.4.2 Immuno-sorbent electron microscopy (ISEM)...49

2B.2.5 Single-strand conformational polymorphism analysis (SSCP).....................50

2B.2.6 Sequence analysis..50

2B.3. Results..51

2B.3.1 Identification of GYSV..51

2B.3.1.1 Optimization of polyclonal antisera..51

2B.3.1.2 Serological identification of the virus from garlic samples.......................51

2B.3.1.3 Electronic microscopy and ISEM results...52

2B.3.1.4 SSCP results..53

2B.3.1.5 Analysis of sequences from garlic samples..54

2B.3.2 Characteristics of the four novel sequences..56

2B.4. Discussion..59

Chapter 3. Microarray Development: in silico design.................................62

3.1. Introduction..62

3.2. Materials and methods...64

3.2.1 Sequence selection and alignment...64

3.2.2 Sequences analysis and design of microarray oligonucleotides.....................64

3.2.3 Virus sequences..64

3.2.4 The selection of oligonucleotide probes..65

3.2.5 Modification of oligonucleotide probes..65

3.3. Results..66

3.3.1 Sequences selected for analysis...66

3.3.2 Selection of suitable viruses and genome regions for probe design..............66
3.3.3 Generation of potential specific oligonucleotide probes with desirable length........68
3.3.4 Selection of the optimal oligonucleotide probes...69
 3.3.4.1 Principle of oligonucleotide probe selection..69
 3.3.4.2 Summary of probes selected for DsMV..74
 3.3.4.3 Summary of probes selected for LYSV..75
 3.3.4.4 Summary of probes selected for PVY...76
 3.3.4.5 Summary of probes selected for ZYMV..77
 3.3.4.6 Mismatch oligonucleotide probes...78
3.3.5 The selection of negative control probes..80
3.3.6 Addition of spacers to oligonucleotide probes..80
3.3.7 Diagrammatic recording of the test results..81
3.4. Discussion...84

Chapter 4. Array validation..91

Part A. Array validated using different size PCR products under different conditions...91
4A.1 Introduction..91
4A.2 Materials and methods..92
 4A.2.1 Oligonucleotides synthesis and microarray fabrication..............................92
 4A.2.2 Generation of PCR products..92
 4A.2.2.1 Direct fluorescent dye labeling of PCR products.................................92
 4A.2.2.2 Indirect fluorescent dye labeling of PCR products...............................93
 4A.2.3 Hybridization of microarray..93
 4A.2.3.1 Hybridization protocol...93
 4A.2.3.2 Hybridization temperature and time...95
 4A.2.3.3 Template concentration...95
 4A.2.4 Scanning and data analysis...96
4A.3 Results..97
 4A.3.1 Microarray fabrication..97
 4A.3.2 Generation of PCR products...98
 4A.3.3 Specificity of the array...99
 4A.3.3.1 Reaction of individual viruses with array under two different labeling systems...99
 4A.3.3.2 Hybridization of array with four mixed viruses.................................109
Table of Contents

4A.3.4 Sensitivity of the array...111
4A.3.5 Effects of different spacers and probe location.........................114
4A.3.6 Impact of GC content and Tm of the probes to the hybridisation efficiency........122
4A.4 Discussion...124

Part B. Further investigation of possible factors affecting array hybridization......130
4B.1 Introduction..130
4B.2 Materials and methods...131
4B.2.1 Hybridization period...131
4B.2.2 Generation of hybridization templates......................................131
4B.2.2.1 Single strand DNA fragments..131
4B.2.2.2 Short PCR fragments...132
4B.2.3 Microarray hybridization and data analysis..............................132
4B.2.4 Analysis of the impact of secondary structures of probes and targets.............132
4B.3 Results...133
4B.3.1 Overnight hybridization...133
4B.3.2 Array hybridized with ssDNA fragments...................................134
4B.3.3 Generation of specific short PCR products using specific primers.................135
4B.3.4 Hybridization of array using indirect-labeled specific short PCR product.........138
4B.3.4.1 Short fragments from DsMV..139
4B.3.4.2 Short fragments from LYSV..139
4B.3.4.3 Short fragments from PVY...141
4B.3.4.4 Short fragments from ZYMV..141
4B.3.5 Relationships between hybridization efficiency and secondary structures........142
4B.3.5.1 Impact of secondary structures of probes................................142
4B.3.5.2 Impact of secondary structures of targets...............................143
4B.4 Discussion..150

