

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Giacaman, N., & Sinnen, O. (2011). Object-Oriented Parallelisation of Java
Desktop Programs. IEEE Software, 28(1), 32-38. doi:10.1109/MS.2010.135

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1109/MS.2010.135
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
http://www.sherpa.ac.uk/romeo/issn/0740-7459/

Object-Oriented Parallelisation of
Java Desktop Programs∗

Nasser Giacaman and Oliver Sinnen

The University of Auckland, New Zealand

ngia003@aucklanduni.ac.nz, o.sinnen@auckland.ac.nz

Abstract
Developing parallel applications is notoriously difficult, but is even

more complex for desktop applications. The added difficulties are pri-
marily because of their interactive nature, where performance is largely
perceived by its users. Desktop applications are typically developed with
graphical toolkits that in turn have limitations in regards to multi-threading.
This article explores the structure of desktop applications, the limitations
of the threading model and walks the reader through the parallelisation
of a desktop application using object-oriented and GUI-aware concepts.

Motivation
Parallelisation is the process of decomposing a large computation into smaller
parts, and consequently executing those smaller parts simultaneously to reduce
the overall processing time. Despite the potential performance benefits, paral-
lel computing has long been a programming nightmare for software developers.
Theoretical challenges include requiring developers to envision the original prob-
lem into smaller, somewhat independent, sub-problems and then carefully anal-
yse the dependences amongst those pieces. Even when this has been envisioned,
the practical challenges of implementation magnifies the difficulty; to name a
few, this includes implementing synchronisation mechanisms to ensure logically
correct ordering, scheduling of the sub-problems and of course countless hours
of debugging.

So, what about the world of desktop parallelisation? We are no longer talking
about parallelising “trivial” scientific and engineering applications that possess
large amounts of obvious and repetitive inherent parallelism (it is easy to envi-
sion the smaller sub-problems in these applications). We are now in the realm of

∗To appear in a special issue of IEEE Software January/February 2011, Software for the
Multiprocessor Desktop: Applications, Environments, Platforms

1

Figure 1: Desktop applications involve different types of tasks that require
different implementation approaches, and it is also unknown on what system
the application will run on.

irregularly structured computations with short runtimes. To add further com-
plication, these applications will be executed on non-dedicated and unknown
target systems (is the system a uni-processor? Quad-core? ... Many-core pro-
cessor?). The more effort that developers invested in expressing the inherent
parallelism of the problem, then the more effort that will be required to realise
it: more sub-problem decomposition, more code restructuring, more synchroni-
sation and more debugging. If any less effort is invested in realising the inherent
parallelism, then the performance is punished accordingly.

Figure 1 illustrates the typical scenario of desktop applications. The idea
is that a user interacts with the application in order to perform various tasks.
Some tasks might be executed once only, while another task might be executed
multiple times on different data elements (such as processing a directory full
of files (A)). Some tasks tend to be computationally intensive, while others
are input/output bound (such as an internet search (B), waiting for user input
(C) or printing (D)). Some tasks may be executed independent of other tasks,
while other tasks might have ordering constraints that depend on the completion

2

of other tasks (E). We categorise this into different types of tasks, each with
different behaviours that demand different handling. To ease the parallelisation
process, the first step is unifying these different task concepts into the same
model.

Unfortunately, it gets even more complex for desktop applications. To com-
plicate matters, users generally expect some sort of feedback on the executing
tasks; this even includes intermittent updates of partially complete tasks (such
as updating a progress bar). Consequently, the performance of a desktop ap-
plication is primarily user-perceived. We want a responsive and interactive ap-
plication, even if the application is to be executed on a single processor. Since
desktop applications are user-driven (unlike batch-type applications), the graph-
ical and interactive nature of these user interfaces contributes tremendously to
the challenges. Finally, since developers cannot determine the system specifi-
cations that their applications will execute on, dynamic runtime support that
adjusts to hardware is vital.

So, how do we continue about easing the process of parallelising desktop
applications? Object-oriented languages dominate [1] the development of desk-
top applications. The benefits of parallelisation must be realised in the realm
of such high-level languages, without resorting to languages like C or Fortran.
Even though these low-level languages may be speed-efficient, large desktop
applications demand the software engineering benefits of object-oriented lan-
guages.

This paper will address these problems and challenges by discussing the
parallelisation of an object-oriented desktop application with a graphical user
interface (GUI). We start by looking at the rarely discussed challenges that are
unique to GUI desktop applications, namely the user interactivity, the limita-
tions of the graphical frameworks and the large variety of target systems. As
most desktop applications are written in object-oriented languages, the paral-
lelisation must be performed in these languages. The presented parallelisation
approach, called Parallel Task, is based on a unified task concept that integrates
all common concurrency types.

