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Abstract 

 

 

 

 

It is uncontroversial that evidence regarding frequencies should 

constrain probabilities or degrees of belief. What is controversial is 

the question of how this should be done. The random-worlds method 

provides some insight on this question. However, the method by itself 

faces problems in accounting for rational inferences from samples and 

in accommodating the uncertainty that agents occasionally have about 

relevant relative frequencies. One potential response to these problems 

is to seek alternative probability measures to accommodate such 

inferences and uncertainty. After surveying two such measures and 

various problems for them, I find this response wanting. I then offer 

another response in the form of a theory about rational inferences 

from samples, one which places an emphasis on the role of intuition in 

interpreting the probabilistic implications of evidence. The theory is 

nevertheless consistent with formal methods of statistical analysis in 

many contexts (such as objective Bayesian analyses of random 

samples). In accordance with the theory, one may use evidence from 

samples to form probability distributions about the relevant relative 

frequencies in a population. I then sketch out how the resulting 

distributions can be integrated with the insights from the random-

worlds method à la the theorem of total probability. This, then, 

provides an approach to constraining probabilities given evidence 

about relative frequencies. 
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1. Introduction 

 

“I intend to live forever. So far, so good.” 

– Attributed to Steven Wright   

 

 

There is something both humorous and philosophically significant about this quote.  Some 

inferences from relative frequencies are reasonable whereas others are not. The relative 

frequency with which I have lived every day since my birth has so far been 1. But this does 

not legitimise the inference that I will probably continue to live every day since my birth for 

the rest of eternity.  

In this sense, an examination of how evidence about frequencies might justify various 

beliefs is tremendously important. The justificatory status of a vast quantity of our beliefs 

depends on their connection to evidence regarding frequencies. For example, one is typically 

justified in believing in the general reliability of certain kinds of testimonies and the myriad 

of propositions which they affirm. We might say that this is because of the observed 

frequency of similar testimonies that have been reliable in the past. Likewise, suppose one is 

justified in believing that they are safe to fly in a plane which they have boarded. We might 

say that this is because of their belief that the relative frequency of dangerous malfunctions 

among flights is low. We could make a similar connection between frequencies and the 

justification for a plethora of other beliefs. Arguably, then, we make decisions and even risk 

our lives in many cases on the basis of judgments underpinned by frequency information. For 

these reasons, the connection between frequencies and belief is both an interesting and 

important topic. 

From a philosophical perspective, the connection between frequencies and degrees of 

belief is also of particular interest. A position known as subjective or permissive Bayesianism 

is popular in formal philosophy, one which has few normative constraints on permissible 

prior probability distributions. Regardless, these Bayesians often, if not always, advocate 

constraints on degrees of belief that appeal to empirical relative frequencies or “objective 

chances” (on some understanding of that concept). There is a case to be made that objective 
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chances are closely connected (if not identical) to relative frequencies of some sort.
1 

These 

constraints arguably are the means by which the evidence proffered by the world impinges on 

the probabilities of the subjective Bayesian, thereby conferring some objectivity on them. 

Objective or impermissive Bayesians, like Jon Williamson, likewise advocate constraints by 

which frequencies or chances should impact subjective probabilities.
2
 Hence, frequencies are 

important to Bayesians of all stripes. 

The topic is also relevant to other disciplines, including law, medicine and many other 

fields. This is illustrated by the court case of a particular drug-smuggler who had his prison 

sentence extended. This extension was based on the grounds that he probably smuggled a 

certain quantity of drugs given that many other smugglers like him had frequently smuggled 

that quantity.
3
 This decision was appealed and vacated partly on the grounds that the 

statistical evidence was not sufficiently “specific” to the smuggler. Considerable debate 

ensued about the probative value of statistical evidence, evidence which can have significant 

real-world implications in numerous parts of society. 

For these reasons then, it is important to consider the question of what inferences from 

evidence about frequencies are rational and what inferences are not. In answer to this 

question, then, we need a theory about how to assign values to probabilities given evidence 

about frequencies.  If probability is, to use Joseph Butler’s oft-repeated words, “the very 

guide of life”, then we might say that such a theory is a good meta-guide to obtaining this 

reliable guide of life.
4
  

Theories of this sort have been articulated by various scholars, including Hans 

Reichenbach, Henry Kyburg, Choh Man Teng and John Pollock. Reichenbach outlines a 

theory whereby the observed frequency of As in a sequence of observed Bs is, under certain 

circumstances, regarded as an estimate of the limit of the frequency were the sequence to be 

                                                      
1
 For instance, one might understand the objective chance of an experimental set-up to produce a certain 

outcome to be the propensity of the set-up to produce that outcome where propensities are in turn understood by 

appeal to relative frequencies (perhaps of the hypothetical sort). For a concise discussion of relationships 

between propensities and relative frequencies as well as other concepts of probability (such as Lewis’s best 

systems account), see Alan Hájek, “Interpetation of Probability,” The Stanford Encyclopedia of Philosophy 

(accessed May 8, 2015), http://plato.stanford.edu/archives/win2012/entries/probability-interpret/. 
2
 Jon Williamson, In Defence of Objective Bayesianism (Oxford; New York: Oxford University Press, 2010). 

3
 Mark Colyvan, Helen M. Regan and Scott Ferson, “Is it a Crime to Belong to a Reference Class,” Journal of 

Political Philosophy 9, no. 2 (2001): 168-181. 
4
 Joseph Butler, The Analogy of Religion, Natural and Revealed to the Constitution and Course of Nature, 20

th
 

ed. (New York: Mark H. Newman & Co., 1851), 30. Alan Hájek appeals to this idea of a guide to the guide of 

life in a different context in an unpublished draft. See Alan Hájek, “Symmetry is the Very Guide of Life,” The 

Pennsylvania State University, accessed May 3, 2016, 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.318.2402&rep=rep1&type=pdf.   
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extended indefinitely.
5
 Since he identifies such limits with probabilities, he therefore provides 

a theory by which evidence about observed frequencies determines probabilities.
6
 Kyburg 

and Teng also spell out their system of evidential probability which defines probability in 

terms of relative frequencies among models consistent with a knowledge base. They draw on 

Chebychev’s inequality to estimate the relative frequency of As among a population of Bs 

based on the characteristics of a sample.
7

 Pollock articulates the concept of a nomic 

probability and draws on classical confidence interval methods as a means for estimating 

these probabilities based on the characteristics of samples.
8
 All of these authors regard these 

probabilities that are founded on frequency data as “legislative for rational belief”, to use 

Kyburg and Teng’s words.
9
 

However, none of these authors are Bayesians. I understand orthodox Bayesianism in this 

context to be the view according to which probabilities are (at least in some contexts) 

understood as the degrees of belief of some agent.
10

 Furthermore, on this view, such 

probabilities should conform to Andrey Kolmogorov’s axioms of probability and should be 

updated via some rule of conditionalisation upon the receipt of evidence.  

Neither Reichenbach, Kyburg, Teng nor Pollock endorse all of these components. None of 

them, for example, work with an interpretation of probabilities as degrees of belief.
11

 

Reichenbach interprets probabilities as limiting relative frequencies. Kyburg, Teng and 

Pollock similarly identify or equate probabilities with the frequency with which a proposition 

is true among a set of logical models or physically possible worlds. Nevertheless, they bear 

some resemblances to Bayesian thought. Pollock, for instance, endorses axioms for 

conditional probabilities which resemble Kolmorgov’s axioms and Kyburg and Teng’s theory 

explicitly agrees with Bayesian conditionalisation in certain cases.
12

 Despite these 

resemblances, they are not Bayesian. 

                                                      
5
 Hans Reichenbach, The Theory of Probability, 2

nd
 ed. (Berkeley: University of California Press, 1949). 

6
 Reichenbach’s views are perhaps more nuanced than various commentators indicate. He articulates his theory 

of probability with respect to both hypothetical limits and “practical limits” in the actual world, that is, 

“sequences that behave, in a finite length…, in a way comparable to a mathematical limit”. Reichenbach, The 

Theory of Probability, 347-348 and 447. 
7
 Henry Kyburg and Choh Man Teng, Uncertain Inference (New York: Cambridge University Press, 2001). 

8
 John Pollock, “The Theory of Nomic Probability,” Synthese 90, no. 2 (1992): 263-299. 

9
 Kyburg and Teng, Uncertain Inference, 226. 

10
 Michael Strevens, “Bayes, Bayes’ Theorem, Bayesian Approach to Philosophy of Science,” vol. 1 of 

Encyclopedia of Philosophy, ed. Donald M. Borchert, 2nd ed. (Detroit: Macmillan Reference USA, 2006), 496. 
11

 However, Pollock does work with the concept of a “mixed physical-epistemic probability” which somewhat 

resembles a Bayesian degree of belief. 
12

 John Pollock, “Probable Probabilities (with Proofs),” accessed December 6, 2015, 

http://johnpollock.us/ftp/PAPERS/Probable%20Probabilities%20with%20proofs.pdf and Kyburg and Teng, 

Uncertain Inference, 263. Throughout this thesis, I occasionally refer to Pollock’s work that has remained 



 

4 

 

However, one theory in the literature does stand out as at least quasi-Bayesian, namely, the 

random-worlds method articulated by computer scientists Fahiem Bacchus and his colleagues. 

Like the theories of Reichenbach, Kyburg, Teng and Pollock, their theory outlines how 

probabilities are to be constrained by information regarding frequencies. 

Their approach might be interpreted as Bayesian for a few reasons (rightly or wrongly). 

One is that their focus is on degrees of belief or, as they and others say, subjective 

probabilities.
13

 Furthermore, they explicitly mention that they “use the Bayesian approach”.
14

 

In this sense, these degrees of belief gain their values by the use of some characteristically 

objective Bayesian techniques – the use of an indifferent probability distribution which is 

then updated by conditionalisation.
15

 

Yet their approach does not obviously fit into the typical Bayesian story. For one, although 

they use prior and posterior probability distributions, they do not explicitly interpret these 

distributions as representing degrees of belief (or indeed anything else). Instead, these 

distributions are used as a means of defining degrees of belief in terms of the frequency with 

which propositions are true among the models that are consistent with a knowledge base. 

They therefore only offer a static constraint on degrees of belief, a constraint specifying that 

if one has a certain knowledge base at a given time, then their degrees of belief should be a 

certain way at that time. Additionally, the probabilities of interest are computed entirely on 

the basis of a set of categorical beliefs, the principle of indifference and axioms of probability. 

There is no appeal to, say, the subjective intuition or considerations of simplicity that might 

determine the probabilities of typical Bayesians, particularly of the subjectivist sort. 

Regardless, if one is looking for a relatively comprehensive Bayesian theory of how 

degrees of belief should be constrained by information about relative frequencies, the closest 

candidate in the literature is Bacchus et al.’s theory.  

Furthermore, the theory provides a wealth of insight as to how to do this. For example, it 

tells one both that and why they should equate their degree of belief with statistical 

statements about some reference classes but not others and should regard two properties as 

probabilistically independent unless given reason to think otherwise. It also outlines what are 

putatively reasonable ways for assigning values to degrees of belief in other situations where 

our intuitions about the appropriate value may not be so clear.  

                                                                                                                                                                     
unpublished since his death. This is because, although unpublished, this work is both insightful (in my opinion) 

and reflective of his later thinking. 
13

 Bacchus et al., “From Statistical Knowledge Bases,” 75. 
14

 Ibid., 77. 
15

 Ibid., “From Statistical Knowledge Bases,” 99.  
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For these reasons, a Bayesian might find in Bacchus et al.’s theory a useful account of 

how one should assign values to degrees of belief on the basis of frequency information. 

Or not. Indeed, the theory only provides guidance under conditions which are often so 

unrealistic that it might make the theory irrelevant to many practical situations. The method 

only specifies what the degrees of beliefs should be if one is certain of the statements in the 

knowledge base (or prepared to accept such statements as if they are certain). Examples of 

such statements are those of the form “this a is a B” and “the frequency with which Bs are As 

is r” where a is some object, A and B are some predicates and r some real number in the unit 

interval [0, 1].  

This supposition of (quasi-)certainty makes the situations envisaged by the method 

atypical of many actual situations in which agents are curious about the degrees of belief that 

they should have. For example, suppose a doctor has found that 90 of 100 of their patients 

with a particular set of symptoms have had a particular ailment. On the basis of this sample of 

patients, she is 80% confident in the proposition that approximately 90% of the people in her 

locality with those symptoms have that ailment. But the doctor is not certain of the relative 

frequency so as to accept this proposition as if they are certain. Yet surely her confidence 

about the uncertain relative frequency should somehow affect her degree of belief that the 

next patient that she sees with those same symptoms will have that ailment. How, then, 

should her confidence do this? The random-worlds method by itself is silent here. It only 

specifies that if one accepts that the relative frequency is such-and-such, then the relevant 

degree of belief is so-and-so.  

Given that the random-worlds method arguably has numerous favourable features and 

provides some useful guidance, can we salvage this guidance and integrate it into other 

realistic contexts where the agent is uncertain about the relevant relative frequencies? 

This thesis argues affirmatively, albeit via a somewhat long-winded route. I argue that the 

method can be supplemented with a theory of so-called inverse inference that acknowledges 

the role of intuition in interpreting the significance of sample evidence. The theory accords 

with both the subjective Bayesian thought that inference involves intuitive and non-formal 

elements and the objective Bayesian thought that not all such elements are rationally 

permissible. However, this theory also accommodates formal and established methods of 

statistical inference, such as objective Bayesian data analysis of random-samples. Yet it also 

accommodates some of the commonplace inferences that agents make about relative 

frequencies on the basis of evidence (particularly from so-called non-probability samples) 

thus allowing them to thereby have their own probability distribution over the possible 
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relative frequencies of interest. I then argue that such distributions can be integrated with the 

insights from the random-worlds method via the theorem of total probability to thereby 

constrain degrees of belief. 

   

1.1. Outline 

 

So that is my thesis. Here is how I argue for it. 

The second chapter discusses some important topics, concepts and terminology. Crucial in 

this respect is the formal language utilised by the (hypothetical) agent in making various 

inductive inferences. A taxonomy of these inductive inferences is presented to map out the 

subject matter of this thesis. In this regard, the end of the chapter examines the degrees of 

belief, credences or subjective probabilities which are the outputs of such inferences. 

In Chapter 3, I outline the random-worlds method and, in Chapter 4, I then explore how 

the random-worlds method may be evaluated before delineating some putatively favourable 

features which it possesses. Here, I argue that while the method is insightful, it is also 

problematic. In particular, it faces  difficulties in accommodating important cases of 

uncertainty about relative frequencies (like the aforementioned case of the doctor) and 

validating rational inferences from samples. 

The fifth and sixth chapters outline and assess one response to these difficulties, one that 

turns to alternative formal measures for inductive inference. I describe two of these measures 

in Chapter 5. In Chapter 6, I then evaluate these measures and survey some problems 

confronting them. I ultimately conclude that we currently lack a general, objective and formal 

method of inference to replace the measure used in the random-worlds method, particularly 

where non-probability samples are concerned. 

The seventh chapter then articulates a theory about certain kinds of inferences from 

samples, especially in the context of non-probability samples. This theory delineates two 

dimensions along which the rationality of such inferences are assessed. It argues that certain 

intuitions may be trusted in making these inferences. In accordance with the theory, 

individuals may, on the basis of sample evidence, form probability distributions over the 

space of possible relative frequencies in a population.  

Chapter 8 then examines how such distributions may be integrated with the prescriptions 

of the random-worlds method to thereby constrain degrees of belief. In particular, it does this 

by appealing to the spirit of the theorem of total probability. 
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Having outlined the structure of the thesis, a word is in order to clarify what the reader can 

expect of it. It should be clear that this thesis concerns debates in both philosophy and 

statistics (as well as certain other disciplines). This is because branches of these disciplines 

are closely connected through their common interest in reasoning in the face of uncertainty. 

Such a connection caused philosophers Colin Howson and Peter Urbach to claim that the 

branch of statistics known as statistical inference in fact “naturally belongs to philosophy of 

science.”
16

 Indeed, the thesis’s philosophical and statistical focus follows in the footsteps of 

prominent philosophers, including Reichenbach, Pollock and Kyburg. Furthermore, that the 

thesis treats subjects in both disciplines is to be expected since the thesis falls under purview 

of both the philosophy and the statistics departments of the University of Auckland. 

Consequently, the thesis tries to navigate two disciplines in a way that is accessible to both 

and neglectful of neither. Given this background, I hope that the thesis is not unduly criticised 

by the philosophically inclined as too statistically oriented nor by the statistically inclined as 

too philosophically oriented.   

                                                      
16

 Colin Howson and Peter Urbach, Scientific Reasoning: The Bayesian Approach, 3rd ed. (Chicago: Open 

Court, c2006), 91. 



 

8 

 

2. The Epistemological Backdrop 

  

To help us to understand the random-worlds method and related theories, it would be helpful 

to locate it in the context of a wider set of topics and concepts. This is particularly the case 

since this thesis is not just written for a philosophical audience, but also a wider audience 

who may be less familiar with some of the topics that follow. 

  

  

2.1. Language and Semantics 

 

To explore formally how information about frequencies can constrain degrees of belief, we 

will need a formal language and some logical notation. I have chosen notation based on its 

elegance and similarity to other notation found in the literature. I have also included an 

appendix with a translation key for the notation. 

The topic of language is important in this thesis and in the study of logic more generally. 

Logicians utilise formal languages that represent the world which some agent (whether actual 

or hypothetical) is interested in reasoning about. The choice of language is significant since it 

delineates the categories which are deemed important and relevant to reasoning in the agent’s 

situation. In Chapter 6, we shall see that, according to some theories of inductive inference, 

the choice of language can also bear on the values of probabilities. 

Let us now survey the formalism used in this work. 

  

 

2.1.1. The Basics of a First-Order Language 

 

In this thesis, we will use the language of Bacchus et al., albeit occasionally with different 

symbolism.
17

 The language, symbolised as ℒ≈ , expresses both statistical and first-order 

information, that is, information in first-order logic. 

While it is neither possible nor desirable to examine in-depth the typical syntax and 

semantics of first-order logic here, I will informally explain some notation so that non-

specialist audiences can have a rough understanding of the notation.  

First-order logic involves various symbols known as constants, variables and predicates.  

                                                      
17

 Bacchus et al., “From Statistical Knowledge Bases,” 95. 
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To understand these symbols, it is useful to understand the semantic concept of domain 

objects. Domain objects are represented with lower-case ds and the domain is the set of 

domain objects {𝑑1, 𝑑2, . . , 𝑑𝑁} where N is the size of the domain. The domain is what the 

language is about.  

The language used in the random-worlds method can contain so-called constants which 

are represented with lower-case letters 𝑎, 𝑏, 𝑐 … and which are linguistic items used to denote 

the non-linguistic domain objects. (Note that I am following the logical tradition of counting 

persons and events as “objects” too.) Suppose that the agent is interested in reasoning about 

whether his friend Aaron went to a funeral given that his friends Brendon and Claire went. 

The agent may then have a language with three constants denoting the respective friends or 

objects: a, b and c for Aaron, Brendon and Claire respectively. If we suppose the agent is 

only interested in reasoning about these three people and no other objects, then we suppose 

that the domain has only three objects, each of which is uniquely named with a constant.  

The language also contains variables, that is, lower-case letters toward the end of the 

alphabet 𝑥, 𝑦, 𝑧 …. Variables are syntactic items which serve two purposes in logic. First, they 

are used to denote a particular object that is unspecified. For instance, a logician might ask a 

student to suppose that “x went to the funeral”. Second, they are used to, in Stewart Shapiro’s 

words, “express generality” as when a logician might endorse a proposition such as, “For all 

x, if x is the agent’s friend, then x went to the funeral” (this is one way of saying that all of the 

agent’s friends went to the funeral).
18

  

The language contains various predicate symbols, represented with upper-case letters, 

𝐴, 𝐵, … , 𝐹, 𝐺, …. Predicate letters correspond to sentences when combined with constants or 

variables. For example, a language may contain the predicate F where Fx is the sentence “x 

went to the funeral” and Fc is the sentence “Claire went to the funeral.” Predicates can also 

express relations between objects. For example, if 𝐺𝑥𝑦 expresses the proposition that x is 

ganglier than y, then 𝐺𝑎𝑏  expresses a proposition about the relation between Aaron and 

Brendon, namely, the relation of Aaron being ganglier than Brendon.  

The language of Bacchus et al. also allows the use of function symbols, but these are not 

of particular importance or relevance here, so I will omit an explanation of them. 

First-order logic also involves various quantifiers ( and ) and logical connectives (, &, 

∨ and ≡). An informal translation of these and all the other logical symbols in this thesis can 

be found in the appended glossary. 

                                                      
18

 Stewart Shapiro, “Classical Logic,” The Stanford Encyclopedia of Philosophy, accessed April 20, 2016, 

http://plato.stanford.edu/archives/win2013/entries/logic-classical/.  
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2.1.2. Statistical Quantifiers 

 

An important feature of the logic of Bacchus et al. are statistical quantifiers involving 

proportion expressions. 

Following Bacchus et al., we call symbols of the form %𝑥(𝛼(𝑥))  unconditional 

proportion expressions where 𝛼  is any formula mentioning the variable x.
19

 Such an 

expression is interpreted as a rational number in the interval [0,1] that denotes the proportion 

of domain elements satisfying some formula 𝛼 (i.e. the proportion of objects for which the 

formula is true). For example, the expression %𝑥(𝐹𝑥) where the formula 𝐹𝑥 stands for “x is 

went to the funeral” refers to the proportion of domain objects that went to the funeral. 

Unconditional proportion expressions can also contain more than one variable, so that, for 

example, %𝑥𝑦(𝐺𝑥𝑦)  denotes the proportion of pairs of domain objects that stand in the 

“ganglier than” relation.  

Again following Bacchus et al., we call symbols of the form %𝑥(𝛼(𝑥)|𝛽(𝑥)) conditional 

proportion expressions where 𝛼 and 𝛽 are any two formulas mentioning the variable x.
20

 This 

represents the proportion of domain elements satisfying the formula 𝛽(𝑥) that also satisfy 

𝛼(𝑥) . We can understand these proportion expressions (and, in a sense, unconditional 

proportion expressions) as being relative frequencies. The formula in place of 𝛽(𝑥) is often 

called the reference formula which corresponds to reference class of objects which share a 

reference property. The formula in place of 𝛼  is often called the target formula which 

corresponds to target or attribute class of objects which share a target property. An example 

of a conditional proportion expression is the statement that 50% of humans are male. 

Formally, we can express this with the symbol %𝑥(𝑀𝑥|𝐻𝑥) = 0.5  where the reference 

formula 𝐻𝑥 stands for “x is a human” and the target formula 𝑀𝑥 stands for “x is a male.” 

Here, the reference class is the set of all objects with the reference property of being a human 

and the target class is the set of all objects with the target property of being a male.  

Note that the class of proportion expressions also includes expressions denoting rational 

numbers and sums and products of other proportion expressions (such as, for example, 

2%𝑥(𝐴𝑥) + 3/5).
21

  

                                                      
19

 Bacchus et al. use the notation of the form ||𝜓||𝑋  for unconditional proportion expressions. I have used 

different notation which, I believe, more closely resembles typical first-order logic notation. 
20

 Bacchus et al. use the notation of the form ||𝜓|𝜃||𝑋 for conditional proportion expressions. 
21

 Bacchus et al., “From Statistical Knowledge Bases,” 95. 
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From here on, the segment of the proportions expressions which specifies the binding of 

the variables will be omitted, so a formula such as %𝑥(𝛼(𝑥)|𝛽(𝑥)) will simply read as 

%(𝛼(𝑥)|𝛽(𝑥)). This omission will be harmless as the context will indicate the binding of the 

variables. 

   

 

2.1.3. Approximate Equalities and Inequalities 

 

Bacchus et al.’s formulas for proportion expressions are articulated through the use of 

approximate equalities (and inequalities). Hence, they typically use a statement such as 

%(𝛼(𝑥)|𝛽(𝑥)) ≈ 0.8  in place of one such as %(𝛼(𝑥)|𝛽(𝑥)) = 0.8 . This is a major 

innovation of their logic. 

The use of this language reflects the fact that strict equalities may often inappropriately 

imply that the number of objects satisfying, say, 𝛽(𝑥) has to be a multiple of some number 

(which is 5 in the case of %(𝛼(𝑥)|𝛽(𝑥)) = 0.8 ) when information supporting this 

implication is lacking. 

