Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
THE FORMATION AND FATE OF CARBONYL SULFIDE (COS) GAS IN ALUMINIUM SMELTING

By
Suzanne Jill Hay

Auckland, New Zealand
December 2002
ABSTRACT

Carbonyl sulfide (COS) gas is emitted from aluminium smelters at concentrations of 1 – 8 ppmv or 0.2 – 1.6 kg t\(^{-1}\) Al produced. While COS emissions are relatively small compared to emissions of HF or SO\(_2\), previous measurements suggest that COS is not efficiently captured in the scrubbing systems used by aluminium smelters and it has been suggested that the industry is a significant anthropogenic emitter of COS. COS is a unique sulfur gas in the atmosphere, due to its stability, lifetime of several years and implication in ozone depletion.

The source of COS and other sulfur gases from aluminium smelters, is the 1 – 4 mass% S content of anodes, consumed during aluminium electrolysis. These anodes are primarily made from petroleum coke, a low value and therefore high sulfur product, of crude oil refining. This thesis examines aspects of the formation and fate of COS in aluminium reduction cells.

One thesis objective was to confirm the nature of sulfur species present in petroleum cokes and anodes. A XANES (X-ray Absorption Near Edge Structure) spectroscopy study of cokes from the major suppliers and anode core samples showed that organic sulfur containing ring structures were the dominant sulfur species, before and after anode baking and even after significant desulfurisation at 1500ºC.

Thermodynamic calculations performed using the HSC Chemistry© computer package agreed with previous smelter measurements that COS gas was the dominant sulfur gas to form at the anode face and SO\(_2\) became the dominant sulfur gas after the anode gases left the cell and mixed with an induced air draft in the cell hooding.

Previous smelter measurements showed that some COS (about 5 ppmv) did survive through the cell ducting into the dry scrubber and that there were only negligible reductions in COS concentration after dry scrubbing. The dry scrubber contains smelter-grade alumina, which adsorbs HF and other smelter gases, before the alumina is recycled to the cells.
Another objective of this thesis was to study the effect dry scrubbing had on COS emissions in greater detail in the laboratory to better understand any reactions that may be occurring. A thermodynamic analysis using HSC Chemistry© determined that alumina would reduce the stability of COS at a typical dry scrubbing temperature of 80°C. The dry scrubber was modelled in the laboratory using an alumina containing fluidised bed reactor, with the inlet and outlet gas composition monitored using mass spectrometry. Adsorbed species resulting from COS adsorption on alumina were studied separately using DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy).

Experiments showed that COS was stable in the fluidised bed apparatus in isolation. The presence of smelter-grade alumina led to the adsorption of COS in its molecular form and as adsorbed hydrogen thiocarbonate. The latter species is believed to be an intermediate in the hydrolysis of COS into H₂S on alumina. The effect of conditions which may vary in the dry scrubbing system, such as humidity, SO₂ and HF concentrations, were studied. The presence of optimum humidity levels ensured sustained hydrolysis of COS over several hours, but adsorbed SO₂ and HF interfered with COS conversion. This suggests that COS hydrolysis would be unlikely to occur to a great extent in commercial dry scrubbers used in the aluminium smelter industry.
ACKNOWLEDGEMENTS

I gratefully thank my supervisors, Dr Margaret Hyland and Associate Professor Jim Metson, for all their guidance in all aspects of this thesis, it was very much appreciated.

For their financial contribution, I would like to thank the NZ Foundation for Research, Science and Technology and ALSTOM Power. At ALSTOM, I thank Mr Geir Wedde for supporting the project, Miss Eldri Bjornstad for her advice and Dr Otto Morten Bade, who provided me with much guidance and the opportunity to do experimental work at SINTEF in Oslo. I thank all the staff at the Applied Chemistry department of SINTEF who assisted me, but particularly Dr Richard Blom and Principal Scientist Ivar M. Dahl.

For technical assistance and companionship during my time at the Synchrotron Radiation Center (SRC) in Wisconsin, I thank Dr Yongfeng Hu, Dr Kim Tan and Dr Astrid Jürgensen. Access to the DCM and Grasshopper beamlines at the SRC, University of Wisconsin Madison, was provided through the Canadian Synchrotron Research Facility. The SRC is supported by the NSF (Grant number DMR-0084402). I also appreciate Mr Raymond Perruchoud at R&D Carbon and Mr Alan Tomsett at Comalco, who supplied samples for analysis.

At The University of Auckland, I particularly appreciate Emeritus Professor Barry Welch for his interest in my progress along the way. I also thank the numerous technical staff in the Chemical and Materials Engineering department who have been involved with the project and the friendship and assistance provided by the other postgraduate students over the last few years.

Finally, thanks to my family and friends for their love and support throughout my studies, especially my parents Cynthia and Russell Hay and my husband Cleavon Whittfield. Thank you.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 COS EMISSIONS .. 1
1.2 PROJECT OBJECTIVES.. 2
1.3 THESIS LAYOUT ... 2

CHAPTER 2 THE ROLE OF SULFUR IN ALUMINIUM SMELTING

2.1 THE ALUMINIUM SMELTING PROCESS 5

2.1.1 Anodes .. 6

2.1.2 Smelter Grade Alumina .. 7

2.2 DRY SCRUBBING .. 9

2.2.1 Gaseous Emissions From Aluminium Smelting 10

2.3 SULFUR IN COKES AND ANODES 12

2.3.1 Desulfurisation During Anode Baking 14

2.3.2 The Effect of Sulfur on Anode Performance 14

2.3.3 Removing the Sulfur Impurity 17

2.4 COS EMISSIONS IN ALUMINIUM SMELTING 18

2.4.1 Thermodynamic Predictions of COS Formation at the Anode 18

2.4.2 Measurements of COS in Anode Gas 21

2.4.3 Impact of Scrubbing on COS 24

2.5 COS IN THE ATMOSPHERE .. 28

2.6 SUMMARY .. 30

PART I: FORMATION OF COS IN ALUMINIUM SMELTING

CHAPTER 3 PREVIOUS SULFUR SPECIATION STUDIES IN CARBONACEOUS MATERIALS

3.1 INTRODUCTION .. 33

3.2 SULFUR STUDIES WITH XANES 33

3.2.1 S K-edge XANES Studies 34

3.2.2 S L-edge XANES Studies 35
3.3 SULFUR SPECIATION IN CARBONACEOUS MATERIALS ..35
 3.3.1 Coal ..35
 3.3.2 Asphaltene Fraction of Crude Oil ...40
 3.3.3 Kerogen from Kashpir Oil Shales ..43
 3.3.4 Sediment Extracts and Petroleum ..44
 3.3.5 Polysulfides and Rubbers ...44
 3.3.6 Soils and Sediments ...45
 3.3.7 Proteins ...45
 3.4 SULFUR IN PETROLEUM COKE ...45
 3.5 APPLYING XANES ANALYSIS TO PETROLEUM COKES AND ANODES46