Chapter 5. Evaluation of the stain and species specificity of the microarray
...153
5.1 Introduction..153
5.2 Materials and methods...153
5. 2.1 Overseas potyvirus isolates..153
5.2.2 Closely related, non-target potyviruses..154
5.2.3 Healthy plants..154
5.2.4 Generation of hybridization target fragments......................................155
5.2.5 Microarray hybridisation and data analysis..155
5.3. Results...156
5.3.1 Selection of phylogenetically closely related potyviruses....................156
5.3.2 Generation of PCR products..158
5.3.3 Array hybridization with PCR products from overseas potyviruses........158
 5.3.3.1 DsMV..158
 5.3.3.2 LYSV..161
 5.3.3.3 PVY...164
 5.3.3.4 ZYMV..168
5.3.4 Array hybridization with PCR products from closely related potyviruses 171
5.3.5 Hybridization with healthy plant cDNA...174
5.4. Discussion...176

Chapter 6. General discussion..178
6.1. Identification of potyviruses in plants..178
6.2. Microarray technology for detecting plant potyviruses.........................179
6.3. Limits and potential improvements of potyvirus arrays in the future........182

References..186

Appendices..222
Appendix I. Diagrammatic recording of the hybridisation results of positive fragments from New Zealand potyviruses223
Appendix II. Relationship of the hybridisation results and the target fragments secondary structures of New Zealand potyviruses239
Appendix III. Publications based on this PhD study..................................285
List of Figures