The degree of approximation is specified by a tolerance factor 𝜏 or, in other words, a 

degree of slack for the approximation. The tolerance factors are intended to account for 

“measurement error, sample variations, and so on.”
22

 A formula such as %(𝐻𝑥|𝐽𝑥) ≈𝑖 0.8 

states that the proportion of jaundiced patients with hepatitis is within some tolerance factor 

𝜏𝑖 of 80% where 𝐽𝑥 stands for “x has jaundice” and 𝐻𝑥 stands for “x has hepatitis”.
23

 The 

indices on the approximation symbol indicate that the tolerance may vary in different 

contexts; it might be 0.01 in one context but 0.05 in another. Strict equalities and inequalities 

like = and ≤ are a special case where the tolerance factor is 0. 

Nevertheless, Bacchus et al. state that the tolerance factor is “very small, but unknown” 

and hence approximations are formalised with a vector of tolerances 𝜏 = {𝜏1, … , 𝜏𝑚} such 

that 𝜏𝑖 > 0.
24

 We will discuss these tolerance vectors more in Chapter 3. 

Approximate inequalities of the forms ≼ and ≽ are also used in place of strict inequalities 

of the forms ≤ and ≥. 

Subscripts on the approximate equalities or inequalities which specify the tolerance will be 

omitted unless doing so could cause confusion. 

                                                      
22

 Bacchus et al., “From Statistical Knowledge Bases,”  95. 
23

 Ibid., 77. 
24

 Ibid., 96. 
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Proportion formulas then relate proportion expressions to each other via (approximate) 

equalities and inequalities. They sometimes state the (possibly approximate) value of 

proportions expressions. For example, %(𝐻𝑥|𝐽𝑥) ≈ 0.8  is a proportion formula. 

 

 

2.1.4. A Recursive Definition of ℒ≈ 

 

Following Bacchus et al., we can provide an informal recursive definition of the language 

ℒ≈.
25

 ℒ≈ consists of sets of terms, proportion expressions and formulas. Let ɸ be a finite 

first-order vocabulary of predicate, function and constant symbols and 𝜒 be a set of variables.  

The set of terms in ℒ≈ is the least set containing 𝜒 and the constant symbols in ɸ which is 

closed under function application (meaning that if ƒ is a function symbol with arity r and 

𝑡1, … , 𝑡𝑟 are terms, then ƒ(𝑡1, … , 𝑡𝑟) is also a term). 

The set of proportion expressions in ℒ≈ is the least set which: 

  

a) includes the rational numbers, 

b) includes proportion terms of the form %𝑋(𝛼|𝛽) and %𝑋(𝛼) for formulas 𝛼, 𝛽  ℒ≈ 

and a finite set of variables 𝑋 ⊆ 𝜒 and 

c) is closed under addition and multiplication. 

  

The set of formulas in ℒ≈ is the least set which: 

  

a) includes atomic formulas of the form 𝐴𝑡1 … 𝑡𝑟 where A is a predicate in ɸ of arity r 

and 𝑡1, … , 𝑡𝑟 are terms,  

b) includes proportions formulas of the form 𝜁 ≼𝑖 𝜁′  and 𝜁 ≈𝑖 𝜁′  where 𝜁  and 𝜁′  are 

proportion expressions and 𝑖 is a natural number and  

c) is closed under conjunction, negation and first-order quantification. 

 

 

 

 

                                                      
25

 Bacchus et al., “From Statistical Knowledge Bases,” 96. 
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2.1.5. Semantics and Models 

 

The semantics for a logic specifies an interpretation of the formal language or the conditions 

under which statements in the language are true.  

The semantics for the language ℒ≈ is largely the same as the standard semantics for first-

order logics. While it is neither possible nor desirable to thoroughly outline and explain the 

standard semantics here, I will make a few comments, some of which are intended for a non-

specialist audience. 

An important concept in semantics is that of a model over the domain {𝑑1, … , 𝑑𝑁} . 

Bacchus et al. call this “a possible world.”26 The set of all models form the space of possible 

outcomes or the sample space. Models specify denotations for symbols in the language. In 

the standard semantics for first-order logic, a denotation for a constant or predicate symbol is 

the set of domain objects which that symbol applies to. Models, then, just specify which 

symbols apply to which domain objects. So, for instance, suppose we have a language with 

one predicate F to symbolise going to the funeral and three constants a, b and c symbolising 

the names Aaron, Brendon and Claire. For a domain of three objects {𝑑1, 𝑑2, 𝑑3}, there are 

216 models constructible from this language.
27

 Any formula in the language will be true or 

false only relative to a model. For example, consider these four models (or possible outcomes) 

from the 216 models constructible from the language and domain: 

  

𝑀1: “F” denotes {𝑑1}, “a” denotes 𝑑1, “b” denotes 𝑑2 and “c” denotes 𝑑3. 

𝑀2: “F” denotes {𝑑2}, “a” denotes 𝑑2, “b” denotes 𝑑1 and “c” denotes 𝑑3. 

𝑀3: “F” denotes {𝑑2, 𝑑3}, “a” denotes 𝑑1, “b” denotes 𝑑2 and “c” denotes 𝑑3. 

𝑀4: “F” denotes the null set {}, “a” denotes 𝑑1, “b” denotes 𝑑2 and “c” denotes 𝑑3. 

 

The atomic formula Fa is true according to the models 𝑀1 and 𝑀2 since F and a apply both 

apply to one particular object in each case. According to these models, then, Aaron went to 

the funeral. Fa is not true in 𝑀3 or 𝑀4, however, since F and a do not both apply to one 

                                                      
26

 Bacchus et al., “From Statistical Knowledge Bases,” 78. 
27

 The calculation for this is as follows. Each constant of a language denotes one of the N objects in the domain. 

So the number of models for a language containing only constants is 𝑁𝐶 where C is the number of constants. 

Each one-place predicate in the language refers to one of 2𝑁 sub-sets of the domain. For a language where there 

are k predicates and no other symbols, there are (2𝑁)𝑘 models. When the language contains only C constants 

and k one-place predicates, then the number of models is (𝑁𝐶)(2𝑁𝑘). In our example, there are three domain 

objects and the language contains three constants and one one-place predicate; hence, the total number of 

models is (𝑁𝐶)(2𝑁𝑘) = (33)(2(3)(1)) = 216. 
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particular object in either model. Note that a set of models for a language can be isomorphic; 

𝑀1 and 𝑀2 are examples of this since they only differ by the permutation of 𝑑1 and 𝑑2. Such 

models will generate the same truth values for the formulas in a language. Hence, in both 

models, the true formulas are the atomic formulas 𝐹𝑎, ~𝐹𝑏 and ~𝐹𝑐 as well as certain other 

complex formulas like 𝐹𝑎 & ~𝐹𝑏  and proportion formulas like %(𝐹𝑥) =
1

3
. Hence, a 

probability measure over the sample space translates into a probability measure over all the 

statements expressible in the language. 

 

That concludes our examination of the formal language used in this thesis.  

 

 

2.2. A Taxonomy of Inductive Inferences 

 

Ultimately, language is important because it is the means by which the agent represents the 

world in order to makes inferences about it. We will now consider the inductive inferences 

that are of interest in this thesis. 

It is useful here to distinguish various types of inductive inference. According to the below 

taxonomy, each type of inference is characterised by the ascription of probabilities to certain 

types of propositions on the basis of certain types of evidence.  The kinds of inference vary 

by virtue of the various types of propositions and types of evidence which they involve. 

These inferences often involve populations or samples. A population is a non-empty set of 

all of the objects satisfying some formula. For example, the population of Wellingtonians is 

the set of all objects satisfying the formula 𝑊𝑥 where 𝑊𝑥 stands for “x is a Wellingtonian”. 

Sometimes, however, a population is simply the set of all domain objects; the context will 

make it clear when this is the case. A sample is a non-empty subset of a population that is of 

interest for one of two reasons: 1) the proportion of objects in the sample satisfying a target 

formula 𝛼 is not known but is to be estimated or 2) the proportion of objects in the sample 

satisfying 𝛼 is known and this serves as evidence for estimating the extent to which other 

objects satisfy 𝛼 or a another formula that denotes a similar property.
28

 The sample need not 

be one that is selected randomly from the population.  

We will see examples of these concepts in the below taxonomy of inductive inferences: 

                                                      
28

 This conception of a sample also resonates with the conception of a sample in Kyburg and Teng, Uncertain 

Inference, 175-176. 
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- A direct inference is an inference from evidence about a population (or set of 

populations) to probabilities about a sample. It assigns probabilities to the possible 

proportions of a sample satisfying a target formula given some evidence about the 

proportion of objects in some population(s) that satisfy the formula. For example, 

suppose the agent knows that 80% of the population of Wellingtonians smoke (i.e. 

that %(𝑆𝑥|𝑊𝑥) = 0.8 where the target formula 𝑆𝑥 stands for “x is a smoker”). She 

then randomly samples three Wellingtonians. Given her knowledge, she assigns a 

probability of 0.008, 0.096, 0.384 and 0.512 respectively to the propositions that 0/3, 

1/3, 2/3 and 3/3 of the sampled objects smoke (i.e. satisfy 𝑆𝑥). In this thesis, we will 

typically consider a special case of direct inference which we can call singular direct 

inference. This is where the sample consists of one object and one is estimating 

whether it does or does not satisfy the target formula given some evidence about the 

proportion of objects in the relevant population(s) that satisfy the formula. In other 

words, one is estimating the proportion of the sample satisfying the formula where the 

possible proportions are only 0/1 or 1/1.  A case of singular direct inference is when 

the agent knows that %(𝑆𝑥|𝑊𝑥) = 0.8 and she randomly samples one Wellingtonian 

to assign a probability of 0.8 to the proposition that the sampled Wellingtonian 

smokes. Direct inference can also involve multiple reference classes or populations, 

as we shall see in Chapter 4. 

 

- A predictive inference is an inference from evidence about a sample to probabilities 

about another non-overlapping sample. More specifically, it assigns probabilities to 

the possible proportions of a sample satisfying a target formula given evidence about 

the proportion of objects in another sample satisfying that formula or one denoting a 

similar property. This includes singular predictive inference, a special case in which 

the agent is inferring the probability that just one sampled object satisfies the target 

formula. An example of singular predictive inference is when one infers that the next 

sampled philosopher will probably be weird since all of the philosophers in another 

sample of philosophers proved to be weird. 

 

- An analogical inference is an inference about the probability that a set of objects are 

similar in some respect on the basis of evidence about them sharing other similarities 
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or dissimilarities. In this respect, one might infer that one object satisfies some 

formula 𝛼 since it is similar in various respects to another set of objects which also 

satisfy 𝛼 . For example, suppose one is trying to determine the probability that a 

chimpanzee sometimes feels pain or, in other words, that it satisfies the formula 𝑃𝑥 

where 𝑃𝑥 stands for “x sometimes feels pain”. The agent infers that the chimpanzee 

probably does satisfy 𝑃𝑥  because it is neurologically, physiologically and 

behaviourally similar to humans who do sometimes feel pain (i.e. satisfy 𝑃𝑥). Hence, 

the agent’s inference is that humans and this chimpanzee are similar in respect of 

sometimes feeling pain on the basis of the evidence that they share neurological, 

physiological and behavioural similarities. 

 

- An inverse inference is an inference from evidence about a sample to probabilities 

about a population. It assigns probabilities to the possible proportions of a population 

satisfying a target formula given evidence about the proportion of objects in a sample 

satisfying that formula or another formula representing a similar property. For 

example, suppose the agent randomly samples five balls from an urn of 20 balls. The 

sampled balls turn out to be green and satisfy 𝐺𝑥 where 𝐺𝑥 stands for “x is green”. On 

this basis of the sample from the population of balls in the urn, the agent assigns 

probabilities to the propositions that 6/20, 7/20,…,19/20 or 20/20 of the population 

are green (i.e. satisfy 𝐺𝑥 ). Each of these propositions is representable with a 

proportion formula of the form %(𝐺𝑥|𝐵𝑥) = 𝑓 where 𝐵𝑥 stands for “x is a ball in the 

urn” and f is some rational number in the unit interval [0, 1]. 

 

- A universal inference is an inference from evidence about a sample to a high 

probability for a universal generalisation for a population. A universal generalisation 

is a technical concept in logic. These generalisations are typically symbolised with 

formulas of the form 𝑥(𝐹𝑥) and 𝑥(𝐹𝑥  𝐺𝑥) for some predicates F and G. A 

universal generalisation corresponds to a proportion formula stating that all of the 

objects in a particular population satisfy a target formula.
29

 (Note that, importantly, a 

universal generalisation need not be about an infinite number of objects.) A canonical 

                                                      
29

 When considering generalisations of the logical form 𝑥(𝐹𝑥  𝐺𝑥), this is true only if the population has at 

least one member satisfying the antecedent formula, otherwise a universal generalisation such as “All Fs are Gs” 

can be trivially true by virtue of nothing being an F whereas a unit valued conditional proportion formula cannot.  
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example of a universal inference is when one infers that probably all emeralds are 

green on the basis of sample of emeralds, all of which were found to be green. 

  

These inferences are not all mutually exclusive since, for example, an inverse inference can 

involve a universal inference. Note also that this taxonomy resembles the definition of 

various inferences given by others, especially Rudolf Carnap.
30

 Regardless, these other 

scholars construe or label these kinds of inference somewhat differently. Kyburg and Teng, 

for example, construe direct inference as being an inference to a “nonprobabilistic 

conclusion”.
31

 Pollock also calls inverse inference statistical induction and universal 

inference enumerative induction.
32

  Statisticians use the term parameter estimation to refer to 

inverse inference (as well as distinct but closely related kinds of inference).  

The random-worlds method is a theory of direct inference, but the other forms of inductive 

inference, and the challenges they face, will be relevant later in this thesis. 

Each characterisation of the aforementioned inferences alludes to the putative probabilistic 

nature of induction. But an important question arises as to how these probabilities are to be 

interpreted. Various interpretations are possible, and the most well-known scholars on direct 

inference (Reichenbach, Kyburg, Pollock and Bacchus et al.) all utilise very different 

conceptions of probability in their accounts of induction. Nevertheless, one conception of 

probability is of particular importance in this thesis, that is, the subjective interpretation of 

probability as credence. Credences are the topic of the next section. 

 

 

 

  

 

 

 

 

 

                                                      
30

 Rudolf Carnap, Logical Foundations of Probability (London: Routledge and K. Paul, 1951), 207. 
31

 Kyburg and Teng, Uncertain inference, 175.  
32

 John Pollock, Nomic Probability and the Foundations of Induction (New York: Oxford University Press, 

1990), 21 and 36. 
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2.3. Credence Functions and Subjective Probabilities 

 

Credences are the degrees of belief people have towards propositions.
33

 For example, an 

agent may have a high credence in the sun rising tomorrow morning but a low credence in 

seeing an alien spaceship in their lifetime.   

The aim of this thesis is to explore how evidence about frequencies should constrain the 

credences of an agent in realistic contexts. 

Credences are modelled by functions from propositions to the unit interval [0,1]. These are 

called credence functions. So if the function 𝑃(. ) models the agent’s credences, then the 

number that it assigns to the sentence expressing the proposition that the sun will rise 

tomorrow is close to 1 and the number that it assigns to the sentence expressing the 

proposition that the agent will see an alien spaceship is close to 0. Note that we will represent 

credences with sharp numerical credence functions, that is, functions that assign numerically 

exact values like 0.6000.... This contrasts to using an “indeterminate probability” approach à 

la Isaac Levi.
 34

  On the indeterminate probability approach, the agent’s credence for a 

proposition is representable with not just one credence function, but rather with a set of 

credence functions spanning some interval of values that are assigned to the proposition by 

different functions in the set.  

I will assume that sharp credence functions are appropriate models for credences. The 

reason for this is partly because debates concerning the merits and weaknesses of 

indeterminate or other representations of credences are too large to be given sufficient 

attention in this thesis.
35

 But it is also partly because sharp representations of credences are 

the current orthodoxy in both formal epistemology and Bayesian statistics; so it should not be 

too objectionable that this thesis accords with orthodoxy.
36

 In doing this, however, I do not 

                                                      
33

 I have chosen to use the philosophical term “credence” instead of “degree of belief” or “degree of confidence” 

in this thesis. The reason for this is that I sometimes wish to speak of an agent having a low or indifferent 

credence in some proposition in a way which may be misleading if “credence” is substituted by “degree of 

belief”. For example, an agent may have a low credence of 0.01 that they will see an alien spaceship in their 

lifetime. Yet it seems misleading to say that they have a low degree of “belief” in this proposition since there is 

arguably a sense in which they have no degree of belief in the proposition at all. Rather they just have a high 

degree of disbelief in the proposition or a high degree of belief in its negation. 
34

 Isaac Levi, “Imprecision and Indeterminacy in Probability Judgment,” Philosophy of Science 52, no. 3 (1985): 

390-409. 
35

 For a discussion of indeterminate probabilities, as well as a list of arguments for taking them seriously, see 

Alan Hájek and Michael Smithson, “Rationality and Indeterminate Probabilities,” Synthese 187, no. 1 (2012): 

33-48. Certain others have argued that agents do not or should not have indeterminate probabilities, an example 

being Adam Elga. See Adam Elga, “Subjective Probabilities should be Sharp,” Philosophers’ Imprint 10, no. 5 

(2010): 1-11. 
36

 That this is orthodoxy in formal epistemology appears to be affirmed in a number of places. For example, 

Bradley Seamus speaks of the “precise attitudes” that “orthodox probability requires” and its “insistence that 
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suppose that credences are sharply graded entities (thus corresponding to what Levi would 

call determinate probabilities), but rather that sharp credence functions are at least adequate 

idealisations for credences in this thesis. 

It is occasionally useful to distinguish between the agent’s “prior” credences and 

“posterior” credences. The distinction concern that change between an earlier and later credal 

state upon the receipt of new evidence. The agent’s credences before receiving the evidence 

are her prior credences and the credences thereafter are her posterior credences. These are 

modelled by a prior credence function 𝑃(. ) and a posterior credence function 𝑃′(. ). The 

difference between 𝑃 and 𝑃′ reflects what one has learned from the evidence. For example, 

suppose the agent doubts that she will get a particular job, so we can say that 𝑃(𝐽𝑎) = 0.1 

where 𝐽𝑥 stands for “x will get the job” and a stands for the agent. Suppose that the agent 

then receives a phone call from the potential employer who promises her that, surprisingly, 

she will get the job. She then updates her credence so that she is now confident that she will 

get the job, so 𝑃′(𝐽𝑎) = 0.99.  

Sometimes, however, it is useful to refer to the agent’s credences without reference to 

prior or posterior states relative to the receipt of some evidence. In this case, we will simply 

use 𝑃(. ) to refer to this person’s credences without intending to imply that it is prior to the 

receipt of some particular evidence or to some updated credence function. 

Credences are also known as subjective probabilities. The interpretation of probabilities as 

credences dominates formal epistemology.
37

   In the thesis, I sometimes use the terms 

‘credence’ and ‘probability’ interchangeably since this practice of interchangeability is 

common in relevant debates and some concepts are also more naturally describable and 

comprehensible with one term rather than another (such as a “prior probability distribution” 

rather than a “prior credence distribution”). This interchangeability also reflects the common 

assumption that credence functions obey the standard axioms of probability. These are the 

following: 

  

(A1) All probabilities are between 1 and 0, i.e. 0 ≤ 𝑃(𝛼) ≤ 1 for any 𝛼. 

(A2) Logical truths have a probability of 1, i.e. 𝑃(𝐿) = 1 where 𝐿 is any logical truth. 

                                                                                                                                                                     
states of belief be represented by a single real-valued probability function.” Seamus Bradley, “Imprecise 

Probabilities,” The Stanford Encyclopedia of Philosophy, accessed June 21, 2016, 

http://plato.stanford.edu/archives/sum2015/entries/imprecise-probabilities/. Hájek and Smithson also note that 

“the ideal Bayesian agent” is one that “assigns perfectly sharp credences to all propositions.” Alan Hájek and 

Michael Smithson, “Rationality and Indeterminate Probabilities,” 34.  
37

 Debates about whether the subjective interpretation of probability or any other interpretation of probability is 

plausible are beyond the scope of this thesis. 
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(A3) Where 𝛼  and 𝛽  are two mutually exclusive formulas, the probability of 𝛼  or 𝛽 

(𝛼 ∨ 𝛽) is the sum of their respective probabilities, i.e. 𝑃(𝛼 ∨ 𝛽)  =  𝑃(𝛼)  +  𝑃(𝛽).
 38

 

 

Actual agents cannot realistically conform to these axioms, but there are putatively good 

arguments as to why such conformity is an ideal to which rational agents should strive.
39

  

Unfortunately, however, there is ambiguity in the adjective “subjective” that is used to 

describe a (prior) probability distribution.
40

 It can refer to the fact that the distribution is 

interpreted as the credences of some subject. Alternatively (or additionally), it can refer to the 

lack of constraints forcing the distribution to take some form (such as the principle of 

indifference). The first meaning corresponds to subjectivism as a semantic claim about the 

meaning of probability statements.
41

 The second meaning corresponds to subjectivism as a 

normative claim about what credences are rationally permissible.
42

 Some accept subjectivism 

in its semantic sense while rejecting subjectivism in its normative sense, an example being 

objective Bayesians such as E.T. Jaynes.
43

 In this thesis, I call subjectivism in its normative 

sense subjective Bayesianism and refer to the probabilities of subjectivism in its semantic 

sense simply as subjective probabilities (or just probabilities) without thereby implying a 

relative paucity of constraints on such probabilities. 

 

 

 

  

                                                      
38

 William Talbott, “Bayesian Epistemology,” The Stanford Encyclopedia of Philosophy, accessed July 22, 2014, 

http://plato.stanford.edu/archives/sum2011/entries/epistemology-bayesian/. 
39

 There are some critics of the aforementioned orthodox axiomatisation of probability in terms of unconditional 

probabilities. See, for example, Alan Hájek, “What Conditional Probability Could Not Be,” Synthese 137, no. 3 

(2003): 273-323. Yet again, this is another topic that is beyond the scope of this thesis. 
40

 Mike Titelbaum makes this point in Mike Titelbaum, “Fundamentals of Bayesian Epistemology: Chapter 5,” 

Fitelson, accessed May 8, 2015, http://fitelson.org/bayes/titelbaum_ch5.pdf. 
41

 See this construal of subjectivism in Hájek, “Interpretations of Probability.” 
42

 See this construal of subjectivism in Vincenzo Crupi, “Confirmation,” The Stanford Encyclopedia of 

Philosophy, accessed May 5, 2016, http://plato.stanford.edu/archives/fall2015/entries/confirmation/.  
43

 E.T. Jaynes, Probability Theory: The Logic of Science (New York: Cambridge University Press, 2003). 
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3. The Random-Worlds Method 

 

This chapter examines the main features of the random-worlds method. We have already 

outlined a version of the language that is employed in the method. What remains to be seen is 

what we might call the probabilistic features of the method.  

In their 1996 article, Bacchus et al. focus on a particular sort of credence that I will call a 

random-worlds credence (note, however, that they use the term “degree of belief” instead of 

“credence”).
44

  

While they do not specify anything about the “agent” who is presumed to have such 

credences, they do assume that “all” of the agent’s knowledge is encapsulated in a knowledge 

base 𝐾𝐵.
45

 They also do not explicitly define or outline the features of the 𝐾𝐵. Regardless, I 

will assume that a 𝐾𝐵  is a finite set of propositions which the agent is certain of or is 

prepared to treat as if she is certain of. I will refer to the 𝐾𝐵  sometimes as a set of 

propositions and sometimes as if it was one conjunctive proposition. Hence, I will sometimes 

use logical notation of the form 𝐾𝐵 ≡ (𝛼 & …  & 𝛽) meaning that 𝐾𝐵 is logically equivalent 

to what is a conjunction the formulas 𝛼, 𝛽 and perhaps others in place of the ellipsis. 

On Bacchus et al.’s account, the values of the random-world credences are obtained by use 

of the principle of indifference and by an unconventional kind of conditionalisation (which I 

shall shortly explain). That this is so is explicitly affirmed in various places, including their 

statement that they “give semantics to degrees of belief by considering all worlds of [domain] 

size N to be equally likely, conditioning on KB, and then checking the probability of [a 

formula] 𝜑 over the resulting probability distribution.”
46

 However, Bacchus et al. provide no 

interpretation of the distributions (such as, for example, specifying that they are long-run 

frequencies or credences). They only define the random-worlds credence in terms of the non-

interpreted posterior distribution or, as we shall see later, the limit(s) of the distribution as the 

domain size goes to infinity and the tolerance for any relevant approximate connectives goes 

to zero.  