CHAPTER 4 XANES: THEORY AND EXPERIMENTAL METHOD47
 4.1 INTRODUCTION TO XANES ...48
 4.2 XANES THEORY ...49
 4.3 XANES IN PRACTICE ...54
 4.4 XANES EXPERIMENTAL METHOD ...55
 4.5 HSC CALCULATIONS ...61

CHAPTER 5 RESULTS: XANES STUDY OF SULFUR SPECIATION IN COKES
AND ANODES ...62
 5.1 SULFUR REFERENCE COMPOUNDS ...63
 5.1.1 Inorganic Reference Compounds ..63
 5.1.2 Organic Reference Compounds ...67
 5.1.3 Polymer Reference Compounds ..71
 5.2 SULFUR SPECIATION IN COKES ...74
 5.2.1 Quantification of Sulfur Composition in Cokes83
 5.3 SULFUR SPECIATION IN ANODES ...86
 5.3.1 The Effect of Anode Baking and Usage ...86
 5.3.2 The Effect of Baking Temperature ..90
 5.3.3 The Effect of Rebaking Anodes at 1400 – 1500ºC93
 5.3.4 Quantification of Sulfur Composition in Anodes98
 5.4 THERMODYNAMIC PREDICTIONS OF SULFUR GAS FORMATION100
 5.4.1 Sulfur Gas Composition at the Anode ..100
 5.4.2 Sulfur Gas Composition Leaving the Cell103
PART II: FATE OF COS IN ALUMINIUM SMELTING .. 106

CHAPTER 6 COS HYDROLYSIS IN CLAUS CATALYSIS 107

6.1 INTRODUCTION .. 109
6.2 THE CHEMISTRY OF THE ALUMINA SURFACE .. 109
6.3 CLAUS CATALYSIS ... 111
6.4 COS HYDROLYSIS WITH ALUMINA .. 112
6.5 COS HYDROLYSIS MECHANISM .. 113
 6.5.1 Adsorbed Molecular COS ... 114
 6.5.2 Hydrogen Thiocarbonate (HCO$_2$S$^-$) Formation 115
6.6 KINETICS OF COS HYDROLYSIS ... 117
6.7 OTHER METHODS FOR COS DECOMPOSITION .. 121
6.8 SO$_2$ ADSORPTION ON ALUMINA ... 122
 6.8.1 Physisorbed SO$_2$ Species ... 123
 6.8.2 Sulfite and Hydrogen Sulfite Species .. 123
 6.8.3 Other Chemisorbed SO$_2$ Species .. 124
 6.8.4 Sulfate Formation .. 126
 6.8.5 Surface Reaction Between SO$_2$ and H$_2$S .. 126
 6.8.6 Effect of HF .. 127
6.9 H$_2$S ADSORPTION ON ALUMINA ... 127
 6.9.1 Adsorbed H$_2$S Bands .. 128
6.10 CS$_2$ ADSORPTION ON ALUMINA .. 129
6.11 RELEVANCE TO DRY SCRUBBING .. 130

CHAPTER 7 THERMODYNAMIC CALCULATIONS OF COS STABILITY IN
DRY SCRUBBING ... 132

7.1 INTRODUCTION .. 133
7.2 COS IN ISOLATION ... 134
7.3 INFLUENCE OF ALUMINA .. 135
 7.3.1 α- and γ-Alumina ... 135
 7.3.2 Gibbsite (Al(OH)_3) ... 136
 7.3.3 Mixture of phases .. 137
7.4 ADDITION OF H$_2$O .. 138
7.5 ADDITION OF O₂ ... 139
 7.5.1 H₂O / O₂ .. 143
7.6 ADDITION OF CO₂ ... 145
 7.6.1 H₂O / CO₂ ... 146
7.7 ADDITION OF CO ... 147
 7.7.1 H₂O / CO .. 148
 7.7.2 Changing CO₂ / CO Ratio .. 149
7.8 ADDITION OF SO₂ .. 150
 7.8.1 H₂O / SO₂ ... 152
7.9 ADDITION OF OTHER SMELTER GASES 153
7.10 ADDITION OF AIR .. 154
7.11 STABILITY OF DRY SCRUBBING GAS 155
7.12 SUMMARY ... 158

CHAPTER 8 EXPERIMENTAL METHODS USED FOR COS/ALUMINA
STUDIES .. 161

8.1 INTRODUCTION ... 163
8.2 FLUIDISED BED STUDIES .. 163
 8.2.1 Gases Used ... 164
 8.2.2 Fluidised Bed Reactor Design .. 166
 8.2.3 H₂O and HF Experiments .. 169
 8.2.4 Quadrupole Mass Spectrometer 170
 8.2.5 Sensitivity to Ionisation .. 171
 8.2.6 Procedure for Fluidised Bed Experiments 173
8.3 DRIFTS ... 174
 8.3.1 Gases Used ... 176
 8.3.2 Artefacts and Features in the IR Spectrum 177
 8.3.3 Summary of DRIFTS Experiments 178
8.4 ALUMINA ANALYSIS .. 179
 8.4.1 Particle Size Distribution .. 179
 8.4.2 BET Surface Area .. 179
 8.4.3 XRD (X-Ray Diffraction) .. 180
 8.4.4 XRF (X-Ray Fluorescence) .. 180
 8.4.5 XPS (X-ray Photoelectron Spectroscopy) 181
CHAPTER 9 THE ACTIVITY OF SMELTER-GRADE ALUMINA TOWARDS COS GAS ...201

9.1 GAS PHASE EXPERIMENTS ...203
9.2 EFFECT OF SMELTER GRADE ALUMINA ON COS GAS204
 9.2.1 Fluidised Bed Studies of COS on Alumina ..204
 9.2.2 DRIFTS Studies of COS on Alumina ...210
9.3 EFFECT OF H₂O ..215
 9.3.1 Effect of Humidity in the Fluidised Bed ..216
 9.3.2 Effect of Calcined Primary Alumina Using DRIFTS221
9.4 EFFECT OF O₂ GAS ..223
 9.4.1 Effect of O₂ in the Fluidised Bed ...223
 9.4.2 Effect of Air Using DRIFTS ...227
9.5 ACTIVITY OF SECONDARY ALUMINA TOWARDS COS228
 9.5.1 Fluidised Bed Studies with Secondary Alumina229
 9.5.2 DRIFTS Studies with Secondary Alumina ..230
9.6 EFFECT OF HF GAS AND FLUORINATED ALUMINA231
 9.6.1 Fluidised Bed Studies with HF Gas ...231
 9.6.2 Fluidised Bed Studies with Fluorinated Alumina232
9.7 EFFECT OF SO₂ GAS ..233
 9.7.1 SO₂ Fluidised Bed Studies ...234
 9.7.2 SO₂ DRIFTS Studies ...236
 9.7.3 Effect of SO₂ on COS Adsorption in the Fluidised Bed240
 9.7.4 Effect of SO₂ on COS Adsorption using DRIFTS244
9.8 EFFECT OF ALUMINA IMPURITIES ...246
 9.8.1 Fluidised Bed Studies of Alumina Impurities246
9.8.2 DRIFTS Studies of Alumina Impurities .. 251
9.9 Effect of CO₂ .. 256
 9.9.1 Fluidised Bed Studies with CO₂ .. 256
9.10 Effect of H₂S ... 258
 9.10.1 Fluidised Bed Studies of H₂S on Alumina .. 258
 9.10.2 DRIFTS Studies of H₂S on Alumina .. 260
9.11 Effect of γ-Alumina ... 262
 9.11.1 Fluidised Bed Studies of γ-Alumina Activity 263
 9.11.2 DRIFTS Studies with γ-Alumina ... 265
9.12 Discussion .. 266

