

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

### Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

### General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

### THE METABOLISM OF STEROIDS BY HUMAN

MAMMARY TISSUES

Ronald A. F. Couch

I agree to this thesis being consulted and/or photocopied for the purpose of research or private study provided that due acknowledgment is made where appropriate and that my permission is obtained before any material is published.

> Thesis submitted to the Department of Surgery in partial fulfilment of the requirements for the degree of Doctor of Philosophy of the University of Auckland.

October, 1980

TABLE OF CONTENTS

|           |                                                                        | Page |
|-----------|------------------------------------------------------------------------|------|
|           | LIST OF TABLES                                                         | vi   |
|           | LIST OF FIGURES                                                        | viii |
|           | ACKNOWLEDGEMENTS                                                       | x    |
|           | SUMMARY                                                                | xii  |
|           | ABBREVIATIONS                                                          | xv   |
| CHAPTER 1 | INTRODUCTION                                                           |      |
| 1.1       | The Physiology of the Human Breast                                     | 1    |
| 1.2       | The Occurrence of Neoplastic Breast Lesions                            | 1    |
| 1.3       | Historical Developments                                                | 3    |
| 1.4       | Early Predictive Tests                                                 | 5    |
| 1.5       | The Source of Plasma Steroids                                          | 7    |
| 1.6       | The Uptake and Binding of Steroids by<br>Mammary Tissues and Receptors | 13   |
| 1.7       | The Use of Radioactive Tracers                                         | 17   |
| 1.8       | Steroid Metabolism by Breast Tissue                                    | 18   |
| 1.9       | Steroid Hydroxylase Reactions and Subsequent<br>Metabolism             | 22   |
| 1.10      | The Purpose of This Thesis                                             | 25   |
|           |                                                                        | Ÿ    |
| CHAPTER 2 | MATERIALS AND METHODS                                                  |      |
| 2.1       | Solvents and Reagents                                                  | 27   |
| 2.2       | Non-radioactive and Radioactive Steroids                               | 27   |
| 2.3       | Chromatographic Materials                                              | 39   |
| 2.4       | Miscellaneous                                                          | 41   |
| 2.5       | Chromatography Systems and Visualization<br>Techniques                 | 42   |
| 2.6       | Tissue Specimens                                                       | 43   |
| 2.7       | In Vitro Incubations Using Sliced Tissue                               | 44   |
| 2.8       | Isolation and Quantitation of the Tritiated Water                      | 46   |

| 2.9       | Extraction of the Steroids                                                                           | 46 |
|-----------|------------------------------------------------------------------------------------------------------|----|
| 2.10      | Quantitation of Radioactivity                                                                        | 48 |
| 2.11      | Recovery Estimations of Carrier Steroids                                                             | 50 |
| 2.12      | Microchemical Reactions                                                                              | 52 |
| 2.13      | Co-crystallization                                                                                   | 53 |
| 2.14      | Estimation of DNA in Tissue Samples                                                                  | 54 |
| 2.15      | Estimation of Protein in Tissue Samples                                                              | 54 |
| 2.16      | Enzyme Assays of the 3β-Sulphatase,<br>7α-Hydroxylase and 7α-Hydroxysteroid<br>dehydrogenase Enzymes | 54 |
| 2.16.1    | Incubation                                                                                           | 55 |
| 2.16.2    | Extraction                                                                                           | 56 |
| 2.17      | Sub-cellular Localization of Enzymes                                                                 | 57 |
| 2.17.1    | Fractionation of the Sub-cellular Organelles                                                         | 57 |
| 2.17.2    | In Vitro Incubation of the Sub-cellular Fractions                                                    | 58 |
|           | · •                                                                                                  |    |
| CHAPTER 3 | SYNTHESIS OF STEROIDS                                                                                |    |
| 3.1       | Introduction                                                                                         | 60 |
| 3.2       | Experimental                                                                                         | 61 |
| 3.2.1     | The 7-Hydroxy Epimers of Dehydroepiandrosterone (DHA)                                                | 61 |
| 3.2.2     | The 7-Hydroxy Epimers of Cholesterol                                                                 | 62 |
| 3.2.3     | 7a-Hydroxyandrostenedio1                                                                             | 63 |
| 3.2.4     | 7β-Hydroxyandrostenedio1                                                                             | 63 |
| 3.2.5     | 7-Ketoandrostenediol                                                                                 | 64 |
| 3.2.6     | 7-Dehydro DHA                                                                                        | 65 |
| 3.2.7     | 7α-Hydroxyandrostenedione                                                                            | 65 |
| 3.2.8     | 7α-Hydroxy DHA-3β-Sulphate                                                                           | 66 |
| 3.2.9     | Pregnenolone-38-Sulphate                                                                             | 67 |
| 3.2.10    | Androstenedio1-38-Sulphate                                                                           | 67 |
| 3.2.11    | 7α-Hydroxyestradiol                                                                                  | 68 |