Let us examine the principle of indifference and conditionalisation in more depth. To 

simplify the presentation that follows, let us assume that the sample space of possible 
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obtain our prior distribution. We can now induce a degree of belief in [a formula] 𝜑 given 𝐾𝐵 by conditioning 

on 𝐾𝐵  to obtain a posterior distribution and then computing the probability of 𝜑  according to this new 
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outcomes are certain sentences constructible from a language rather than models. This 

diverges from Bacchus et al.’s logic in which the sample space are models, but this 

divergence will be useful for understanding the basic ideas behind indifference and 

conditionalisation before relating these ideas back to the logic. 

The principle of indifference is typically formulated as instructing one to regard each 

possible outcome as equally probable in the absence of evidence to favour one outcome over 

another.
47

 For example, suppose the agent is before three doors where each door may or may 

not conceal a prize.  Suppose we have a language, then, with only one predicate 𝐴𝑥 where 𝐴𝑥 

stands for x conceals a prize and where each door is uniquely named with a constant 𝑎𝑖 where 

𝑎𝑖 is the i-th door. Then the sample space of possible outcomes 𝑂𝑖 is as follows: 

  

𝑂1: 𝐴𝑎1 & 𝐴𝑎2 & 𝐴𝑎3 

𝑂2: 𝐴𝑎1 & 𝐴𝑎2 & ~A𝑎3 

𝑂3: 𝐴𝑎1 & ~𝐴𝑎2 & 𝐴𝑎3 

𝑂4: 𝐴𝑎1 & ~𝐴𝑎2 & ~A𝑎3 

𝑂5: ~𝐴𝑎1 & 𝐴𝑎2 & 𝐴𝑎3 

𝑂6: ~𝐴𝑎1 & 𝐴𝑎2 & ~A𝑎3 

𝑂7: ~𝐴𝑎1 & ~𝐴𝑎2 & 𝐴𝑎3 

𝑂8: ~𝐴𝑎1 & ~𝐴𝑎2 & ~A𝑎3 

 

Supposing the agent has no reason to favour one outcome over another, the principle of 

indifference states that these outcomes have equal and sharp probabilities. Bacchus et al. 

imagine such a uniform distribution to exist prior to receiving the information in 𝐾𝐵 and, 

hence, they call it a “prior distribution”.
48

 

They attempt to provide some justification for their use of the principle of indifference. 

They assume that 𝐾𝐵 represents everything that the agent knows. The agent then has a prior 

probability distribution which reflects a state of complete ignorance. Since the agent in this 

state has no a priori reason to prefer one outcome over another, this justifies the principle of 

indifference’s prescription that all outcomes are assigned the same sharp probability.
49

 They 
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of Logic, vol. 10, edited by Dov M. Gabbay and John Woods (Amsterdam; Boston: Elsevier, 2010), 505 and 509. 
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restrict their use of the principle, however, by claiming that it is a useful method of 

determining credences only “in certain contexts, and in particular, in the context where we 

restrict our attention to a finite collection of worlds.”
50

 

The posterior probabilities are obtained by conditionalising the distribution on the 

knowledge base. In the Bayesian landscape, standard conditionalisation can be understood as 

the process by which an agent, upon becoming certain of some new evidence that is 

represented by e, changes her (subjective) probability distribution to equal her prior 

probability distribution conditional on e (where e is the strongest proposition that the agent 

becomes certain of). In technical notation, then, conditionalisation is when 𝑃′(ℎ) = 𝑃(ℎ|𝑒) 

for any hypothesis h and any consistent statement e where 𝑃(. ) and 𝑃′(. ) are the agent’s 

prior and posterior credence functions respectively. 𝑃(ℎ|𝑒)  is frequently computed with 

Bayes’s theorem, an instance of which is such: 

 

𝑃(ℎ|𝑒) =
 𝑃(𝑒|ℎ)𝑃(ℎ)

𝑃(𝑒)  

where 𝑃(𝑒) > 0. 

  

Bacchus et al. do not define what they mean by “conditioning”, but they do associate it 

with “the Bayesian approach”.
51

 This suggests that “conditioning” is the prescription that the 

posterior distribution given 𝐾𝐵  is equal to the uniform prior probability distribution 

conditional on the set of propositions in 𝐾𝐵 (or a limit or set of limits for such distributions, 

as we shall see).  

Let us illustrate how this works by building on the example concerning the three doors. 

Suppose the agent is told that there is a prize behind one of the three doors and so she accepts 

into her knowledge base the statement that %(𝐴𝑥) =
1

3
. She then wants to know what her 

credence should be in 𝐴𝑎1, the proposition that the prize is behind door 1. According to 

conditionalisation, her credence should be equal to the uniform probability distribution 

conditional on 𝐾𝐵. For illustrative purposes, we can suppose (unrealisatically) that the 𝐾𝐵 is, 

in this case, equivalent to %(𝐴𝑥) =
1

3
, so 𝐾𝐵 ≡ %(𝐴𝑥) =

1

3
. Although Bayesians typically 

compute the prior conditional probability 𝑃(ℎ|𝑒)  with Bayes’s theorem, it can also be 
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computed with Kolmogorov’s ratio formula from which Bayes’s theorem can be derived.
52

 

Use of this latter equation is simpler in this context. Therefore: 

 

𝜇(𝐴𝑎1|𝐾𝐵) =
𝜇(𝐴𝑎1& 𝐾𝐵) 

𝜇(𝐾𝐵) 
 

if 𝜇(𝐾𝐵) > 0 where 𝜇(. ) is the random-worlds prior probability measure.
53

 

 

Recall that each of the outcomes in the below sample space have an equal measure. 

 

𝑂1: 𝐴𝑎1 & 𝐴𝑎2 & 𝐴𝑎3 

𝑂2: 𝐴𝑎1 & 𝐴𝑎2 & ~A𝑎3 

𝑂3: 𝐴𝑎1 & ~𝐴𝑎2 & 𝐴𝑎3 

𝑂4: 𝐴𝑎1 & ~𝐴𝑎2 & ~A𝑎3 

𝑂5: ~𝐴𝑎1 & 𝐴𝑎2 & 𝐴𝑎3 

𝑂6: ~𝐴𝑎1 & 𝐴𝑎2 & ~A𝑎3 

𝑂7: ~𝐴𝑎1 & ~𝐴𝑎2 & 𝐴𝑎3 

𝑂8: ~𝐴𝑎1 & ~𝐴𝑎2 & ~A𝑎3 

 

Note that 𝜇(𝐾𝐵) =
3

8
 since %(𝐴𝑥) =

1

3
 is true in three of the outcomes  

(𝑂4, 𝑂6 and 𝑂7) where each outcome has a measure of 
1

8
. Additionally, 𝜇(𝐴𝑎1 & 𝐾𝐵) =

1

8
 

since the conjunction  𝐴𝑎1 & %(𝐴𝑥) =
1

3
 is true in only one outcome (𝑂4). Consequently: 

 

𝜇(𝐴𝑎1|𝐾𝐵) =
𝜇(𝐴𝑎1& 𝐾𝐵) 

𝜇(𝐾𝐵) 
=

1
8 

3
8

=
1

3
 

\ 
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Note how 𝜇(𝐴𝑎1|𝐾𝐵) can be calculated, then, by simply counting the number of outcomes 

for which 𝐴𝑎1 & 𝐾𝐵 is true relative to the total number of outcomes for which 𝐾𝐵 is true. 

Hence: 

 

𝜇(𝐴𝑎1|𝐾𝐵) =
|𝑶(𝐴𝑎1 & 𝐾𝐵)|

|𝑶(𝐾𝐵)|
 

  

if |𝑶(𝐾𝐵)| > 0 and where 𝑶(𝛼) is the set of all outcomes such that 𝛼 is true for any 𝛼 and 

|𝑶(𝛼)| is the cardinality of that set. 

 

After conditionalising on the 𝐾𝐵 , the resulting posterior distribution 𝜇′(. )  is equal to 

𝜇(. |𝐾𝐵). Obtaining the value of the posterior distribution is then simply a matter of counting 

outcomes. 

In this sense then, the credences of the posterior distributions for random-world credences 

can be ascertained by counting outcomes. However, the random-worlds method is more 

complicated than the above (simplified) presentation because the possible outcomes are 

models rather sentences in a language.
54

 

The calculation for random-worlds credences is also more complicated since one typically 

does not know the domain size N or the value for the tolerance in relevant approximate 

equalities such as those of the form %(𝛼|𝛽) ≈ 𝑓. Bacchus et al. state that one often only 

knows that N  is large and that the degree of approximation is small. Consequently, they 

define the random-worlds credence function through use of limits for N and for a vector of 

tolerances 𝜏 = {𝜏1, … , 𝜏𝑚} such that 𝜏𝑖 > 0 (a concept which we saw in Sub-Section 2.1.3.). 

(If, however, the domain size is known, they state that the credence can be calculated using 

the known domain size rather than the limit.)
55

 Their definition is essentially that the 

credence for a formula 𝛼  given 𝐾𝐵  is equal to the proportion of worlds in which the 

statement 𝛼 & 𝐾𝐵 is true relative to the total number of worlds in which 𝐾𝐵 is true. Taking 

into account the limits, we can say formally:  
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 Given the language in the example and a domain of three objects, the number of possible outcomes qua 

sentences constructible from the language is eight whereas the number of possible outcomes qua logical models 

constructible from the language and domain is 216. We can see, then, how visually illustrating 
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lim
𝜏⃗⃗→0⃗⃗⃗

lim
𝑁→∞

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠𝑁
𝜏⃗⃗ (𝛼|𝐾𝐵) =

|𝑾𝑁
𝜏⃗⃗ (𝛼 & 𝐾𝐵)|

|𝑾𝑁
𝜏⃗⃗ (𝐾𝐵)|

 

if |𝑾𝑁
𝜏⃗⃗ (𝐾𝐵)| > 0 and where 𝑾𝑁

𝜏⃗⃗ (𝛼) is the set of all worlds of domain size N such that 𝛼 

is true for any 𝛼 and |𝑾𝑁
𝜏⃗⃗ (𝛼)| is the cardinality of that set.

56
 

  

If the number of worlds in which 𝐾𝐵 holds is zero, then the probability is not well-defined. 

However, the above definition may not be well-defined even if the number of worlds in 

which 𝐾𝐵 holds is not zero. This may be because the limit oscillates between values. They 

account for such cases by appealing to infimums, supremums and eventual consistency, but 

these details need not bother us here. Regardless, sometimes the random-worlds credence is 

not well-defined for certain knowledge bases.
57

 

To simplify the notation, let us denote lim𝜏⃗⃗→0⃗⃗⃗ lim𝑁→∞ 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠𝑁
𝜏⃗⃗ (𝛼|𝐾𝐵)  with 

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼|𝐾𝐵).  

The random-worlds method may be confusing because it resembles two distinct and 

conflicting ways of understanding the relationship between credences and categorical belief. 

Categorical belief is a notion of belief that is non-gradational – you either have the belief or 

you do not. There are no strengths of belief. One way of thinking reduces categorical belief to 

credence.
58

 Accordingly, credence is epistemologically primitive, thus entailing that credence 

is not defined in terms of categorical belief. Here, then, the agent is taken to believe a 

proposition if the credence reaches a certain threshold of confidence.
59

  For example, one 

might say that one categorically believes a proposition p iff their credence in p is 1 (or some 

similarly high value in the unit interval). This is known as the Lockean thesis. This way of 

thinking is associated with a Bayesian approach in epistemology. Another way of thinking, 

however, reduces credences to categorical beliefs by defining credences via counting the 

models which are consistent with the set of categorical beliefs.
60

 

The random-worlds method resembles ideas associated with both approaches. Like the 

latter way of thinking, it defines credences by counting the models that are consistent with a 

                                                      

Bacchus et al., “From Statistical Knowledge Bases,” 99. Bacchus et al. instead use the notation Pr𝑛
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#𝑤𝑜𝑟𝑙𝑑𝑠𝑛
𝜏⃗⃗ (𝐾𝐵)

. 
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set of sentences in 𝐾𝐵, a set that is essentially a categorical belief set. However, it also 

resembles ideas associated with the former way of thinking. In particular, the random-worlds 

method resembles objective Bayesianism, a position which typically recommends a prior 

probability distribution that is constrained by the principle of indifference (or a related 

principle known as Maximum Entropy) and updated in accordance with Bayesian 

conditionalisation.
61

   

Nevertheless, the random-worlds method does not resemble typical Bayesian thought in a 

few respects. For one, in cases where the domain size is presumably large but unknown, the 

random-worlds credence is defined as the limit (or limits) of a set of posterior probability 

distributions, rather than just one distribution. Furthermore, the prior and posterior 

distribution are not interpreted as credences. The conditionalisation envisaged by the random-

worlds method is best seen as hypothetical. The random-worlds method does not actually 

envisage that a real agent has a uniform prior probability distribution over all the models 

constructible from a language and that this is then updated by conditionalising on a 𝐾𝐵 to 

obtain a posterior distribution. The method does not specifically tell the agent how to update 

their credences from one time to another later time. In this sense, their definition of credences 

is compatible with a non-Bayesian belief-revision theory of updating. Instead, the random-

worlds method articulates a static or synchronic constraint on credences; it specifies only that 

if the agent has a set of beliefs or propositions as her 𝐾𝐵 at a given time, then she should 

have a specific credence at that same time. Additionally, contra the credences of the random-

worlds method, many Bayesians (particularly subjective Bayesians) hold that accepted 

statements in a 𝐾𝐵 and the principle of indifference do not suffice determine all of one’s 

credences. Some credences may just be, for example, hunches or determined via subjective 

judgments of simplicity. 

 

That concludes our summary of the essential elements of the random-worlds method. 
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4. Evaluating the Random-Worlds Method 

 

So we have examined the basics of the random-worlds method. Ultimately, though, we are 

interested in the central question of how evidence about relative frequencies should constrain 

credences. My thesis’s contention is that the random-worlds method provides at least part of 

a good answer to this question, although it can also be supplemented with the proposals 

presented in chapters 7 and 8 to extend the method’s applicability. To argue this contention, it 

will be necessary to outline some important features of the method and to also evaluate its 

merit. This, then, is the focus of this chapter. 

 

 

4.1. Evaluative Criteria 

 

To assess whether the random-worlds method is a good answer to the question of how to 

constrain credences, we need to explore the criteria for what a good answer is. 

So what, then, are touchstones for evaluating the worth of such an answer, or indeed any 

normative epistemological theory? 

Three putative touchstones are salient in the literature, each of which correspond to a 

particular position. 

To illustrate these positions, I will sometimes discuss them in the context of whether to 

accept a particular belief rather than in the context of whether to have a particular credence or 

accept an epistemological theory that somehow constrains beliefs or credences. Regardless, 

these basic points can be generalised to these latter contexts. 

One position is what we may call pragmatism. This is the position that a normative 

epistemological theory is acceptable to the extent that it is practically rational to accept the 

theory. Practical rationality may be cashed out differently, but we can say here that an agent 

is practically rational to the extent that she acts in a way that is in her interests. Dutch book 

arguments are a hallmark example of pragmatic arguments.
62

 A Dutch book is a combination 

of wagers which will guarantee financial loss for the agent if accepted by her. Dutch book 

arguments assert that, if one does not follow some particular norm, then they are susceptible 
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to accepting a Dutch book and so they should therefore accept the norm. Such arguments 

have been offered in support of various Bayesian norms, including the norms that credences 

should conform to axioms of probability and some principle of conditionalisation.  

However, pragmatism is problematic.  By the very nature of belief as purporting to be 

about what is true, we should believe something only to the extent that it appears to us to 

reflect the truth. Yet there is often no connection between what is true and what is practically 

rational to believe (to some degree). Consider people who have faced the prospect of torture 

and execution for their beliefs and are offered life on the condition that they recant them.
63

 

We can easily imagine a situation like this in which the agent has the greatest pragmatic 

motivation for believing or disbelieving a given proposition, yet is unable to do as such and 

rightly so. After all, it seems absurd to say, for example, “I now think that the universe is 

geocentric because, if I do, I then minimise my expected loss of life.” At most, it seems that 

the agent can reasonably only act as if the proposition is false. The agent, for example, may 

only declare her belief to be false as if she disbelieved it on pragmatic grounds despite the 

grounds failing to warrant genuine disbelief. Hence, a normative epistemological theory is 

best evaluated with respect to non-pragmatic criteria. 

Two non-pragmatic positions are salient in this respect. 

One is what we might call structuralism, the position asserting that a normative 

epistemological theory is acceptable to the extent that it corresponds to some objectively 

existing features of the world (features that matter here not because of pragmatic concerns). 

In essence, then, the position holds that what justifies accepting the theory is our beliefs about 

the way that the world is structured. An example of structuralism concerns the justification of 

induction.
64

 Consider the classic inductive inference that the sun will continue to rise every 

day since it has been observed to regularly rise in the past. An induction of this sort might be 

justified by the belief that nature is structured in a way that is uniform or regular in some 

respects, including this one; hence, we can appeal to the past to predict the future since nature 

is and will be uniform in this respect even as it has been in the past.  

Yet a problem confronting structuralist criteria for evaluating a normative epistemological 

theory is that the structures often, if not always, cannot be justifiably believed in (to some 

degree) without already controversially presupposing the normative theory. For example, 
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David Hume’s problem of induction is a problem precisely because induction cannot be 

justified by appealing to uniformity in nature without already presupposing the reliability of 

induction to infer this uniformity (or its continuation). 

A third position is what we might call epistemic intuitivism. A normative epistemological 

theory is acceptable to the extent that it accords with our foundational intuitions about what is 

epistemically rational to believe (to a degree).
65

  Loosely speaking, one is epistemically 

rational to the extent that their beliefs or credences are supported by the evidence.
66

 

Foundational intuitions are beliefs that are (at least initially) not justified by other beliefs.
67

 

To further distinguish the view, these intuitions must not be intuitions about the structure of 

the world or pragmatic considerations. To illustrate a foundational intuition, suppose I 

truthfully tell you that there is a marble hidden in my hand and that it is either green, red or 

blue. What should be your credence that it is blue given the evidence of my testimony? A 

common and intuitive answer is to say that the credence should be 1/3 . For some, the 

intuitive appeal of this answer is a reason to endorse the principle of indifference insofar as 

the principle accords with this intuition. However, this intuition is a foundational intuition 

about what is epistemically rational to believe; there is no appeal to pragmatic benefits in 

having such a credence nor some way in which the world is structured.
68

 One might doubt the 

other positions because some epistemic norms are putatively rational (an example possibly 

being the principle of indifference), yet fail to be pragmatically rational or correspond to 

some justifying-structure in the world.  

Much of the literature on direct inference conforms to this third position. As Bacchus et al. 

note, scholars on direct inference and default reasoning often assess a theory based on 

whether it accounts for intuitions about what the right inferences are in various cases.69 These 
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intuitions are divorced from structuralist or pragmatist considerations (at least in the way that 

they are presented).  

Some putative advantages of intuitivism is that we can know what the intuitions are that 

speak for or against a theory without already presupposing the theory – contra structuralist 

criteria – and the intuitions, analytically speaking, intuitively bear on what is epistemically 

rational to believe – contra pragmatist criteria. A putative disadvantage of epistemic 

intuitivism is that it confronts the problems facing a position known as foundationalism 

insofar as it does not demand justification for these basic intuitions in terms of other beliefs.
70

 

Of course, these positions can be interrelated and a mixture of them may be possible. One 

might say that a normative epistemological theory is acceptable to the extent that it performs 

well on the three criteria associated with these positions. One might also think that some 

criteria relate to others. For example, we could tell a story which ties all three criteria together: 

the cognitive faculties of humans, and the resulting intuitions about rational epistemic 

practices, are products of the structures of the world and, furthermore, those faculties and 

intuitions conduce to pragmatically rational action and belief by virtue of their conformity to 

the way that the world is structured.  

Given that I find epistemic intuitivism to be a reasonable position and that it is embraced 

by others working on direct inference (at least in appearance), I will carry on the tradition of 

using it to evaluate normative theories, even though, admittedly, it is under argued for here 

and is necessarily so for considerations of space. 

However, a question arises: if a normative theory such as the random-worlds method is 

ultimately evaluated by whether it accounts for intuitions about rational epistemic practices, 

then why not simply let these intuitions guide our epistemic practices without the theory? In 

other words, why not cut out the middle-man and simply let intuitions be the guides of 

inductive inference? 

My response is that although these intuitions may be in themselves reliable guides, a 

theory may provide guidance for inductive inferences in problematic cases where our 

intuitions are initially less decisive or clear. Hence, if a theory validates a number of clear 

intuitions about rational practices, then this suggests that it likewise provides trustworthy 

guidance in these problematic cases. Perhaps the prime example of this concerns the problem 

of what to do when one has evidence regarding relevant but incomparable reference classes 

                                                                                                                                                                     
with, and reasonable results in more complex cases in which our intuitions are not so strong.” Kyburg and Teng, 

Uncertain Inference, 244.  
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(which we shall encounter in Sub-Section 4.2.7.) and it is not clear what inductive inferences 

are rational in such contexts. The random-worlds method can assign specific and sharp 

values to the probabilities of interest where intuitions may not. 

For this reason, it is worth seeing whether the intuitions weighing in on the random-worlds 

method are such that they justify using it as a guide for our inductive inferences, particularly 

in cases where intuitions are (initially) less helpful.  

So how well does the random-worlds method accommodate foundational intuitions about 

epistemically rational practices? 

To answer this question, we need to evaluate the implications and features of the random-

worlds method and see whether they deliver intuitive results. 

  

 

4.2. Favourable Features of the Random-Worlds Method 

 

Let us now consider the various features of the method.  

In doing so, I will occasionally present certain results of the method that are entailed by 

slightly more general theorems proved by Bacchus et al. However, it is important to note that 

Bacchus et al. say that the results and the original theorems are “not the most general ones 

possible” and that the conditions stipulated by the theorems can be relaxed (in some 

unspecified way) while producing intuitively reasonable results.
71

 Hence, one should not 

conclude that the method is often inapplicable merely because the results I present in what 

follows concern unrealistically simple situations. 

 

  

4.2.1. Basic Direct Inference 

 

The first feature that we will consider is the method’s validation of basic direct inference. 

To illustrate basic direct inference, suppose the agent sees a news report in which a 

policeman states that 80 of 100 passengers on the Midnight Express train had been fatally 

injured. Furthermore, the agent has evidence that her friend Aaron caught that train. 

Therefore, suppose the agent accepts into her knowledge base the statements %(𝐴𝑥|𝐵𝑥) =

0.8 and 𝐵𝑎 where Bx stands for “x was a passenger on the Midnight Express,” Ax stands for 
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“x was fatally injured” and a stands for Aaron. Suppose the agent has no other information 

bearing on the probability of 𝐴𝑎, including  information about any of the other passengers. 

So what should 𝑃(𝐴𝑎) be given the agent’s acceptance of %(𝐴𝑥|𝐵𝑥) = 0.8 and 𝐵𝑎?  

We probably have at least two intuitions about this case. First, if (%(𝐴𝑥|𝐵𝑥) = 0.8)𝐾𝐵, 

then 𝑃(𝐴𝑎) = 0.8 .  Second, 𝑃(𝐴𝑎)  would increase as the known value of %(𝐴𝑥|𝐵𝑥) 

increases and it would decrease as %(𝐴𝑥|𝐵𝑥) decreases. So, for instance, if %(𝐴𝑥|𝐵𝑥) =

0, then 𝑃(𝐴𝑎) = 0 and if %(𝐴𝑥|𝐵𝑥) = 1, then 𝑃(𝐴𝑎) = 1. 

The random-worlds method validates these intuitions by prescribing credences that accord 

with them. Bacchus et al. prove a theorem to this effect. 

Suppose  𝐾𝐵 ≡  (𝛽(𝑐) & %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔] & 𝐾𝐵′)  where 𝐾𝐵′  represents other 

statements in the knowledge base, 𝛼(𝑥) and 𝛽(𝑥) are formulas mentioning the variable x and 

𝛽(𝑐) is the formula 𝛽(𝑥) where the constant c takes the place of the variable x. Bacchus et 

al.’s theorem entails that if the 𝐾𝐵 is as such, then 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼(𝑐)|𝐾𝐵)[𝑓, 𝑔] (given 

that the credence exists).
72

 This is only on certain restricting assumptions which effectively 

ensure that 𝛽(𝑐)  encapsulates all the relevant information about c.
73

 For one, 𝐾𝐵′ cannot 

have any statements about c. Also, c cannot appear in 𝛼 or 𝛽. To illustrate why this is so, 

suppose that we define the symbols so that 𝛽(𝑥) ≡ ((𝐶𝑥 & 𝑥 ≠ 𝑐) ∨ ~𝐶𝑥), 𝛼(𝑥) ≡ 𝐶𝑥 and 

𝐾𝐵 ≡ (𝛽(𝑐) & %(𝛼(𝑥)|𝛽(𝑥)) = 0.5) .
74

 In this case, a naive account of direct inference 

could prescribe that 𝑃(𝛼(𝑐)|𝐾𝐵) = 0.5, but 𝛽(𝑐) holds only if ~𝛼(𝑐) holds, and so it should 

really be the case that 𝑃(𝛼(𝑐)|𝐾𝐵) = 0. 