CHAPTER 10 CONCLUSIONS ... 271
10.1 Introduction ... 271
10.2 Sulfur Speciation in Anodes Using XANES .. 271
10.3 Thermodynamic Calculations for the Formation of COS 273
10.4 Thermodynamic Calculations of COS Stability in Dry Scrubbing 274
10.5 COS Hydrolysis on Smelter-Grade Alumina ... 274
10.6 Industrial Implications ... 277

CHAPTER 11 REFERENCES ... 279

APPENDICES ... 292
APPENDIX A: GLOSSARY FOR XANES THEORY .. 293
APPENDIX B: SULFUR SPECIATION NOMENCLATURE 295
APPENDIX C: PEAK MODELS FOR COKES AND ANODES 296
APPENDIX D: HUMIDITY AND HF SOLUTION CALCULATIONS 298
APPENDIX E: AL₂O₃, CAF₂ AND KBR REFERENCE DRIFTS SPECTRA 300
APPENDIX F: FT-IR SPECTRA OF COS, SO₂ AND H₂S GASES 304
APPENDIX G: GAS PHASE FLUIDISED BED EXPERIMENTS AND MASS SPECTROMETER CALIBRATION .. 306
 G.1 Mass Spectrometric COS, H₂S and SO₂ Calibrations 306
 G.2 Gas Phase Experiments with Humidity ... 310
 G.3 Gas Phase Experiments with O₂ ... 313
 G.4 Gas Phase Experiments with SO₂ .. 318
LIST OF FIGURES

Figure 2.1: A typical prebake Hall-Héroult cell for producing aluminium [10].5
Figure 2.2: Alumina transformation sequence Al(OH)₃ gibbsite $\rightarrow \alpha$-Al₂O₃ [15].8
Figure 2.3: A simple cross current dry scrubber [19]. ...10
Figure 2.4: The process of producing anodes from petroleum coke. Various methods for reducing the sulfur content of coke are indicated on the right. Figure adapted from [23]. ...12
Figure 2.5: Thermogravimetric analysis of emissions during coke calcination. The weight loss above 1500°C was attributed to desulfurisation [27]. ...13
Figure 2.6: The effect of anode sulfur content on carbon consumption found by [12]. Carbon Gasification + Carbon Dust = Carbon Consumption...16
Figure 2.7: The thermodynamic equilibrium of sulfur and hydrogen containing gases for a gas containing 3wt%S at 1250K when the ratio of CO₂ to CO is changing (From [35]).19
Figure 2.8: Composition of sulfur species present in the anode gas, both unburnt and burnt, predicted by Dorreen et al.’s thermodynamic calculations. The Lab Cell calculations differ from the Industrial Cell calculations, because the latter takes moisture from the air into account, enabling H₂S formation [11] ..20
Figure 2.9: Variation in continuous COS and SO₂ concentrations before dry scrubbing measured by Kimmerle et al. [38]. ...25
Figure 2.10: The atmospheric sulfur cycle, including sources and sinks of sulfur gases to the atmosphere [1, 39, 40]. Dotted lines represent sinks. ...28
Figure 3.1: S L-edge XANES spectra for various coals and standards, measured by Kasrai et al. [61]...36
Figure 3.2: An example of a fitted XANES S K-edge spectrum (of Illinois No. 6 Coal) by Huffman et al. [58]. The dotted lines are $s \rightarrow p$ transitions for various species and the dot-dashed line is the arc tan step function. ...38
Figure 3.3: S L-edge XANES spectra (as labelled on the right hand side) from Kasrai et al. [62] comparing Rasa coal (A) with various model compounds (B-G)..39
Figure 3.4: Reference compound spectra for the S K-edge measured by Sarret et al. [56]. ...40
Figure 3.5: Reference compound spectra for the S L-edge measured by Sarret et al. [56]....41
Figure 3.6: Comparison between S L-edge XANES spectra for reference compounds and asphaltene samples.

Figure 4.1: Principal components of the electron storage ring used as a synchrotron radiation source [68].

Figure 4.2: The process of X-ray absorption (left), the interaction between the photoelectron wave and backscattered wave (middle) and the spectrum produced (right) (adapted from [71]).

Figure 4.3: An example of a K-edge absorption spectrum, showing the XANES and EXAFS regions [73]. The spectrum has been normalised to the high energy atomic absorption (α_A). α is the measured absorption coefficient after pre-edge subtraction.

Figure 4.4: Electron energy level diagram in an atom (adapted from [74]).

Figure 4.5: The monochromator optics for a) the Grasshopper and b) the DCM (Double Crystal Monochromator). Each one tunes to a different part of the synchrotron continuum, 40 – 200 eV for the Grasshopper (B K-edge, Al, Si, P and S L-edges) and 1500 – 4000 eV for the DCM (4d, 5d, Si, P, S, Al K-edges).

Figure 4.6: Schematic of a typical endstation at the grasshopper and DCM beamlines.

Figure 5.1: XANES S K-edge spectra of the inorganic reference compounds studied.

Figure 5.2: XANES S L-edge spectra of the inorganic reference compounds studied.

Figure 5.3: XANES S K-edge spectra of the organic reference compounds studied.

Figure 5.4: XANES S L-edge spectra of the organic reference compounds studied.

Figure 5.5: XANES S K-edge spectra of the polymeric reference compounds studied.

Figure 5.6: XANES S L-edge spectra of the polymeric reference compounds studied. The vulcanised and EDPM rubber spectra were measured in TEY mode, polyphenylene sulfide and polysulfone in FLY mode.

Figure 5.7: XANES S K-edge TEY spectra for the low sulfur petroleum cokes studied.

Figure 5.8: XANES S K-edge FLY spectra for the low sulfur petroleum cokes studied.

Figure 5.9: XANES S K-edge TEY spectra for the high sulfur petroleum cokes studied.

Figure 5.10: XANES S K-edge FLY spectra for the high sulfur petroleum cokes studied.

Figure 5.11: XANES S L-edge TEY spectra for the low sulfur petroleum cokes studied.

Figure 5.12: XANES S L-edge TEY spectra for the high sulfur petroleum cokes studied.

