

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

THE FORMATION AND FATE OF CARBONYL SULFIDE (COS) GAS IN ALUMINIUM SMELTING

By

Suzanne Jill Hay

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemical and Materials Engineering, The University of Auckland, 2002.

> Auckland, New Zealand December 2002

ABSTRACT

Carbonyl sulfide (COS) gas is emitted from aluminium smelters at concentrations of 1 - 8 ppmv or 0.2 - 1.6 kgt⁻¹ Al produced. While COS emissions are relatively small compared to emissions of HF or SO₂, previous measurements suggest that COS is not efficiently captured in the scrubbing systems used by aluminium smelters and it has been suggested that the industry is a significant anthropogenic emitter of COS. COS is a unique sulfur gas in the atmosphere, due to its stability, lifetime of several years and implication in ozone depletion.

The source of COS and other sulfur gases from aluminium smelters, is the 1 - 4 mass% S content of anodes, consumed during aluminium electrolysis. These anodes are primarily made from petroleum coke, a low value and therefore high sulfur product, of crude oil refining. This thesis examines aspects of the formation and fate of COS in aluminium reduction cells.

One thesis objective was to confirm the nature of sulfur species present in petroleum cokes and anodes. A XANES (X-ray Absorption Near Edge Structure) spectroscopy study of cokes from the major suppliers and anode core samples showed that organic sulfur containing ring structures were the dominant sulfur species, before and after anode baking and even after significant desulfurisation at 1500°C.

Thermodynamic calculations performed using the HSC Chemistry \bigcirc computer package agreed with previous smelter measurements that COS gas was the dominant sulfur gas to form at the anode face and SO₂ became the dominant sulfur gas after the anode gases left the cell and mixed with an induced air draft in the cell hooding.

Previous smelter measurements showed that some COS (about 5 ppmv) did survive through the cell ducting into the dry scrubber and that there were only negligible reductions in COS concentration after dry scrubbing. The dry scrubber contains smelter-grade alumina, which adsorbs HF and other smelter gases, before the alumina is recycled to the cells. Another objective of this thesis was to study the effect dry scrubbing had on COS emissions in greater detail in the laboratory to better understand any reactions that may be occurring. A thermodynamic analysis using HSC Chemistry[®] determined that alumina would reduce the stability of COS at a typical dry scrubbing temperature of 80°C. The dry scrubber was modelled in the laboratory using an alumina containing fluidised bed reactor, with the inlet and outlet gas composition monitored using mass spectrometry. Adsorbed species resulting from COS adsorption on alumina were studied separately using DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy).

Experiments showed that COS was stable in the fluidised bed apparatus in isolation. The presence of smelter-grade alumina led to the adsorption of COS in its molecular form and as adsorbed hydrogen thiocarbonate. The latter species is believed to be an intermediate in the hydrolysis of COS into H_2S on alumina. The effect of conditions which may vary in the dry scrubbing system, such as humidity, SO_2 and HF concentrations, were studied. The presence of optimum humidity levels ensured sustained hydrolysis of COS over several hours, but adsorbed SO_2 and HF interfered with COS conversion. This suggests that COS hydrolysis would be unlikely to occur to a great extent in commercial dry scrubbers used in the aluminium smelter industry.

ACKNOWLEDGEMENTS

I gratefully thank my supervisors, Dr Margaret Hyland and Associate Professor Jim Metson, for all their guidance in all aspects of this thesis, it was very much appreciated.

For their financial contribution, I would like to thank the NZ Foundation for Research, Science and Technology and ALSTOM Power. At ALSTOM, I thank Mr Geir Wedde for supporting the project, Miss Eldri Bjornstad for her advice and Dr Otto Morten Bade, who provided me with much guidance and the opportunity to do experimental work at SINTEF in Oslo. I thank all the staff at the Applied Chemistry department of SINTEF who assisted me, but particularly Dr Richard Blom and Principal Scientist Ivar M. Dahl.

For technical assistance and companionship during my time at the Synchrotron Radiation Center (SRC) in Wisconsin, I thank Dr Yongfeng Hu, Dr Kim Tan and Dr Astrid Jürgensen. Access to the DCM and Grasshopper beamlines at the SRC, University of Wisconsin Madison, was provided through the Canadian Synchrotron Research Facility. The SRC is supported by the NSF (Grant number DMR-0084402). I also appreciate Mr Raymond Perruchoud at R&D Carbon and Mr Alan Tomsett at Comalco, who supplied samples for analysis.

At The University of Auckland, I particularly appreciate Emeritus Professor Barry Welch for his interest in my progress along the way. I also thank the numerous technical staff in the Chemical and Materials Engineering department who have been involved with the project and the friendship and assistance provided by the other postgraduate students over the last few years.

Finally, thanks to my family and friends for their love and support throughout my studies, especially my parents Cynthia and Russell Hay and my husband Cleavon Whittfield. Thank you.

TABLE OF CONTENTS

CHAPTI	ER 1	INTRODUCTION	1
1.1	COS	Emissions	1
1.2	Proje	ECT OBJECTIVES	2
1.3	THESI	IS LAYOUT	2
CHAPTI	ER 2	THE ROLE OF SULFUR IN ALUMINIUM SMELTING	4
2.1	The A	ALUMINIUM SMELTING PROCESS	5
2.1.	1 4	Anodes	6
2.1	2 5	Smelter Grade Alumina	7
2.2	Dry S	SCRUBBING	9
2.2.	1 (Gaseous Emissions From Aluminium Smelting	10
2.3	SULFU	JR IN COKES AND ANODES	12
2.3.	1 1	Desulfurisation During Anode Baking	14
2.3.	2 7	The Effect of Sulfur on Anode Performance	14
2.3	3 1	Removing the Sulfur Impurity	17
2.4	COS	Emissions in Aluminium Smelting	18
2.4.	1 7	Thermodynamic Predictions of COS Formation at the Anode	18
2.4.	2 1	Measurements of COS in Anode Gas	21
2.4	3 1	Impact of Scrubbing on COS	24
2.5	COS	IN THE ATMOSPHERE	28
2.6	SUMM	1ARY	30
PART I:	FOR	MATION OF COS IN ALUMINIUM SMELTING	31
CHAPTI	E R 3	PREVIOUS SULFUR SPECIATION STUDIES IN CARBONACE	OUS
MATER	IALS	•••••	32
3.1	Intro	DUCTION	33
3.2	SULFU	JR STUDIES WITH XANES	33
3.2.	1 5	S K-edge XANES Studies	34
3.2.	2 5	S L-edge XANES Studies	35