We can then see how the random-worlds method validates the two intuitions in the 

example case. If we instantiate the knowledge base so that 𝐾𝐵 ≡  (𝐵𝑎 & %(𝐴𝑥|𝐵𝑥) =

0.8 & 𝐾𝐵′), then 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) = 0.8. (Note that %(𝐴𝑥|𝐵𝑥) = 0.8 is equivalent 

to %(𝐴𝑥|𝐵𝑥)[0.8, 0.8] and likewise for 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) = 0.8.) Furthermore, the 

value of the random-worlds credence varies with the known proportion of injured passengers, 

so 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) = %(𝐴𝑥|𝐵𝑥) . This then validates the two intuitions for the 

illustrative case.
75
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Let us see how their system guarantees this result.
76

 This will be useful as it will also give 

an example of the kind of proof method used by Bacchus et al. for establishing other 

theorems. Suppose that these restricting assumptions hold and that 

𝐾𝐵 ≡  (𝛽(𝑐) & %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔] & 𝐾𝐵′).  Suppose  𝐾𝐵 is satisfiable for a domain of 

fixed size N. Let us now partition the models that satisfy 𝐾𝐵  into clusters whereby two 

models are in the same cluster iff they agree on the denotation of all symbols in the 

vocabulary except c. For example, for any predicate F and any domain object d such that c 

does not denote d, two worlds are in the same cluster iff both worlds agree on whether F does 

or does not denote d. Now all the worlds satisfy 𝐾𝐵  and hence the formulas 𝛽(𝑐) and 

%(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔]. The worlds within a cluster differ only in respect of which object c is 

assigned to. In a cluster, c denotes one of the objects satisfying 𝛽(𝑥) and the fraction of such 

objects that satisfy 𝛼(𝑥)  is given by %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔] . Hence, the fraction of the 

equiprobable worlds in a cluster in which 𝛼(𝑐) is true is given by %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔]. 

Therefore, the weighted average of the probabilities within all of the clusters gives us 

𝜇(𝛼(𝑐) |𝐾𝐵)[𝑓, 𝑔] where 𝜇 is the random-worlds prior probability function. This holds 

irrespective of the choice for N. Thus, if 𝐾𝐵 ≡  (𝛽(𝑐) & %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔] & 𝐾𝐵′) and 

the restricting assumptions hold, then 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼(𝑐)|𝐾𝐵)[𝑓, 𝑔] (provided that the 

random-worlds credence exists). 

Let us now note some of the other features of the random-worlds method.   

 

 

4.2.2. Independence and Rational Monotonicity 

 

Probabilistic independence is an important concept in inductive reasoning. As Pollock notes, 

probability practitioners typically assume two propositions to be probabilistically 

independent unless there is reason to think otherwise.
77

 For example, the probability of me 

having arthritis should be regarded as independent of whether or not Barack Obama has a 

cute kitten. While this might provide an intuitive idea of independence, two formulas 𝛼  and 

𝛽 are formally said to be independent iff it is the case that 𝑃(𝛼 & 𝛽) =  𝑃(𝛼)𝑃(𝛽) (although 
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authors occasionally express independence using a slightly different equation whose terms 

are conditional probabilities).
78

 

The intuition that, unless given reasons to think otherwise, two predicates should be 

regarded as independent is validated by Bacchus et al.’s method.  

Bacchus et al. prove a theorem which specifies a class of cases in which two 

predicates are treated as independent.
79

 Suppose that there are two knowledge bases 𝐾𝐵1 

and 𝐾𝐵2 and two formulas 𝛼1 and 𝛼2 and that these are in pairwise separate languages. In 

other words, the language of 𝐾𝐵1  and 𝛼1  and the language of 𝐾𝐵2  and 𝛼2  are entirely 

different: there is no basic symbol (predicate or constant) used in both. Bacchus et al. prove a 

theorem entailing that the two are independent so that 

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼1 & 𝛼2|𝐾𝐵1& 𝐾𝐵2) = 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼1|𝐾𝐵1)𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼2|𝐾𝐵2). 

They also show that this result holds if the languages share a single constant.
80

  

The random-worlds method also validates a version of what is called rational 

monotonicity. Bacchus et al. define rational monotonicity in the context of default reasoning, 

a type of defeasible inference from premises to conclusions, i.e. an inference that purports to 

be rationally compelling but not deductively valid.
81

 Informally, a system of default 

reasoning has the property of rational monotonicity when it allows one to conclude 𝛼 from 

the premise (𝐾𝐵 & 𝛽) if one can conclude 𝛼 from the premise 𝐾𝐵 and cannot conclude  ~𝛽  

from the premise 𝐾𝐵 .
82

 Bacchus et al. also provide examples of rational monotonicity 

whereby adding a predicate to the reference formula in a probability does not impact the 

relevant probability. Let us consider one of these examples. Suppose the agent knows that 

(approximately) all penguins cannot fly and that Tweety is a yellow penguin. Formally, let us 

say that the agent’s knowledge base includes that statements 𝑃𝑡 & 𝑌𝑡  and %(𝐹𝑥|𝑃𝑥) ≈ 0 

where 𝐹𝑥 stands for “x can fly”, 𝑃𝑥 stands for “x is a penguin”, 𝑌𝑥 stands for “x is a 

yellow” and t stands for Tweety. The random-worlds method entails that 

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐹𝑡|𝑃𝑡 & 𝑌𝑡 & %(𝐹𝑥|𝑃𝑥) ≈ 0) = 0.
83
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This is a fairly intuitive result.
84

 Indeed, in real life, any object from a reference class 

will presumably have some property (or combination of properties), such as being yellow and 

bearing the name “Tweety”, that the reference-class as a whole must lack. Otherwise, there 

would be no simple or complex property to distinguish the object from other objects in the 

reference class. Yet if direct inference from a reference class statistic is to be useful, such 

differences must be treated as irrelevant to the probability of interest unless given reason to 

think otherwise. 

So independence and rational monotonicity are intuitively reasonable features of the 

random-worlds method.
85

  

 

 

4.2.3. The Reference Class Problem 

 

So we have explored how the random-worlds method validates basic direct inference and the 

assumption of the probabilistic independence of predicates. Yet there are many cases in 

which the agent possesses evidence about relative frequencies that are putatively relevant to 

what her credences should be, but which are not usefully guided by just the aforementioned 

features of the method. 

This is because in many cases, the object of interest is known to (at least probably) belong 

to two or more reference classes which are known to (probably) have different statistics for 

the target formula of interest. For example, suppose Sally smokes but exercises religiously. In 

this sense, she is a member of two reference classes, the class of all smokers on the one hand 

and the class of all fitness fanatics on the other. Suppose the relative frequency of eventually 

developing cancer among smokers is 0.3 whereas the relative frequency of eventually 

developing cancer among the fanatics is 0.05. What, then, is the probability that Sally will 

eventually develop cancer? Basic direct inference is unable to help us here since there are 

                                                      
84

 I personally have qualms with inferring a subjective probability of zero here from an approximate statistical 

statement which is consistent with the possibility that there is at least one penguin that flies which could be 

Tweety. Regardless, this is a fairly minor qualm with Bacchus et al.’s derivation of strict equalities for 

probability statements from approximate equalities for statistical statements, not for their validation of rational 

monotonicity as such. 
85

 Rational monotonicity is similar to what Pollock calls nonclassical direct inference, the gist of which is that 

the addition of a predicate to a reference formula in a probability does not affect the probability unless given 

reason to think otherwise. According to Pollock, probabilists often reason in accordance with nonclassical direct 

inference in practice. Pollock notes that, according to the probability calculus, if one endorses the defeasible 

assumption of statistical independence, then they must endorse the principle of nonclassical direct inference 

(albeit with a minor qualification), and vice versa. Yet Pollock claims that people often only have intuitions in 

favour of the former, but not the latter. Pollock, “Probable Probabilities (with Proofs),” 11-13. 



 

37 

 

relevant statistics for multiple reference classes. So we have the problem of trying to 

determine from which class, if any, does Sally inherit, to use a term in the literature, her 

probability of eventually developing cancer. 

This is widely-known as the reference class problem. However, specialists on the topic 

actually distinguish various kinds of reference class problems, a number of which concern 

different types of possible tension between statistics for distinct reference classes.
86

 

Here, we will examine the random-worlds treatment of four types of tension, namely, the 

tension between statistics for: 

  

a) A more specific and a less specific reference class 

b) A more precise reference class and a less precise reference class. 

c) A reference class that is too specific and a reference class that is too general, and 

d) Two incomparable reference classes. 

 

 

4.2.4. Specificity 

  

The first kind of tension that we will consider is between statistics for a more specific 

reference class and a less specific reference class. A reference class 𝑩’ is more specific than 

another class 𝑩 iff 𝑩’ ⊆ 𝑩 where 𝑩 is the set of all objects satisfying Bx and 𝑩’ is the set of 

all objects satisfying 𝐵′𝑥. (From here on, bolded predicate letters or formulas will refer to the 

sets of objects satisfying the predicate or formula.) 

The preference for using statistics for more specific reference classes is quite intuitive 

(although there are plausibly certain exceptions to it to be discussed in the next sub-section). 

For instance, let 𝐵𝑥 stand for “x was a passenger on the Midnight Express” and let 𝐵′𝑥 stand 

for “x was a passenger on carriage 3 of the Midnight Express”. Note that 𝑩′ ⊆ 𝑩  since the 

set of all of the passengers who were on carriage 3 is a subset of the set of all of the 

passengers who were on the train. Now suppose the agent knows that 𝐵𝑎 and 𝐵′𝑎 where a 

stands for Aaron. Suppose that the agent also knows that %(𝐴𝑥|𝐵𝑥) = 0.8 , 𝑩′ ⊆ 𝑩 

and %(𝐴𝑥|𝐵′𝑥) = 0.05 where 𝐴𝑥 stands for “x was fatally injured”. From which statistics 

should the object denoted by a inherit its probability of satisfying 𝐴𝑥? Intuitively, it seems 
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that the agent should set their credence so that 𝑃(𝐴𝑎) = %(𝐴𝑥|𝐵′𝑥) = 0.05 ≠ %(𝐴𝑥|𝐵𝑥) =

0.8. This widely held intuition finds expression in what is known as the principle of the 

narrowest reference class.
87

 

The random-worlds method validates this preference for using statistics for the more 

specific reference classes.  

Bacchus et al. prove a theorem showing that the random-worlds approach satisfies several 

desiderata, including this preference. The theorem employs the concept of a minimal 

reference class 𝜷′ with respect to a target class 𝜶.
88

 Suppose that the 𝐾𝐵 contains a number 

of statistical statements for different reference classes. The minimal reference class 𝜷′  is the 

one such that all other reference classes in 𝐾𝐵 are either larger or disjoint from it. This means 

that these other classes are either super classes of the minimal one (like the class of birds is 

for the class of sparrows) or are completely non-overlapping (like the classes of sparrows and 

fish which do not overlap). This can be represented with logical notation by saying that all 

other reference classes 𝜷 are such that either 𝑥(𝛽′(𝑥)𝛽(𝑥)) or 𝑥(𝛽′(𝑥)~𝛽(𝑥)).  

Here is a less general statement of the theorem for cases in which the statistical statement 

for the minimal reference class involves a strict equality. Let 𝐾𝐵 be a knowledge base such 

that: 

 

a) 𝐾𝐵 ⊨ 𝛽′(𝑐) 

b) For any statement of the form %(𝛼(𝑥)|𝛽(𝑥)) for any reference class 𝜷,  either 

𝐾𝐵 ⊨ 𝑥(𝛽′(𝑥)𝛽(𝑥)) or 𝐾𝐵 ⊨ 𝑥(𝛽′(𝑥)~𝛽(𝑥)) 

c) The symbols in the target formula 𝛼 in 𝐾𝐵 are only on the left hand side of the 

statistical statements mentioned in condition b 

d) c does not appear in the formula 𝛼(𝑥) 

e) 𝐾𝐵 ⊨ %(𝛼(𝑥)|𝛽′(𝑥)) = 𝑓 

 

Then 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼(𝑐)|𝐾𝐵) = 𝑓 (assuming that the limit exists). 

 

Proof of the more general theorem is found in Bacchus et al.
89

 

While also enabling the random-worlds method to validate an intuitive preference for 

more specific reference classes, note also that the theorem has the putatively desirable 
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consequence of validating the practice of ignoring statistics for irrelevant reference classes. 

This entails, for example, that the statistics about the prevalence of warm-bloodedness among, 

say, pencils are treated as irrelevant for determining the probability that a sparrow is warm-

blooded. 

 

4.2.5. Precision 

 

In discussing the preference given to statistics for more specific reference classes, I alluded to 

an important exception. This exception concerns cases of a particular tension between 

statistics for two (or more) classes. In such cases, the tension arises because each statistic 

specifies that the relative frequency of objects satisfying some formula 𝛼 among the relevant 

reference class lies in some interval where one of the intervals is more precise than the other. 

Technically speaking, an interval [𝑓, 𝑔] in this context is more precise (or, as some say, 

accurate) than another [𝑓′, 𝑔′] when it is the case that [𝑓, 𝑔] ⊆ [𝑓′, 𝑔′] or, in other words, 

[𝑓′, 𝑔′]  includes [𝑓, 𝑔] . So this tension would arise if the knowledge base includes, say, 

statements of the form %(𝛼(𝑥)|𝛽′(𝑥))[𝑓′, 𝑔′] , %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔] , 𝛽(𝑐)  and 𝛽′(𝑐) 

where [𝑓′, 𝑔′] includes [𝑓, 𝑔]. In such cases, a question arises: what should be the value of 

𝑃(𝛼(𝑐))? There is some consensus that 𝑃(𝛼(𝑐)) should lie in the more precise interval [𝑓, 𝑔] 

(although various authors articulate more or less the same point with different interpretations 

of probability).
90

 

This preference for more precise statistics is intuitive, especially as it constitutes a solution 

to what Paul Thorn has called the problem of uninformative statistics.
91

 The problem is that 

for many non-trivial statistics of the form %(𝛼(𝑥)|𝛽(𝑥))[𝑓, 𝑔] with reals 𝑓, 𝑔(0,1) and 

some predicate 𝛽 such that the agent knows 𝛽(𝑐), there is some more specific class 𝜷′ such 

that the only knowledge that the agent has about 𝜷′  is that 𝛽′(𝑐)  and that 

%(𝛼(𝑥)|𝛽′(𝑥)) [0,1]. For example, the agent in the Midnight Express case knows that 

%(𝐴𝑥|𝐵𝑥)[0.8,0.8] and 𝐵𝑎, but they also know that %(𝐴𝑥|𝐵′′𝑥)[0,1] where 𝑩′′ is the set 

of passengers on the train who were born on Aaron’s birthday. Suppose further that the 

agent’s knowledge does not entail that %(𝐴𝑥|𝐵′′𝑥) is in a particular interval more precise 

than [0, 1] . The agent’s knowledge that %(𝐴𝑥|𝐵′′𝑥)[0,1]  follows merely from the 

tautology that a proportion expression must be in the unit interval. The problem, then, is that 
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if statistics for the more specific class are to be preferred for assigning probabilities in 

general, then one must embrace the uninformative conclusion merely that 𝑃(𝐴𝑎)[0,1]. This 

problem can be generalised to many contexts. Kyburg and Teng regard the preference for 

more precise reference classes as a way of avoiding this problem. This is because the statistic 

for a more specific reference class is used for determining a probability unless the more 

specific statistic is for an interval which is less precise than a statistic for a less specific 

super-class. Consequently, this preference for statistical precision constitutes an important 

exception to the preference for reference class specificity. 

Bacchus et al. present and prove a theorem which purports to validate this preference for 

more precise statistics.
92

  Suppose 𝐾𝐵 ≡ (&𝑖=1
𝑛 (%(𝛼(𝑥)|𝛽𝑖(𝑥))[𝑓𝑖 , 𝑔𝑖] & 𝛽𝑖(𝑐)) & 𝐾𝐵′) 

where c is some constant of interest, 𝛼(𝑥) and 𝛽𝑖(𝑥) are some formulas mentioning x and 

𝐾𝐵′  denotes the rest of the knowledge base. Suppose also that 

𝐾𝐵 ⊨ (𝑥(𝛽𝑖(𝑥)  𝛽𝑖+1(𝑥)) & ~%(𝛽𝑖(𝑥)) ≈1 0)  for all i and that no symbol in 𝛼(𝑥) 

appears in 𝐾𝐵′ or any formula 𝛽𝑖(𝑥). Suppose also that there is some j, such that [𝑓𝑗 , 𝑔𝑗] is 

the most precise interval. Bacchus et al.’s theorem entails that if the knowledge base is as 

such, then 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼(𝑥)|𝐾𝐵)[𝑓𝑗, 𝑔𝑗] (if the limit exists). 

  

 

4.2.6. Overly Specific and Overly General Reference Classes 

 

Another kind of tension that is less discussed in the philosophical literature concerns the 

tension between statistics for reference classes which are too specific or too general in some 

sense. To illustrate this tension using Bacchus et al.’s example, consider a knowledge 

base containing the propositions that 90% of birds chirp, the set of all magpies is a 

subset of the set of all birds, 20% of moody magpies chirp and Tweety is a magpie.
93

 

Thence, suppose 

𝐾𝐵 ≡ (%(𝐶𝑥|𝐵𝑥) = 0.9& 𝑴 ⊆ 𝑩 & %(𝐶𝑥|𝑀𝑥 & 𝑁𝑥) = 0.2 & 𝑀𝑡 & 𝐾𝐵′) where 𝐶𝑥 stands 

for “x chirps”, 𝐵𝑥 stands for “x is a bird”, 𝑀𝑥 stands for “x is a magpie”, 𝑁𝑥 stands for 

“x is moody”, t stands for Tweety and 𝐾𝐵′ contains no statements that are relevant to the 

random-worlds credence for 𝐶𝑡. Bacchus et al. claim that, in this case, theories of direct 

inference usually disregard the information about %(𝐶𝑥|𝑀𝑥 & 𝑁𝑥) since it is not known 
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that Tweety is a moody magpie (i.e. that 𝑀𝑡 & 𝑁𝑡).
94

 Scott Goodwin suggests that one 

should not ignore this information because of various considerations, including the 

possibility that Tweety could be moody.
95

 Furthermore, Bacchus et al. claim that 

“ignoring the second statistic [%(𝐶𝑥|𝑀𝑥 & 𝑁𝑥) = 0.2] in effect amounts to assuming 

that magpies generally are not moody.”
96

 The random-worlds approach validates 

Goodwin’s suggestion by prescribing a credence of less than 0.9 to 𝐶𝑡  given the 

information that %(𝐶𝑥|𝑀𝑥 & 𝑁𝑥) = 0.2  (although Bacchus et al. do not provide a 

general theorem stating something to this effect). 

 

 

4.2.7. Incomparable Reference Classes 

 

In Bacchus et al.’s opinion, the most important case of tension concerns the tension between 

statistics involving incomparable reference classes.
97

 In standard mathematical terminology, 

two sets are incomparable if neither is a subset of the other. 

Let us illustrate this tension using a modified example from Pollock. Imagine that a patient 

named Bernard tests positive on two unrelated tests of a particular disease. The relative 

frequencies of the disease among patients who test positive are 0.7 and 0.75 for the tests. We 

can represent these frequencies with the proportion formulas %(𝐷𝑥| 𝑇1𝑥) = 0.7  and 

%(𝐷𝑥|𝑇2𝑥) = 0.75 where 𝐷𝑥  stands for “x has the disease” and 𝑇𝑖𝑥  stands for “x tested 

positive on test i”. Furthermore, suppose the agent knows that Bernard tested positive on both 

tests and that %(𝐷𝑥|𝑇1𝑥) = 0.7 and %(𝐷𝑥|𝑇2𝑥) = 0.75. Suppose, though, that the agent is 

completely ignorant about the value of %(𝐷𝑥|𝑇1𝑥 & 𝑇2𝑥 ) . In this case, the class 

corresponding to 𝑇1𝑥 and the class corresponding to 𝑇2𝑥  are the incomparable reference 

classes. 

A problem arises because it may not be clear how the agent should assign probabilities in 

such cases. The agent cannot simultaneously assign incompatible values such as 0.7 and 0.75 

to the probability that Bernard has the disease given that he is a member of the incomparable 
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classes. Thorn calls this the problem of competing statistics while Pollock calls this the 

problem of sparse probability knowledge.
98

 How, then, should the probability be determined 

given the agent’s knowledge base in this case? 

Unfortunately, there is much less consensus on how to appropriately use the relevant 

statistics here than in other cases of tension between reference classes. Reichenbach seems to 

prescribe ignoring the statistics for all of the incomparable classes and focusing on acquiring 

statistics for the most specific common class: “The logician can only indicate a method by 

which our knowledge may be improved. This is achieved by the rule: look for a larger 

number of cases in the narrowest common class at your disposal.”
99

 Kyburg and Teng, in 

contrast, prescribe associating the probability with the interval of values that spans from the 

lowest relevant frequency value to the highest.
100

 So, in this case, they would simply state 

that the evidential probability of 𝐷𝑏  given the agent’s knowledge base is the interval 

[0.7, 0.75] where b stands for Bernard.
101

 

Bacchus et al. and Pollock have approaches that are similar to each other, but markedly 

different from the approaches of Reichenbach, Kyburg and Teng.  

Bacchus et al.’s method validates a well-known means for combining independent pieces 

of evidence which is called Dempster’s rule of combination.
102

 Given the assumption that c 

satisfies formulas of the form 𝛽𝑖(𝑥)  for a set of reference classes {𝛽1, . . , 𝛽𝑛}  and the 

assumption that the overlap between the classes is small relative to the size of the classes, 

Bacchus et al. interpret proportion formulas of the form %(𝐴𝑥| 𝛽𝑖(𝑥)) ≈ 𝑓𝑖 as each providing 

evidence of weight 𝑓𝑖  for the proposition 𝐴𝑐  (where 𝐴𝑥  is a one-place predicate). They 

present a theorem stating that the random-worlds method provides the rule of combination as 

a solution to certain cases involving incomparable reference class statistics. 

  

∏ 𝑓𝑖
𝑚
𝑖=1

∏ 𝑓𝑖
𝑚
𝑖=1 + ∏ (1 − 𝑓𝑖)

𝑚
𝑖=1
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However, the theorem states that this result holds given four conditions: 1) 𝑓𝑖(0,1) for each 

formula %(𝐴𝑥| 𝛽𝑖(𝑥)) ≈ 𝑓𝑖  mentioned in the knowledge base, 2) none of the formulas 

𝛽𝑖(𝑥) mention 𝐴𝑥 or c, 3) the intersection of the classes 𝜷𝑖 is known to consist of exactly one 

member that is denoted by c and 4) the knowledge base contains no other information. 

This delivers an intuitively reasonable result in the case of Bernard. Let us idealise the 

knowledge base of the agent trying to assess the probability that Bernard has the disease. We 

can then instantiate the knowledge base in the above theorem so that the agent’s knowledge 

base is such that 𝐾𝐵 ≡ (%(𝐷𝑥| 𝑇1𝑥) = 0.7 & %(𝐷𝑥|𝑇2𝑥) = 0.75 & 𝑇1𝑏 & 𝑇2𝑏 &  𝑻𝟏 ∩ 𝑻𝟐 =

{𝑏}). Then, as per Bacchus et al.’s theorem, 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐷𝑏|𝐾𝐵) = 0.875. Note that the 

agent’s credence that Bernard has the disease is higher given knowledge of both of the 

positives than what it would be if the agent only had knowledge of one of the positives. This 

is an intuitive result. Both results of the test would individually make it probable that Bernard 

had the disease (with a probability of 0.7 or 0.75). Knowledge that one had positive results on 

both tests should, if anything, make it more probable that one has the disease; after all, surely 

this would be more worrying for the patient, if anything. Note that neither Kyburg, Teng or 

Reichenbach’s theories get this result; Kyburg and Teng merely associate the probability with 

[0.7, 0.75]  and Reichenbach prescribes an agnosticism about the probability of Bernard 

having the disease given knowledge of the two positive tests. 