Fig. 1.1. Genomic organization of *Potyvirus* genome..7
Fig. 2A.1. The location of *Potyvirus* universal primers: U335 & D335 (Langeveld et al., 1991), PV2I/T7 & PV1/SP6 (Mackenzie et al., 1998), and the expected sizes of the fragments from potyvirus infected samples..28
Fig. 2A.2. Symptoms on *N. benthamiana* infected with suspected ZYMV.................31
Fig. 2A.3. Example of different size of PCR products from potyvirus infected samples......35
Fig. 2A.4. Graphic overview of nt sequences of nzNovel-DC3, nzNovel-DC4a, nzNovel-DC4b and nzNovel-DC6 when blast in GenBank during the period 2006.........................38
Fig. 2A.5. Alignment of CP gene aa sequences of DsMV1, DsMV2 with other DsMV and VanMV isolates from GenBank...40
Fig. 2A.6. Alignment of aa sequence of the NIb gene of the New Zealand garlic and potato isolates of PVY with other PVY isolates from GenBank..............................41
Fig. 2A.7. Alignment of coat protein amino acid sequences of nzZaMMV with the other two ZaMMV isolates in GenBank...41
Fig. 2B.1. Immunosorbent electron microscopy of partially purified viruses from garlic samples using various potyvirus antisera ...53
Fig. 2B.2. SSCP analysis for virus infected garlic and WMV infected zucchini samples....54
Fig. 2B.3. Alignment of CP aa sequences of nzLYSVg1, nzLYSVg2 with selected LYSV isolates from GenBank...55
Fig. 2B.4. Neighbour-joining tree for nzLYSVg1, nzLYSVg2 sequences from NZ garlic and LYSV, OYSV sequences from GenBank..56
Fig. 2B.5. Neighbour-joining tree for the newly identified novel sequence nzNovel-DC6 and selected sequences covering partial NIb gene, complete CP gene and 3’UTR region and representing six genera of *Potyviridae* from GenBank.................58
Fig. 3.1. BLAST result of a 25-mer oligonucleotide probe (AACCGTAGTATCTATCTCCTT ACCT) from New Zealand LYSVg isolate...71
Fig. 3.2. BLAST result of a 25-mer oligonucleotide probe (GTGGTGACTCTATCTGTATAT TCCG) from New Zealand PVY isolate...72
Fig. 3.3. BLAST result of a 25-mer oligonucleotide probe (CTCGAACTCTATGATAGTG TGTGC) from New Zealand LYSVg isolate..73
Fig. 3.4. Linker and spacer modifications to oligonucleotide probes...........................81
Fig. 3.5. An example of diagrammatic figure for hybridization result recording using different size of fragments from DsMV ...83
Fig. 4A.1. Arrangement of oligonucleotide probes within the microarray..................98
Fig. 4A.2. PCR products generated for microarray hybridization............................99
Fig. 4A.3. Results from hybridization of DsMV ~1.3 kb fragment with the microarray.....101
Fig. 4A.4. Fluorescent intensities of probes without spacer and with 12T spacer from the
 hybridization using direct- and indirect-labeled DsMV ~1.3 kb fragments.........102
Fig. 4A.5. Results from hybridization of LYSV ~1.0 kb fragment with the microarray.....102
Fig. 4A.6. Fluorescent intensities of probes without spacer and with 12T spacer from the
 hybridization using direct- and indirect-labeled LYSVg2 ~1.0 kb fragments....103
Fig. 4A.7. Results from hybridization of PVY ~0.8 kb fragment with the microarray......104
Fig. 4A.8. Fluorescent intensities of probes without spacer and with 12T spacer from the
 hybridization using direct- and indirect-labeled PVY ~0.8 kb fragments.......105
Fig. 4A.9. Results from hybridization of ZYMV ~0.7 kb fragment with the microarray.....105
Fig. 4A.10. Fluorescent intensities of probes without spacer and with 12T spacer from the
 hybridization using direct- and indirect-labeled ZYMV ~0.7 kb fragments.....106
Fig. 4A.11. Effect of different labelling systems on negative probes from positive fragments
 ..108
Fig. 4A.12. Results from hybridization of a mixture containing fragments from four
 potyviruses..110
Fig. 4A.13. Fluorescent intensities of probes without spacer and with 12T spacer from the
 hybridization using four-virus mixtures..110
Fig. 4A.14. Results from the hybridization of the ZYMV ~0.7 kb fragment at six different
 concentrations with the microarray...112
Fig. 4A.15. Fluorescent intensities of probes without spacer and with 12T spacer from the
 hybridization using the direct-labelled ZYMV ~0.7 kb fragment at six different
 concentrations..114
Fig. 4A.16. Effect of different spacers to the positive probes from direct- and indirect-labeled
 DsMV ~1.3 kb fragment ..115
Fig. 4A.17. Effect of different spacers to the positive probes from direct- and indirect-labeled
 LYSVg2 ~1.0 kb fragment..116
Fig. 4A.18. Effect of different spacers to the positive probes from direct- and indirect-labeled
 PVY ~0.8 kb fragment..117
Fig. 4A.19. Effect of different spacers to the positive probes from direct- and indirect-labeled
 ZYMV ~0.7 kb fragment...118
Fig. 4A.20. Effect of different spacers to the positive probes from a mixture containing direct-
 and indirect-labeled fragments representing four different potyviruses........119
Fig. 4A.21. Fluorescent intensities of all positive probes without spacer and with different spacers from the triplicate hybridizations using direct-labeled positive fragments

Fig. 4A.22. Relationship between hybridization results and GC content and Tm of each probe

Fig. 4B.1. Results of overnight hybridization using PVY ~1.3 kb fragment

Fig. 4B.2. Images of ssDNA and dsDNA fragments from PVY and ZYMV hybridized with microarray

Fig. 4B.3. Location of specific primers and relevant specific short fragments

Fig. 4B.4. PCR products generated using newly designed specific primers

Fig. 4B.5. Hybridization results for the DsMV specific short fragment Ds1

Fig. 4B.6. Hybridization results of three specific short fragments Ls1, Ls2 and Ls3 from LYSV

Fig. 4B.7. Hybridization results of specific short fragments Ps2 and Ps3 from PVY

Fig. 4B.8. Hybridization results of specific short fragments Zs1 and Zs2 from ZYMV

Fig. 4B.9. Relationship between hybridization results and the probes computing self annealing and looping

Fig. 4B.10. Relationship between the hybridisation results and the target fragment secondary structure for DsMV ~1.3 kb fragment at 55°C

Fig. 4B.11. Relationship between the hybridisation results and the target fragment secondary structure for specific short fragment Ds1 from DsMV at 55°C