The anatomy of desktop applications
Before attempting to parallelise desktop applications, we must understand their
external and internal composition. The external features are the most familiar to
us, which includes numerous visual input components (e.g. buttons, text fields)
and output components (e.g. labels, progress bars). It is this distinguishing
GUI that enables the desktop application to interact with its users.

What about the internal structure of desktop applications? The most vital
organ is the event loop (part (1) of figure 2), which is responsible for reacting
to events (e.g. a mouse click) by dispatching them to the appropriate event
handler (part (2) of figure 2). The GUI thread, also known as the event dispatch
thread (EDT) in Java, is solely responsible for anything GUI-related: from the
external display of visual components, to the internal management of events.

3

Figure 2: Structure of a Multi-threaded GUI desktop application.

No other thread is allowed to perform these actions – a restriction common to
most desktop/GUI frameworks [2, 3]. Consequently, if the event loop is not
processing events in a timely fashion, the application will become unresponsive,
“freeze” and frustrate users.

To avoid such inanimate behaviour, multi-threading has long been necessary
for GUI applications to create responsiveness. On single processor systems,
multiple threads time-share the processor and thereby create concurrency. The
computation is off-loaded to some other thread (part (3) of figure 2) in order to
allow the GUI thread to return to the event loop. Both threads then share the
single processor, but none is fully stopped. While the helping thread executes
the off-loaded computation (part (4) of figure 2), it is not allowed to directly
access any of the GUI components (part (5)) since the GUI components are
not thread-safe (recall that the GUI thread is solely responsible for anything
GUI-related). As a result, events must be posted to the GUI thread (part (6))
that will in turn be handled by the GUI thread (part (7)).

So, when multiple processors came into play, it felt quite natural to not only
use threads for "virtual" concurrency and responsiveness, but for real parallel
execution, where the threads are executed by different processors. Unfortu-
nately, the concept of threads is ill-fitted to the diverse demands of parallel
computing. Off-loading a computation to another thread is not enough; the
computation needs to be further divided and distributed to multiple threads to
keep all the available cores busy. The problem of managing threads is elevated
and will be a lot worse when intricate synchronisation is necessary amongst the
sub-tasks to ensure a logically correct execution of the original computation. In

4

other words, desktop parallelisation incorporates all the challenges of generalised
parallel computing in conjunction with the challenges of developing responsive
desktop applications.

The problem with existing tools
Threads have been an integral part of Java since its initial release. Conse-
quently, parallelising a GUI application manually using Java Threads has been
the norm. There are two primary reasons why this model is unsuitable for paral-
lelising desktop applications. The first is that the intended conceptual purpose
of a Thread is to fork a new thread of execution at a particular point in the
program. As such, most independent sub-problems do not necessarily demand
a new thread of execution. Rather, we only wish to express that such a com-
putation may safely be performed asynchronously. In other words, we merely
wish to denote this computation as a potential task, as opposed to enforcing a
new thread of execution for it.

The second reason the threading model is undesirable is because of perfor-
mance consequences. If too few threads are created, then not enough paral-
lelism is introduced to exploit the number of cores. Conversely, if an excessive
number of threads is created, then this degrades performance due to resource
contention and scheduling overheads. Even with performance issues aside, the
threading model reduces code legibility in that the code is migrated to new
threads. Programmers must now manually manage any dependences amongst
the sub-computations. Not only is this error prone, but it introduces coupling
amongst the otherwise independent tasks.

For these reasons, modern parallelisation tools have opted for a tasking
model as opposed to the traditional threading model: programmers express
independent code snippets as tasks, and the runtime system of these tools will
manage the task scheduling. But in most cases, such as Java’s SwingWorker and
ForkJoinTask, these modern tools are only improvements on the performance
level. Programmers must still migrate code, implement dependence handling
amongst the tasks and avoid I/O bound tasks. Outside of Java, other modern
parallelisation tools include Cilk++, OpenMP task, Intel TBB, Apple’s GCD,
X10 and the .NET TPL. While these approaches are a huge step forward from
a manual thread based parallelisation, many of these approaches are not truly
object-oriented and often involve add-ons that are not designed into the lan-
guage.