3.3	SULFU	R SPECIATION IN CARBONACEOUS MATERIALS	
3.2	3.1 C	'oal	
3.2	3.2 A	sphaltene Fraction of Crude Oil	40
3.2	3.3 K	erogen from Kashpir Oil Shales	
3.2	3.4 S	ediment Extracts and Petroleum	
3.	3.5 P	olysulfides and Rubbers	
3	3.6 S	Soils and Sediments	
3	3.7 P	roteins	
3.4	SULFU	R IN PETROLEUM COKE	45
3.5	APPLY	ING XANES ANALYSIS TO PETROLEUM COKES AND ANODES	46
CHAP	TER 4	XANES: THEORY AND EXPERIMENTAL METHOD	47
4.1	Intro	DUCTION TO XANES	48
4.2	XANE	S THEORY	49
4.3	XANE	S IN PRACTICE	54
4.4	XANE	S Experimental Method	55
4.5	HSC C	CALCULATIONS	61
CHAP 2	TER 5	RESULTS: XANES STUDY OF SULFUR SPECIATION IN	COKES
<i>CHAP</i> 2 AND A	<i>TER 5</i> NODES	RESULTS: XANES STUDY OF SULFUR SPECIATION IN	COKES 62
CHAP 2 AND A 5.1	TER 5 NODES Sulfu	RESULTS: XANES STUDY OF SULFUR SPECIATION IN	COKES 62
CHAP2 AND A 5.1 5.2	TER 5 NODES Sulfu 1.1 h	RESULTS: XANES STUDY OF SULFUR SPECIATION IN	COKES 62 63 63
CHAP2 AND A 5.1 5.1 5.1	TER 5 NODES Sulfu 1.1 In 1.2 C	RESULTS: XANES STUDY OF SULFUR SPECIATION IN R REFERENCE COMPOUNDS norganic Reference Compounds Prganic Reference Compounds	COKES 62 63 63 67
CHAP2 AND A 5.1 5.1 5.1 5.1	TER 5 NODES Sulfu 1.1 In 1.2 C 1.3 P	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS horganic Reference Compounds Organic Reference Compounds olymer Reference Compounds	COKES 62 63 63 67 71
CHAP2 AND A 5.1 5 5 5.2	TER 5 NODES Sulfu 1.1 In 1.2 C 1.3 P Sulfu	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS horganic Reference Compounds brganic Reference Compounds olymer Reference Compounds R SPECIATION IN COKES	COKES 62 63 63 67 71 74
CHAP2 AND A 5.1 5 5 5.2 5.2	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 F SULFU 2.1 Q	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS horganic Reference Compounds brganic Reference Compounds olymer Reference Compounds R SPECIATION IN COKES Duantification of Sulfur Composition in Cokes	COKES 62 63 63 67 71 74
CHAP2 AND A 5.1 5 5 5.2 5.2 5.3	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 F SULFU 2.1 Q SULFU	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS horganic Reference Compounds brganic Reference Compounds olymer Reference Compounds R SPECIATION IN COKES fuantification of Sulfur Composition in Cokes R SPECIATION IN ANODES	COKES 62 63 63 67 71 74
CHAP2 AND A 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.3 5.3	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 P SULFU 2.1 Q SULFU 3.1 T	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS horganic Reference Compounds brganic Reference Compounds olymer Reference Compounds olymer Reference Compounds R SPECIATION IN COKES buantification of Sulfur Composition in Cokes R SPECIATION IN ANODES he Effect of Anode Baking and Usage	COKES 62 63 63 63 71 74 74 83 86 86
CHAP2 AND A 5.1 5 5.2 5.2 5.3 5.3 5.3	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 P SULFU 2.1 Q SULFU 3.1 T 3.2 T	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS horganic Reference Compounds brganic Reference Compounds olymer Reference Compounds olymer Reference Compounds normalification in Cokes buantification of Sulfur Composition in Cokes cuantification of Sulfur Composition in Cokes he Effect of Anode Baking and Usage he Effect of Baking Temperature	COKES 62 63 63 63 71 74 74
CHAP2 AND A 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 P SULFU 2.1 Q SULFU 3.1 T 3.2 T 3.3 T	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS aorganic Reference Compounds brganic Reference Compounds olymer Reference Compounds olymer Reference Compounds R SPECIATION IN COKES antification of Sulfur Composition in Cokes antification of Sulfur Composition in Cokes be Effect of Anode Baking and Usage the Effect of Baking Temperature be Effect of Rebaking Anodes at 1400 – 1500°C	COKES 62 63 63 67 71 74 74
CHAP: AND A 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.3 5.2 5.3 5.1 5.1 5.1	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 P SULFU 2.1 Q SULFU 3.1 T 3.2 T 3.3 T 3.4 Q	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS	COKES 62 63 63 63 71 74 74 74
CHAP2 AND A 5.1 5 5.2 5.2 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3 5.2 5.3	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 P SULFU 2.1 Q SULFU 3.1 I 3.2 I 3.3 I 3.4 Q THERM	RESULTS: XANES STUDY OF SULFUR SPECIATION IN O R REFERENCE COMPOUNDS	COKES 62 63 63 63 71 74 74 74
CHAP2 AND A 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	TER 5 NODES SULFU 1.1 In 1.2 C 1.3 P SULFU 2.1 Q SULFU 3.1 I 3.2 I 3.3 I 3.4 Q THERM 4.1 S	RESULTS: XANES STUDY OF SULFUR SPECIATION IN C R REFERENCE COMPOUNDS	COKES 62 63 63 71 74 74