Regardless, the rule of combination is surely not the final word on treating tensions with 

incomparable reference classes.  This is because, as Pollock emphasises, base rate 

information (if present) should play a role in probability judgments about such tensions.103 

Consider the case of Bernard again, albeit with different statistics. Suppose the base rate for 

the disease among the domain of humans is low, so %(𝐷𝑥) = 0.1. Suppose further that the 

relative frequencies of the disease among those who obtain a positive result on the two tests 

are each 0.4, so %(𝐷𝑥| 𝑇1𝑥) = %(𝐷𝑥| 𝑇2𝑥) = 0.4. Suppose the agent knows that %(𝐷𝑥) =

0.1 , %(𝐷𝑥| 𝑇1𝑥) = %(𝐷𝑥| 𝑇2𝑥) = 0.4 , 𝑇1𝑏  and  𝑇2𝑏  where b stands for Bernard. If one 

applies the rule of combination formula above to determine the probability of Bernard having 

the disease, the probability is actually decreased by the two positives rather than increased. 

Pollock claims that such a result is absurd.
104

 Indeed, a positive result on one of the tests 

would raise the probability of Bernard having the disease above what it originally was given 
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only the base rate statistics (from 0.1 to 0.4).105 It is then counterintuitive that getting a 

positive on another test would somehow lower this probability below 0.4 when the additional 

test would by itself similarly raise the probability above what it originally was.  

Note that this does not constitute a counter-example to the random-worlds method’s 

approach to the problem. The above theorem, and indeed the only proven theorem, specifying 

the method’s approach to the problem makes the assumption that one does not have statistical 

knowledge of the base rate (recall condition four for the result). This suggests that more 

research is needed about how the random-worlds method copes with tensions between 

incomparable reference classes given knowledge of the base-rate. Because of the similarities 

between Pollock’s account of probability and the random-worlds method, a useful source of 

insight as to the possible behaviour of the method may be Pollock’s Y-function, a treatment of 

this tension that I find both very intuitive and facsinating.
106

 Interestingly, Pollock’s Y-

function raises the probability of 𝐷𝑏 to 0.8 in the case in which the agent’s knowledge base 

contains the statements %(𝐷𝑥) = 0.1, %(𝐷𝑥| 𝑇1𝑥) = %(𝐷𝑥| 𝑇2𝑥) = 0.4 , 𝑇1𝑏 and  𝑇2𝑏.
107

 

 

   

4.2.8. Summarising the Insights of the Random-Worlds Method 

 

So we have seen a number of favourable features of the random-worlds method. These 

features delineate the intuitive insights that it provides about what inductive inferences are 

rational in cases where our intuitions were readily clear and in others where our intuitions are 

perhaps initially less clear. These cases concern: 

 

- Basic direct inference 
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- Probabilistic independence 

- Rational monotonicity 

- Specificity 

- Precision 

- The treatment between of the tension between overly specific and overly general 

reference classes 

- Incomparable reference classes 

   

The insights proffered by the random-worlds method, then, are its judgements on these kinds 

of cases. 

  

 

4.3. Problems for the Random-Worlds Method 

  

So we have explored the random-worlds method and some considerations favouring it. 

However, the method is not without its problems. 

Bacchus et al. acknowledge a number of these. For example, they acknowledge that the 

random-worlds method faces computational difficulties and also encounters problems 

regarding reasoning about causality and time.
108

 Nevertheless, they do not regard these 

problems as reasons to outright reject the method and they hint at potential solutions for them. 

However, I wish to focus on another problem. The problem is that the random-worlds 

method does not give a promising account of how to generally accommodate uncertainty 

about proportion formulas. According to the method, a credence is calculated only in relation 

to a knowledge base; if a proportion formula features in the knowledge base, then the 

calculation of the credence treats the formula as if the agent was certain of it. 

But we often are not even virtually certain of non-trivial and relevant proportion formulas 

on the basis of our evidence, yet the evidence still seems relevant to how we should constrain 

our credences. Suppose, for instance, that the agent hears a TV news report that all of the 

passengers on a particular train were fatally injured, but the agent is only 70% confident that 

the report said this train was the Midnight Express as opposed to some other train (perhaps 

because she was somewhat distracted at the time of partially hearing the report). If we 

suppose that she has no other relevant evidence, then surely this frequency evidence should 
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constrain her credence for the proposition that her friend Aaron was fatally injured since she 

is certain that he was on the train. But surely the relative frequency of fatal injury on the train 

that is probably affirmed by the news report should not be accepted as knowledge so that she 

then has a credence of 1 that Aaron was fatally injured. After all, the agent is 30% confident, 

so to speak, that the news report did not concern the Midnight Express and so she should be 

open to the possibility that Aaron was not fatally injured. How then does one proceed? 

One might claim that Bacchus et al.’s appeal to approximations intend to accommodate 

our uncertainty in cases like this, but this claim is doubtful. Suppose %(𝐴𝑥|𝐵𝑥)  is the 

proportion of passengers on the train who were fatally injured. How might approximations 

help model the agent’s situation above? Well, one suggestion is that the agent’s situation 

should be modelled by her acceptance of approximate formulas such as %(𝐴𝑥|𝐵𝑥) ≈ 1 or 

%(𝐴𝑥|𝐵𝑥) ≈ 0.7. Let us consider problems for this suggestion. The agent clearly does not 

accept %(𝐴𝑥|𝐵𝑥) ≈ 1, especially given her openness toward the possibility that none of the 

passengers on the train were injured. This statistic would also generate an inappropriate 

credence of 1 that Aaron was fatally injured. Regarding the formula %(𝐴𝑥|𝐵𝑥) ≈ 0.7, the 

agent also simply does not have the information to accept this formula. She knows that the 

proportion of fatally injured passengers was either 1 or (at least approximately) 0; she has no 

information stating that the proportion of fatally injured passengers was approximately 0.7. 

Accepting such a statistic may nevertheless generate a reasonable random-worlds credence in 

the proposition that Aaron was fatally injured in the agent’s case (given that she arguably 

should have a credence of 0.7 that Aaron was fatally injured anyway). But a substantive and 

tenuous assumption is needed if cases like these can be modelled in a way so that the agent 

hypothetically accepts statistical statements that she actually does not just to get the right 

probabilistic results. 

The putative inability of the random-worlds method to accommodate the agent’s 

uncertainty about proportion formulas is also highlighted when this uncertainty should arise 

from inferences from samples. Bacchus et al. write (using our notation so that 𝐵𝑥 stands for 

“x is a bird” and Fx stands for “x can fly”): 

  

Under what circumstances is a statement such as %(𝐹𝑥|𝐵𝑥) ≈ 0.9 accepted as knowledge? 

Although we regard this as an objective statement about the world, it is unrealistic to 

suppose that anyone could examine all the birds in the world and count how many of them 

fly. In practice, it seems that this statistical statement would appear in KB if someone 
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inspects a (presumably large) sample of birds and about 90% of the birds in this sample fly. 

Then a leap is made: the sample is assumed to be typical, and we then conclude that 90% 

of all birds fly.
109

 

 

As they note, though, the method “by itself does not support this leap”, at least on the way 

that they represent the procedure of analysing a sample.
110

 On this representation, the relative 

frequency of flying birds in a sample of birds is represented with the expression 

%(𝐹𝑥|𝐵𝑥&𝑆𝑥)  where Sx stands for “x is in the sample”. They state, however, that the 

random-worlds method fails to provide an adequate account of sampling on this 

representation since the method treats the members of the population inside the sample and 

the members of the population outside the sample as two unrelated populations.
111

  

Another obvious but problematic way of representing the inference from a sample does 

not look promising either. On this approach, the sampled objects are not distinguished from 

the non-sampled objects via the predicate S; instead, the sampled objects merely appear as 

objects satisfying the predicate of interest in the 𝐾𝐵 . Suppose, for instance, the agent 

randomly samples nine balls from an urn which contains 10 balls. The agent is told that any 

ball could could be either green or red, but is told nothing about the proportion of balls of 

either colour. Perhaps all of them are red and none are green or perhaps all of them are green 

and none are red. The agent knows that the balls are each uniquely named with a constant of 

the form 𝑏𝑖  where 𝑏𝑖  is the ball labelled with an integer i in [1,10] . The agent randomly 

samples balls from the urn, draws balls 1 to 9 as a result and finds that all of them are green. 

What colour is the 10
th

 ball to be sampled from the urn? Suppose for illustration that the 

domain is known to consist of only the 10 objects and that the language contains only the 

constants known to denote specific objects and the predicates 𝐺𝑥 for “x is green” and 𝑅𝑥 for 

“x is red”. The sample, then, is represented not with a predicate S, but rather with the 

statement (𝐺𝑏1 & . . & 𝐺𝑏9) which features in the 𝐾𝐵 . Then, we can represent the models 

consistent with the agent’s knowledge base as follows: 

 

𝑀1: 𝐺𝑏1 & 𝐺𝑏2 & 𝐺𝑏3 & 𝐺𝑏4 & 𝐺𝑏5 & 𝐺𝑏6 & 𝐺𝑏7 & 𝐺𝑏8 & 𝐺𝑏9 & 𝐺𝑏10 

𝑀2: 𝐺𝑏1 & 𝐺𝑏2 & 𝐺𝑏3 & 𝐺𝑏4 & 𝐺𝑏5 & 𝐺𝑏6 & 𝐺𝑏7 & 𝐺𝑏8 & 𝐺𝑏9 & 𝑅𝑏10 
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The random-worlds method regards the two models as equally likely and so 

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐺𝑏10|𝐾𝐵) = 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝑅𝑏10|𝐾𝐵) = 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(%(𝐺𝑥) =

1|𝐾𝐵) = 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(%(𝐺𝑥) = 0.9|𝐾𝐵) = 0.5  where (𝐺𝑏1 & . . & 𝐺𝑏9)𝐾𝐵 . This is 

counter-intuitive as the evidence about the sample of green balls completely fails to 

significantly raise the probability that the 10
th

 drawn ball will be green and that all balls are 

green.
112

  

In this example of one way to represent an inference from a sample, we can see that the 

random-worlds measure clearly lacks instantial relevance. In other words, it lacks the 

property whereby the observation that a sampled object satisfies a predicate raises the 

probability (by however much) that other objects in the relevant population will satisfy the 

same predicate.
113

  

Bacchus et al. express the hope that the random-worlds method would be capable of 

learning statistics from samples on another representation of knowledge about the domain.
114

 

Yet since the publication of their 1996 article some 20 years ago, neither them nor anyone 

else that I am aware of has developed this idea for me to see a promising representation; 

indeed, I think there is no such representation. In any case, Bacchus et al. state that they “do 

not have a good answer” to the question of when information should be accepted as 

knowledge.
115

 

One way of summarising the difficulty confronting the random-worlds method, then, is 

that, although it is insightful as a theory of direct inference from proportion formulas about 

populations, it is inadequate as a theory of inductive inferences from samples or, in other 

words, inverse and predictive inferences (recall the taxonomy of inductive inferences 

discussed in Section 2.3). 

So the method faces a considerable problem in accommodating the uncertainty that we can 

have about proportion expressions, uncertainty based on samples or other information (such 

as information regarding the aforementioned news report). We will consider a response to 

this difficulty in the next chapter. 
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 Carnap makes this criticism of a particular measure that is the analogue of the measure used in the random-

worlds method. See Carnap, The Logical Foundations of Probability, 565. 
113

 Sandy L. Zabell, “Carnap and the Logic of Inductive Inference,” in Handbook of the History of Logic, vol. 10, 

eds. Dov M. Gabbay, and John Woods (Amsterdam; Boston: Elsevier, 2010), 281. Sandy Zabell characterises it 

differently. He phrases the desideratum as requiring that “if a particular type is observed, then it is more likely 

that such a type will be observed in the future.” 
114

 Bacchus et al., “From Statistical Knowledge Bases,” 129. 
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5. Some Alternative Measures  

 

As noted in the previous chapter, the measure employed in the random-worlds method faces 

various problems and, in particular, a difficulty in accommodating rational inverse inferences 

from samples. 

One natural response to this difficulty is to attempt to modify the method by utilising 

alternative measures which hopefully preserve its insights. 

This chapter will briefly outline two measures that stand out as salient candidate 

replacements for the measure used in the random-worlds method. This is because they are 

similar to the random-worlds method in that they are also probabilistically uniform or 

symmetrical, albeit with respect to different classifications of the possible outcomes.  

  

 

5.1. Carnap’s m* and the Rule of Succession 

  

In in a postscript of The Logical Foundations of Probability, Carnap proposed m*, a measure 

similar to that of the random-worlds method.
116

  m* was articulated as a measure to underpin 

Carnap’s c*-function. The m* and c* functions are best understood in the context of Carnap’s 

early philosophy of probability. A well-known and established distinction delineated by 

Carnap was the difference between two types of probabilities imaginatively called 

probability1 and probability2. Probability1 was said to be a “degree of confirmation” and 

probability2 was said to be a physical probability or, more specifically, a long-run relative 

frequency. (Later, however, Carnap instead preferred to speak of “subjective (or personal) 

probability” (i.e. credence) and “objective (or statistical) probability”.)
117

 The c*-function 

was proposed as an explicatum of probability1, that is, a function which explicates and makes 

precise and rigorous the vague notions we have about “the inference from the evidence to the 

hypothesis or, more correctly speaking, the logical relation holding between the evidence and 

the hypothesis.”
118

  

                                                      
116

 Carnap, The Logical Foundations of Probability, 563. 
117

 Rudolph Carnap, “The Aim of Inductive Logic,” in Logic, Methodology and Philosophy of Science: 

Proceedings of the 1960 International Congress, eds. Ernest Nagel, Patrick Suppes and Alfred Tarski 

(Amsterdam: North-Holland, 1966), 304-5.  
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 Carnap, The Logical Foundations of Probability, 33. 
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To understand m*, we first need to understand some terminology. For Carnap, a 

population is the set of objects that are of interest in a “statistical investigation” (to use his 

words).
119

  Each object is called an individual and each individual is uniquely designated with 

a naming constant of the form 𝑎𝑖 . It is analytically true that any two constants designate 

different individuals. Each individual satisfies exactly one Q-predicate.
120

 Q-predicates are 

defined in term of primitive predicates. The primitive predicates in a language are the 

fundamental or atomistic predicates in a language. According to Carnap, Q-predicates are 

defined by “conjunctions in which every [primitive] predicate or its negation occurs.”
121

 For 

example, if a language has only three primitive predicates P, R and S, then Px & Rx & ~Sx is 

a Q-predicate but Px & Rx is not since the predicate S or its negation fails to appear in the 

latter conjunction.  

Put informally, a structure-description specifies how many objects satisfy any given Q-

predicate. A structure-description corresponds to one or more conjunctive statements that 

Carnap called state-descriptions. A state description state specifies which Q-predicate every 

individual satisfies. For example, suppose there is a population of four individuals {𝑎1, … , 𝑎4} 

and four Q-predicates {𝑄1, … , 𝑄4}  in the language. Then the conjunctive statements 

𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄3𝑎3 & 𝑄1𝑎4  and  𝑄1𝑎4 & 𝑄2𝑎2 & 𝑄3𝑎3 & 𝑄1𝑎1  are state-descriptions 

specifying which Q-predicate every individual satisfies. The state-descriptions 

𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄3𝑎3 & 𝑄1𝑎4 and  𝑄1𝑎4 & 𝑄2𝑎2 & 𝑄3𝑎3 & 𝑄1𝑎1 belong to the same structure-

description. This is because, in both state-descriptions, the same number of objects satisfy a 

given Q-predicate and the state-descriptions only differ by the permutation of individuals. 

That is, in both state-descriptions, two individuals satisfy 𝑄1𝑥, one individual satisfies 𝑄2𝑥, 

one individual satisfies 𝑄3𝑥, no individuals satisfy 𝑄4𝑥 and the state-descriptions only differ 

by permuting 𝑎1 and 𝑎4.  

m* then assigns each structure-description an equal measure and in turn distributes the 

measure for a given structure-description evenly over the corresponding state-descriptions. 

To illustrate this, suppose we have a language in which there are only two Q-predicates, 𝑄1 

and 𝑄2 , and constants naming four individuals {𝑎1, … , 𝑎4} . We can then construct the 

following sample space: 

                                                      
119

 Carnap’s definition of a population is different to the one I give in Section 2.2. since the population I speak 

of may be a non-empty proper subset of the objects that one is reasoning about, a subset that is united by virtue 

of every member satisfying some particular formula. Carnap’s population is instead the set of all objects that 

one is reasoning about. Carnap, The Logical Foundations of Probability, 207. 
120

 Note that Carnap’s later work did not revolve around Q-predicates. 
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 Carnap, The Logical Foundations of Probability, 122. 
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A Sample Space for m* 

Structure-

description 

State-description Measure 

for each 

state-

description 

Measure 

for each 

structure-

description 

|𝑸𝟏| = 4 

|𝑸𝟐| = 0 

 

𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/5 

 

1/5 

|𝑸𝟏| = 3 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/20 1/5 

|𝑸𝟐| = 1 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/20  

 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/20  

 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/20 

 

 

|𝑸𝟏| = 2 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/30 1/5 

|𝑸𝟐| = 2 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/30  

 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/30  

 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/30  

 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/30  

 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/30 

 

 

|𝑸𝟏| = 1 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/20 1/5 

|𝑸𝟐| = 3 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/20  

 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/20  

 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/20 

 

 

|𝑸𝟏| = 0 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/5 1/5 

|𝑸𝟐| = 4          

 

where |𝑸𝒊| is the number of objects satisfying 𝑄𝑖𝑥. 
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Carnap’s 𝑐∗ is then defined as such for two fomulas 𝛼 and 𝛽: 

 

𝑐∗(𝛼, 𝛽) =
𝑚∗(𝛼 & 𝛽)

𝑚∗(𝛽)
 

 

The measure avoids some unintuitive consequences of the random-worlds method. 

Suppose the sample space represents the number of balls in an urn that have some Q-property 

designated by 𝑄𝑖  and one learns that the randomly-sampled balls 𝑎1, 𝑎2 and 𝑎3  satisfy the 

formula 𝑄1𝑥. (Perhaps, for example, we could suppose that 𝑄1 represents being white and 𝑄2 

represents being non-white.) According to the axioms of probability, the remaining state-

descriptions are then assigned the following weights: 

  

Structure-

description 

State-description Measure 

for each 

state-

description 

Measure 

for each 

structure-

description 

|𝑸𝟏| = 4 

|𝑸𝟐| = 0 

 

𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 4/5 4/5 

|𝑸𝟏| = 3 

|𝑸𝟐| = 1 

 

𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/5 1/5 

 

Note that 𝑐∗(𝑄1𝑎4, 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3) =
𝑚∗(𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4)

𝑚∗(𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3)
=

1/5

(
1

5
+

1

20
)

= 0.8, that is, 

the degree of confirmation afforded to 𝑄1𝑎4  by the evidence 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄3𝑎3  is 0.8. 

Note how this sample evidence has affected the probabilities of proportion formulas. Given 

the sample evidence 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄3𝑎3, the formula %(𝑄1𝑥) = 1 has a measure of 0.8 

and  the formula %(𝑄1𝑥) = 0.75 has a measure of 0.2; hence, the sample evidence raised the 

probability of the formula %(𝑄1𝑥) = 1 above its initial measure of 0.2. This is an intuitive 

result. If three of the four balls in the urn satisfy 𝑄1𝑥 is it reasonable to regard it as more 

likely that the next ball will also satisfy 𝑄1𝑥  and that all of the balls satisfy 𝑄1𝑥 . With 
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Carnap’s m* function, then, one can make useful inverse inferences from samples. This gives 

m* an advantage over the measure used in the random-worlds method. 

Interestingly, m* also resembles measures that statisticians and probability practitioners 

sometimes use in practice.
122

  

The c*-function is an instance of Laplace’s rule of succession which, in this context, takes 

the following form: 

 

𝑐∗(𝑄𝑖𝑎𝑛+1, 𝑒𝑛) =
𝑛𝑖 + 1

𝑛 + 𝑘
 

 

where 𝑒𝑛 is a sentence stating the individuals in a sample the satisfy or fail to satisfy some 

particular predicate 𝑄𝑖, 𝑛𝑖 is the number of individuals in the sample satisfying 𝑄𝑖, 𝑛 is the 

total number of individuals in the sample, 𝑄𝑖𝑎𝑛+1  is the statement that the next sampled 

individual will satisfy 𝑄𝑖  and 𝑘  is the number of Q-predicates (including 𝑄𝑖 ) that the 

members of the population may possibly satisfy.
123

  

For example, consider the case of the urn again. Let 𝑄𝑖𝑎𝑛+1 be 𝑄1𝑎4 in order to consider 

the probability that the next sampled individual 𝑎4 will satisfy 𝑄1𝑥. 𝑒𝑛  in this case is the 

sample evidence 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3. 𝑛𝑖 = 3  since there are three individuals in the sample 

satisfying 𝑄1; note also that 𝑛 = 3. 𝑘 = 2 since the members of the population may possibly 

satisfy only two Q-predicates, 𝑄1 and 𝑄2. Therefore, we have the following equation: 

 

𝑐∗(𝑄1𝑎4, 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3) =
𝑛𝑖 + 1

𝑛 + 𝑘
=

3 + 1

3 + 2
= 0.8 

 

 

 

So that concludes our description of m*, a measure which has some favourable features by 

virtue of enabling useful inferences from samples. 

However, m*, as Carnap proposed it, is not problem free. One problem arises when 

considering infinite sets of individuals. Carnap, similarly to Bacchus et al., uses limits for m* 
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 I say this based on some conversations that I have had with Brendon Brewer. 
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 Ilkka Niiniluoto, “The Development of the Hintikka Program,” in Handbook of the History of Logic, vol. 10, 
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Unpredictable,” Synthese 90, no. 2 (1992): 207-8. 
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as the number of individuals or objects tends to infinity, although this is only in situations 

with an population of infinite size rather than just a domain with an unknown but presumably 

“large” size.
124

 This limit construction allows for evidence to affect the probability of many 

propositions, but it entails that a probability of 0 is always assigned to universal 

generalisations for infinite domains (aside from trivial and tautological generalisations 

specifying that every individual satisfies the disjunction of the k Q-predicates (𝑄1𝑥 ∨ … ∨

𝑄𝑘𝑥)). To see an example of how this is so, suppose that the above sample space instead had 

20 individuals. Then there would be 21 structure-descriptions representable with the set 

{|𝑸𝟏| = 20 & |𝑸𝟐| = 0, |𝑸𝟏| = 19 & |𝑸𝟐| = 1, … , |𝑸𝟏| = 0 & |𝑸𝟐| = 20}. In this case, the 

universal generalisation or structure-description in which all objects satisfy 𝑄1𝑥 would have a 

lower measure at 1/21 . Likewise, if there were 50 individuals, then there would be 51 

structure-descriptions and the one in which all objects satisfy 𝑄1𝑥 would have an even lower 

measure at 1/51. We can see, then, that as the population size grows and goes to infinity, the 

probability of this structure-description tends to 0. Consequently, the limit construction 

assigns zero-valued probabilities to certain universal generalisations. 

This consequence is worrying in several ways, at least if m* and the corresponding c*-

function are taken to be instructive regarding what credences are rational. For one, it is 

reasonable to be open minded about certain infinite universal generalisations. An example of 

this is the generalisation that all macro-level objects in the past, present and future obey a 

certain theorised law of physics (although perhaps only to a degree of approximation).
125

 

Furthermore, the probability of such generalisations should be at least raised given some 

confirming instances of objects conforming to the generalisation, something that the m* and 

c* functions prohibit. To make matters worse, this raises concerns about how much m* and 

c* can guide the work of scientists who sometimes seem open toward, if not confident in, 

universal generalisations in infinite domains. Carnap stated, however, that “the role of 

universal sentences in the inductive procedures of science has generally been 

overestimated.”
126

 Rather, he thought that the laws expressing universal generalisations were 

“efficient instruments for finding those highly confirmed singular predictions which we need 
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 Carnap, The Logical Foundations of Probability, 302. 
125

 Examples of such infinite universal generalisations are that all macro-level objects attract each other with a 

force (perhaps approximately) proportional to their masses, that all macro-level objects (approximately) obey 

Newton’s law of universal gravitation and that all objects obey the law of the conversation of momentum. 

Physicists may not outright believe that these laws apply to an infinite number of objects, but they may attach 

some positive probability to it. Brendon Brewer (himself a physicist) thinks there are physicists who do 

precisely this. 
126

 Carnap, “On Inductive Logic,” 88. 
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for guiding our actions.”
127

 Regardless, A.J. Ayer argues that a probability of 0 for an infinite 

universal generalisation can sometimes have an odd and unintuitive implication.
128

 A 

universal generalisation is false iff there is at least one instance of an object not conforming 

to the generalisation. For example, the law that all macro-level objects (approximately) attract 

each other with a force proportional to their masses is false if there is an instance of, say, two 

objects not attracting each other with a force approximately proportional to their masses. 