iii

Page

|           | 3.2.12  | 7-Ketoestrone                                                                                                                     | 68  |
|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|           | 3.2.13  | B-ring Unsaturated Estrogens                                                                                                      | 68  |
|           | 3.2.14  | [1,2- <sup>3</sup> H] 7 $\alpha$ and 7 $\beta$ -Hydroxy DHA                                                                       | 69  |
|           | 3.2.15  | $[4-14C]$ 7 $\alpha$ -Hydroxy DHA                                                                                                 | 71  |
|           | 3.2.16  | [7- <sup>3</sup> H] Androstenedio1-3β-Sulphate                                                                                    | 71  |
|           | 3.2.17  | Investigation of Hydrolysis Techniques for<br>7α-Hydroxy DHA-3β-Sulphate                                                          | 71  |
|           | 3.3     | Discussion                                                                                                                        | 74  |
| CH        | APTER 4 | THE IN VITRO SYNTHESIS OF<br>7α-HYDROXYDEHYDROEPIANDROSTERONE<br>FROM DEHYDROEPIANDROSTERONE SULPHATE<br>BY HUMAN MAMMARY TISSUES |     |
|           | 4.1     | Introduction                                                                                                                      | 78  |
|           | 4.2     | Experimental                                                                                                                      | 80  |
|           | 4.2.1   | Incubations with [ <sup>3</sup> H] DHA-sulphate                                                                                   | 80  |
|           | 4.2.2   | Characterization of the Polar Steroid                                                                                             | 83  |
|           | 4.2.3   | Metabolism of [ <sup>3</sup> H] DHA-sulphate to 7α-Hydroxy<br>DHA and Tritiated Water by Human Mammary Tissues                    | 86  |
|           | 4.2.4   | Investigation of a Sulphate Conjugate Biosynthetic<br>Pathway of Seven Hydroxylation in Mammary Tissue                            | 88  |
|           | 4.3     | Discussion                                                                                                                        | 88  |
| <u>CH</u> | APTER 5 | METABOLISM OF DEHYDROEPIANDROSTERONE<br>BY HUMAN MAMMARY TISSUES                                                                  |     |
|           | 5.1     | Introduction                                                                                                                      | 92  |
|           | 5.2     | Experimental                                                                                                                      | 92  |
|           | 5.2.1   | Metabolism of $[7(n)-{}^{3}H]$ Dehydroepiandrosterone                                                                             | 92  |
|           | 5.2.2   | Metabolism of $[7(n)-{}^{3}H$ , $4-{}^{14}C$ ] Dehydroepiandrosterone                                                             | 97  |
|           | 5.2.3   | Metabolism of [1,2-3H] Dehydroepiandrosterone                                                                                     | 101 |
|           | 5.3     | Discussion                                                                                                                        | 107 |

Page CHAPTER 6 THE METABOLISM OF 7-HYDROXYDEHYDROEPIANDROSTERONE BY HUMAN MAMMARY TISSUES 6.1 Introduction 121 6.2 Experimental 125 6.2.1 Metabolism of [1,2-3H] 7a-Hydroxy DHA 125 Metabolism of [1,2-<sup>3</sup>H] 7β-Hydroxy DHA 6.2.2 135 6.3 Discussion 136 CHAPTER THE METABOLISM OF ANDROSTENEDIONE, 7 DIHYDROTESTOSTERONE AND THE SULPHATE