Figure 5.13: XANES S K-edge TEY spectra for anode coke, a baked anode and an anode butt.
Figure 5.14: XANES S L-edge TEY spectra for anode coke, a baked anode and an anode butt. ...88

Figure 5.15: Comparison of the hkl (002) graphite plane in anodes baked at various temperatures. The smaller the FWHM (full width at half maximum), the higher the degree of graphitisation...90

Figure 5.16: XANES S K-edge TEY spectra for anodes baked at four different temperatures from the same source coke..91

Figure 5.17: XANES S L-edge TEY spectra for anodes baked at four different temperatures from the same source coke..92

Figure 5.18: XRD results showing the hkl (002) graphite peak for anodes baked at 944ºC and then rebaked at either 1400ºC or 1500ºC ...94

Figure 5.19: The relationship between L_c (crystallite size) and equivalent baking temperature for an anode [83]. ..94

Figure 5.20: XANES S K-edge TEY spectra for an anode baked at 944ºC, then rebaked at 1400ºC or 1500ºC ..96

Figure 5.21: XANES S L-edge TEY spectra for an anode baked at 944ºC, then rebaked at 1400ºC or 1500ºC ..97

Figure 5.22: Thermodynamic equilibrium compositions for sulfur species at 970ºC for the starting composition: 0.001 kmol C$_4$H$_4$S (thiophene), 0.082 kmol C, 0.001 kmol F$_2$ (g), 0.002 – 0.2 kmol O$_2$ (g) ..101

Figure 5.23: Sulfur species thermodynamic equilibrium at 970ºC for the starting composition at O$_2$ (g) = 0.076 kmol from Figure 5.22 (anode gas composition from thiophenic S), where the CO$_2$/CO ratio is changing (CO$_2$ (g) + CO (g) = 20 kmol). ..102

Figure 5.24: Thermodynamic equilibrium for sulfur species as anode gas from Figure 5.22 (anode gas composition from thiophenic S and O$_2$ (g) = 0.076 kmol) is cooled from 1000ºC down to 0ºC ..103

Figure 5.25: Thermodynamic equilibrium at 970ºC for sulfur species as air is mixed with anode gas from Figure 5.22 (anode gas composition from thiophenic S and O$_2$ (g) = 0.076 kmol). “Air” consisted of 2mol% H$_2$O, with the remainder 21% O$_2$/79% N$_2$....104

Figure 5.26: Equilibrium composition of anode gas (from Figure 5.22 calculations) as it is cooled from 1000ºC down to 0ºC in excess (99 mol%) air (2 mol% H$_2$O, remainder 79% N$_2$/21% O$_2$) ...104

Figure 6.1: Six kinds of OH group on the alumina surface, bound to octahedral (AlVI) and tetrahedral (AlIV) aluminium sites (from reference [85]).................................110
Figure 6.2: Adsorption sites for molecular COS proposed by [101] and [107], which have bands at around 2000 cm⁻¹.

Figure 6.3: Possible hydrogen thiocarbonate (HTC) species proposed by [101] to explain bands at 1575 and 1325 cm⁻¹.

Figure 6.4: COS conversion as a function of time at 30°C, with 300 ppm COS, 1200 ppm H₂O, γ-alumina (0.5 g, 300 m²g⁻¹) and a gas hourly space velocity of 100,000 h⁻¹ [99].

Figure 6.5: Rate of COS hydrolysis as a function of H₂O concentration at 60°C, with 150 ppm COS γ-alumina (0.5 g, 300 m²g⁻¹), and a gas hourly space velocity of 500,000 h⁻¹. Key: ♦ = experimental data, - - - = calculated data for COS adsorption limited model, – = calculated data for surface reaction type model [99].

Figure 6.6: Adsorbed SO₂ species assigned by Datta et al. [108]. Types 1 and 4 have been identified in most studies (see Table 6.2) and Types 2 and 4 were also detected by Berben et al. [117].

Figure 6.7: Dissociative adsorption of H₂S on γ-alumina, proposed by Datta and Cavell [123].

Figure 7.1: The equilibrium composition as COS concentration is increased (diluted in Ar) at 80°C. Initial composition: [Ar] = 9.6 kmol, [COS] = 1E-06 – 1E-04 kmol (0.1 – 10 ppm), T = 0 – 100°C.

Figure 7.2: Equilibrium composition for S and C species between 0 and 100°C, with the starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), T = 0 – 100°C.

Figure 7.3: The S and C equilibrium composition when gibbsite is present for the starting components: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [Al(OH)₃] = 0.01 kmol (1 g), T = 0 – 100°C.

Figure 7.4: The S and C equilibrium composition as temperature varies with the following starting components: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [α-Al₂O₃] = 0.005 kmol (0.5 g), [γ-Al₂O₃] = 0.005 kmol (0.5 g), [Al(OH)₃] = 0.0001 kmol (0.01 g), T = 0 – 100°C.

Figure 7.5: The S and C equilibrium composition as H₂O concentration increases and no alumina is present. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H₂O] = 1E-05 – 1E-03 kmol, T = 80°C.
Figure 7.6: C and S equilibrium composition when no alumina is present and O₂ concentration is increasing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [O₂] = 1E-05 – 1E-03 kmol, T = 80°C. ...140

Figure 7.7: The S and C equilibrium composition when α-alumina is present and O₂ concentration increases. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [O₂] = 1E-05 – 1E-03 kmol, [α-Al₂O₃] = 0.01 kmol (1 g), T = 80°C.141

Figure 7.8: The S and C equilibrium composition when gibbsite is present and as O₂ content varies. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [O₂] = 1E-05 – 1E-03 kmol, [Al(OH)₃] = 0.01 kmol (1 g), T = 80°C. ...142

Figure 7.9: The S and C equilibrium composition when no alumina is present. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H₂O] = 2E-04 kmol, [O₂] = 1E-05 – 1E-03 kmol, T = 80°C. ..143

Figure 7.10: The S and C equilibrium composition when H₂O and α-alumina are present and O₂ concentration is increasing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H₂O] = 2E-04 kmol, [O₂] = 1E-05 – 1E-03 kmol, [α-Al₂O₃] = 0.01 kmol, T = 80°C. ..144

Figure 7.11: The S and C equilibrium composition (excluding CO₂) as CO₂ concentration increases. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol, [CO₂] = 0.0384 – 3.84 kmol, T = 80°C. ..145

Figure 7.12: The S equilibrium composition at 80°C when H₂O is present and CO₂ concentration is increasing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H₂O] = 2E-04 kmol, [CO₂] = 1E-06 – 5 kmol, T = 80°C.146

Figure 7.13: The S and C equilibrium composition with varying CO concentration when no alumina is present at 80°C. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [CO] = 1E-05 – 1E-03 kmol, T = 80°C. ..147

Figure 7.14: S Composition at equilibrium when H₂O is present and CO concentration is increasing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H₂O] = 2E-04 kmol, [CO] = 1E-04 – 1E-02 kmol, T = 80°C. ..148

Figure 7.15: S equilibrium composition as the CO₂/CO ratio changes from 100% CO₂ to equal quantities of CO₂ and CO. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [CO₂] = 6 – 3 kmol, [CO] = 0 – 3 kmol, T = 80°C. ..149
Figure 7.16: S and C equilibrium composition with increasing SO$_2$ concentration. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [SO$_2$] = 1E-05 – 1E-03 kmol, T = 80ºC.