According to Ayer, c* prescribes a probability of 1 that at least one individual exists in the 

universe to disconfirm any infinite universal generalisation. Such a probability is often 

uncalled for and, even if it is called for, it would presumably not be as such just because the 

population of individuals is infinite, a point that c* fails to account for.  

In certain cases, however, it can be reasonable for the probability of universal 

generalisations to be partly dependent on the population size. For example, suppose there is a 

factory that has produced a certain number of toy cars at a time 𝑇1 and at a subsequent time 

𝑇2. At 𝑇1, the factory has produced two cars. At 𝑇2, the factory has produced 2,000 cars. What 

is the probability that that all of the produced toy cars are black at 𝑇1 and 𝑇2? Some would 

intuitively feel that the probability of the universal generalisation that all of the cars are black 

should be lower at 𝑇2  than at 𝑇1 . The reason is that the generalisation at 𝑇2  is logically 

stronger – in a sense, it makes 1,998 more claims than the generalisation at 𝑇1. On this note, 

Carnap says that this dependence “seems plausible because, the larger [the population size is] 

is, the more is asserted” by the generalisation.
129

 This suggests that sometimes the probability 

of a generalisation should depend on the population size. 

So m* might be a reasonable measure if the population size is finite and known.  

Regardless, even if m* could adequately accommodate intuitions in some cases like the 

toy car one above, it does not accommodate intuitions about universal generalisations in 

certain other cases, such as when one is reasoning about whether the laws of physics apply 

(approximately) to a potentially infinite number of objects in space-time. 
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128

 A.J. Ayer, Probability and Evidence (London: Macmillan, 1972), 38. 
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5.2. Hintikka’s Measures 

 

Jaakko Hintikka attempted to solve this problem regarding infinite universal generalisations. 

To do this, he proposed some measures published in 1965.
130

 

The measures make use of the logical concept of a constituent.  A constituent specifies 

which of the k Q-predicates in a language are satisfied or not satisfied by at least one 

individual. The logical form of a constituent is as follows: 

  

±𝑥(𝑄1𝑥)& … & ± 𝑥(𝑄𝑘𝑥) 

where ± is either omitted or substituted with a negation symbol ~. 

 

The Jerusalem system distributes the probability evenly to the constituents and then evenly 

over the state-descriptions corresponding to these constituents.
131

 The combined system 

distributes the probability evenly to the constituents, then evenly over the corresponding 

structure-descriptions and then evenly over the state-descriptions corresponding to these 

constituents.
132

 Each consistent universal generalisation in the language corresponds to one 

constituent or a disjunction of constituents (this is because two or more Q-predicates could, if 

applied to an individual, agree that the individual satisfies some primitive predicate(s), even 

though they will disagree with respect to some other primitive predicate(s)). Such 

correspondences are stated in what are known as distributive normal forms.  

To illustrate how these measures work, suppose there is a language with four constants 

naming individuals and only two Q-predicates. We then have the following sample space: 

 

  

                                                      
130

 Jaakko Hintikka, “Towards a Theory of Inductive Generalization,” in Proceedings of the 1964 International 

Congress for Logic, Methodology, and Philosophy of Science, 2
nd

 ed., ed. Yehoshua Bar-Hillel (Amsterdam: 

North-Holland Pub Co., 1965), 274–288 and Jaakko Hintikka, “On a Combined System of Inductive Logic,” in 
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Constituent |𝑸𝒊| State-description Jerusalem 

system 

measure 

Combined 

system 

measure 

𝑥(𝑄1𝑥)&~𝑥(𝑄2𝑥) 

 

|𝑸𝟏| = 4 

|𝑸𝟐| = 0 

 

𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/3 1/3 

𝑥(𝑄1𝑥)&𝑥(𝑄2𝑥) |𝑸𝟏| = 3 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/42 1/32 

|𝑸𝟐| = 1 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/42 1/32 

 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/42 1/32 

 

 

𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/42 1/32 

|𝑸𝟏| = 2 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/42 1/54 

|𝑸𝟐| = 2 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/42 1/54 

 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/42 1/54 

 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 1/42 1/54 

 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 1/42 1/54 

 

 

𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/42 1/54 

|𝑸𝟏| = 1 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/42 1/32 

|𝑸𝟐| = 3 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/42 1/32 

 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄1𝑎4 1/42 1/32 

 𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 

 

1/42 1/32 

~𝑥(𝑄1𝑥)&𝑥(𝑄2𝑥) |𝑸𝟏| = 0 

|𝑸𝟐| = 4 

𝑄2𝑎1 & 𝑄2𝑎2 & 𝑄2𝑎3 & 𝑄2𝑎4 1/3 1/3 
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Hintikka’s systems avoid the problem of universal generalisation in cases with a finite 

number of Q-predicates. (Although a problem would remain for the systems if there was a 

language with an infinite number of predicates.)
133

 Note that with the addition of individuals 

to the sample space, the probability of the constituents stays the same; for example, no matter 

how many individuals there are (but assuming that there is at least one), a probability of 1/3 is 

assigned to the constituent 𝑥(𝑄1𝑥) & ~𝑥(𝑄2𝑥)  and, by implication, the generalisations  

𝑥(𝑄1𝑥)  or %(𝑄1𝑥) = 1 . Hence, a universal generalisation corresponding to some 

constituents may have a positive probability even as the population size goes to infinity.  This 

is an advantage of the measure. 

But it is sometimes also a disadvantage. Recall the toy car case in which the probability of 

the generalisation should intuitively be partly dependent on the population size. Hintikka’s 

measures are inadequate here. We will discuss this problem again later on with respect to 

varying background evidence in Sub-Section 6.3.2 

In any case, the preceding discussion raises a general worry for the measures. We have 

seen that the probabilities of (non-trivial) proportion formulas such as %(𝑄1𝑥) = 1  are 

crucially sensitive to the structure of the sample space which represents the individuals in the 

population. But if the number of individuals in the population is unknown, then the 

appropriate sample space is also unknown, the set of possibly true proportion formulas is 

unknown and the appropriate probability measure for those formulas is unknown. This 

creates a further difficulty in applying the measure in the many cases involving inverse 

inferences for populations of objects with unknown sizes. 

 

  

So that concludes my brief survey of some salient, albeit problematic, measures which 

resemble the measure employed in the random-worlds method. Note that other measures have 

also been proposed in the literature.
134

 Regardless, the preceding ones seem to me to be the 

most prima facie plausible and relevant alternative measures to the random-worlds measure. 

                                                      
133

 I do not know whether there would actually be any use for such a language, but there might be. For example, 

one might wish to estimate the height of the next human given a sample of humans. To use a language which 

does not make any contingent assumptions about the possible height of humans, one might then wish to employ 

a language with an infinite number of height predicates. 
134

 For example, Bacchus et al. consider a measure for what they call the “random-propensities approach”. 

Unfortunately, this approach does not seem particularly insightful to me. Given “Proposition 5” outlined in  

“From Statistics to Beliefs”, this measure validates what is known as the straight rule. In this context, the rule is 

that the probability that an object is an A is equal to the relative frequency of As observed in a sample of the 

domain (assuming that the object is not in the sample). This rule faces many problems, including the unintuitive 

consequence that if the sample consists of just one object that is an A and so the relative frequency is 1, then the 
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6. Evaluating the Alternative Measures 

 

We have examined some salient candidates for measures that could replace the one used in 

the random-worlds method, as well as some problems for them. In this chapter, we will 

evaluate these measures more thoroughly. 

What follows, then, is a discussion of the favourable features of these measures followed 

by a compendium of problems for them.  

 

6.1. An Auto-Biographical Background 

 

Before evaluating these measures, however, it may be useful to explain this chapter’s purpose 

and (relative) brevity in relation to the background of my research project. 

The initial impulse for undertaking research for this thesis was a dissatisfaction with 

subjective Bayesianism and a desire to find objective constraints on rational credences (on 

some understanding of those terms). Theories appealing to frequencies were natural candidate 

constraints, especially since every scholar in the area acknowledges that frequencies have 

some role in judgments of probability. Some of the principles and theories I then explored 

were Reichenbach’s straight rule and his idea of cross-induction, Pierre-Simon Laplace’s 

rule of succession, Pollock’s theory of nomic probability, Bacchus et al.’s random 

propensities approach, Kyburg’s theory of evidential probability and classical frequentist and 

Bayesian theories that are utilised in statistics. At a later stage in my research, I hoped to 

develop a theory of Bayesian inverse inference which resembled Carnap’s m*-function and 

drew on statistical practice. I also sought a role for Hintikka’s measures in inverse inference. 

However, after pursuing this direction and hoping that it would work, the problems posed by 

varying background evidence, similarity and other topics made me pessimistic of finding an 

adequate, universally applicable and formal theory of inverse inference, at least any time 

soon (if at all). While I believe that the aforementioned ideas and theories are helpful in many 

contexts, I believe even more strongly that there are countless important contexts in which 

                                                                                                                                                                     
agent should be certain with probability 1 that the next observed object from the population will also be an A. 

See the random propensities approach in Fahiem Bacchus, Adam Grove, Daphne Koller and Joseph Y. Halpern, 

“From Statistics to Beliefs,” in AAAI-92: Proceedings (Menlo Park, Calif.; Cambridge: MIT Press, c1992), 602-

608. For one articulation of the straight rule, see Reichenbach, Theory of Probability, 446. For criticism of the 

rule, see Rudolf Carnap, “A Basic System of Inductive Logic, Part II,”  in Studies in Inductive Logic and 

Probability, ed. Richard Jeffrey, vol. 2 (Berkeley: University of California Press, 1980), 85-86. Bacchus et al. 

also articulate some problems for the random-propensities approach in Bacchus et al., “From Statistical 

Knowledge Bases,” 129. 
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they are not. Consequently, I was lead to the theory that I articulate in Chapter 7. My purpose 

in noting this background here is to avoid giving the impression that I have lazily and hastily 

advanced the pessimism in this chapter and the theory in the next merely because I did not 

make a decent effort to avoid it. 

However, the various considerations that lead me to my pessimism are not articulable in a 

thesis that wants to say something positive in 40,000 words. It would be an arduous task to 

explore in formal detail, for example, every potential response one might give to each of the 

problems in this chapter in order to defend the measures and other formal methods that I am 

familiar with.  

Consequently, the discussion that follows may not suffice to vindicate my pessimism in 

the eyes of the reader, but it aims to provide some motivation for it. For that, I apologise and 

hope that the reader can see my pessimism as being at least potentially reasonable. Even if 

they are not sympathetic with my pessimism, the reader can perhaps appreciate chapters 7 

and 8 as being a conditional claim of the sort “If my pessimism is justified, then here is what 

one can do.” 

Regardless, let us explore various problems for the alternative measures. I will argue that 

these problems suggest that there is currently no adequate probability measure which is 

generally suitable for inverse and predictive inference. For this reason, I will not examine in-

depth how these alternative measures may or may not be integrated with the ideas from the 

random-worlds method, particularly in light of the differences between the alternative 

measures and the method with respect to the use of Q-predicates in place of primitive 

predicates and the focus on types of sentences rather than models. In the next chapter, the 

thesis will then offer another theory of inverse inference in the absence of a generally suitable 

for measure for inverse inference. The following discussion, then, aims to be sufficiently 

concise so as to allow space for this theory in the thesis while also sufficiently elaborate so as 

to somewhat motivate the contention that there are serious problems facing (the development 

of) a general method for inverse inference. 

  

 

6.2. Favourable Features of the Measures 

 

Despite the problems that the measures face, they share some putatively favourable features 

in common with the random-worlds method. 
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Each of them is uniform over various classifications of the outcomes. The main difference 

between the measures, then, is the order of priority for uniformity. Hintikka’s measures 

prioritise uniformity over the constituents which classify sets of outcomes. Carnap’s m* 

prioritises uniformity over the structure-descriptions which classify sets of outcomes. The 

random-worlds method prioritises uniformity over the models. Uniformity in some form or 

another is arguably favourable if there is no reason to skew the distribution. 

The similarities in uniformity also appear to entail favourable similarities in results. For 

one, it seems that all of the measures validate versions of basic direct inference by virtue of 

regarding certain sets of outcomes as equally likely (although I do not have a proof stating 

something to this effect, nor is it necessary to give one here given that these measures are not 

the focus of this thesis). For example, suppose we have a language with one primitive 

predicate, two Q-predicates, 𝑄1  and 𝑄2 , and four constants {𝑎1, … , 𝑎4}  designating four 

individuals. The agent also accepts the statement %(𝑄1𝑥) = 0.75. Suppose the agent is then 

interested in the probability that 𝑎1 satisfies the formula 𝑄1𝑥. According to the measures of 

Hintikka and Carnap, the outcomes represented by the below conjunctions are equally 

probable: 

 

𝑂1: 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄2𝑎4 

𝑂2: 𝑄1𝑎1 & 𝑄1𝑎2 & 𝑄2𝑎3  & 𝑄1𝑎4 

𝑂3: 𝑄1𝑎1 & 𝑄2𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 

𝑂4: 𝑄2𝑎1 & 𝑄1𝑎2 & 𝑄1𝑎3 & 𝑄1𝑎4 

   

Hence, for Hintikka and Carnap’s measures, the probability of 𝑄1𝑎1 given %(𝐴𝑥) = 0.75 is 

0.75, thus illustrating an instance of basic direct inference. We have also already seen a proof 

that the random-worlds method validates basic direct inference in Sub-Section 4.2.1. I 

suspect that the measures share other favourable features, such as the validation of 

assumptions of independence. Nevertheless, given the criticisms that I shall make of the 

measures and the overall direction of the thesis, it is not important to thoroughly explore their 

favourable properties here.  
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6.3. Problems for the Measures 

 

And on that note, there are general problems that these measures and certain other theories 

face.  

Each of the problems arises when applying the measures to deal with one or more 

problematic cases.  

A legitimate question arises, then, as to whether Carnap and Hintikka intended these 

measures to be applied to these cases. I have not seen either Carnap or Hintikka specify 

exactly to what cases these measures may apply for useful inverse inferences.
135

 I have not 

seen, for example, either of them specify that the measures were intended only for samples 

that are randomly-selected from populations. Regardless, both of them later eschewed one 

universally applicable measure for predictive or inverse inference. As we shall see, Carnap 

ultimately endorsed a system of inductive logic that allowed the values of certain parameters 

to vary depending on the context and Hintikka lost interest in inductive logic altogether. 

Regardless, the following discussion is nevertheless useful insofar as it articulates 

problems confronting theories of inverse inference in general. It does this by way of 

considering how the measures face up to various problem cases regardless of whether Carnap 

and Hintikka attempted to address these cases with their measures. These problems will in 

turn provide some motivation for considering the alternative theory of inverse inference 

which I discuss in Chapter 7. 

The remainder of this section, then, will review some of these problems and, where 

possible, briefly outline some potential avenues of response to them.
136

 

   

  

6.3.1. The Problem of Non-Probability Sampling 

  

The alternative measures appear to possess two putatively reasonable features.  One is the 

validation of basic direct inference (see Sub-Section 4.2.1.).  By this, I mean (very loosely 

speaking) that a probability assignment of the form 𝜇(𝐴𝑎) = 𝑓 given %(𝐴𝑥|𝐵𝑥) = 𝑓 & 𝐵𝑎 is 

                                                      
135

 Regardless, Carnap did affirm that m* could be used for inverse inference, although he did not affirm that he 

thought m* was a perfect or universally adequate measure. He just saw it as the best measure at the time of 

writing The Logical Foundations of Probability. See Carnap, Logical Foundations of Probability, 563 and 570. 
136

 I have not discussed certain other problems, such as how the measures may or may not be used when the 

agent is uncertain about exactly what their evidence is. An example of when one is uncertain of their evidence is 

when they only know that between 90 to 100 of the objects in their sample satisfy a target formula. 
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prescribed by the measures where 𝜇  is some probability function. Another feature of the 

alternative measures is that they enable evidence concerning samples from populations to 

affect the probabilities of proportion formulas for those populations (perhaps on the condition 

that there are a finite number of individuals, that is).  

When applied to everyday situations in which agents make inductive inferences, both 

features of the measures are susceptible to criticism. Let us consider how this is so. 

Levi argues that one is not always rationally obligated to perform a direct inference 

according to an assignment of the form 𝜇(𝐴𝑎) = 𝑓  given %(𝐴𝑥|𝐵𝑥) = 𝑓 & 𝐵𝑎 .137 To use 

Levi’s own example, suppose that the agent knows that 90% of Swedes are Protestant and 

that Petersen is a Swede; this is all that the agent knows about Petersen.
138

  Levi sees no 

compelling reason why the agent should have a credence of 0.9 that Petersen is a Protestant. 

This is because the agent “does not know whether the way in which Petersen came to be 

selected for presentation to him is or is not in some way biased in favor of selecting Swedish 

Catholics with a statistical probability, or chance, different from the frequency with which 

Catholics appear in the Swedish population as a whole.”
139

 Consequently, Levi favours the 

general requirement that one knows that the selection mechanism proffers a chance of this 

kind that is equal to the frequency.
140

 Some interpret him as stating that the kind of direct 

inference which equates the credence with the relative frequency is legitimate only if the 

object of interest is selected at random from the reference class.
141

  

So that is one criticism of applying the measures to samples of an everyday sort where the 

sampled object is not randomly selected from the reference class.  

Yet an analogous criticism one may come from the social sciences. Certain social 

scientists have objected to various kinds of inferences from so-called non-probability samples. 

Let us spell out the distinction between probability and non-probability samples, a 

distinction that will also be useful in the next chapter. In probability sampling, the each 

member of the population of interest has some positive probability for inclusion in the sample 

and, furthermore, that probability is known.
142

 The most well-known type of probability 
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 Isaac Levi, “Direct Inference,” The Journal of Philosophy 74, no. 1 (1977): 9. 
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 Ibid., 9. 
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 Ibid., 9-10. 
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 Ibid., 10. 
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 Pollock, Nomic Probability, 114 and Roger White, “Evidential Symmetry and Mushy Credence,” in Oxford 

Studies in Epistemology, vol. 3, eds. Tamar S. Gendler and James Hawthorne (Oxford: Oxford University Press, 

2010), 170. 
142

 Samuel R. Lucas, “Beyond the Existence Proof: Ontological Conditions, Epistemological Implications, and 

In-Depth Interview Research,” Quality & Quantity 48, no. 1 (2014): 393-4. It is not clear to me exactly how 

critics of non-probability sampling generally understand the “probability” in probability sampling. However, it 
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sample is a random sample where each member of the population has an equal probability of 

being included in the sample.
143

 To give an example of a probability sample, suppose we 

have an electoral roll of every resident in a given town. We could then use this as a so-called 

sampling frame from which we could select the objects (in this case, humans) for inclusion in 

the sample. Each object listed on the frame could be assigned a unique number and then a 

random number generator can be used to select these units for inclusion according to their 

number. They might then make various inferences from this sample. This is a typical instance 

of random sampling.  

Contrast probability sampling to what is a second type of sampling known as non-

probability sampling. Here, some object(s) in the population either does not have a non-zero 

probability for inclusion in the sample or the probability of inclusion is unknown. A typical 

form of non-probability sampling is convenience sampling whereby the sample is selected by 

a process that is convenient but fails to satisfy the demands of probability sampling. For 

instance, the agent might estimate the prevalence of open-mindedness in a town based on a 

sample of her friends from that town. This is a sample that happens to be conveniently 

accessible to the agent but has a zero probability of including residents in the town who are 

not (or could not be) in her circle of friends. 

A problem arises in applying the measures to make inferences from the non-probability 

samples that we encounter in every-day contexts. 

Some social scientists appear to disparage inverse inferences from non-probability 

samples in general. For example, speaking of non-probability samples, sociologist Samuel 

Lucas states (or maybe even generalises) that it “is well-known that such samples prohibit 

out-of-sample generalization.”
144

  Similarly, sociologists Thomas Dietz and Linda Kalof say 

that, with convenience sampling, “there is no way to know the relationship between the 

sample and the population and thus no way to speak about the population.”
145

 The concern 

here is that the non-probability sampling method may introduce bias into the sample so as to 

make it unrepresentative of the population that it is extracted from.  One might interpret them 

                                                                                                                                                                     
probably includes the “probabilities” conferred via the use of random number generators, and perhaps it 

includes other (quasi-)random processes, like drawing cards from a deck. Whatever the case, these critics 

probably do not have in mind a subjective interpretation of probabilities, and maybe even they do not know 

exactly what they have in mind. 
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as implicitly qualifying their statements so that they only concern situations in the social 

sciences. However, there is no indication that they have such a qualification in mind.  

These concerns from Levi and the social scientists share something in common. They both 

would criticise the measures as validating unreasonable inferences in the absence of a 

probability sampling strategy. In Levi’s case, a direct inference according to a probability 

assignment of the form 𝜇(𝐴𝑎) = 𝑓  given %(𝐴𝑥|𝐵𝑥) = 𝑓 & 𝐵𝑎  is illegitimate unless a is 

sampled from the population of Bs via random sampling. In the case of the social scientists, 

inverse inference is illegitimate unless the sample is selected via probability sampling. 

According to each, probability sampling of one form or another is required for the relevant 

inductive inference so as to minimise the potential for bias in obtaining the sample. 

Philosophers have responded to these concerns by noting that such requirements are 

inconsistent with epistemically rational practices in which agents assign probabilities on the 

basis of evidence. In reply to Levi, Pollock asserts that agents typically consider an object of 

interest and then find an appropriate reference class for estimating the probability that it 

satisfies some target formula. 146
   For example, insurance agencies may consider an 

individual’s claim for health insurance by noting that the individual is a smoker and then 

using the reference class of smokers to estimate the probability that the individual will incur 

significant medical costs.  Pollocks says that this contrasts to Levi’s requirement whereby one 

starts off with statistics about a reference class and then randomly selects the object of 

interest from it. Pollock further asserts that even though there could be some bias along the 

lines that Levi suggests in his example regarding Petersen, it is not necessary to rule such a 

possibility out.  Instead, the direct inference provides a prima facie reason for accepting the 

conclusion that Petersen is a Swede. Roger White and Thorn likewise object to Levi, with 

White also noting that Levi’s requirement is in tension with the practices of statistical 

reasoning which people commonly engage in (including those in insurance companies).
147

  

Kyburg and Teng also defend the legitimacy of inverse inferences on the basis of non-

probability samples. We can use an adapted example of theirs to illustrate their point. 

Suppose we toss a coin many times to estimate whether it is unbiased or, in other words, 

whether the relative frequency of landing heads in the population of all tosses of the coin 

(past and present) is approximately 1/2 under normal conditions.
148

  A sample of tosses is, 

they would say, perfectly adequate for this purpose, even if the sample is a non-probability 
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 White, “Evidential Symmetry,” 170-171 and Thorn, “Two problems,” 306, fn. 15. 
148

 Of course, this example presupposes Kyburg and Teng’s frequentist account of probability, but the example 

is arguably insightful for non-frequentist accounts too. Kyburg and Teng, Uncertain Inference, 255. 



 

66 

 

one since not all tosses of the coin in the past could have been included in one’s sample.  

They eschew the universal requirement of probability sampling and instead claim that the 

sample should be regarded as fair unless there are grounds for impugning its fairness.
149

  

There are also plenty of other examples in which non-probability samples should affect 

our credences for proportion formulas, some of which I shall give in Chapter 7. 

In any case, I take it as reasonable that inductive inferences can be made both about and 

from non-probability samples. 

   

 

6.3.2. The Problem of Varying Background Evidence 

 

One problem facing the measures is that they may be rarely, if ever, useful in situations of 

actual interest since the agent’s background evidence may preclude their fruitful application. 

Recall how Hintikka’s systems may be more applicable when confirming certain laws of 

physics but m* may be more applicable when reasoning about the colour of toy cars produced 

by a factory. This suggests that neither measure is universally applicable.  

An example of Reichenbach’s may further illustrate this worry.
150

 Consider how the 

continued observation of white swans putatively justified the universal inference to the 

generalisation that all swans were white. Hintikka’s measure, m* or a modified version of 

either may seem applicable here. To formalise this inference, one may, for example, then 

have a (perhaps idealised) sample space involving finitely many individuals (representing 

swans) and two predicates to symbolise being white or not white. The measures will then 

distribute the probability over the outcomes in some uniform manner and this will enable the 

evidence of white swans to support the generalisation that all swans are white. However, 

Reichenbach asserts that the universal inference that all swans are white was illegitimate in 

any case since colour was known to not be constant in other species of animals. Hence, the 

inference to the generalisation, Reichenbach claims, is undermined by an instance of so-

called cross-induction from the features of other species. Presumably, then, this background 

evidence warranted lowering the probability for the generalisation. But the extent which it 
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should have done so depends on the evidence specific to the case at hand such as the number 

of other species for which colour is known to not be constant. Consequently, applying the 

measures over a sample space in the aforementioned manner is insensitive to how this 

background evidence may vary; the probabilities depend on the language, the population size, 

the sample of swans and not the evidence about other species of animal.  