More importantly, when it comes to parallelising desktop applications, the
primary problem is that none of these tools take into account the structure of
GUI applications. As a result, the programmer is still left with the responsibility
to ensure GUI computations are only performed on the GUI thread and that
the GUI thread remains free. Furthermore, implementing dependences between
tasks becomes the programmer’s responsibility. This results in a high amount of
coupling amongst (otherwise independent) tasks and tangling of parallelisation
concerns with the actual business logic. The tangling and coupling reduce the

5

Figure 3: ParaImage, an application developed using ParaTask.

amount of code reuse: a principle important to both software engineering and
object-oriented programming.

Parallelising desktop applications with Parallel Task
To address the above described problem we proposed Parallel Task (ParaTask
for short) for the parallelisation of object-oriented desktop applications [4].
ParaTask is a parallelisation tool that consists of a source-to-source compiler and
supporting runtime system to manage tasks. Although ParaTask is motivated
by standard parallelisation concepts, ParaTask contributes by unifying these
parallelisation concepts into an object-oriented environment. Programmers in-
troduce concurrency with a single keyword, and the different task concepts are
integrated into one model. ParaTask also supports an intuitive approach to de-
pendence handling and has the unique feature of focusing on GUI applications.
We will walk through the parallelisation of a GUI application and introduce the
various ParaTask features as they are used. The example application, ParaIm-
age, provides various functionality such as an online image search and image
editing. Figure 3 shows a screenshot of the image editing project in ParaImage.

Defining and invoking tasks

As discovered above, we would like a simple task solution. Since we are focusing
on object-oriented applications, we must decide on how we express tasks: using
methods or objects? If we opt for objects to represent tasks, this will not
address the programming difficulties of threads since developers are still required

6

to restructure and migrate the code. For this reason tasks in ParaTask are
encapsulated at the method level and defined by the TASK keyword. Below is
the definition of a task that performs an edge-detection on an image:

Defining a task

TASK public Image edgeDetectTask(Image i) {
// detect the edges

}

The event handler below shows the invocation of this task:

Invoking a task

public void actionPerformed(ActionEvent e) {
...
for (Image image: selectedImages) {

TaskID<Image> result = edgeDetectTask(image);
...

}
}

Invoking a TASK is essentially the same as invoking a standard sequential
method, except that it executes in parallel to its caller. Because of this asyn-
chronous behaviour, we will generally need a handle on the task invocation
should we wish to synchronise with its completion (for example, to access the
return result). The TaskID serves this purpose and is essentially a future that
represents a task invocation.

The actionPerformedmethod is an event handler, and as such, is performed
by the EDT. In a sequential implementation, the EDT would execute the edge
detection in its entirety (the application “freezes” during this time). However,
in the parallel mode, the EDT only enqueues the task and returns to the event
loop. The tasks are then scheduled for execution by a team of threads; ParaTask
automatically creates and manages an ideal number of threads to keep each of
the processing cores busy. This means that invoking multiple tasks is a lot more
efficient than creating a thread for each computation.

You have probably figured out our next problem. Now that the task has been
off-loaded from the EDT, how will we be able to know when the task completes
(to update the results to the user)? The first thing that comes to mind might
be to block on the TaskID:

Accessing the task result (blocking)

Image i = result.getResult();

7

If the task has already completed by this stage, then there is no problem since
the result is already available. Otherwise, the thread invoking this call blocks
until the task completes. This behaviour is clearly unacceptable for the EDT.
We instead need a way for the EDT to be notified when the task completes, i.e.
a non-blocking notification solution:

Non-blocking task synchronisation

public void actionPerformed(ActionEvent e) {
...
for (Image image: selectedImages) {

TaskID<Image> result = edgeDetectTask(image)
notify(updateGUI(TaskID));

...
}

}

Even though we off-load the filter computation to another thread, the update
of the GUI must still be performed by the EDT. By using the notify clause, the
EDT returns to the event loop and later gets informed when the task completes.
The methods specified inside the notify clause and the task definition remain
decoupled:

Updating GUI after a task completes

public void updateGUI(TaskID<Image> id) {
Image thumbnail = id.getResult();
// display thumbnail, update progress bar...