5.5	SUMMARY		
PART	I: FATE OF C	OS IN ALUMINIUM SMELTING	106
СНАРТ	ER 6 COS H	HYDROLYSIS IN CLAUS CATALYSIS	107
6.1	INTRODUCTION	N	109
6.2	THE CHEMISTE	RY OF THE ALUMINA SURFACE	
6.3	CLAUS CATAL	.YSIS	111
6.4	COS Hydrol	YSIS WITH ALUMINA	
6.5	COS HYDROL	YSIS MECHANISM	
6.5	1 Adsorbed	ł Molecular COS	114
6.5	2 Hydroger	n Thiocarbonate (HCO ₂ S) Formation	115
6.6	KINETICS OF C	COS Hydrolysis	117
6.7	OTHER METHO	DDS FOR COS DECOMPOSITION	
6.8	SO ₂ Adsorpti	ION ON ALUMINA	
6.8	1 Physisort	bed SO ₂ Species	
6.8	2 Sulfite an	nd Hydrogen Sulfite Species	
6.8	3 Other Ch	nemisorbed SO ₂ Species	
6.8	4 Sulfate F	ormation	
6.8	5 Surface R	Reaction Between SO_2 and H_2S	
6.8	6 Effect of L	HF	
6.9	H ₂ S Adsorpt	ION ON ALUMINA	
6.9	1 Adsorbed	ł H ₂ S Bands	
6.10	CS ₂ Adsorpti	ION ON ALUMINA	
6.11	RELEVANCE TO	O DRY SCRUBBING	
СНАРТ	ER 7 THER	RMODYNAMIC CALCULATIONS OF COS ST	ABILITY IN
DRY S	CRUBBING		
7.1	INTRODUCTION	N	133
7.2	COS IN ISOLA	TION	134
7.3	INFLUENCE OF	ALUMINA	
7.3	1 α - and γ	Alumina	
7.3	2 Gibbsite	(Al(OH) ₃)	
7.3	3 Mixture o	of phases	
7.4	ADDITION OF H	H ₂ O	

7.5	AD	DITION OF O ₂	139
7.5	5.1	H_2O/O_2	143
7.6	AD	DITION OF CO ₂	145
7.6	6.1	H_2O / CO_2	146
7.7	AD	DITION OF CO	147
7.7	7.1	H_2O/CO	148
7.7	7.2	Changing CO ₂ / CO Ratio	149
7.8	AD	DITION OF SO ₂	150
7.8	8.1	H_2O/SO_2	152
7.9	AD	DITION OF OTHER SMELTER GASES	153
7.10	AD	DITION OF AIR	154
7.11	STA	BILITY OF DRY SCRUBBING GAS	155
7.12	SUN	/MARY	158
СНАРТ	TER 8	EXPERIMENTAL METHODS USED FOR COS/ALUMINA	
STUDI	ES	••••••	161
8.1	Int	RODUCTION	163
8.2	Flu	IDISED BED STUDIES	163
8.2	2.1	Gases Used	164
8.2	2.2	Fluidised Bed Reactor Design	166
8.2	2.3	H ₂ O and HF Experiments	169
8.2	2.4	Quadrupole Mass Spectrometer	170
8.2	2.5	Sensitivity to Ionisation	171
8.2	2.6	Procedure for Fluidised Bed Experiments	173
8.3	DR	IFTS	174
8.3	8.1	Gases Used	176
8.3	8.2	Artefacts and Features in the IR Spectrum	177
8.3	3.3	Summary of DRIFTS Experiments	178
8.4	Alu	JMINA ANALYSIS	179
8.4	4.1	Particle Size Distribution	179
8.4	4.2	BET Surface Area	179
8.4	4.3	XRD (X-Ray Diffraction)	180
8.4	4.4	XRF (X-Ray Fluorescence)	180
8.4	4.5	XPS (X-ray Photoelectron Spectroscopy)	181

8.4	.6	SEM with EDS	182
8.5	Alu	MINAS TESTED	183
8.5	.1	Primary Smelter-Grade Alumina	183
8.5	.2	Secondary Alumina Characterisation	187
8.5	.3	Laboratory Fluorinated Primary Smelter-Grade Alumina	191
8.5	.4	Impurity Doped Aluminas	192
8.5	.5	γ-Alumina	197
8.5	.6	Summary of Alumina Characterisation	200
CHAPT	ER 9	THE ACTIVITY OF SMELTER-GRADE ALUMINA TOWARD	S
COS GA	AS		201
9.1	Gas	PHASE EXPERIMENTS	203
9.2	Effi	ECT OF SMELTER GRADE ALUMINA ON COS GAS	204
9.2	.1	Fluidised Bed Studies of COS on Alumina	204
9.2	.2	DRIFTS Studies of COS on Alumina	210
9.3	Effi	ECT OF H ₂ O	215
9.3	.1	Effect of Humidity in the Fluidised Bed	216
9.3	.2	Effect of Calcined Primary Alumina Using DRIFTS	221
9.4	Effi	ECT OF O ₂ GAS	223
9.4	.1	Effect of O_2 in the Fluidised Bed	223
9.4	.2	Effect of Air Using DRIFTS	227
9.5	Act	IVITY OF SECONDARY ALUMINA TOWARDS COS	228
9.5	.1	Fluidised Bed Studies with Secondary Alumina	229
9.5	.2	DRIFTS Studies with Secondary Alumina	230
9.6	Effi	ECT OF HF GAS AND FLUORINATED ALUMINA	231
9.6	.1	Fluidised Bed Studies with HF Gas	231
9.6	.2	Fluidised Bed Studies with Fluorinated Alumina	232
9.7	Effi	ECT OF SO ₂ GAS	233
9.7	.1	SO ₂ Fluidised Bed Studies	234
9.7	.2	SO ₂ DRIFTS Studies	236
9.7	.3	Effect of SO ₂ on COS Adsorption in the Fluidised Bed	240
9.7	.4	Effect of SO ₂ on COS Adsorption using DRIFTS	244
9.8	Effi	ECT OF ALUMINA IMPURITIES	246
9.8	.1	Fluidised Bed Studies of Alumina Impurities	246