Figure 7.17: S and C equilibrium composition for SO$_2$ concentrations up to 0.001 kmol. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [SO$_2$] = 1E-05 – 1E-03 kmol, [α-Al$_2$O$_3$] = 0.01 kmol (1 g), T = 80ºC.

Figure 7.18: S and C equilibrium composition in the presence of gibbsite, with SO$_2$ concentration increasing up to 0.001 kmol. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [SO$_2$] = 1E-05 – 1E-03 kmol, [Al(OH)$_3$] = 0.01 kmol (1 g), T = 80ºC.

Figure 7.19: S and C equilibrium composition when SO$_2$ concentration is changing and H$_2$O is present. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H$_2$O] = 2E-04 kmol, [SO$_2$] = 1E-05 – 1E-03 kmol, T = 80ºC.

Figure 7.20: S and C equilibrium composition when H$_2$O is present and SO$_2$ concentration is changing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H$_2$O] = 2E-04 kmol, [SO$_2$] = 1E-05 – 1E-03 kmol, [α-Al$_2$O$_3$] = 0.01 kmol, T = 80ºC.

Figure 7.22: S and C equilibrium composition in the temperature range 80 – 130ºC. Initial composition: [O$_2$] = 19 m3, [N$_2$] = 77 m3, [H$_2$O] = 2 m3, [CO$_2$] = 0.75 m3, [CO] = 0.075 m3, [SO$_2$] = 0.0079 m3, [HF] = 0.0336 m3, [COS] = 0.00035 m3, [Ar] = 1.133 m3, Total Gas = 100 m3, T = 80 – 130 ºC.

Figure 8.1: Layout of the experimental apparatus used for fluidised bed reactor/mass spectrometer studies.

Figure 8.2: Schematic of the fluidised bed reactor [134].

Figure 8.3: Bed height and pressure drop versus superficial velocity for a bed of solids [135].

Figure 8.4: Measurements of alumina bed height versus Ar gas velocity.

Figure 8.5: Pressure drop versus gas velocity for fluidised bed containing 0.5 g alumina.

Figure 8.6: The syringe pump calibration.
Figure 8.7: A schematic of a quadrupole mass spectrometer. [137]170
Figure 8.8: Praying mantis accessory for diffuse reflectance spectrometry. The sample holder is the cylindrical part in the centre of the drawing. Ellipsoidal focusing mirrors and collection mirrors shown carry the IR beam from the source to the detector [141].175
Figure 8.9: Heatable evacuable cell to fit in the praying mantis accessory [141].175
Figure 8.10: Diagram of DRIFTS cell for alumina adsorption studies [140].176
Figure 8.11: Mass spectrometer scan showing the change in gas composition between atmospheric air and COS in air. Note logarithmic scale ...177
Figure 8.12: Particle size distribution of QAL smelter-grade primary alumina183
Figure 8.13: XPS analysis for primary smelter-grade alumina ...185
Figure 8.14: SEM image (1140X magnification) for primary smelter-grade alumina186
Figure 8.15: XRD diffractograms of primary, lab fluorinated and secondary alumina.......187
Figure 8.16: XPS results for secondary alumina from Karmøy, Norway189
Figure 8.17: SEM image (5000X magnification) of secondary alumina190
Figure 8.18: XRD (X-Ray Diffraction) results comparing the different alumina types studied. ..192
Figure 8.19: SEM image of primary alumina at a magnification of 10000X.194
Figure 8.20: SEM image of Na treated alumina at a magnification of 20000X.194
Figure 8.21: SEM image of Fe treated alumina at a magnification of 10000X.195
Figure 8.22: SEM image of Ca treated alumina at a magnification of 10000X.196
Figure 8.23: XPS wide scan for catalyst γ-alumina ..198
Figure 8.24: SEM image of the sintered γ-alumina particles observed inside a catalyst bead [Source: γ-alumina sample exposed to 240ppm COS for 5 hours]. The image looks at the edge between a broken face (bottom right) and the surface of the bead (top left).199
Figure 9.1: Sulfur mass balance with increasing COS concentration in isolation (also see Appendix G) ...204
Figure 9.2: Sulfur species composition when 60 ppmv COS was passed through a fluidised bed of primary alumina (T = 80°C, Total Gas = 0.4 Lmin⁻¹, Dilutant = Ar, Mass Alumina = 0.5 g, before September 2001). The reactor inlet gas composition is shown at –2 minutes ..205
Figure 9.3: Sulfur species composition when 60 ppmv COS was passed through a primary alumina fluidised bed (after September 2001) ..206
Figure 9.4: Sulfur species composition when 120 ppmv COS is passed through a fluidised bed of primary alumina (before September 2001). ..207

Figure 9.5: Sulfur species composition when 120 ppmv COS was passed through a primary alumina fluidised bed (after September 2001). ..208

Figure 9.6: Desorption of sulfur gases following a 60 ppmv COS on primary alumina fluidised bed experiment..210

Figure 9.7: DRIFTS spectra of primary alumina following a 1 mL injection of COS (time elapsed after injection is labelled on the left of each spectrum, the injection occurred at 0m0s). ...211

Figure 9.8: Successive DRIFTS spectra following a second 1 mL COS injection on primary alumina (50% in CaF$_2$). See Figure 9.7 for the first injection in this experiment.213

Figure 9.9: DRIFTS spectra before (47m10s) and after heating COS exposed alumina to 200ºC (3h11m) and 500ºC (4h37m). ..214

Figure 9.10: Possible mechanism for COS adsorption and hydrolysis on alumina. Orientation of hydrogen thiocarbonate (HCO$_2$S$^-$) on alumina in the fourth reaction step from [101]. ..214

Figure 9.11: Sulfur species composition when 60 ppmv COS and 4 %RH were passed through a primary alumina fluidised bed. ..217

Figure 9.12: Sulfur species composition when 120 ppmv COS and 4 %RH were passed through a primary alumina fluidised bed. ..217

Figure 9.13: Sulfur species composition when 60 ppmv COS and 16 %RH were passed through a primary alumina fluidised bed. ..218

Figure 9.14: Sulfur species composition when 120 ppmv COS and 16 %RH were passed through a primary alumina fluidised bed. ..218

Figure 9.15: Sulfur species composition when 60 ppmv COS is passed through a primary alumina fluidised bed at 80ºC, where the alumina has been dried beforehand.220

Figure 9.16: Successive DRIFTS spectra before and after a 1 mL injection of COS into a cell containing calcined primary alumina (time is 0m0s at injection) ..221