}

Dependences
What happens when a newly invoked task is dependent on previous tasks? For
example, assume the user wishes to perform multiple filters on a single image
(the filters should have an accumulating effect). Maybe the user applies an edge
detection filter and then immediately applies a blur filter twice. In this case,
there is a dependence between the tasks applied on the same image. Using
standard threading libraries, programmers would have to manually code for
such dependences using synchronisation mechanisms such as wait conditions. In
addition to being error prone, the disadvantage with this approach is that tasks
would become coupled with each other. For such cases, the dependsOn clause
is suggested:

Specifying dependences between tasks

1 for (Image image: selectedImages) {
2 TaskIDGroup history = historyMap.get(image);

8

3

4 TaskID result = blurTask(image)
5 notify(updateGUI(TaskID))
6 dependsOn(history);
7

8 history.add(result);
9 }

Each image has a history of filters (in the form of TaskIDs, line 2). Whenever
a new filter (i.e. a new task) is applied to an image, then that filter will only
be applied once the previous filters (i.e. tasks) have completed on the image
(line 6). Otherwise, without this dependence, the filter will be applied on the
original image (rather than be accumulated on the previous filters). Once the
task is invoked, it is then added to the image’s history (line 8) so that other
future tasks will wait for it to complete. Note that deadlocks cannot happen
with dependsOn, because dependence cycles cannot be created. A difference of
this model compared to the fork-join model is that dependences within a task
must be explicit (i.e. there is no implicit barrier). Since ParaTask should be
viewed as a substitute for threads, and threading libraries do not impose such
an implicit barrier, then ParaTask also does not impose this restriction.

Interactive tasks
Let us now consider a task that is not computationally intensive. For example,
maybe the task performs a online search as in (B) of figure 1? In this situa-
tion, it is undesirable to assign such a task to one of the worker threads in case
there are other computationally intensive tasks that would make better use of
the thread (see Use Thread Pools Correctly: Keep Tasks Short and Nonblock-
ing in Further Reading). ParaTask allows such tasks to be identified using the
INTERACTIVE_TASK keyword:

Defining an interactive task

INTERACTIVE_TASK public List<Image> searchTask(String query) {
// perform internet search

}

The difference of interactive tasks with standard tasks is that they do not
get queued to the worker threads. Other than this, interactive tasks are treated
the same as the standard tasks (e.g. the dependsOn clause and other features
may all still be used). This allows for a unified tasking model, meaning that the
concepts behind the threading model is integrated into the tasking model.

9

Interim results, progress and canceling
Sometimes we may want to display partially complete tasks to the user. For
example, showing the images retrieved so far rather than having to wait until
the end when all have arrived. ParaTask extends the notify clause concept
with the notifyInterim clause:

Registering for interim results

1 public void actionPerformed(ActionEvent e) {
2 ...
3 currentSearchID = searchTask(query)
4 notify(searchCompleted())
5 notifyInterim(receivedAnotherImage(TaskID,Image));
6 ...
7 }

Just like the notify clause, the methods inside the notifyInterim clause
will get executed by the EDT. The currentSearchID (line 3) represents the
TaskID for the current search being performed. It is declared globally to keep
it in scope should the search be canceled. The receivedAnotherImage method
is defined to update the panel with a new thumbnail and overall progress:

Updating GUI with interim results

private void receivedAnotherImage(TaskID id, Image image) {
panel.addImage(image);
progressBar.setValue(id.getProgress());

}

We now explore the code behind searchTask:

Updating task status and checking for cancel requests

1 INTERACTIVE_TASK public List<Image> searchTask(String query) {
2 List<Image> results = new ArrayList<Image>();
3

4 PhotoList pList = Flickr.getPhotoIDs(query);
5

6 for (int i = 0; i < pList.size(); i++) {
7 Image thumb = Flickr.getThumbnail(pList.get(i));
8 results.add(thumb);
9

10 if (CurrentTask.cancelRequested()) {
11 CurrentTask.setProgress(100);
12 return results;

10

13 } else {
14 CurrentTask.setProgress(++i/pList.size()*100);
15 CurrentTask.publishInterim(thumb);
16 }
17 }
18 return results;
19 }

The first part of the search involves retrieving a list of IDs for images that
match the search criteria (line 4). For each of the IDs, the actual image is
retrieved (line 7) and saved to the result set (line 8). The task then checks to
see whether a cancel request has been submitted (line 10). If so, the current
result set is returned (line 12). Otherwise, the task computes its new progress
(line 14) and publishes the newly retrieved image (line 15). Notice how all these
features (the canceling check, progress updates and publishing of interim results)
are performed without the task’s knowledge of other code. Such canceling is also
essential for implementing exception handlers.