9.8.	2 DRIFTS Studies of Alumina Impurities	251		
9.9	EFFECT OF CO ₂	256		
9.9.	<i>I</i> Fluidised Bed Studies with CO ₂	256		
9.10	0 EFFECT OF H_2S			
9.10	0.1 Fluidised Bed Studies of H ₂ S on Alumina	258		
9.10	D.2 DRIFTS Studies of H_2S on Alumina	260		
9.11	EFFECT OF γ-Alumina	262		
9.1.	1.1 Fluidised Bed Studies of γ-Alumina Activity	263		
9.1.	1.2 DRIFTS Studies with γ -Alumina	265		
9.12	DISCUSSION	266		
CHAPT	ER 10 CONCLUSIONS	271		
10.1	INTRODUCTION	271		
10.2	SULFUR SPECIATION IN ANODES USING XANES	271		
10.3	THERMODYNAMIC CALCULATIONS FOR THE FORMATION OF COS	273		
10.4	THERMODYNAMIC CALCULATIONS OF COS STABILITY IN DRY SCRUBBING	274		
10.5	COS Hydrolysis on Smelter-Grade Alumina	274		
10.6	INDUSTRIAL IMPLICATIONS	277		
CHAPT	ER 11 REFERENCES	279		
APPEN	DICES	292		
		202		
AFFE	NDIX A. GLOSSARY FOR AAINES THEORY	295		
AFFE	NDIX C. BEAK MODELS FOR COVES AND ANODES	293		
ADDE	NDIX C. FEAN MODELS FOR CORES AND ANODES	290		
	NDIX E: $AI_{A}O_{A}$ CAE, AND KRD RECEDENCE DRIFTS SDECTDA	300		
	NDIX E. AL2O3, CAP2 AND KDK REPERENCE DRIFTS SPECTRA	304		
APPE	NDIX G: GAS PHASE FLUIDISED BED EXPERIMENTS AND MASS SPECTROMETER			
CALIB	RATION	306		
G 1	Mass Spectrometric COS H_2S and SO ₂ Calibrations	306		
G.1 G.2	Gas Phase Experiments with Humidity			
G.2 G.3	Gas Phase Experiments with Ω_2			
G.4	Gas Phase Experiments with SO ₂			
•				

LIST OF FIGURES

Figure 2.1: A typical prebake Hall-Héroult cell for producing aluminium [10]
Figure 2.2: Alumina transformation sequence Al(OH) ₃ gibbsite $\rightarrow \alpha$ -Al ₂ O ₃ [15]8
Figure 2.3: A simple cross current dry scrubber [19]10
Figure 2.4: The process of producing anodes from petroleum coke. Various methods for
reducing the sulfur content of coke are indicated on the right. Figure adapted from [23].
Figure 2.5: Thermogravimetric analysis of emissions during coke calcination. The weight
loss above 1500°C was attributed to desulfurisation [27]13
Figure 2.6: The effect of anode sulfur content on carbon consumption found by [12]. Carbon
Gasification + Carbon Dust = Carbon Consumption16
Figure 2.7: The thermodynamic equilibrium of sulfur and hydrogen containing gases for a gas
containing $3wt$ %S at 1250K when the ratio of CO ₂ to CO is changing (From [35])19
Figure 2.8: Composition of sulfur species present in the anode gas, both unburnt and burnt,
predicted by Dorreen et al.'s thermodynamic calculations. The Lab Cell calculations
differ from the Industrial Cell calculations, because the latter takes moisture from the air
into account, enabling H ₂ S formation [11]20
Figure 2.9: Variation in continuous COS and SO_2 concentrations before dry scrubbing
measured by Kimmerle <i>et al.</i> [38]25
Figure 2.10: The atmospheric sulfur cycle, including sources and sinks of sulfur gases to the
atmosphere [1, 39, 40]. Dotted lines represent sinks
Figure 3.1: S L-edge XANES spectra for various coals and standards, measured by Kasrai et
<i>al.</i> [61]
Figure 3.2: An example of a fitted XANES S K-edge spectrum (of Illinois No. 6 Coal) by
Huffman <i>et al.</i> [58]. The dotted lines are $s \rightarrow p$ transitions for various species and the
dot-dashed line is the arc tan step function
Figure 3.3: S L-edge XANES spectra (as labelled on the right hand side) from Kasrai et al.
[62] comparing Rasa coal (A) with various model compounds (B-G)
Figure 3.4: Reference compound spectra for the S K-edge measured by Sarret et al. [56]40
Figure 3.5: Reference compound spectra for the S L-edge measured by Sarret et al. [56]41

Figure 3.6: Comparison between S L-edge XANES spectra for reference compounds and
asphaltene samples42
Figure 4.1: Principal components of the electron storage ring used as a synchrotron radiation
source [68]
Figure 4.2: The process of X-ray absorption (left), the interaction between the photoelectron
wave and backscattered wave (middle) and the spectrum produced (right) (adapted from
[71])
Figure 4.3: An example of a K-edge absorption spectrum, showing the XANES and EXAFS
regions [73]. The spectrum has been normalised to the high energy atomic absorption
(α_A). α is the measured absorption coefficient after pre-edge subtraction
Figure 4.4: Electron energy level diagram in an atom (adapted from [74])
Figure 4.5: The monochromator optics for a) the Grasshopper and b) the DCM (Double
Crystal Monochromator). Each one tunes to a different part of the synchrotron
continuum, 40 - 200 eV for the Grasshopper (B K-edge, Al, Si, P and S L-edges) and
1500 – 4000 eV for the DCM (4d, 5d, Si, P, S, Al K-edges)
Figure 4.6: Schematic of a typical endstation at the grasshopper and DCM beamlines
Figure 5.1: XANES S K-edge spectra of the inorganic reference compounds studied65
Figure 5.2: XANES S L-edge spectra of the inorganic reference compounds studied
Figure 5.3: XANES S K-edge spectra of the organic reference compounds studied69
Figure 5.4: XANES S L-edge spectra of the organic reference compounds studied70
Figure 5.5: XANES S K-edge spectra of the polymeric reference compounds studied72
Figure 5.6: XANES S L-edge spectra of the polymeric reference compounds studied. The
vulcanised and EDPM rubber spectra were measured in TEY mode, polyphenylene
sulfide and polysulfone in FLY mode73
Figure 5.7: XANES S K-edge TEY spectra for the low sulfur petroleum cokes studied76
Figure 5.8: XANES S K-edge FLY spectra for the low sulfur petroleum cokes studied77
Figure 5.9: XANES S K-edge TEY spectra for the high sulfur petroleum cokes studied78
Figure 5.10: XANES S K-edge FLY spectra for the high sulfur petroleum cokes studied79
Figure 5.11: XANES S L-edge TEY spectra for the low sulfur petroleum cokes studied81
Figure 5.12: XANES S L-edge TEY spectra for the high sulfur petroleum cokes studied82
Figure 5.13: XANES S K-edge TEY spectra for anode coke, a baked anode and an anode
butt