CONJUGATES OF CHOLESTEROL, PREGNENOLONE

AND ESTRONE

7.1 Introduction 141 7.2 Experimental 143 Metabolism of [1,2-<sup>3</sup>H] Androstenedione 7.2.1 143 Metabolism of [1,2-3H] Cholesterol Sulphate 7.2.2 148 Metabolism of [7-3H] Pregnenolone Sulphate 7.2.3 154 Metabolism of [1,2-3H] Dihydrotestosterone 7.2.4 158 Metabolism of [6,7-<sup>3</sup>H] Estrone Sulphate 7.2.5 161 7.3 Discussion 167

| CHAPTER | 8 | PROPERTIES OF THE SULPHATASE,<br>$7\alpha$ -HYDROXYLASE AND 7-HYDROXYSTEROID<br>DEHYDROGENASE ENZYMES |     |
|---------|---|-------------------------------------------------------------------------------------------------------|-----|
| 8.1     |   | Introduction                                                                                          | 175 |
| 8.2     |   | Experimental .                                                                                        | 175 |
| 8.2.1   |   | Sulphatase .                                                                                          | 175 |
| 8.2.2   |   | 7α-Hydroxylase                                                                                        | 181 |
| 8.2.3   |   | 7α-Hydroxysteroid Dehydrogenase                                                                       | 185 |

iv

| 8.2.4 | Sub-cellular Localization of the 3β-Sulphate<br>Sulphatase Enzyme System in Human Mammary<br>Tissue | 185 |
|-------|-----------------------------------------------------------------------------------------------------|-----|
| 8.2.5 | Sub-cellular Localization of the 7α-Hydroxylase<br>Enzyme System in Human Mammary Tissue            | 185 |
| 8.3   | Discussion                                                                                          | 190 |
|       | REFERENCES                                                                                          | 205 |
|       | APPENDIX                                                                                            | 221 |
|       | PUBLICATIONS                                                                                        | 225 |

et e

# Page

TABLES

| CHAPTER 2 | · · · · ·                                                                                                                                                      | Page |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1 | Steroids                                                                                                                                                       | 28   |
| Table 2.2 | Radioactive Steroids                                                                                                                                           | 40   |
| Table 2.3 | Classification of the Human Mammary Tissues<br>Obtained from Twenty Five Female Patients                                                                       | 45   |
| Table 2.4 | Paper Chromatography of Steroids                                                                                                                               | 49   |
| Table 2.5 | Gas Chromatography of Neutral Hydroxylated<br>Steroids as the Trimethylsilyl Ether<br>Derivatives                                                              | 51   |
| CHAPTER 3 |                                                                                                                                                                |      |
| Table 3.1 | Isolation of Tritiated 7α-Hydroxy DHA and<br>7β-Hydroxy DHA by Column Chromatography                                                                           | 70   |
| Table 3.2 | Crystallization of Products D, C and A with<br>Carrier Steroids                                                                                                | 70   |
| CHAPTER 4 |                                                                                                                                                                |      |
| Table 4.1 | Percentage Conversion of DHA-Sulphate by<br>Malignant and Adjacent Normal Human<br>Mammary Tissues                                                             | 82   |
| Table 4.2 | The Specific Activities of 7α-Hydroxy DHA<br>After Recrystallization                                                                                           | 87   |
| Table 4.3 | Percentage Conversion of DHA-sulphate to<br>DHA, 7α-Hydroxy DHA and Tritiated Water<br>by Human Mammary Tissues                                                | 87   |
| Table 4.4 | Percentage Conversion of [7(n)- <sup>3</sup> H]<br>DHA-sulphate to 7α-Hydroxy DHA 3-sulphate,<br>Free Steroids and Tritiated Water, by<br>Human Mammary Tissue | 89   |
| CHAPTER 5 |                                                                                                                                                                | 1    |
| Table 5.1 | The Metabolism of [7(n)- <sup>3</sup> H] Dehydroepiandrosterone<br>to Tritiated Water and Steroid Metabolites by<br>Human Mammary Tumour Tissue                | 96   |
| Table 5.2 | The <sup>3</sup> H/ <sup>14</sup> C Ratio of 7-Keto Dehydroepiandrosterone<br>and its Acetate Derivative After Recrystallization                               | 98   |
| Table 5.3 | The 7-Hydroxylation/Oxidation of [7- <sup>3</sup> H, 4- <sup>14</sup> C] DHA<br>By Human Mammary Tumour Tissue                                                 | 100  |
| Table 5.4 | Metabolism of [1,2- <sup>3</sup> H] Dehydroepiandrosterone by<br>Human Mammary Tissues                                                                         | 103  |
| Table 5.5 | The Specific Activities of Estradiol After<br>Recrystallization                                                                                                | 106  |