Fig. 4B.12. Relationship between the hybridisation results and the target fragment secondary structure for specific short fragment Ls1 from LYSV at 55°C

Fig. 4B.13. Relationship between hybridisation results and the target fragment secondary structure for specific short fragment Ls2 from LYSV at 55°C

Fig. 4B.14. Relationship between the hybridisation results and the target fragment secondary structure for specific short fragment Ps3 from PVY at 55°C

Fig. 5.1. Phylogenetic analysis (neighbour joining tree) of the nucleic acid sequences of 21 New Zealand potyviruses

Fig. 5.2. Images and fluorescent intensity results from the hybridization using ~1.3 kb fragments from Agdia and Florida DsMV (agD13 and flD13 fragments)

Fig. 5.3. Comparison of fluorescent intensities of positive probes from different DsMV isolates

Fig. 5.4. Images and fluorescent intensity results from the hybridization using ~1.0 kb fragments from The Netherlands and Taiwan LYSV isolates (nL10 and tL10
List of Figures

Fig. 5.5. Comparison of fluorescent intensities of positive probes from different LYSV isolates ...162

Fig. 5.6. Images and fluorescent intensity results from the hybridization using ~0.7 kb and ~1.3 kb fragments from different PVY isolates..165

Fig. 5.7. Comparison of fluorescent intensities of positive probes from different fragments of different PVY isolates...168

Fig. 5.8. Images and fluorescent intensity results from the hybridization using ~0.7 kb fragments from different ZYMV isolates...169

Fig. 5.9. Comparison of fluorescent intensities of positive probes from different fragments of different ZYMV isolates ...171

Fig. 5.10. Images and fluorescent intensity results from the hybridization using ~1.3 kb and ~0.7 kb fragments from four phylogenetic closely related poryviruses..........173

Fig. 5.11. Images and fluorescent intensity results from the hybridization using cDNA from four healthy plants...175

Fig. 6.1. Photograph of the new DNA chip from recent publication (Nagino et al., 2006).....183
List of Tables

Table 1.1. Potyviruses in New Zealand (up to December 2003) ..9
Table 2A.1. Details of suspected potyviruses infected plant samples ..24
Table 2A.2. Information of RNA samples ..25
Table 2A.3. Sequences of Potyvirus universal primers ...28
Table 2A.4. Reaction of Pukekohe plant samples with universal Potyvirus McAb32
Table 2A.5. Reaction of ornamental plant samples with universal Potyvirus McAb33
Table 2A.6. Potyvirus infected samples available for RT-PCR ...34
Table 2A.7. Details of potyvirus clones sent for sequencing ...36
Table 2A.8. BLAST results for the nt and aa sequences of the investigated potyvirus isolates ...37
Table 2A.9. Information about New Zealand potyvirus sequences identified in this study39
Table 2A.10. Specific primers for particular potyviruses ..43
Table 2B.1. Effect of healthy sap pre-absorption on Alium virus polyclonal antisera51
Table 2B.2. Reaction of virus from garlic, LYSV, and OYDV to various antisera52
Table 2B.3. Re-BLAST results for the four novel sequences ...59
Table 3.1. Summary of sequences available for the eleven selected potyviruses found in New Zealand ...66
Table 3.2. Summary of the longest conserved sequences from eleven New Zealand potyviruses ...67
Table 3.3. The number of potential oligonucleotide probes for different lengths, as generated by ROSO ...69
Table 3.4. Summary of selected oligonucleotide probes ..73
Table 3.5. The oligonucleotide probes for DsMV ...74
Table 3.6. The oligonucleotide probes for LYSV ...75
Table 3.7. The oligonucleotide probes for PVY ...76
Table 3.8. The oligonucleotide probes for ZYMV ...77
Table 3.9. Information of MM oligonucleotides ..78
Table 3.10. Negative control oligonucleotide probes ...80
Table 4A.1. Reagents and buffers used for microarray hybridization95
Table 4A.2. Preparation of microarray hybridization mixture ..95
Table 4A.3. The information of the visual determination of the array image results97
Table 4A.4. Size and designation of the PCR products used for microarray hybridization99
Table 4A.5. Summary of positive probes with positive reactions to the different potyviruses
Table 4A.6. P values and ratio of average fluorescent intensity values for the comparison of the fluorescent intensity of positive probes, with and without spacers, from the direct-labeled DsMV ~1.3 kb, LYSVg2 ~1.0 kb, PVY ~0.8 kb and ZYMV ~0.7 kb PCR fragments.