Figure 5.14: XANES S L-edge TEY spectra for anode coke, a baked anode and an anode
butt
Figure 5.15: Comparison of the hkl (002) graphite plane in anodes baked at various
temperatures. The smaller the FWHM (full width at half maximum), the higher the
degree of graphitisation
Figure 5.16: XANES S K-edge TEY spectra for anodes baked at four different temperatures
from the same source coke91
Figure 5.17: XANES S L-edge TEY spectra for anodes baked at four different temperatures
from the same source coke92
Figure 5.18: XRD results showing the hkl (002) graphite peak for anodes baked at 944°C and
then rebaked at either 1400°C or 1500°C94
Figure 5.19: The relationship between L_c (crystallite size) and equivalent baking temperature
for an anode [83]94
Figure 5.20: XANES S K-edge TEY spectra for an anode baked at 944°C, then rebaked at
1400°C or 1500°C
Figure 5.21: XANES S L-edge TEY spectra for an anode baked at 944°C, then rebaked at
1400°C or 1500°C97
Figure 5.22: Thermodynamic equilibrium compositions for sulfur species at 970°C for the
starting composition: 0.001 kmol C_4H_4S (thiophene), 0.082 kmol C, 0.001 kmol F_2 (g),
$0.002 - 0.2 \text{ kmol } O_2 \text{ (g)}.$
Figure 5.23: Sulfur species thermodynamic equilibrium at 970°C for the starting composition
at O_2 (g) = 0.076 kmol from Figure 5.22 (anode gas composition from thiophenic S),
where the CO ₂ /CO ratio is changing (CO ₂ (g) + CO (g) = 20 kmol)102
Figure 5.24: Thermodynamic equilibrium for sulfur species as anode gas from Figure 5.22
(anode gas composition from thiophenic S and O_2 (g) = 0.076 kmol) is cooled from
1000°C down to 0°C103
Figure 5.25: Thermodynamic equilibrium at 970°C for sulfur species as air is mixed with
anode gas from Figure 5.22 (anode gas composition from thiophenic S and O_2 (g) =
0.076 kmol). "Air" consisted of 2mol% H ₂ O, with the remainder 21% $O_2/79\%$ N ₂ 104
Figure 5.26: Equilibrium composition of anode gas (from Figure 5.22 calculations) as it is
cooled from 1000°C down to 0°C in excess (99 mol%) air (2 mol% H_2O , remainder 79%
N ₂ /21% O ₂)104
Figure 6.1: Six kinds of OH group on the alumina surface, bound to octahedral (Al^{VI}) and
tetrahedral (Al ^{IV}) aluminium sites (from reference [85])110

XIV
Figure 6.2: Adsorption sites for molecular COS proposed by [101] and [107], which have
bands at around 2000 cm ⁻¹ 115
Figure 6.3: Possible hydrogen thiocarbonate (HTC) species proposed by [101] to explain
bands at 1575 and 1325 cm ⁻¹ 116
Figure 6.4: COS conversion as a function of time at 30°C, with 300 ppm COS, 1200 ppm
H ₂ O, γ -alumina (0.5g, 300 m ² g ⁻¹) and a gas hourly space velocity of 100,000 h ⁻¹ [99].
Figure 6.5: Rate of COS hydrolysis as a function of H ₂ O concentration at 60°C, with 150 ppm
COS γ -alumina (0.5g, 300 m ² g ⁻¹), and a gas hourly space velocity of 500,000 h ⁻¹ . Key: \blacklozenge
= experimental data, = calculated data for COS adsorption limited model, - =
calculated data for surface reaction type model [99]118
Figure 6.6: Adsorbed SO ₂ species assigned by Datta et al. [108]. Types 1 and 4 have been
identified in most studies (see Table 6.2) and Types 2 and 4 were also detected by
Berben <i>et al.</i> [117]125
Figure 6.7: Dissociative adsorption of H_2S on γ -alumina, proposed by Datta and Cavell [123].
Figure 7.1: The equilibrium composition as COS concentration is increased (diluted in Ar) at

80°C. Initial composition: [Ar] = 9.6 kmol, [COS] = 1E-06 - 1E-04 kmol (0.1 - 10)

Figure 7.2: Equilibrium composition for S and C species between 0 and 100°C, with the starting composition: $[Ar] = 9.6 \text{ kmol}, [COS] = 1E-04 \text{ kmol} (10 \text{ ppm}), T = 0 - 100^{\circ}C.$

- Figure 7.3: The S and C equilibrium composition when gibbsite is present for the starting components: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [Al(OH)₃] = 0.01 kmol (1
- Figure 7.4: The S and C equilibrium composition as temperature varies with the following starting components: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), $[\alpha-Al_2O_3] =$ $0.005 \text{ kmol} (0.5 \text{ g}), [\gamma - \text{Al}_2\text{O}_3] = 0.005 \text{ kmol} (0.5 \text{ g}), [\text{Al}(\text{OH})_3] = 0.0001 \text{ kmol} (0.01 \text{ g}), \text{T}$
- Figure 7.5: The S and C equilibrium composition as H₂O concentration increases and no alumina is present. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10

- Figure 7.12: The S equilibrium composition at 80°C when H₂O is present and CO₂ concentration is increasing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), $[H_2O] = 2E-04$ kmol, $[CO_2] = 1E-06 5$ kmol, T = 80°C......146
- Figure 7.13: The S and C equilibrium composition with varying CO concentration when no alumina is present at 80°C. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [CO] = 1E-05 1E-03 kmol, T = 80°C.