Multi-tasks
Data parallelism is a very common form of parallelism where the same compu-
tation is to be performed multiple times (for example, (A) from figure 1). The
problem with invoking a task multiple times is that we would not get any sense
of group awareness amongst the multiple invocations. We prefer to invoke a
task once, yet that task is automatically invoked multiple times. ParaTask’s
multi-task concept is perfect for such situations, allowing the sub-tasks to de-
termine their position in the group (lines 2 and 4) and a barrier to synchronise
with the sibling sub-tasks (line 12):

Defining a multi-task

1 TASK(*) public void multiTask(ParIterator<File> pi) {
2 int myPos = CurrentTask.relativeID();
3 print("Hello from sub-task "+myPos);
4 int numTasks = CurrentTask.multiTaskSize();
5 if (myPos == 0)
6 print("Multi-task has "+numTasks+" sub-tasks.");
7 ...
8 while (pi.hasNext()) {
9 process(pi.next());

10 }
11 ...
12 CurrentTask.barrier();
13 ...

11

14 }

Whereas a standard task is annotated with TASK, a multi-task is annotated
with TASK(*) meaning it is created once for every worker thread. Alternatively,
annotating the multi-task with any integer n (instead of *) will create n tasks.
The ParIterator (line 1) refers to the Parallel Iterator [5] concept, which is
essentially a thread-safe iterator that extends the Java-style sequential iterator
to allow the parallel traverse of an arbitrary collection of elements. The Parallel
Iterator is particularly useful when used in combination with ParaTask’s multi-
task feature; the programmer does not need to concern with the creation of
threads (handled by ParaTask’s multi-task), nor concern with the distribution
of elements (handled by the Parallel Iterator).

Applications and evaluation
The design goals of Parallel Task and Parallel Iterator were to achieve a truly
object-oriented approach to parallel programming. This included integrating
different task concepts into the same model, minimising code restructuring and
promoting code reuse. Various performance benchmarks have been published for
both Parallel Task [4] and Parallel Iterator [5] showing that these concepts have
been introduced without sacrificing performance. The performance was com-
pared to different parallelisation approaches using various benchmarks, showing
low overhead and high speedups. The Parallel Iterator and Parallel Task con-
cepts have been used in developing a number of applications (e.g. a parallel
graph library, image application, PDF application, and web interaction), many
of which are available for download.

Figure 4 illustrates the performance of ParaTask compared to typical Java
parallelisation approaches a programmer may take (see section The problem
with existing tools), by comparing the speedup to the original sequential bench-
marks on a synthetic calculation (here the Raphson-Newton method). For very
fine grained and balanced workloads, figure 4(a) shows that only a manual
thread-based implementation, where the work is preallocated to the threads,
can slightly outperform ParaTask. However, figure 4(b) shows that this ap-
proach does not extend well for unbalanced workloads, requiring a dynamic
runtime scheduling solution. ParaTask performs most consistently across the
different workloads. In numerous other performance evaluations it regularly
outperforms the other approaches and is only occasionally surpassed by manual
parallelisation with threads or by JCilk for the special case of a highly recursive
and fine grained workload.

12

(a) Fine grained and balanced workload

(b) Unbalanced workload

Figure 4: ParaTask performance in comparison to typical Java parallelisation
approaches.

13

Further reading
• For a discussion on issues such as responsiveness and the GUI thread, see

Herb Sutter’s The Pillars of Concurrency, Dr. Dobb’s Journal:
http://www.drdobbs.com/high-performance-computing/200001985

• For a discussion on task sizes and dependences, see Herb Sutter’s Use
Thread Pools Correctly: Keep Tasks Short and Nonblocking, Dr. Dobbs
Journal:
http://www.drdobbs.com/high-performance-computing/216500409

• To download Parallel Task and/or Parallel Iterator (under GPL license),
including source files, example applications, documentations, publications,
an Eclipse plugin and tutorials, visit:
http://www.parallelit.org

References

[1] TIOBE Software BV, “TIOBE programming community index.”
http://www.tiobe.com/tpci.htm, 2010.

[2] E. Ludwig, Multi-threaded User Interfaces in Java. PhD thesis, Uni-
versity of Osnabrück, Germany, May 2006.

[3] H. Muller and K. Walrath, “Threads
and Swing.” The Swing Connection, 2008.
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html.

[4] N. Giacaman and O. Sinnen, “Parallel Task for parallelizing object-
oriented desktop applications,” in IEEE International Workshop
on Parallel and Distributed Scientific and Engineering Computing
(PDSEC) held in conjunction with 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’10), (Atlanta, USA),
2010.

[5] N. Giacaman and O. Sinnen, “Parallel Iterator for parallelizing object-
oriented applications,” (accepted for publication) International Journal
of Parallel Programming, 2010.

14