Figure 9.17: Sulfur species composition when 60 ppmv COS and 0.5% O$_2$ were passed through a primary alumina fluidised bed. ..224

Figure 9.18: Sulfur species composition when 120 ppmv COS and 0.5% O$_2$ were passed through a primary alumina fluidised bed. ..224

Figure 9.19: Sulfur species composition when 60 ppmv COS and 1.75% O$_2$ were passed through a primary alumina fluidised bed. ..225
Figure 9.20: Sulfur species composition when 120 ppmv COS and 1.75% O₂ were passed through a primary alumina fluidised bed..226

Figure 9.21: Sulfur species composition when 60 ppmv COS and 3.375% O₂ were passed through a primary alumina fluidised bed..226

Figure 9.22: DRIFTS spectra of primary alumina following a 2 mL injection of COS and successive injections (50 mL) of air. ...228

Figure 9.23: Sulfur species composition when 60 ppmv COS was passed through a secondary alumina fluidised bed. The first data point (at –2 minutes) represents the sulfur species composition prior to contacting secondary alumina..229

Figure 9.24: DRIFTS spectra following injection of COS (2 mL) onto secondary alumina (50% in CaF₂). ..230

Figure 9.25: Sulfur species composition when 60 ppmv COS, 90 mgNm⁻³ HF and 4 %RH were passed through a primary alumina fluidised bed..232

Figure 9.26: Sulfur species composition when 60 ppmv COS was passed through a 3 mass% F alumina fluidised bed...233

Figure 9.27: Sulfur species composition when 103 ppmv SO₂ was passed through a primary alumina fluidised bed..235

Figure 9.28: Sulfur species composition when 103 ppmv SO₂ was passed through a 3 mass% F alumina fluidised bed...235

Figure 9.29: DRIFTS spectra of four successive SO₂ injections (1st 0.2 mL, 2nd-4th 0.5 mL) on primary alumina (30% in CaF₂). (-04m33s = prior to injection, 00m00s = immediately after 1st injection (0.2 mL), 12m42s = stable surface after first injection, 22m13s = immediately after 3rd injection (0.5 mL), 35m20s = stable surface after four injections.)..236

Figure 9.30: Spectra before and after 500ºC heat treatment of primary alumina that has been exposed to SO₂. (35m20s = stable surface after four SO₂ injections from Figure 9.29, 1h58m = surface after calcining at 500º for 30 minutes.)..238

Figure 9.31: DRIFTS spectra of secondary alumina (30% alumina in CaF₂) before and after SO₂ injection. (-03m34s = Surface prior to injection, 00m00s = surface immediately after injection, 17m32s = stable surface after injection.)...239

Figure 9.32: Sulfur species composition when 60ppmv COS and 103 ppmv SO₂ were passed through a primary alumina fluidised bed...240

Figure 9.33: Sulfur species composition when 60ppmv COS and 103 ppmv SO₂ were passed through a 3 mass% F alumina fluidised bed...241
Figure 9.34: Sulfur species composition when 120 ppmv COS and then 103 ppmv SO₂ (after 235 min) were successively passed through a primary alumina fluidised bed. The inlet gas composition for COS is at –2 min, and for SO₂ at 325 min. CO₂ gas levels are given as partial pressures (in torr) on the right hand y axis. ...242

Figure 9.35: Sulfur species composition when 103 ppmv SO₂ and then 120 ppmv COS (after 20 min) were successively passed through a primary alumina fluidised bed. The inlet gas composition for SO₂ is at –2 min, and for COS at 96 min. ...243

Figure 9.36: Change in DRIFTS spectra after an injection of COS (5 mL) then SO₂ (5 mL). (-02m22s = Background spectrum, 00m00s = Immediately after COS injection, 1h40m = Stable surface after COS injection (sample was left overnight after COS injection), 18h22m = Immediately after SO₂ injection, 18h25m = Stable surface after SO₂ injection.) ...244

Figure 9.37: DRIFTS spectra following injections of SO₂ (6 mL) and COS (6 mL) on primary alumina (50% in CaF₂). (-02m22s = Background spectrum, 00m00s = Immediately following SO₂ injection, 18m10s = Stable surface after SO₂ injection, 21m07s = Immediately following COS injection, 35m41s = Stable surface after COS injection.) ..245

Figure 9.38: Sulfur species composition when 60 ppmv COS was passed through a Na treated (0.78 mass% Na) primary alumina fluidised bed...247

Figure 9.39: Sulfur species composition when 120 ppmv COS was passed through a Na treated (0.78 mass% Na) primary alumina fluidised bed...247

Figure 9.40: Sulfur species composition when 60 ppmv COS was passed through a Fe treated (6.11 mass% Fe) primary alumina fluidised bed. ...248

Figure 9.41: Sulfur species composition when 120 ppmv COS was passed through a Fe treated (6.11 mass% Fe) primary alumina fluidised bed...248

Figure 9.42: Sulfur species composition when 60 ppmv COS was passed through a Ca treated (10.9 mass% Ca) primary alumina fluidised bed...249

Figure 9.43: Sulfur species composition when 120 ppmv COS was passed through a Ca treated (10.9 mass% Ca) primary alumina fluidised bed...249

Figure 9.44: Spectra following an injection of COS (2 mL) onto an Na doped primary alumina (50% in CaF₂, 0.78 mass% Na)..252