- Figure 7.20: S and C equilibrium composition when H₂O is present and SO₂ concentration is changing. Starting composition: [Ar] = 9.6 kmol, [COS] = 1E-04 kmol (10 ppm), [H₂O] = 2E-04 kmol, [SO₂] = 1E-05 1E-03 kmol, [α-Al₂O₃] = 0.01 kmol, T = 80°C........153
- Figure 7.21: S and C equilibrium composition as air concentration increases. Starting composition: [Ar] = 9.6 9.595 kmol, [CH₄] = 1.71E-10 8.54E-09 kmol, [CO₂] = 3.52E-08 1.76E-06 kmol, [COS] = 9.76E-05 kmol, [He] = 5.13E-10 2.57E-08 kmol, [Kr] = 1.10E-10 5.50E-09 kmol, [N₂] = 7.63E-05 3.82E-03 kmol, [Ne] = 1.78E-09 8.90E-08 kmol, [O₂] = 2.05E-05 1.03E-03 kmol, T = 80°C.

Figure 9.4: Sulfur species composition when 120 ppmv COS is passed through a fluidised
bed of primary alumina (before September 2001)
Figure 9.5: Sulfur species composition when 120 ppmv COS was passed through a primary
alumina fluidised bed (after September 2001)
Figure 9.6: Desorption of sulfur gases following a 60 ppmv COS on primary alumina
fluidised bed experiment
Figure 9.7: DRIFTS spectra of primary alumina following a 1 mL injection of COS (time
elapsed after injection is labelled on the left of each spectrum, the injection occurred at
0m0s)
Figure 9.8: Successive DRIFTS spectra following a second 1 mL COS injection on primary
alumina (50% in CaF ₂). See Figure 9.7 for the first injection in this experiment213
Figure 9.9: DRIFTS spectra before (47m10s) and after heating COS exposed alumina to
200°C (3h11m) and 500°C (4h37m)
Figure 9.10: Possible mechanism for COS adsorption and hydrolysis on alumina. Orientation
of hydrogen thiocarbonate (HCO ₂ S ⁻) on alumina in the fourth reaction step from [101].
Figure 9.11: Sulfur species composition when 60 ppmv COS and 4 %RH were passed
through a primary alumina fluidised bed217
Figure 9.12: Sulfur species composition when 120 ppmv COS and 4 %RH were passed
through a primary alumina fluidised bed217
Figure 9.13: Sulfur species composition when 60 ppmv COS and 16 %RH were passed
through a primary alumina fluidised bed218
Figure 9.14: Sulfur species composition when 120 ppmv COS and 16 %RH were passed
through a primary alumina fluidised bed218
Figure 9.15: Sulfur species composition when 60 ppmv COS is passed through a primary
alumina fluidised bed at 80°C, where the alumina has been dried beforehand
Figure 9.16: Successive DRIFTS spectra before and after a 1 mL injection of COS into a cell
containing calcined primary alumina (time is 0m0s at injection)
Figure 9.17: Sulfur species composition when 60 ppmv COS and 0.5% O2 were passed
through a primary alumina fluidised bed
Figure 9.18: Sulfur species composition when 120 ppmv COS and 0.5% O ₂ were passed
through a primary alumina fluidised bed224
Figure 9.19: Sulfur species composition when 60 ppmv COS and 1.75% O ₂ were passed

Figure 9.20: Sulfur species composition when 120 ppmv COS and 1.75% O_2 were passed
through a primary alumina fluidised bed226
Figure 9.21: Sulfur species composition when 60 ppmv COS and 3.375% O_2 were passed
through a primary alumina fluidised bed226
Figure 9.22: DRIFTS spectra of primary alumina following a 2 mL injection of COS and
successive injections (50 mL) of air
Figure 9.23: Sulfur species composition when 60 ppmv COS was passed through a secondary
alumina fluidised bed. The first data point (at -2 minutes) represents the sulfur species
composition prior to contacting secondary alumina
Figure 9.24: DRIFTS spectra following injection of COS (2 mL) onto secondary alumina
(50% in CaF ₂)
Figure 9.25: Sulfur species composition when 60 ppmv COS, 90 mgNm ⁻³ HF and 4 %RH
were passed through a primary alumina fluidised bed
Figure 9.26: Sulfur species composition when 60 ppmv COS was passed through a 3 mass%
F alumina fluidised bed
Figure 9.27: Sulfur species composition when 103 ppmv SO ₂ was passed through a primary
alumina fluidised bed
Figure 9.28: Sulfur species composition when 103 ppmv SO_2 was passed through a 3 mass%
F alumina fluidised bed235
Figure 9.29: DRIFTS spectra of four successive SO ₂ injections (1st 0.2 mL, 2nd-4th 0.5 mL)
on primary alumina (30% in CaF ₂). (-04m33s = prior to injection, $00m00s =$
immediately after 1st injection (0.2 mL), 12m42s = stable surface after first injection,
22m13s = immediately after 3rd injection (0.5 mL), $35m20s =$ stable surface after four
injections.)
Figure 9.30: Spectra before and after 500°C heat treatment of primary alumina that has been
exposed to SO ₂ . $(35m20s = stable surface after four SO2 injections from Figure 9.29,$
1h58m = surface after calcining at 500° for 30 minutes.)
Figure 9.31: DRIFTS spectra of secondary alumina (30% alumina in CaF ₂) before and after
SO_2 injection. (-03m34s = Surface prior to injection, $00m00s$ = surface immediately
after injection, 17m32s = stable surface after injection.)
Figure 9.32: Sulfur species composition when 60ppmv COS and 103 ppmv SO ₂ were passed
through a primary alumina fluidised bed
Figure 9.33: Sulfur species composition when 60ppmv COS and 103 ppmv SO ₂ were passed
through a 3 mass% F alumina fluidised bed241

- Figure 9.36: Change in DRIFTS spectra after an injection of COS (5 mL) then SO₂ (5 mL). (-02m22s = Background spectrum, 00m00s = Immediately after COS injection, 1h40m = Stable surface after COS injection (sample was left overnight after COS injection), 18h22m = Immediately after SO₂ injection, 18h25m = Stable surface after SO₂ injection.)