vi

# CHAPTER 6

| CHAPTER 6 | 2.                                                                                                                                               | Page |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 6.1 | Percentage Conversions of [1,2- <sup>3</sup> H] 7α-Hydroxy<br>DHA to Metabolites by Human Mammary Tissue                                         | 127  |
| Table 6.2 | Thin Layer Chromatography of Estrogens                                                                                                           | 132  |
| CHAPTER 7 |                                                                                                                                                  |      |
| Table 7.1 | Carrier Steroids Added to the [1,2- <sup>3</sup> H] Androstenedione<br>Incubation Media                                                          | 144  |
| Table 7.2 | Percentage Conversion of [1,2- <sup>3</sup> H] Androstenedione<br>To Metabolites by Benign Hyperplastic Tissue                                   | 147  |
| Table 7.3 | The Specific Activity of 7-Ketocholesterol on the Paper Chromatogram                                                                             | 152  |
| Table 7.4 | The Metabolism of [7(n)- <sup>3</sup> H] Pregnenolone Sulphate<br>to Seven Oxygenated Metabolites and Tritiated<br>Water by Human Mammary Tissue | 157  |
| Table 7.5 | The Metabolism of Dihydrotestosterone by Human<br>Mammary Tissue                                                                                 | 160  |
| Table 7.6 | The Metabolism of [6,7- <sup>3</sup> H] Estrone Sulphate<br>By Human Mammary Malignant Tissue                                                    | 165  |
| CHAPTER 8 |                                                                                                                                                  |      |
| Table 8.1 | Activity of the 3β-Sulphate Sulphatase in Sub-<br>cellular Fractions of Human Mammary Tissue                                                     | 187  |
| Table 8.2 | Activity of the 7α-Hydroxylase in Sub-cellular<br>Fractions of Human Mammary Tissue                                                              | 187  |
| Table 8.3 | Apparent Michaelis Constants of Substrates Cleaved<br>by the Steroid Sulphatase Enzyme System                                                    | 193  |
| Table 8.4 | Concentration of Steroids in the Peripheral<br>Circulation, Breast Tumours and Breast<br>Secretions of Women                                     | 194  |

vii

# FIGURES

| CHAPTER 1  | · ·                                                                                                             | Page |
|------------|-----------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1 | Steroid Metabolism in the Human Adrenal                                                                         | 9    |
| Figure 1.2 | Steroid Metabolism in the Human Ovary                                                                           | 11   |
| CHAPTER 3  |                                                                                                                 |      |
| Figure 3.1 | Degradation of 7α-Hydroxy DHA during a<br>Strong Acid Hydrolysis Procedure                                      | 73   |
| Figure 3.2 | Steroidal Dimer                                                                                                 | 76   |
| CHAPTER 5  |                                                                                                                 |      |
| Figure 5.1 | The Release of the Tritium Label from [7(n)- <sup>3</sup> H] DHA by Seven Hydroxylation                         | 109  |
| Figure 5.2 | The Release of the Tritium Label from<br>[7(n)- <sup>3</sup> H] DHA by Seven Oxidation                          | 109  |
| Figure 5.3 | Enzymic Pathways for the Production of<br>Androgens and Estrogens from<br>Dehydroepiandrosterone                | 116  |
| CHAPTER 6  |                                                                                                                 |      |
| Figure 6.1 | The Metabolism of DHA and DHA-sulphate<br>by Human Mammary Tumour Tissue In Vitro                               | 122  |
| Figure 6.2 | The Formation of Cholecalciferol (Vitamin D <sub>3</sub> )<br>from 7-Dehydrocholesterol                         | 124  |
| Figure 6.3 | The Postulated Reaction whereby a C <sub>19</sub> Vitamin<br>D3 Analogue could be derived from<br>7-Dehydro DHA | 124  |
| Figure 6.4 | The Formation of Hydroxylated Metabolites of<br>Cholecalciferol                                                 | 124  |
| Figure 6.5 | The Postulated C <sub>19</sub> Analogue of<br>1,25-Dihydroxycholecalciferol                                     | 124  |
| Figure 6.6 | Pathways Involving the Metabolism of 7α-Hydroxy<br>DHA by Human Mammary Tissue                                  | 140  |
| CHAPTER 7  |                                                                                                                 |      |
| Figure 7.1 | Radioscan of the Phenolic Fraction from the<br>-[1,2- <sup>3</sup> H] Androstenedione Incubation                | 149  |
| Figure 7.2 | Radioscan of the Phenolic Fraction from the [6,7-3H] Estrone Sulphate Incubation                                | 162  |
| Figure 7.3 | Metabolic Pathways of Steroid Metabolism in<br>Human Mammary Tissue                                             | 174  |
|            | N                                                                                                               |      |