Figure 9.45: Spectra following an injection of COS (2 mL) onto freshly calcined Na doped primary alumina (50% in CaF₂, 0.78 mass% Na)..252
Figure 9.46: Spectra following an injection of COS (2 mL) onto Fe doped primary alumina (50% in CaF₂, 6.11 mass% Fe). ...253
Figure 9.47: Spectra following an injection of COS (2 mL) onto freshly calcined Fe doped primary alumina (50% in CaF₂, 6.11 mass% Fe). ...254
Figure 9.48: Spectra following an injection of COS (2 mL) onto Ca doped primary alumina (50% in CaF₂, 10.9 mass% Ca). ...255
Figure 9.49: Sulfur species composition when 5% CO₂ and then 60 ppmv COS were successively passed through a primary alumina fluidised bed. The inlet gas composition for CO₂ is at –2 min, and for COS at 155 min. The gas stream was switched from CO₂ to COS after about 10 minutes. ...257
Figure 9.50: Sulfur species composition when 5% CO₂ and then 103 ppmv SO₂ (after 5 min) were successively passed through a primary alumina fluidised bed. The inlet gas composition for CO₂ is at –2 min, and for SO₂ at 43 min. ...258
Figure 9.51: 60 ppmv H₂S gas diluted in Ar, tracked over several hours in the mass spectrometer (no alumina is present). ...259
Figure 9.52: Sulfur species composition when 60 ppmv H₂S was passed through a primary alumina fluidised bed. ...259
Figure 9.53: DRIFTS spectra of primary alumina (50% in CaF₂) before and after injections of H₂S. (–05m26s: prior to H₂S injections, 00m00s: immediately following first injection of H₂S, 18m32s: spectrum of stable surface after 2 injections.) ...260
Figure 9.54: DRIFTS spectra following an injection of H₂S (50 mL of 2.5% H₂S in H₂) on calcined primary alumina (50% in CaF₂). (-02m02s = Surface prior to injection, 00m00s = surface immediately following injection, 27m04s = stable surface after injection.). ...261
Figure 9.55: Sulfur species composition when 60 ppmv COS was passed through a γ-alumina fluidised bed. ...263
Figure 9.56: Sulfur species composition when 240 ppmv COS was passed through a γ-alumina fluidised bed. ...264
Figure 9.57: Successive DRIFTS spectra after COS injection (2 mL injections, 00m00s and 16m46s) on γ-alumina (50% in CaF₂). ...266
Figure C.1: An example of model fitting using reference spectra for a coke sample containing 2.73%S. ...297
Figure C.2: An example of model fitting using reference spectra for an anode sample baked at 944°C. ...297
Figure E.3: Absorbance of various mixtures of primary alumina and CaF₂.300
Figure E.4: DRIFTS spectra following an injection of COS onto CaF₂.301
Figure E.5: DRIFTS spectra following an injection of SO₂ onto CaF₂.302
Figure E.6: DRIFTS spectra following a 6 mL SO₂ injection onto primary alumina.302
Figure E.7: DRIFTS spectra of SO₂ injections on various primary alumina – CaF₂ mixtures. ..303
Figure F.8: COS gas (ratioed to an N₂ background) FT-IR spectrum.304
Figure F.9: FT-IR spectrum of H₂S gas (2.5% in H₂, ratioed to dry air).305
Figure F.10: FT-IR spectrum of SO₂ gas in dry air (ratioed to dry air).305
Figure G.11: Partial pressure of selected gases in mass spectrometer as inlet COS gas concentration increases (Dilutant = Ar, T = 80°C, no other gases or alumina present). 306
Figure G.12: Sulfur mass balance with increasing COS concentration in isolation (also see Figure G.11). ..308
Figure G.13: Sulfur mass balance for increasing H₂S concentration in isolation..........309
Figure G.14: Sulfur mass balance for increasing SO₂ concentration in isolation.........309
Figure G.15: Partial pressure of selected gases in the mass spectrometer as relative humidity increases (Dilutant = Ar, T = 80°C). ..311
Figure G.16: Sulfur gas composition with 60 ppm inlet COS and increasing relative humidity (0 – 20 RH%). ...311
Figure G.17: Sulfur gas composition with 50 ppm inlet H₂S and increasing relative humidity (0 – 20 RH%). ...312
Figure G.18: Sulfur gas composition with 100 ppm inlet SO₂ and increasing relative humidity (0 – 20 RH%). ...312
Figure G.19: Partial pressure of selected gases (m/z ratio) in mass spectrometer as O₂ gas concentration increases (Dilutant = Ar, T = 80°C). ..314
Figure G.20: Sulfur mass balance with increasing O₂ concentration and 60 ppmv COS entering the mass spectrometer. ...315
Figure G.21: Sulfur mass balance with increasing O₂ concentration and 120 ppmv COS entering the mass spectrometer. ...315
Figure G.22: Sulfur mass balance with increasing O₂ concentration and 60 ppm H₂S entering the mass spectrometer. ...316
Figure G.23: Sulfur mass balance with increasing O₂ concentration and 60 ppmv SO₂ entering the mass spectrometer. ...317
Figure G.24: Sulfur mass balance for 60 ppmv inlet COS concentration and increasing inlet SO2 concentration.
Table 2.1: The typical impurity composition of anode grade petroleum coke (based on [14], the remainder of the coke is carbon)...7
Table 2.2: Physical characteristics of smelter grade alumina [10]..9
Table 2.3: Species present in the fumes from a smelting cell [20]...11
Table 2.4: Henry and Holliday’s mass spectrometric measurements of sulfur gas composition leaving the anode [37]...21
Table 2.5: Ødegård et al.’s measurement of anode gas in a laboratory cell over time [35]............22
Table 2.6: Kinnerle et al. measurements of anode and duct sulfur gas concentrations [38]. 22
Table 2.7: Utne et al.’s measurement of anode and cell hood sulfur gases [4].................................23
Table 2.8: Tveito et al.’s measurement of sulfur gas composition under the anode, at the alumina feeder hole, molten aluminium tap hole and under the top crust in a prebake cell [5]..23
Table 2.9: Concentration of COS, SO₂ and CS₂ after dry scrubbing in a prebake smelter, measured by Harnisch et al. [6]..24
Table 2.10: Utne et al.’s [4, 36] measurements of sulfur gas emissions before and after dry scrubbing and after wet scrubbing..25
Table 2.11: Sulfur gas composition around the dry and wet scrubbers measured by Tveito et al. [5] from the same cell-line as earlier measurements by Utne et al. [4].............................26
Table 2.12: A summary of previous smelter measurements of sulfur gas composition..............27
Table 3.1: Peak positions of sulfur L-edges for reference compounds and coal samples (See Figure 3.1 [61]). ..37
Table 4.1: Anodes and cokes studied using XANES..57
Table 4.2: Standard sulfur compounds used for XANES analysis..59
Table 5.1: The sulfur composition in cokes calculated using reference spectra to model coke spectra at the K-edge. The proportion of each type of thiophenic S (dibenzothiophene and thianaphene-2-carboxylic acid) are included as well as the total proportion of these two species. Values given in the table are fractional...85
Table 5.2: The sulfur composition in source coke, anodes and an anode butt calculated using reference spectra to model sample spectra at the K-edge. The proportion of each type of
thiophenic S (dibenzothiophene and thianaphene-2-carboxylic acid) are included as well as the total proportion of these two species. Values given in the table are fractional.