- Figure 9.45: Spectra following an injection of COS (2 mL) onto freshly calcined Na doped primary alumina (50% in CaF₂, 0.78 mass% Na)......252

Figure 9.46: Spectra following an injection of COS (2 mL) onto Fe doped primary alumina
(50% in CaF ₂ , 6.11 mass% Fe)
Figure 9.47: Spectra following an injection of COS (2 mL) onto freshly calcined Fe doped
primary alumina (50% in CaF ₂ , 6.11 mass% Fe)254
Figure 9.48: Spectra following an injection of COS (2 mL) onto Ca doped primary alumina
(50% in CaF ₂ , 10.9 mass% Ca)255
Figure 9.49: Sulfur species composition when 5% CO_2 and then 60 ppmv COS were
successively passed through a primary alumina fluidised bed. The inlet gas composition
for CO_2 is at -2 min, and for COS at 155 min. The gas stream was switched from CO_2 to
COS after about 10 minutes257
Figure 9.50: Sulfur species composition when 5% CO_2 and then 103 ppmv SO_2 (after 5 min)
were successively passed through a primary alumina fluidised bed. The inlet gas
composition for CO_2 is at -2 min, and for SO_2 at 43 min
Figure 9.51: 60 ppmv H_2S gas diluted in Ar, tracked over several hours in the mass
spectrometer (no alumina is present)259
Figure 9.52: Sulfur species composition when 60 ppmv H_2S was passed through a primary
alumina fluidised bed259
Figure 9.53: DRIFTS spectra of primary alumina (50% in CaF ₂) before and after injections of
H_2S . (-05m26s: prior to H_2S injections, 00m00s: immediately following first injection
of H ₂ S, 18m32s: spectrum of stable surface after 2 injections.)260
Figure 9.54: DRIFTS spectra following an injection of H_2S (50 mL of 2.5% H_2S in H_2) on
calcined primary alumina (50% in CaF_2). (-02m02s = Surface prior to injection, 00m00s
= surface immediately following injection, 27m04s = stable surface after injection.)261
Figure 9.55: Sulfur species composition when 60 ppmv COS was passed through a γ -alumina
fluidised bed
Figure 9.56: Sulfur species composition when 240 ppmv COS was passed through a γ-
alumina fluidised bed
Figure 9.57: Successive DRIFTS spectra after COS injection (2 mL injections, 00m00s and
16m46s) on γ-alumina (50% in CaF ₂)
Figure C.1: An example of model fitting using reference spectra for a coke sample containing
2.73%S
Figure C.2: An example of model fitting using reference spectra for an anode sample baked at
944°C

xxii

Figure E.3: Absorbance of various mixtures of primary alumina and CaF ₂)
Figure E.4: DRIFTS spectra following an injection of COS onto CaF ₂	
Figure E.5: DRIFTS spectra following an injection of SO ₂ onto CaF ₂	,
Figure E.6: DRIFTS spectra following a 6 mL SO ₂ injection onto primary alumina	,
Figure E.7: DRIFTS spectra of SO ₂ injections on various primary alumina - CaF ₂ mixtures.	
Figure F.8 : COS gas (ratioed to an N ₂ background) FT-IR spectrum	
Figure F.9: FT-IR spectrum of H ₂ S gas (2.5% in H ₂ , ratioed to dry air)305	
Figure F.10: FT-IR spectrum of SO ₂ gas in dry air (ratioed to dry air)	
Figure G.11: Partial pressure of selected gases in mass spectrometer as inlet COS gas	\$
concentration increases (Dilutant = Ar, $T = 80^{\circ}$ C, no other gases or alumina present). 306)
Figure G.12: Sulfur mass balance with increasing COS concentration in isolation (also see	;
Figure G.11)	,
Figure G.13: Sulfur mass balance for increasing H ₂ S concentration in isolation)
Figure G.14: Sulfur mass balance for increasing SO ₂ concentration in isolation)
Figure G.15: Partial pressure of selected gases in the mass spectrometer as relative humidity	7
increases (Dilutant = Ar, T = 80°C)	
Figure G.16: Sulfur gas composition with 60 ppm inlet COS and increasing relative humidity	7
(0 – 20 RH%)	
Figure G.17: Sulfur gas composition with 50 ppm inlet H ₂ S and increasing relative humidity	7
(0 – 20 RH%)	,
Figure G.18: Sulfur gas composition with 100 ppm inlet SO ₂ and increasing relative humidity	7
(0 – 20 RH%)	,
Figure G.19: Partial pressure of selected gases (m/z ratio) in mass spectrometer as O2 gas	\$
concentration increases (Dilutant = Ar, T = 80°C)	
Figure G.20: Sulfur mass balance with increasing O2 concentration and 60 ppmv COS	
entering the mass spectrometer	
Figure G.21: Sulfur mass balance with increasing O2 concentration and 120 ppmv COS	
entering the mass spectrometer	
Figure G.22: Sulfur mass balance with increasing O ₂ concentration and 60 ppm H ₂ S entering	5
the mass spectrometer)
Figure G.23: Sulfur mass balance with increasing O ₂ concentration and 60 ppmv SO ₂	2
entering the mass spectrometer	1

Figure G.24: Sulfur mass ba	alance for 60 ppmv	inlet COS	concentration	and increasing	inlet
SO ₂ concentration					.318

LIST OF TABLES

Table 2.1: The typical impurity composition of anode grade petroleum coke (based on [14]
the remainder of the coke is carbon)
Table 2.2: Physical characteristics of smelter grade alumina [10].
Table 2.3: Species present in the fumes from a smelting cell [20]
Table 2.4: Henry and Holliday's mass spectrometric measurements of sulfur gas composition
leaving the anode [37]
Table 2.5: Ødegård et al.'s measurement of anode gas in a laboratory cell over time [35]22
Table 2.6: Kimmerle <i>et al.</i> measurements of anode and duct sulfur gas concentrations [38]. 22
Table 2.7: Utne <i>et al.</i> 's measurement of anode and cell hood sulfur gases [4].
Table 2.8: Tveito et al.'s measurement of sulfur gas composition under the anode, at the
alumina feeder hole, molten aluminium tap hole and under the top crust in a prebake cell
[5]23
Table 2.9: Concentration of COS, SO ₂ and CS ₂ after dry scrubbing in a prebake smelter,
measured by Harnisch <i>et al.</i> [6]
Table 2.10: Utne <i>et al.</i> 's [4, 36] measurements of sulfur gas emissions before and after dry
scrubbing and after wet scrubbing
Table 2.11: Sulfur gas composition around the dry and wet scrubbers measured by Tveito et
al. [5] from the same cell-line as earlier measurements by Utne et al. [4]
Table 2.12: A summary of previous smelter measurements of sulfur gas composition27
Table 3.1: Peak positions of sulfur L-edges for reference compounds and coal samples (See
Figure 3.1 [61])
Table 4.1: Anodes and cokes studied using XANES
Table 4.2: Standard sulfur compounds used for XANES analysis. 59
Table 5.1: The sulfur composition in cokes calculated using reference spectra to model coke
spectra at the K-edge. The proportion of each type of thiophenic S (dibenzothiophene
and thianaphene-2-carboxylic acid) are included as well as the total proportion of these
two species. Values given in the table are fractional
Table 5.2: The sulfur composition in source coke, anodes and an anode butt calculated using
reference spectra to model sample spectra at the K-edge. The proportion of each type of