Varying background evidence creates problems in applying the measures in many other 

cases. Indeed, a similar cross-induction from the mortality of others also arguably undercuts 

the inference to the agent’s own (probable) immortality from the fact that she has lived every 

day since her birth. (Recall the opening quote in the introduction of this thesis.)  

This illustrates the general concern that credences should and often do reasonably differ 

from context to context while taking into account the varying and often complex background 

evidence local to the situation at hand. This variation arguably precludes the use of a 

universally applicable measure.  

  

 

6.3.3. The Problem of Language Relativity  

 

A further problem arises from the choice of language to delineate the possible outcomes. 

Let us use an example to illustrate the problem. Suppose the agent has an urn in front of 

her that contains one ball of an unknown colour and she has no information that limits the 

possible colours that it could be. Suppose she is interested in assigning a value to her 

credence that the ball is green. Here, she could chose different languages, each of which 

correspond to a different sample space. For example, suppose she chooses a language with 

one constant b that represents the one object or individual and one predicate G which stands 

for greenness. In this case, the relevant sample space of outcomes can be represented as such: 

 

Sample Space 1: 

𝑂1 ∶ 𝐺𝑏 

𝑂2 ∶ ~𝐺𝑏 

 

However, suppose she chooses a different language, one in which there are four predicates 

{𝐺𝑏, 𝑌𝑏, 𝑅𝑏, 𝑆𝑏} where Gx stands for “x is green”, Yx stands for “x is yellow”, Rx stands for 

“x is red” and Sx stands for “x is something else”, i.e. a colour aside from the others 
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mentioned. Then, the relevant sample space can be represented as such (taking into account 

the logical relations between the predicates so that the object must satisfy exactly one of the 

predicates):  

 

Sample Space 2: 

𝑂1 ∶ 𝐺𝑏 

𝑂2 ∶ 𝑌𝑏 

𝑂3 ∶ 𝑅𝑏 

𝑂4 ∶ 𝑆𝑏 

  

This shows how language can influence the set-up of the relevant sample space. Note also 

that we could construct a tremendous number of different sample spaces with a tremendous 

number of different languages (consider, for example, the many languages with complex 

colour predicates such as “x is red with blue dots and the number n displayed on it in purple”). 

(However, note that on Bacchus et al.’s account, the sample space does not automatically 

take into account logical relations between predicates by, say, incorporating the fact that no 

green thing is also yellow. Instead, these logical relations appear in the knowledge base 𝐾𝐵 

and the measure over the sample space is adjusted given the knowledge that no green thing is 

also yellow and so forth.)
151

 

The problem arises because the choice of language affects certain probabilities in virtue of 

it affecting the sample space and it is not obvious that there is always one choice of language 

that is the correct one.  

Let us see how this choice of language affects probabilities. The random-worlds method, 

m* and Hintikka’s measures all assign a prior probability of 1/2 to the outcome where the ball 

is green on the first space, but they assign a probability of 1/4 to that same outcome in the 

second space. Hence, we have an example in which the choice of language influences the 

probabilities. Yet the choice of language can also affect probabilities given some evidence. 

Let us illustrate this with another example using m*. Suppose we have two languages, each 

with three constants naming individuals {𝑎1, 𝑎2, 𝑎3}. In the first language 𝐿, there are only 

two Q-predicates {𝑄1𝑥, 𝑄2𝑥} . In the second language 𝐿′ , there are four Q-predicates 

{𝑄1𝑥, … , 𝑄4𝑥}. Suppose that the first two individuals, 𝑎1 and 𝑎2, are observed to satisfy the 

predicate 𝑄1𝑥 for both languages, so the agent wishes calculate the probability of 𝑄1𝑎3  given 
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𝑄1𝑎1 & 𝑄1𝑎2 .
152

 According to m* with 𝐿 ’s sample space, the probability of 𝑄1𝑎3  given 

𝑄1𝑎1 & 𝑄1𝑎2  is 0.75 . On the other hand, according to m* with 𝐿′ ’s sample space, the 

probability of 𝑄1𝑎3  given 𝑄1𝑎1 & 𝑄1𝑎2  is 0.5 .
153

 Hence, we can see how various 

probabilities are affected by the choice of language. The sample point holds for certain 

probabilities of proportion formulas. 

This dependence on language is problematic only because the choice of language is 

problematic. In particular, the choice of language risks being arbitrary in the absence of well-

principled reasons for selecting the language. Sometimes the choice of language might be 

objectively correct, such as a case in which the agent knows that they are truthfully told that 

only three specific colours could characterise the ball in the urn. But sometimes exactly one 

correct choice appears to be lacking, an example of which possibly being the case where the 

agent has no information that limits the possible colours that the ball could be. 

Interestingly, however, many probabilities do not depend on the choice of language (at 

least for the random-worlds method). Indeed, Bacchus et al. prove many results regarding the 

random-worlds credences that are not dependent on language. One such result concerns basic 

direct inference. To use an illustrative example, suppose the agent has two languages about a 

domain of three objects. Suppose that the predicates A and B are known to constitute a 

partition of predicates for the first language (meaning that each object satisfies exactly one of 

the predicates in the partition) and that the predicates A, B and C are known to constitute a 

partition of predicates for the second language. (Perhaps we can suppose that A symbolises 

the same property in both languages but B and C symbolise two different properties in the 

second language, the disjunction of which is symbolised with just B in the first language.) 

Each language has three constants a, b and c which are known to uniquely and specifically 

denote the domain objects and the languages have no other symbols aside from the 

aforementioned predicates and constants. We then have the below sets of models which are 

represented with conjunctive sentences and which are consistent with a knowledge base 

specifying the denotation of the constants and the logical relations among the predicates. The 

first set of models corresponds to the first language and the second set of models corresponds 

to the second language. Suppose that the agent also knows that %(𝐴𝑥) =
2

3
. This effectively 

rules out, probabilistically speaking, the highlighted models in the following sets of models: 

                                                      
152

 Technically, 𝑄1 would involve at least one primitive predicate in 𝐿′ that is not in 𝐿, but we can harmlessly 

suppose that, whatever 𝑄1 means and whatever primitive predicates it involves in the different languages, it 

applies to both 𝑎1 and 𝑎2. 
153

 This result can be obtained using the rule of succession mentioned in Section 5.1. 
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Set of Models #1: 

 

𝑀1: 𝐴𝑎 & 𝐴𝑏 & 𝐴𝑐 

𝑀2: 𝐴𝑎 & 𝐴𝑏 & 𝐵𝑐 

𝑀3: 𝐴𝑎 & 𝐵𝑏 & 𝐴𝑐 

𝑀4: 𝐴𝑎 & 𝐵𝑏 & 𝐵𝑐 

𝑀5: 𝐵𝑎 & 𝐴𝑏 & 𝐴𝑐 

𝑀6: 𝐵𝑎 & 𝐴𝑏 & 𝐵𝑐 

𝑀7: 𝐵𝑎 & 𝐵𝑏 & 𝐴𝑐 

𝑀8: 𝐵𝑎 & 𝐵𝑏 & 𝐵𝑐 
 

 

 

Set of Models #2: 

 

𝑀1: 𝐴𝑎 & 𝐴𝑏 & 𝐴𝑐 

𝑀2: 𝐴𝑎 & 𝐴𝑏 & 𝐵𝑐 

𝑀3: 𝐴𝑎 & 𝐴𝑏 & 𝐶𝑐 

𝑀4: 𝐴𝑎 & 𝐵𝑏 & 𝐴𝑐 

𝑀5: 𝐴𝑎 & 𝐵𝑏 & 𝐵𝑐 

𝑀6: 𝐴𝑎 & 𝐵𝑏 & 𝐶𝑐 

𝑀7: 𝐴𝑎 & 𝐶𝑏 & 𝐴𝑐 

𝑀8: 𝐴𝑎 & 𝐶𝑏 & 𝐵𝑐 

𝑀9: 𝐴𝑎 & 𝐶𝑏 & 𝐶𝑐 

𝑀10: 𝐵𝑎 & 𝐴𝑏 & 𝐴𝑐 

𝑀11: 𝐵𝑎 & 𝐴𝑏 & 𝐵𝑐 

𝑀12: 𝐵𝑎 & 𝐴𝑏 & 𝐶𝑐 

𝑀13: 𝐵𝑎 & 𝐵𝑏 & 𝐴𝑐 

𝑀14: 𝐵𝑎 & 𝐵𝑏 & 𝐵𝑐 

𝑀15: 𝐵𝑎 & 𝐵𝑏 & 𝐶𝑐 

𝑀16: 𝐵𝑎 & 𝐶𝑏 & 𝐴𝑐 

𝑀17: 𝐵𝑎 & 𝐶𝑏 & 𝐵𝑐 

𝑀18: 𝐵𝑎 & 𝐶𝑏 & 𝐶𝑐 

𝑀19: 𝐶𝑎 & 𝐴𝑏 & 𝐴𝑐 

𝑀20: 𝐶𝑎 & 𝐴𝑏 & 𝐵𝑐 

𝑀21: 𝐶𝑎 & 𝐴𝑏 & 𝐶𝑐 

𝑀22: 𝐶𝑎 & 𝐵𝑏 & 𝐴𝑐 

𝑀23: 𝐶𝑎 & 𝐵𝑏 & 𝐵𝑐 

𝑀24: 𝐶𝑎 & 𝐵𝑏 & 𝐶𝑐 

𝑀25: 𝐶𝑎 & 𝐶𝑏 & 𝐴𝑐 

𝑀26: 𝐶𝑎 & 𝐶𝑏 & 𝐵𝑐 

𝑀27: 𝐶𝑎 & 𝐶𝑏 & 𝐶𝑐 
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The fraction of models for which 𝐴𝑎  is true is 
2

3
 in both sets of models. Hence,  

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) =
2

3
 irrespective of which language is used (where the knowledge 

base contains %(𝐴𝑥) =
2

3
 and the other information noted above). Consequently, we can see 

how certain probabilities do not depend on the choice of language. 

The measures, as tools for inverse inference, also confront Nelson Goodman’s problem of 

induction. 

The problem can be described as follows.  Suppose we have a large sample of n emeralds 

and find that all of them are green. Also suppose that from this we want to infer that all 

emeralds are (probably) green.  But note that we can construct a language which putatively 

justifies the inference that they are not all green.  Define an object to be grue just in case it is 

green and first observed before 2050 or is blue and first observed after 2050. (Technically, 

we should say something like “observed before [or after] 12:00am, January 1, 2050” to 

accommodate emeralds observed in 2050, but we will just say “2050” for simplicity’s sake.) 

We could represent this in logical notation with the biconditional 𝐺′𝑥 ≡ ((𝐺𝑥&𝑇𝑥) ∨

(𝐵𝑥&~𝑇𝑥)) where 𝐺′𝑥 stands for “x is grue,” Gx stands for “x is green,” Tx stands for “x 

is first observed before 2050,” Bx stands for “x is blue” and it is true that 𝑥((𝐵𝑥 ∨

𝐺𝑥)  (~𝐵𝑥 ∨ ~𝐺𝑥)) (i.e. no blue thing is green and vice versa).  All emeralds observed up 

to now are green and grue since it is prior to 2050. Therefore, we have equally good reasons 

to believe that all emeralds are green and that all emeralds are grue. But all emeralds are grue 

only if all emeralds first observed after 2050 are blue and not green. Therefore, we have we 

have equally good reasons to believe that all emeralds first observed after 2050 are green and 

not green, but surely this is an unintuitive conclusion. This problem can be generalised to 

potentially undermine any inference from the features of observed objects to the probable 

features of unobserved objects.
154

 Goodman’s problem is a problem for the measures since 

grueness and other convoluted properties could be treated as primitive predicates in place of 

greenness to thereby license unintuitive inferences with the help of the measures.
155

  

                                                      
154

 In support of this point, see Goodman’s “emeroses” example in Goodman, Fact, Fiction, and Forecast, 74. 
155

 To be fair, I should avoid giving the impression that Carnap was unaware of the problem and did not have a 

putative solution to it. See his discussion of Goodman’s problem of induction and related issues in Carnap, “A 

Basic System of Inductive Logic, Part I,” in Studies in Inductive Logic and Probability, eds. Rudolf Carnap and 

Richard Jeffrey, vol. 1 (Berkeley: University of California Press, 1971), 71-76. In his basic system of inductive 

logic, Carnap defined primitive predicates in a way that excludes the combination of modalities found in the 

grue predicate. Modalities, according to Carnap, are types of properties. Examples of modalities include shape, 

colour and height. Grue, according to Carnap, is not a primitive predicate since it denotes a property which 

combines two modalities (colour and time), one of which is qualitative while the other is temporal and 

locational (i.e. it locates an object in an absolute position in time or space, namely, pre- or post-2050). Carnap 
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Hence, we have seen that certain probabilities for the measures are dependent on the 

choice of language to represent the possible outcomes, a choice that can be problematic in 

various ways. 

    

  

6.3.4. The Sampling of Species Problem  

 

The problem of language relativity is related to another problem known in statistics as the 

sampling of species problem. 

Although I have not found a clear characterisation of the sampling of species problem in 

the literature, it is clear that it arises from the agent’s uncertainty regarding the number of 

possible species or categories of object in the population which she is sampling from.
156

 

Zabell uses the example of estimating the number of zoological species in an area. He states 

that “if the region is found rich in the variety of species present, the chance of seeing a 

particular species again may be judged small, while if there are only a few present, the 

chances of another sighting will be judged quite high.”
157

 Presumably, then, the problem is 

that of how to assign probabilities to seeing both previously observed and unobserved 

categories of object, particularly given the variety of categories present in one’s sample. 

We can see how this creates a problem for the measures. Let us adapt Zabell’s zoological 

example and suppose that we are trying to determine the proportion of animals that are of a 

certain species in an area. Recall that the alternative measures are over a sample space that is 

generated by the Q-predicates in a language, predicates which are in turn formed from 

primitive predicates. Presumably there should be a primitive predicate for each species in the 

population – for example, A for ape, B for bull, C for cat and so forth. But if the number and 

types of species in the population are unknown, then it is unclear what the primitive 

predicates should be and consequently what the appropriate sample space is. Therefore, it is 

unclear how to apply the measures.  

One potential approach to the problem is to have a sample space constructed from a 

language with predicates symbolising only the species that are known to exist in the 

                                                                                                                                                                     
required the primitive predicates of inductive logic to be of one modality that is not locational, thus disallowing 

grue predicates. This categorisation of predicates serves as the basis for his disqualification of grue-favouring 

inferences. Whether his solution succeeds or not is another question that I shall not consider here. 
156

 Zabell discusses the problem in “Carnap and the Logic of Inductive Inference,” 294, “Confirming Universal 

Generalizations,” Erkenntnis 45, no. 2-3 (1996): 280 and “Predicting the Unpredictable,” 206.  
157

 Zabell.” Predicting the Unpredictable,” 206. 



 

73 

 

population at a given time. For example, if one’s sample consists only of apes and bulls and 

they therefore know that these two species exist in the population, then they should have a 

language and sample space involving just two primitive predicates for the species. But this is 

problematic because every time a new species is sampled, one needs to reconstruct the 

language, the sample space and the resulting measure. Furthermore, if the sample space only 

involves predicates known to be satisfied by a previously sampled animal, then there is no 

space for the probability that there are other non-sampled species in the population (such as 

cats or dogs in our somewhat bizarre example).  

In response to these problems, one might modify this approach and denote unobserved 

species with a special predicate such as S to represent a “something else aside from what is in 

the sample” category, so to speak. But if every sampled object satisfies a predicate aside from 

S (since the sampled objects have their own predicates that are distinct from S), then there are 

no objects in the sample supporting the probability that the next sampled object will be 

something else aside from the observed species since none of sampled objects belong to that 

category. But surely this probability should be relatively high given a sample with diverse 

species that suggests that other unobserved species exist in an even more diverse population. 

If have a sample of 100 animals which each come from a different species, presumably this 

would make it probable that I would come across something else aside from these species in 

the future. But since none of the objects satisfy the formula 𝑆𝑥, the probability of observing 

something else is extremely low on this approach to the problem.
158

  

Arguably, then, the problem involves the problematic choice of language, yet it is 

primarily one about how to assign probabilities to the possibility that unsampled categories of 

object exist in a population given the observed variation in the categories within a sample. 

This problem arises in other contexts where one is trying to estimate the probabilities of 

interest among an unknown number of possible types of outcome. 

Regardless, Zabell defends a putative solution to this problem, and Hintikka and 

Niiniluoto’s later systems also attempted to address this problem too (or something like it). 

These authors specify a probability function which takes as arguments not only the observed 

frequency with which objects satisfy any given target formula in a sample, but also the 

                                                      
158

 In fact, if k in the rule of succession seen in Section 5.1. represents the categories of object that may possibly 

appear in the population (i.e. the 100 observed species and the “something else” category) then the probability 

of observing something else with the next observation is approximately 0.005 according to the rule. 
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number of properties or categories of object observed in the sample.
159

 However, neither of 

these attempts to address this problem specifically concern inverse inference and it is not 

clear that they could be extended to do so. 

   

 

6.3.5. The Problem of Similarity 

  

In my opinion, though, the most important problem for these alternative measures stems from 

their putative inability to account for the evidential implications of similarity. 

A general theory of inverse inference would ideally be able to account for two kinds of 

evidential implications arising from similarity.  

One kind is the influence that the similarity between a sample and a population has for 

determining the probability of proportions regarding one target property for the population. 

For example, suppose a sample of pigeons is found to all have a newly discovered gene that 

makes pigeons susceptible to a newly discovered disease. Suppose there is no other evidence 

about the prevalence of this gene or disease among pigeons and birds in general. Surely the 

sample should provide some evidence as to the relative frequency of the gene among both the 

population of pigeons and the population of birds more generally. But surely the sample is a 

greater indication as to the relative frequency among the pigeons than it is among birds more 

generally.  

The problem is exacerbated when many populations are relevant. To give another example, 

suppose I have sampled 50 Auckland Transport (AT) bus arrivals at my local bus stop and 

found that all of them were punctual (given some definition of punctuality in terms of, for 

example, a bus arriving within 4 minutes of its scheduled arrival).
160

 Surely this should 

provide some evidence (of whatever strength) that the population of AT busses that stop at 

my bus stop are generally punctual. But it should also provide some (weaker) evidence that 

the population of AT busses stopping at any stop in Auckland are generally punctual, that the 

population of busses operated by any company in Auckland are generally punctual or that the 

                                                      
159

 Zabell, “Predicting the Unpredictable,” and Jaakko Hintikka and Ilkka Niiniluoto, “An Axiomatic 

Foundation of Inductive Generalization,” in Formal Methods in the Methodology of Empirical Sciences, eds. 

Marian Przelecki, K. Szaniawski and Ryszard Wójcicki (Dordrecht: Reidel, 1976). 
160

 To illustrate the problem of similarity, I am adapting an example that Brendon Brewer uses when teaching 

Bayesian statistics (albeit not in the context of similarity). Brendon J. Brewer, “Introduction to Bayesian 

Statistics” (Course notes, STATS 331, The University of Auckland, 2014). (Accessible at 

https://www.stat.auckland.ac.nz/~brewer/stats331.pdf.) 
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population of busses operated by any company throughout New Zealand are generally 

punctual.  

This illustrates that samples can be from many populations and the extent to which a 

sample is reflective of a population’s relative frequency depends largely on the known 

similarity between the sample and the relevant population.  

In these cases, the kind of evidential implication concerns the extent to which the 

similarity between various individuals or groups suggest that they share in common one 

property. The samples’ similarity to the different populations has probabilistic implications 

about the extent to which the various populations likewise have the property of the gene or 

the property of punctuality. 

The second kind of implication of similarity concerns the extent to which one group or 

individual having one property suggests that another group or individual will have a distinct 

but similar property. For example, suppose that a sample of adult pigeons are all found to 

weigh between 250 to 350 grams. Not only should this raise the probability that other 

members of the population of adult pigeons would weigh between 250 to 350 grams, but it 

should also raise the probability that other members in the population possess similar but 

distinct properties, such as weighing 355 grams.  

Here we will focus on the problems raised by the first kind of implication from similarity. 

In the literature on analogical reasoning, there are analogues of the problems that arise in 

accounting for these evidential implications in the context of inverse inference. Hence, we 

might understand these problems for inverse inference analogously. 

We might say that one set of problems are classificational – they concern how we classify 

similarity or dissimilarity. In this respect, we face what is called the counting problem in the 

literature on analogical reasoning.
161

 How do we count the number of similarities and 

dissimilarities between a sample and a population? Does, for instance, the fact that both 

pigeons and other birds have five-digit feet mean that that there is one similarity between 

them, or does that mean that there are five similarities corresponding to each digit?  

Sometimes there may be an objective or natural metric by which similarity is to be 

measured. For example, one might think that a theory of genetics would provide such a 

metric for determining the similarity between pigeons and other birds. Whether there is such 

a theory is a question for geneticists, although I suspect it may be difficult, if not impossible, 

to objectively measure the similarity of pigeons to a population as genetically diverse as all 
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 Paul Bartha, “Analogy and Analogical Reasoning,” The Stanford Encyclopedia of Philosophy, accessed May 

5, 2016, http://plato.stanford.edu/archives/fall2013/entries/reasoning-analogy/. 
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birds in general. This difficulty is exacerbated since presumably one would need to make an 

inverse inference about the genetic makeup of birds in general to estimate the similarity 

between pigeons and birds in general on genetic grounds. Yet this inverse inference may 

itself require judgments of similarity on non-genetic grounds. 

Of course, even there is such an objective metric, there is still the question of why one 

chooses to use that metric rather than another metric (one which may be equally natural or 

objective). Carnap alludes to this problem when noting that similarity among colours can be 

measured by one’s perceptual sensations of colour or by frequencies of light waves.
162

  He 

mentions that, given a set of axioms, the two corresponding ways of representing the space of 

possible colours can lead to certain probabilistic assignments that are incompatible. Perhaps 

one might regard the frequency of light waves as providing a natural metric of similarity, but 

there is still the question of why this is so or why it should be the preferred metric in place of 

possible perceptual sensations of colour. So sometimes there are multiple relevant and 

incommensurable metrics along which similarity can be measured.  

In any case, sometimes it is not obvious that there is even at least one objective metric for 

measuring similarity. Suppose we had no other information about the genetics of pigeons and 

birds more generally. Surely the observable but non-genetically detectable similarity between 

the sample of pigeons and the different populations should still affect our credences regarding 

the relevant relative frequencies of the gene. But these observable similarities do not 

necessarily provide an objective and clear cut metric by which similarity is to be measured, 

such as a metric specifying that one foot with five digits counts as exactly one similarity 

rather than five or more. There may also be no such metric in many other cases, such as those 

concerning the similarity between my local AT buses and the many other populations of 

buses.  

Yet another classificational problem is what we might call the weighting problem. Some 

similarities are accepted as being important, such as any similarities between objects that 

have a causal relation to the potentially shared property of interest. But, as Paul Bartha states, 

“[s]ome similarities and differences are known to be (or accepted as being) utterly irrelevant 

and should have no influence whatsoever on our probability judgments.”
163

 Both the sample 

of pigeons and the population of birds more generally are mentioned in this sentence, yet this 

similarity between the groups is irrelevant to the probability that the birds generally share the 
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 Ultimately, however, Carnap constructed his Basic System for an observational language, one which would 

not measure similarity in this context by the frequency of light. Carnap, “A Basic System of Inductive Logic, 

Part I,” 51-52. 
163

 Bartha, “Analogy.”  
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gene in common with pigeons. So some similarities or dissimilarities should be weighted 

more or less heavily than others, or even completely disregarded, but producing general 

guidelines for such weighting is a complicated affair.
164

 

Having counted and weighted similarities and dissimilarities, however, a related problem 

arises which we may say is implicational, that is, it concerns how to formalise the evidential 

implications of the similarities and dissimilarities. In this sense, an ideal theory of inverse 

inference would specify precisely how the similarity between a sample and population affects 

the probability of proportion formulas.  