Table 6.1: Summary of adsorbed COS bands and their assignments. ..114
Table 6.2: Bands representing adsorbed SO2 species. ...122
Table 6.3: Summary of adsorbed H2S bands and their assignments..128
Table 6.4: Summary of adsorbed CS2 species. ...130
Table 7.1: Summary of thermodynamic results, with respect to COS stability at equilibrium under different conditions typical of a dry scrubber at 80ºC. ..158
Table 8.1: m/z Ratio and dwell time data collected using the mass spectrometer171
Table 8.2: XRF elemental analysis (mass%) of primary alumina. ..184
Table 8.3: XPS elemental quantification for primary alumina (BE values are from narrow scans)...185
Table 8.4: EDS point scan results for primary smelter-grade alumina.................................186
Table 8.5: XRF elemental analysis (mass%) of secondary alumina188
Table 8.6: Elemental composition of secondary alumina determined using XPS188
Table 8.7: Selected EDS results of elemental composition of secondary alumina. Scans 1, 3 and 8 were of bigger, more crystalline particles and scans 6 and 10 were of smaller particles ..190
Table 8.8: Selected EDS results showing the elemental composition at selected spots on a laboratory-fluorinated alumina sample ...191
Table 8.9: XRF elemental compositions of various doped aluminas.193
Table 8.10: EDS results of spot scans of the Na doped alumina sample195
Table 8.11: EDS results of spot scans of the Fe doped alumina sample195
Table 8.12: EDS results of spot scans of the Ca doped alumina sample196
Table 8.13: Composition of the catalyst grade γ-alumina studied197
Table 8.14: XRF analysis of catalyst-grade γ-alumina. ...197
Table 8.15: XPS elemental composition of γ-alumina. ...198
Table 8.16: EDS elemental compositions from spot scans of a γ-alumina bead199
Table 9.1: Calculated mass percentages of COS adsorbed on alumina over the duration of experiments (the first 223 minutes of the experiment, in all cases) and with varying inlet gas compositions ...219
Table 9.2: Calculated mass percentages of COS adsorbed on alumina over the first 223 minutes of each O2 experiment, with varying inlet gas compositions227
Table 9.3: Calculated mass percentages of COS adsorbed on alumina over the first 223 minutes of each experiment, with varying inlet gas compositions and alumina impurities.

Table 9.4: XRF fused bead analysis of unreacted and COS exposed (240 ppmv COS for 5 hours) γ-alumina.

Table 9.5: A summary of experimental results, compared to thermodynamic predictions from Chapter 7 to determine the behaviour of COS in dry scrubbing conditions.

Table G.1: Ionisation factors for COS, H$_2$S and SO$_2$.

Table G.2: Changing ionisation factor with inlet H$_2$S concentration prior to filament replacement in September 2001.

Table G.3: Ionisation factors for COS, H$_2$S and SO$_2$ with varying O$_2$ concentration.
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol/Abbreviation</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α'</td>
<td>eV</td>
<td>Modified Na Auger parameter</td>
</tr>
<tr>
<td>ΔE</td>
<td>eV</td>
<td>Resolution</td>
</tr>
<tr>
<td>ΔG^0</td>
<td>kJmol$^{-1}$</td>
<td>Standard change in Gibbs energy</td>
</tr>
<tr>
<td>Δp</td>
<td>Pa</td>
<td>Pressure drop across fluidised bed reactor</td>
</tr>
<tr>
<td>λ</td>
<td>Å</td>
<td>Wavelength of x-ray source</td>
</tr>
<tr>
<td>Θ, θ</td>
<td>$^\circ$</td>
<td>XRD angle of diffraction</td>
</tr>
<tr>
<td>ad</td>
<td></td>
<td>Adsorbed species</td>
</tr>
<tr>
<td>B, b, β</td>
<td>rads</td>
<td>XRD peak broadening due to sample and/or instrument</td>
</tr>
<tr>
<td>BE</td>
<td>eV</td>
<td>Binding energy</td>
</tr>
<tr>
<td>C_a</td>
<td>ppmv</td>
<td>Concentration of gas a</td>
</tr>
<tr>
<td>CSRF</td>
<td></td>
<td>Canadian Synchrotron Radiation Facility</td>
</tr>
<tr>
<td>d</td>
<td>Å</td>
<td>Interplanar spacing</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>Daily mass spectrometer correction factor</td>
</tr>
<tr>
<td>DCM</td>
<td></td>
<td>Double Crystal Monochromator</td>
</tr>
<tr>
<td>DRIFTS</td>
<td></td>
<td>Diffuse Reflectance Infrared Fourier Transform Spectroscopy</td>
</tr>
<tr>
<td>E</td>
<td>eV</td>
<td>Beam energy at edge</td>
</tr>
<tr>
<td>E^0</td>
<td>V</td>
<td>Standard electronic potential for redox reaction</td>
</tr>
<tr>
<td>EDS</td>
<td></td>
<td>Energy Dispersive Spectroscopy</td>
</tr>
<tr>
<td>EXAFS</td>
<td></td>
<td>Extended X-ray Absorption Fine Structure</td>
</tr>
<tr>
<td>FTIR</td>
<td></td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>FWHM</td>
<td></td>
<td>Full Width Half Maximum</td>
</tr>
<tr>
<td>FLY</td>
<td></td>
<td>Fluorescence Yield</td>
</tr>
<tr>
<td>g</td>
<td></td>
<td>Gaseous species</td>
</tr>
<tr>
<td>GC-MS</td>
<td></td>
<td>Gas Chromatography-Mass Spectrometry</td>
</tr>
<tr>
<td>HTC</td>
<td></td>
<td>Hydrogen thiocarbonate (adsorbed species)</td>
</tr>
</tbody>
</table>
Symbol/Abbreviation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hv</td>
<td>eV</td>
<td>Energy of the x-ray source in XPS</td>
</tr>
<tr>
<td>I</td>
<td>torr/ppmv</td>
<td>Ionisation correction factor</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>Reaction rate constant</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>Equilibrium constant for reaction</td>
</tr>
<tr>
<td>KE</td>
<td>eV</td>
<td>XPS kinetic energy</td>
</tr>
<tr>
<td>L</td>
<td>mm</td>
<td>Fluidised alumina bed height</td>
</tr>
<tr>
<td>L_c</td>
<td>Å</td>
<td>Crystallite size</td>
</tr>
<tr>
<td>m/z</td>
<td></td>
<td>Mass to charge ratio of ions in mass spectrometer</td>
</tr>
<tr>
<td>p_a</td>
<td>torr</td>
<td>Partial pressure of gas (a)</td>
</tr>
<tr>
<td>p_{ab}</td>
<td>torr</td>
<td>Background partial pressure of gas (a)</td>
</tr>
<tr>
<td>p_{ac}</td>
<td>torr</td>
<td>Partial pressure of gas (a) at time of calibration</td>
</tr>
<tr>
<td>P_T</td>
<td>torr</td>
<td>Total pressure</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td>Reaction rate</td>
</tr>
<tr>
<td>RH</td>
<td>%</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SRC</td>
<td></td>
<td>Synchrotron Radiation Center</td>
</tr>
<tr>
<td>TEY</td>
<td></td>
<td>Total Electron Yield</td>
</tr>
<tr>
<td>V_0</td>
<td>ms^{-1}</td>
<td>Superficial gas velocity in fluidised bed</td>
</tr>
<tr>
<td>[x]</td>
<td>ppmv, kmol</td>
<td>Concentration of species (x)</td>
</tr>
<tr>
<td>XANES</td>
<td></td>
<td>X-ray Absorption Near Edge Structure Spectroscopy</td>
</tr>
<tr>
<td>XPS</td>
<td></td>
<td>X-ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td></td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td></td>
<td>X-Ray Fluorescence</td>
</tr>
<tr>
<td>y_a</td>
<td></td>
<td>Mole fraction of gas (a)</td>
</tr>
</tbody>
</table>