Table 4A.7. The distance of each positive probe to the fluorescent labeling end in the direct labeling system.

Table 4B.1. Primer sequences used to generate specific short PCR products fro DsMV, LYSVg2, PVY and ZYMV.

Table 4B.2. Information of specific short fragments and the probe identification numbers on each fragment.

Table 5.1. Overseas potyvirus isolates used to validate the microarray.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>agD</td>
<td>Agdia DsMV isolate</td>
</tr>
<tr>
<td>Am6C</td>
<td>6 carbon linker arm</td>
</tr>
<tr>
<td>ANOVA</td>
<td>one-way-analysis of variance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BCMV</td>
<td>Bean common mosaic virus</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BtMV</td>
<td>Beet mosaic virus</td>
</tr>
<tr>
<td>BYMV</td>
<td>Bean yellow mosaic virus</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>CAG</td>
<td>Centre of Applied Gensensorik (microarray)</td>
</tr>
<tr>
<td>CeMV</td>
<td>Celery mosaic virus</td>
</tr>
<tr>
<td>CIYVV</td>
<td>Clover yellow vein virus</td>
</tr>
<tr>
<td>CP</td>
<td>coat protein</td>
</tr>
<tr>
<td>CI</td>
<td>cylindrical inclusion</td>
</tr>
<tr>
<td>CVMV</td>
<td>Carnation vein mottle virus</td>
</tr>
<tr>
<td>Cy3</td>
<td>cyanine 3 fluorescent dye</td>
</tr>
<tr>
<td>Cy5</td>
<td>cyanine 5 fluorescent dye</td>
</tr>
<tr>
<td>D13</td>
<td>~1.3kg PCR product from DsMV</td>
</tr>
<tr>
<td>DAG</td>
<td>Asp-Ala-Gly</td>
</tr>
<tr>
<td>DC</td>
<td>Dr. Dan Cohen</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>Ds</td>
<td>specific short PCR product from DsMV</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double strand DNA</td>
</tr>
<tr>
<td>DsMV</td>
<td>Dasheen mosaic potyvirus</td>
</tr>
<tr>
<td>DSMZ</td>
<td>German Resource Centre for Biological Material</td>
</tr>
<tr>
<td>Dvy</td>
<td>Daphne virus Y</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EM</td>
<td>electron microscopy</td>
</tr>
<tr>
<td>eZ</td>
<td>Egypt ZYMV isolate</td>
</tr>
<tr>
<td>flD</td>
<td>Florida DsMV isolate</td>
</tr>
<tr>
<td>flZ</td>
<td>Florida ZYMV isolate</td>
</tr>
<tr>
<td>FreMV</td>
<td>Freesia mosaic virus</td>
</tr>
<tr>
<td>frP</td>
<td>France PVY isolate</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>gP</td>
<td>Germany PVY isolate</td>
</tr>
<tr>
<td>GYSV</td>
<td>Garlic yellow streak virus</td>
</tr>
<tr>
<td>HC-Pro</td>
<td>helper component protein</td>
</tr>
<tr>
<td>hP</td>
<td>Hungary PVY isolate</td>
</tr>
<tr>
<td>HyB</td>
<td>hybridization buffer</td>
</tr>
<tr>
<td>ICTV</td>
<td>The International Committee on Taxonomy of Viruses</td>
</tr>
<tr>
<td>IMMV</td>
<td>Iris mild mosaic virus</td>
</tr>
<tr>
<td>iP</td>
<td>Italy PVY isolate</td>
</tr>
<tr>
<td>ISEM</td>
<td>immunosorbent electron microscopy</td>
</tr>
<tr>
<td>iZ</td>
<td>Italy ZYMV isolate</td>
</tr>
<tr>
<td>JGMV</td>
<td>Johnsongrass mosaic virus</td>
</tr>
<tr>
<td>JF</td>
<td>Dr. John D. Fletcher</td>
</tr>
</tbody>
</table>