thiophenic S (dibenzothiophene and thianaphene-2-carboxylic acid) are included as well
as the total proportion of these two species. Values given in the table are fractional99
Table 6.1: Summary of adsorbed COS bands and their assignments. 114
Table 6.2: Bands representing adsorbed SO2 species. 122
Table 6.3: Summary of adsorbed H2S bands and their assignments
Table 6.4: Summary of adsorbed CS2 species. 130
Table 7.1: Summary of thermodynamic results, with respect to COS stability at equilibrium
under different conditions typical of a dry scrubber at 80°C158
Table 8.1: m/z Ratio and dwell time data collected using the mass spectrometer171
Table 8.2: XRF elemental analysis (mass%) of primary alumina. 184
Table 8.3: XPS elemental quantification for primary alumina (BE values are from narrow
scans)
Table 8.4: EDS point scan results for primary smelter-grade alumina
Table 8.5: XRF elemental analysis (mass%) of secondary alumina
Table 8.6: Elemental composition of secondary alumina determined using XPS
Table 8.7: Selected EDS results of elemental composition of secondary alumina. Scans 1, 3
and 8 were of bigger, more crystalline particles and scans 6 and 10 were of smaller
particles190
Table 8.8: Selected EDS results showing the elemental composition at selected spots on a
laboratory-fluorinated alumina sample191
Table 8.9: XRF elemental compositions of various doped aluminas. 193
Table 8.10: EDS results of spot scans of the Na doped alumina sample
Table 8.11: EDS results of spot scans of the Fe doped alumina sample. 195
Table 8.12: EDS results of spot scans of the Ca doped alumina sample. 196
Table 8.13: Composition of the catalyst grade γ-alumina studied197
Table 8.14: XRF analysis of catalyst-grade γ-alumina197
Table 8.15: XPS elemental composition of γ-alumina
Table 8.16: EDS elemental compositions from spot scans of a γ-alumina bead
Table 9.1: Calculated mass percentages of COS adsorbed on alumina over the duration of
experiments (the first 223 minutes of the experiment, in all cases) and with varying inlet
gas compositions
Table 9.2: Calculated mass percentages of COS adsorbed on alumina over the first 223
minutes of each O ₂ experiment, with varying inlet gas compositions

xxvi

Table 9.3: Calculated mass percentages of COS adsorbed on alumina over the first 223
minutes of each experiment, with varying inlet gas compositions and alumina impurities.
Table 9.4: XRF fused bead analysis of unreacted and COS exposed (240 ppmv COS for 5
hours) γ-alumina
Table 9.5: A summary of experimental results, compared to thermodynamic predictions from
Chapter 7 to determine the behaviour of COS in dry scrubbing conditions267
Table G.1: Ionisation factors for COS, H ₂ S and SO ₂
Table G.2: Changing ionisation factor with inlet H ₂ S concentration prior to filament
replacement in September 2001
Table G.3: Ionisation factors for COS, H ₂ S and SO ₂ with varying O ₂ concentration

Symbol/ Abbreviation Units Description α' eV Modified Na Auger parameter ΔE eV Resolution ΔG^0 kJmol⁻¹ Standard change in Gibbs energy Pa Pressure drop across fluidised bed reactor Δp Å λ Wavelength of x-ray source 0 Θ, θ XRD angle of diffraction ad Adsorbed species B, b, β rads XRD peak broadening due to sample and/or instrument BE eV Binding energy Ca Concentration of gas a ppmv CSRF Canadian Synchrotron Radiation Facility Å d Interplanar spacing D Daily mass spectrometer correction factor DCM Double Crystal Monochromator Diffuse Reflectance Infrared Fourier Transform Spectroscopy DRIFTS E eV Beam energy at edge E^0 V Standard electronic potential for redox reaction EDS Energy Dispersive Spectroscopy EXAFS Extended X-ray Absorption Fine Structure FTIR Fourier Transform Infrared **FWHM** Full Width Half Maximum FLY Fluorescence Yield Gaseous species g GC-MS Gas Chromatography-Mass Spectrometry

Hydrogen thiocarbonate (adsorbed species)

HTC

LIST OF SYMBOLS AND ABBREVIATIONS

xxviii

Abbreviation	Units	Description
hν	eV	Energy of the x-ray source in XPS
Ι	torr/ppmv	Ionisation correction factor
k		Reaction rate constant
Κ		Equilibrium constant for reaction
KE	eV	XPS kinetic energy
L	mm	Fluidised alumina bed height
L _c	Å	Crystallite size
m/z		Mass to charge ratio of ions in mass spectrometer
pa	torr	Partial pressure of gas a
p _{ab}	torr	Background partial pressure of gas a
p _{ac}	torr	Partial pressure of gas a at time of calibration
P _T	torr	Total pressure
r		Reaction rate
RH	%	Relative humidity
SEM		Scanning Electron Microscopy
SRC		Synchrotron Radiation Center
TEY		Total Electron Yield
\mathbf{V}_0	ms ⁻¹	Superficial gas velocity in fluidised bed
[X]	ppmv, kmol	Concentration of species <i>x</i>
XANES		X-ray Absorption Near Edge Structure Spectroscopy
XPS		X-ray Photoelectron Spectroscopy
XRD		X-Ray Diffraction
XRF		X-Ray Fluorescence
y _a		Mole fraction of gas <i>a</i>