| С | Н | A | P | Τ | E | R | 8 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

| APTER 8    |                                                                                                     | Page |
|------------|-----------------------------------------------------------------------------------------------------|------|
| Figure 8.1 | Human Mammary Tissue Sulphatase Activity<br>and DNA Content                                         | 177  |
| Figure 8.2 | DHA-sulphate, Androstenediol Sulphate and<br>Estrone Sulphate: Sulphatase,<br>Lineweaver-Burk Plots | 179  |
| Figure 8.3 | DHA-sulphate, Pregnenolone Sulphate:<br>Sulphatase, Lineweaver-Burk Plots                           | 180  |
| Figure 8.4 | Dehydroepiandrosterone: 7α-Hydroxylase,<br>Lineweaver-Burk Plot                                     | 183  |
| Figure 8.5 | Androstenediol and Dehydroepiandrosterone:<br>7α-Hydroxylase, Lineweaver-Burk Plots                 | 184  |
| Figure 8.6 | 7α-Hydroxydehydroepiandrosterone:<br>7α-Hydroxysteroid Dehydrogenase,<br>Lineweaver-Burk Plot       | 186  |

ix

### ACKNOWLEDGEMENTS

I wish to thank my supervisors, Dr. S. J. M. Skinner (Department of Surgery, University of Auckland) and Professor R. C. Cambie (Department of Chemistry, University of Auckland) for their invaluable guidance during this study.

It is with gratitude that I acknowledge the active co-operation of the following members of the Department of Surgery:-

Mr. M. F. Flint, Consultant Surgeon, from whose patients I obtained the specimens of mammary benign hyperplastic and ptotic tissue, and with whose help and that of Dr. A. Poole, the photographic plates were obtained.

Mrs. R. Richards, Mrs. K. Speak and Mrs. M. Lyons for histological staining of tissue specimens.

Dr. G. C. Gillard for invaluable discussion and Miss J. Brindle for assistance with protein assays.

I am most grateful to Surgeons of the Auckland and Greenlane Hospitals from whose patients malignant and fibroadenomatous breast tissue was obtained, to the histological services of these hospitals and to Mrs. P. Trindall and Miss B. Mason for obtaining patient data.

Helpful advice was offered by colleagues in the Biochemistry Department. Nuclear magnetic resonance spectra were produced by Mr. D. J. Calvert (Department of Chemistry). Dr. H. Young (Department of Scientific and Industrial Research, Auckland) produced some of the mass spectra while others were obtained from the Tenovus Institute for Cancer Research, Cardiff.

This thesis was typed by my wife Lynnette whose helpful participation and support throughout this study were a constant stimulus.

Financial support was provided by the Medical Research Council of New Zealand and the Isaacs Medical Research Fellowship.

The author dedicates this thesis to the Late Mr. T. W. Doouss who originally established the Steroid Breast Cancer Research Group from within which this study arose.

#### SUMMARY

1.

2.

Human mammary tissue was incubated *in vitro* with  $[7-^{3}H]$ dehydroepiandrosterone sulphate (DHA-sulphate) and in agreement with other investigators this steroid conjugate was metabolized to DHA and other steroid products. Sulphatase activity was greater in the malignant than the non-malignant tissues and was found to be a function of the tissue cellularity. One of the major products, a "polar steroid" necessitated identification.

The "polar steroid" was identified principally as  $7\alpha$ -hydroxy DHA by chemical modification techniques and co-crystallization of the purified steroid metabolite with carrier  $7\alpha$ -hydroxy DHA. This carrier required synthesis and characterization.

3. Similarly incubation experiments carried out with the substrates  $[7-^{3}H]$  DHA and  $[7-^{3}H, ^{14}C]$  DHA showed that the tritium label was partially displaced from the C<sub>7</sub> position as a result of 7-oxygenation. The metabolites 7-keto DHA and 7\beta-hydroxy DHA were identified. When the substrate was  $[1,2-^{3}H]$  DHA the label remained on the steroid and 7-keto DHA as well as  $7\alpha$ -hydroxy DHA were identified as major products.