L1-10 ~1.0kb PCR product from New Zealand LYSV isolate 1
L2-10 ~1.0kb PCR product from New Zealand LYSV isolate 2
LAMP loop-mediated isothermal amplification
LBR Liquid Blocking Reagent
LMV *Lettuce mosaic virus*
Ls specific short PCR product from LYSV
LYSV *Leek yellow stripe virus*
MacMV *Maclura mosaic virus*
MAF Ministry of Agriculture and Forestry
McAb monoclonal potyvirus antibodies
MM mismatch
NC negative control
NeYSV *Nerine yellow stripe potyvirus*
Nla-Pro nuclear inclusion a protein
Nla-VPg nuclear inclusion a linked VPg protein
Nlb nuclear inclusion b protein
nL The Netherland LYSV isolate
NLV *Narcissus latent virus*
nP The Netherland PVY isolate
nt nucleotide
N Vy Nerine virus Y
NYSV *Narcissus yellow stripe virus*
OD optical density
OMV *Oat mosaic virus*
OrMV *Ornithogalum mosaic virus*
OrV2 *Ornithogalum virus 2*
OYDV *Onion yellow dwarf virus*
P7 ~0.7kb PCR product from overseas PVY isolates
P8 ~0.8kb PCR product from New Zealand PVY
PC positive control
PCR polymerase chain reaction
PcAb polyclonal antisera
pGYSV purified Garlic yellow streak virus
PK Pukekohe (a sampling site in Auckland, New Zealand)
poly-A poly adenines
PM perfect-match
PMMA poly methyl methacrylate
PNP p-nitrophenylphosphate
Ps specific short PCR product from PVY
PPV *Plum pox virus*
PsbMV *Pea seed-borne mosaic*
PTA potassium phosphotungstate
PVA *Potato virus A*
PVY *Potato virus Y*
PVYg *Potato virus Y* from garlic
PWV *Passionfruit woodiness virus*
RNA ribonucleic acid
RdRp RNA-dependent-RNA-polymerase
RT reverse transcription
SCMV *Sugarcane mosaic virus*
SD standard deviation
SMV *Soybean mosaic virus*
SNP single-nucleotide polymorphism
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpDNA</td>
<td>Salmon Sperm DNA</td>
</tr>
<tr>
<td>SPFMV</td>
<td>Sweet potato feathery mottle virus</td>
</tr>
<tr>
<td>SpMM</td>
<td>Species level mismatched probes</td>
</tr>
<tr>
<td>SpS</td>
<td>species-specific</td>
</tr>
<tr>
<td>SSCP</td>
<td>Single-strand conformational polymorphism analysis</td>
</tr>
<tr>
<td>ssDNA</td>
<td>single strand DNA</td>
</tr>
<tr>
<td>StS</td>
<td>strain-specific</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>TaMV</td>
<td>Tamarillo mosaic virus</td>
</tr>
<tr>
<td>TBV</td>
<td>Tulip breaking virus</td>
</tr>
<tr>
<td>tL</td>
<td>Taiwan LYSV isolate</td>
</tr>
<tr>
<td>Tm</td>
<td>melting temperature</td>
</tr>
<tr>
<td>TMV</td>
<td>Tobacco mosaic virus</td>
</tr>
<tr>
<td>TuMV</td>
<td>Turnip mosaic virus</td>
</tr>
<tr>
<td>TV</td>
<td>Tuberose virus</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>VPg</td>
<td>viral genome linked protein</td>
</tr>
<tr>
<td>WMV</td>
<td>Watermelon mosaic virus</td>
</tr>
<tr>
<td>Z7</td>
<td>~0.7kb PCR product from ZYMV</td>
</tr>
<tr>
<td>ZaMMV</td>
<td>Zantedeschia mild mosaic virus</td>
</tr>
<tr>
<td>ZaMV</td>
<td>Zantedeschia mosaic virus</td>
</tr>
<tr>
<td>Zs</td>
<td>specific short PCR product from ZYMV</td>
</tr>
<tr>
<td>ZYMV</td>
<td>Zucchini yellow mosaic virus</td>
</tr>
</tbody>
</table>