4. During the incubations with  $[7-^{3}H]$  DHA and  $[1,2-^{3}H]$  DHA the C<sub>19</sub> steroids androstenediol, androstenedione, androstanedione and testosterone were isolated as metabolites. Evidence was obtained for the minimal metabolism of DHA to DHA-sulphate and to estradiol. No metabolic pathways were found to occur selectively in the malignant or non-malignant tissues.

xii

Other  $\Delta^5$ -3 $\beta$ -hydroxy steroids (cholesterol sulphate and pregnenolone sulphate) were also found to be suitable substrates for the sulphatase and 7 $\alpha$ -hydroxylase enzyme systems. The 7 $\alpha$ -hydroxy and 7-keto metabolites of both substrates were identified. However, the  $\Delta^4$ -3-ketosteroid androstenedione and the 5 $\alpha$ -reduced steroid dihydrotestosterone did not undergo 7-oxygenation, but were metabolized to other steroids containing two oxygen functions.

5.

6.

.8.

High specific activity  $[1,2-^{3}H]$  [7 $\alpha$ -hydroxy DHA and  $[1,2-^{3}H]$ 7 $\beta$ -hydroxy DHA were synthesized and incubated *in vitro* with human mammary tissues. These substrates were metabolized principally to 7-keto DHA and minor quantities of the respective 3 $\beta$ ,7,17 $\beta$ -triols. 7 $\alpha$ -Hydroxy DHA was sulpho-conjugated at the 3 $\beta$  position. Also there was evidence for an epimerase converting 7 $\alpha$ -hydroxy DHA to 7 $\beta$ -hydroxy DHA and vice versa. There was no evidence for the metabolism to 7-dehydro DHA, the B-ring unsaturated estrogens or 7-hydroxylated estrogens, and no evidence for a selective pathway of metabolism in malignant or non-malignant tissues.

7. It was concluded that 7-oxygenated derivatives of DHA were not precursors of potent physiologically active steroids. Alternatively, this metabolic pathway may act either as an alternative to the production of androgens and estrogens from DHA or, by the production of 7 $\alpha$ -hydroxyandrostenediol, may act to inhibit the antagonistic effect of androstenediol towards estradiol at the estrogen receptor.

The sulphatase activity previously found to hydrolyse the sulphate conjugates of  $C_{19}$ ,  $C_{21}$  and  $C_{27}$  steroids was also found to cleave estrone sulphate. The principal metabolites were estrone and estradiol.

xiii

The apparent Michaelis Constants were determined for the hydrolysis of estrone sulphate, DHA-sulphate, androstenediol sulphate and pregnenolone sulphate by human mammary tissue sulphatase(s). Apparent Michaelis Constants were also obtained for the 7 $\alpha$ -hydroxylation of DHA and androstenediol and for the conversion of 7 $\alpha$ -hydroxy DHA to 7-keto DHA. This data indicates that all these metabolic steps can occur at the physiological concentration of the steroid substrate.

9.

10. The sulphatase and the  $7\alpha$ -hydroxylase enzyme systems were found to be located in the microsomal fraction of the human mammary tissue cellular preparation.

11. Plasma steroids directly influence the steroid micro-environment of body tissues. However, this study has shown that in mammary neoplastic lesions this environment is further determined by enzymic steroid reactions carried out by the neoplastic tissue. These pathways of steroid metabolism involve the production of estrogenic and androgenic steroids, estrogen agonist and antagonist steroids, steroid sulphate conjugates and steroids which are probably non-hormonal.

xiv

## ABBREVIATIONS

-

| n                               | as in '[7(n)- <sup>3</sup> H]' denotes that the steroid was<br>nominally labelled with tritium at the C7<br>carbon atom. |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| В                               | as in 'B-ring' denotes the steroid 'hexagon'<br>formed by the C5 to C10 carbon atoms.                                    |
| CDC13                           | deuterated chloroform                                                                                                    |
| C <sub>5</sub> D <sub>5</sub> N | deuterated pyridine                                                                                                      |
| МеОН                            | methanol                                                                                                                 |
| EtOH                            | ethanol                                                                                                                  |
| NaBH4                           | sodium borohydride                                                                                                       |
| TCA                             | trichloroacetic acid                                                                                                     |
| <u>M</u> +.                     | mass of the molecular ion                                                                                                |
| m/z                             | mass of molecular ion fragments                                                                                          |
| 3                               | extinction coefficient                                                                                                   |
| d.p.m.                          | disintegrations per minute                                                                                               |
| f                               | femto                                                                                                                    |
| λ                               | ultraviolet absorption maxima                                                                                            |
| ν                               | infrared absorption maxima                                                                                               |
| m.p.                            | melting point                                                                                                            |

4