The aforementioned measures do not offer any obvious solution to this problem. For 

example, given that the case of the pigeons concerns degrees of similarity between birds 

generally and pigeons, a measure might offer a solution to the problem by somehow 

incorporating a specified degree of similarity between the predicates Bx which stands for “x is 

a bird” and Px which stands for “x is a pigeon”. Furthermore, Bx and Px should have a higher 

degree of similarity to each other than either of them do to certain other predicates that may 

appear in the language (such as, say, 𝑊𝑥 which stands for “x is wombat”). But the measures 

do not account for such similarity relations. They are simply measures on sample spaces 

constructed from predicates and constants denoting individuals – all such predicates and 

individuals are treated the same in the sense that there is no consideration given to the degree 

of similarity between them. Given that the sample of pigeons should provide some evidence 

about the prevalence of the gene in both the population of pigeons and population of birds in 

general, it is doubtful that the measures could discriminate between the populations so as to 

account for the evidential implications of the varying degrees of similarity.
165

  

One might think of other ways that the measures may potentially address these problems, 

yet none of the ones that I am aware of are promising. 

In any case, it is not controversial that these measures cannot adequately account for the 

problems posed by similarity since it is precisely for this reason that Carnap and Hintikka 

later abandoned the measures for more complicated systems of inductive inference. Carnap’s 

last two-part work, “A Basic System for Inductive Logic”, presents an axiomatic system 

which generates predictive probabilities (i.e. the probabilities that are the outputs of 

predictive inference; see Section 2.2.). This system features an “analogy parameter” 𝜂, that is, 

a parameter which specifies to what extent the observation of 𝑄𝑙𝑎1  should influence the 
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 Bartha, “Analogy.”  
165

 Here, I am presupposing an understanding of a “population” in terms of the definition given in Section 2.2., 

not Carnap’s definition in Section 5.1. 
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expectation that the next observed individual will satisfy 𝑄𝑗𝑥 when the agent has no other 

relevant evidence (where 𝑄𝑙 and 𝑄𝑗 are Q-predicates such that 𝑙 ≠ 𝑗).
166

 This 𝜂-parameter in 

turn gives rise to Carnap’s 𝜆-parameter, often interpreted as an indicator of the weight given 

to empirical and non-empirical factors when estimating predictive probabilities.
167

 Hintikka 

and Ilkka Niiniluoto provided a generalisation of Carnap’s system, one which was alluded to 

earlier and which allows the predictive probabilities to also depend on another parameter 

representing the number of different properties in a sample.
168

 Yet these systems are 

problematic since it is doubtful that the parameters always have objectively correct values 

which determine a uniquely correct probability function. Carnap was unable to constrain 𝜂 to 

generally generate one uniquely correct probability function and Hintikka later, in his own 

words, “lost interest” in inductive logic in part because the optimal choice of the 𝜆-parameter 

and others cannot be determined on a priori or “purely logical basis”.
169

 In any case, these 

systems do not specifically concern inverse inference, so they are of limited relevance here. 

Similarity also poses a problem for the theories of inverse inference proposed by Pollock, 

Kyburg and Teng.
170

 Their theories for inverse inference only consider the proportion of 

objects satisfying a target formula in a sample of size n. To assign probabilities to population 

relative frequencies, then, one simply counts the objects in a sample with the target property 

and the ones without it. There is no consideration given to the degree of similarity between 

the sample and the population.
171
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 According to Niiniluoto, Carnap characterises 𝜂  as an “analogy parameter” in Rudolph Carnap and W. 

Stegmüller, Inductive Logik und Wahrscheinlichkeit (Vienna: Springer-Verlag, 1959). Niiniluoto, “The 

Development,” 341. Marta Sznajder also characterises it in this way in Marta Sznajder, “What Conceptual 

Spaces can do for Carnap’s Late Inductive Logic,” Studies in History and Philosophy of Science 56 (2016):66. 
167

 See, for example, Patrick Maher, “Explication of Inductive Probability,” Journal of Philosophical Logic 39, 

no. 6 (2010): 601-2. 
168

 Hintikka and Niiniluoto, “An Axiomatic Foundation of Inductive Generalization.”  
169

 Jaakko Hintikka, “Reply to Isaac Levi,” in Philosophy Jaakko Hintikka, eds. Randall E. Auxier and Lewis 

Edwin Hahn (Chicago: Open Court, c2006), 777-778, Niiniluoto, “The Development,” 349 and Risto Hilpinen, 

“Carnap’s New System of Inductive Logic,” Synthese 25, no. 3 (1973): 313. Nevertheless, Carnap hoped to 

eventually find further constraints on probabilities and he did spend 35 pages discussing different values of the 

𝜆-parameter before concluding that he was “inclined” to set it to 1 for many cases. Carnap, “A Basic System of 

Inductive Logic, Part II,” 119.  
170

 See a summary of Pollock’s take on inverse inference in Pollock, “The Theory of Nomic Probability,” 285-

296. His extended discussion of inverse inference can be found in Nomic Probability and the Foundations of 

Induction. Kyburg and Teng’s account of inverse inference can be found in Kyburg and Teng, Uncertain 

Inference, ch. 11. 
171

 While they have some requirements for inverse inference from samples, these do not suffice to address the 

problem of similarity. Pollock merely requires that the sample be “innocent until proven guilty” while Kyburg 

and Teng require there to be “no grounds for impugning the fairness of the sample”. See Pollock, Nomic 

Probability, 114 and Kyburg and Teng, Uncertain Inference, 270. One might think that the sample of pigeons is 

fair and innocent when considering its implications for the prevalence of the gene in both the populations of 

pigeons and birds more generally. One might think this on the grounds that there is no reason to deny that the 

prevalence of the gene in the sample diverges from the prevalence in either of the populations. Based on their 
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So the problem of similarity is one which casts doubt on the utility of the aforementioned 

measures and theories, at least in many contexts. 

Yet it may also cast doubt on the possibility of finding what we might call a formal and 

objective method of inverse inference. A formal and objective method of inverse inference is 

a means for inverse inference which takes several quantifiable and well-defined 

characteristics of a sample and returns uniquely correct probabilities for proportion formulas, 

perhaps relative to a language and population size.  Carnap’s m*, Hintikka’s measures, 

Pollock’s theory of statistical induction and Kyburg and Teng’s theory of evidential 

probability all offer such methods.  For example, all one needs to know to use these methods 

of inverse inference is the proportion of objects in a sample of size n satisfying a formula and, 

for Carnap’s m* and Hintikka’s measures, the size of the population of individuals and 

features of a language. These methods, then, purport to take objective quantitative inputs 

(perhaps given a language) and return objective quantitative outputs. 

While these methods may be useful in some contexts of inverse inference, they are not 

useful in all contexts given the above problems. 

The problem of similarity, then, is a formidable, if not insurmountable, obstacle in the path 

to finding “the one true formal method of inverse inference” so to speak. For one, we might 

have qualms about the possibility of there being such a method since specifying the relevant 

degree of similarity involves subjective or intuitive judgements and, hence, any method 

which takes these judgments as inputs may not return the objectively correct output. For 

example, it is doubtful that there is some objective fact that, say, each digit shared by pigeons 

and other birds counts exactly as one similarity of weight f and that the degree of similarity 

between pigeons and other birds is precisely 93% rather than 85% (whatever that means). 

Furthermore, even if there is some specifiable degree of similarity, it is not obvious that there 

is a uniquely correct way of formalising its probabilistic implications. We may doubt, for 

example, the possibility that there will be a formal method which correctly specifies that each 

digit shared by both pigeons and other birds raises the probability of some proportion formula 

of interest by exactly 0.0134 rather than 0.05. 

                                                                                                                                                                     
(lack of) restrictions on permissible samples to make inferences from, I think that Kyburg, Teng and Pollock 

would probably have regarded the sample of pigeons as fair for estimating both populations; yet this would 

counter-intuitively generate the same probabilities regarding possible relative frequencies of the gene in both 

populations. But even if they were to regard the sample of pigeons as partly guilty or unfair when estimating the 

prevalence of the gene among the population of pigeons or birds, it should still provide some evidence about the 

prevalence, evidence whose import for the different populations varies. Yet the theories of Pollock, Kyburg and 

Teng are silent on how this is so. 
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A pessimism toward formalising all inverse inferences as such is consonant with some of 

the literature on analogical reasoning. There are various accounts aiming to shed light on the 

evaluation of analogical argument, accounts which are explicitly normative or from which 

one may attempt to draw norms.172  Most recent accounts of analogical inference do not 

propose formal rules of inference for obtaining probabilities on the basis of analogical 

considerations.
173

 Rather, they only provide general criteria and procedures for analogical 

inference. Bartha, in fact, is of the opinion that “[d]espite the confidence with which 

particular analogical arguments are advanced, nobody has ever formulated an acceptable rule, 

or set of rules, for valid analogical inferences.”174 John Norton provides a similar perspective 

on analogical inference. He disparages attempts to formally distinguish good analogical 

inferences in general from bad ones, asserting that the legitimacy of each inference depends 

on local facts and intuitive judgments specific to the particular analogy at hand.175 He notes 

that, in the past, formal analyses of analogical inference have always confronted some 

problem case and that “there always seems to be some part of the analysis that must be 

handled intuitively without guidance from strict formal rules.”
176

 This, in fact, is an 

expression of his material theory of induction, the cornerstone of which is that “there are no 

universal rules of inductive inference” (perhaps aside from any ones in this sentence) but 

rather that “all induction is local.”177 

We might see inverse inferences from non-probability samples as being similarly resistant 

to objective and formal analysis. In fact, arguably such inverse inferences are just large-scale 

analogical inferences inferring the probability that the relative frequency in one set of objects 

is similar to that of another set of objects based on the similarity between the sets.  If this is 

the case, then perhaps the rationality of such inverse inferences must be assessed like 

analogical inferences, taking into account facts local to the situation at hand and the agent’s 

intuitive judgments of the similarity and its implications. This is a take on inverse inference 

which accords more with common inferential practices. Real-world agents often (if not 

always) cannot articulate formal principles specifying the degree of similarity between, say, 

my local buses and the various populations that they are members of. But they can make 

intuitive judgments about such similarity and its implications. Furthermore, these judgments 
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 Bartha, “Analogy.”  
173

 Ibid. 
174

 Ibid. 
175

 John Norton, “Analogy,” University of Pittsburgh, accessed May 7, 2016, 

http://www.pitt.edu/~jdnorton/papers/Analogy.pdf. 
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 Ibid. 
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 John D. Norton, “There are No Universal Rules for Induction,” Philosophy of Science 77, no. 5 (2010): 765. 
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are useful for making inferences. I would think that agents often successfully infer that most 

of their local buses arrive within a certain period of their scheduled time and that the next 

sampled bus is probably punctual. I would also think that the typical agent would have many 

other success stories of intuitive inferences too. 

In any case, let us summarise the implications from the problem posed by similarity and 

the other topics in the next section. 

 

 

6.4. Summary: A General and Formal Method for Inverse Inference? 

 

This chapter examined one response to the problem of inverse inference that confronted the 

random-worlds method. The response was to appeal to alternative but similar measures which 

could allow useful inferences from samples.  As we saw, however, various other problems 

confronted these measures. These were:    

- the putative illegitimacy of their vindication of inferences involving non-probability 

samples  

- the problem of being frequently inapplicable by virtue of the complicating 

background evidence which varies from context to context 

- the dependence of certain probabilities on the problematic choice of language 

- the difficulties in encapsulating the agent’s uncertainty about the possible categories 

of object in the population, particularly given variation of categories in a sample and 

- the difficulty in accounting for the problem (or problems) posed by similarity. 

Some of these problems seem more severe to me than others. Indeed, some seem potentially 

unsolvable, at least without appeal to potentially intuitive and informal judgments (such as 

the problem of similarity). 

What, then, are the implications of these problems? 

In my opinion, we probably lack a generally applicable, formal and objective method for 

inverse inference, at least for now. By this, I mean that there is no one correct method that 

instructs the agent exactly how the probability of various proportion formulas should be 

affected by her sample of pigeons sharing a particular gene, her sample of days she has lived 

since her birth, her sample of black toy cars from a factory, her sample of coloured balls in an 

urn, her sample of objects in the universe obeying theorised laws (to some degree of 

approximation), etc. There is currently no formal and objective method of inverse inference 

which provides a general and uniquely correct way of accommodating the evidence that 
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varies from context to context, including the similarity between the sample and the 

population, the variety of categories of object in a sample and the evidence about other 

relevant samples and populations.  

Furthermore, I am pessimistic that such a method will be found. This is especially since 

inverse inference from non-probability samples is, in my opinion, basically a large-scale 

analogical inference inevitably involving intuitive judgments about the similarity between a 

sample and one or another of the populations that it is from. Naturally then, John Norton and 

subjective Bayesians would probably share my pessimism too. (However, I doubt that 

Pollock, Kyburg and Teng would given the formal methods which they espouse.) 

Note that my opinion and pessimism is construed probabilistically. This is because one 

cannot review every piece of extant literature that is possibly relevant and maybe there is or 

will be such an objective, formal and universally applicable method after all.
178

 Regardless, 

given what I have seen of the main philosophical and statistical methods of inverse inference 

(including classical confidence intervals and others), they are not such generally applicable 

and formal methods. While they seem useful and insightful, they are unable to fully 

accommodate the issues posed by similarity and other problems. Furthermore, just by 

reflecting on the issues and on how their nature intuitively seems to preclude one universal, 

objective and formal analysis, I suspect that there is no such analysis.  

This is not to say, however, that there are currently no formal and objective methods 

which account for a large category of inverse inferences in certain circumstances. For 

example, it seems quite reasonable that some measures may be generally applicable for 

certain types of inferences from probability samples, such as random samples.  

Unfortunately, though, the overwhelming majority of contexts in which humans engage in 

inverse and predictive inference involve non-probability sampling. Surely we would like a 

theory of inference for these contexts, one partly for the layman who wishes to make 

inferences yet lacks the money, time and expertise to do so on the basis of sophisticated 

probability sampling strategies. 

How, then, should we constrain our credences on the basis of evidence about frequencies 

in non-probability samples? What are the right inferences from such samples? 

In the next chapter, I provide a response to these questions.  

                                                      
178

 Another relevant body of literature concerns machine learning and Kolmogorov complexity. Yet, from what I 

have seen, this literature does not discuss similarity in the context of inverse inference (as opposed to just 

universal or predictive inference), even though it may contain some relevant insights. See Ming Li and Paul 

Vitányi, An Introduction to Kolmogorov Complexity and its Applications (New York: Springer, c2008). 
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7.  Intuition, Evidence and Inference 

  

“It has been recognized by all, beginning with Laplace, that the purpose of a statistical 

analysis is to aid our common sense by giving a quantitative measure to what we feel 

intuitively.” 

E.T. Jaynes 

 

“[S]ome subjective element exists in all scientific appraisal…” 

Colin Howson and Peter Urbach 

 

“[T]he true test of our semantics requires seeing whether it yields intuitively plausible results 

in simple cases, to begin with, and reasonable results in more complex cases in which our 

intuitions are not so strong.” 

Henry Kyburg and Choh Man Teng 

 

 

The above authors all reflect very different strands of thought about statistical reasoning. 

Jaynes is a pioneering objective Bayesian. Howson and Urbach are champions of subjective 

Bayesianism. Kyburg and Teng are more accurately placed in the classical frequentist camp, 

if anywhere.
179

 

Regardless, they are all united by at least two things. First, they share a common aim of 

finding the right theory for inductive inference. Second, they allow, or even emphasise, a role 

for intuition in pursuing this aim. Jaynes rails against classical statistical methods and favours 

Bayesian inference. He does this by adducing cases in which classical methods putatively 

deliver results that are inconsistent with the intuition enshrined in common sense.
180

 Howson 

and Urbach place no constraints on the permissible prior probabilities in Bayesian inductive 

inferences, thus allowing space for intuitive priors to make an appearance.
181

 Kyburg and 

Teng test their theory of evidential probability against intuitive desiderata for a theory of 
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 Kyburg and Teng, Uncertain Inference, 195. This is also apparent from their advocacy of (quasi-)classical 

methods for inferences from samples and a non-Bayesian theory of acceptance. See Kyburg and Teng, 

Uncertain Inference, 261 and Chapter 11. 
180

 E.T. Jaynes and Oscar Kempthorne, “Confidence Intervals vs. Bayesian Intervals,” in Foundations of 

Probability Theory, Statistical Inference, and Statistical Theories of Science, vol. II., eds. William L. Harper and 

C.A. Hooker (Dordrecht: Springer Netherlands, 1976), 175-257. 
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84 

 

inductive inference, such as allowing basic direct inference, a preference for statistics for 

more specific reference classes and the like.
182

 Bacchus et al. similarly evaluate their theory 

against intuitive desiderata of this sort.
183

  

In this sense, there is a precedent for evaluating theories of inference based on pre-

theoretic intuitions specifying what credences or probabilities are epistemically rational in 

certain cases. Recall, for example, the intuition underlying basic direct inference: the 

(perhaps subjective) probability that Aaron was fatally injured should be 0.8 if the agent 

knows that Aaron was on a train where 80% of the passengers were fatally injured (and that 

is the only relevant knowledge regarding Aaron possibly being injured). Bacchus et al., 

Kyburg and Thorn all share this intuition, but they do not all agree on a theory that explains, 

formalises or justifies it.
184

  

An analogous situation is present in other areas of inquiry. Many philosophical views are 

motivated by intuition about particular thought experiments, including the view that 

knowledge is not merely justified true belief (as per the Gettier cases), that computers lack 

semantic understanding (as per the Chinese room) and that mental states are at least partly 

non-physical (as per Mary the colour scientist). 

In Chapter 6, I attempted to motivate the claim that there is currently no general, objective 

and formal method for inverse inference which succeeds to account for our intuitions about 

various problems.
185

 There, I said that such methods purport to take several objective, 

quantifiable and well-defined characteristics of a sample (perhaps given a language) and 

return objective quantitative outputs in the form of uniquely correct probabilities.
186

 I will 

henceforth call such methods merely “formal methods” for short. This is not to say, however, 

that there are no contexts in which extant formal methods do deliver the right answers, but 

only that there are some contexts - particularly with non-probability samples - where formal 

methods do not and perhaps never will.  
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 Kyburg and Teng, Uncertain Inference, 244. 
183

 Bacchus et al., “From Statistical Knowledge Bases,” 79. 
184

 For instance, Bacchus et al. explain this intuition via an indifferent probability measure over the models that 

are consistent with a knowledge base; in contrast, Kyburg, Teng and Thorn do not. See Kyburg and Teng, 

Uncertain Inference, 226 and 262, Thorn, “Two Problems of Direct Inference,” 307 and Thorn, “Three 

Problems of Direct Inference,” 70. 
185

 As mentioned in Section 6.1., even if the reader is not sympathetic with the claim, they can perhaps 

appreciate this chapter and the next as being a conditional claim of the sort “If my pessimism is justified, then 

here is what one can do.” 
186

 It should be clear, then, that I do not take subjective Bayesian methods of data analysis to be such methods 

since they explicitly involve (relatively) unconstrained, subjective distributions as inputs, not just things such as 

the objective number of objects in a sample satisfying some target formula.  
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Despite this situation, we need to make inverse inferences in both scientific and everyday 

contexts. Surely my having consistently observed punctual busses at my bus stop should 

cause me to adjust my credences in the proportion of buses that are punctual, making me 

more confident that at least most buses at that stop are punctual. Likewise, having sampled 

several guests at a party who all know Ben should adjust my credences about the proportion 

of people at the party who all know Ben. Similarly, a sample of 1,000 emeralds, all of which 

are green, should adjust my credences regarding the proportion of emeralds that are green. I 

could produce example after example in which samples, including non-probability samples, 

should affect my credences for population relative frequencies.  

What, then, are the right inverse inferences in the absence of a general formal method? 

One suggestion is to follow the aforementioned tradition and seek answers from intuitions 

similar to the basic direct inference one, although perhaps via an unexpected route.  

This chapter will outline a theory which emphasises a role for intuition in inverse 

inference, particularly in the context of inferences from non-probability samples. The theory 

involves two dimensions along which the epistemic rightness or rationality of an inverse 

inference is assessable. The chapter then critically discusses the claim that intuition should be 

trusted when making inverse inferences, concluding that certain intuitions are trustworthy. 

Following this, I defend the theory as one which has content for the individual when applied 

to their life. I lastly summarise the theory and delineate problems and avenues for further 

research. In Chapter 8, I will then explore how the theory can supplement the random-worlds 

method. 

However, as a preliminary, it would be useful to consider the nature of the relevant 

intuitions given their importance in this chapter. I will understand these intuitions as beliefs 

that prescribe inferences to credences, perhaps on certain conditions. For example, consider 

again the aforementioned intuition about basic direct inference. This can be understood as the 

belief that one’s credence that Aaron was fatally injured should be 0.8 if one knows that 

Aaron was on a train where 80% of the passengers were fatally injured (and this is the only 

relevant knowledge regarding Aaron possibly being injured). Many have this intuition about 

what their credence should be given certain conditions regarding a knowledge base.  

Furthermore, they might have this intuition, as I do, without have actually having the 

credence under discussion because the relevant conditions do not hold for them. Hence, I 

understand intuitions about what credences are appropriate as being distinct from those 

credences. I also understand these intuitions as not having any articulable justification, at 
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least initially.
187

  For example, one may have the basic direct inference intuition without 

being able to explain why that intuition is trustworthy. In this sense, we can say that the 

intuitions under discussion are (initially) unjustified beliefs about epistemically rational 

inferences (perhaps of a conditional sort stating that “if one has evidence e, then they should 

have a credence of strength f for proposition p”). I will also suppose in this discussion that the 

intuitions of any agent are coherent and I will call the agent’s inferences that accord with 

such intuitions “intuitive” inferences. 

I am assuming this understanding of intuition to be adequate, even though one might 

challenge it one various grounds. For one, an agent’s intuitions might not be coherent; one 

might simultaneously have intuitions that they should and should not believe proposition p to 

degree f given their circumstances. For another, the line between credences and intuitions is 

blurry. When I am in a situation like the direct inference one above where I do have such 

knowledge about Aaron, I may not have both a credence of 0.8 and an intuition about that 

credence – rather I might just have the credence which is in some sense intuitive. 

Furthermore, intuitions may themselves be graded. I might only be 90% confident that one’s 

credence that Aaron was fatally injured should be 0.8 if one knows that Aaron was on a train 

where 80% of the passengers were fatally injured. But perhaps I am also 10% agnostic, so to 

speak, about what that same credence should be in those circumstances (perhaps because of 

Levi’s objection to direct inferences with non-random samples). Here, then, my intuitions are 

characterised by a degree of confidence and are therefore perhaps best understood as 

credences. 

On this note, we can see how complicated the nature of credences and intuitions may be. 

To avoid writing an unduly long thesis extending into empirical psychology, I will just 

suppose that this (perhaps overly) simplistic understanding of intuition is correct. However, I 

explicitly acknowledge that there are legitimate questions about this understanding which are 

relevant and worth pursuing, but which cannot be pursued here. I also acknowledge that the 

answers to these questions may have implications for what I say in the following. But to have 

space to at least say something, let us bracket these questions and move on. 

    

 

                                                      
187

 I use the term “articulable justification” to denote a justification for the intuition which the agent can speak of. 

This is in contrast to an externalist notion of justification whereby an agent may have a justification for an 

intuition because it is, say, produced by a reliable process, even if the agent cannot articulate this latter 

justification and may not even know that they have it. 
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7.1. Objectively Rational Inverse Inferences 

 

In making inferences, some intuitions are less trustworthy than others. We now turn to a 

thought experiment that capitalises on this idea in the context of inverse inference and that 

will be useful as a point of reference later.  

Suppose that two agents, sensible Sarah and radical Mitchell, are interested in estimating 

the proportion of emeralds that are green in a particular area. Suppose that they have exactly 

the same evidence (or lack thereof) bearing on the colour of emeralds and the only things that 

differ are their intuitions about the probabilistic implications of that evidence (or lack thereof). 

(This supposition may be unrealistic, but this does not mean that it is no less useful or 

conceptually possible than many other bizarre philosophical thought experiments involving 

teletransporters, time travel, Chinese rooms and the like.) We can suppose they have no 

knowledge about emeralds that bears on the probable proportion(s) of emeralds (in the area or 

in general) that are of any particular colour.
188

 Here we represent the space of possible 

proportions with formulas of the form %(𝐺𝑥|𝐸𝑥) = 𝑓 where where 𝐸𝑥 stands for “x is an 

emerald in the area,” 𝐺𝑥  stands for “x is green” and f is some real number in [0,1] .
189

 

Suppose that they both sample 10,000 emeralds by haphazardly inspecting rocks around the 

area together. All of the emeralds are green and so they have the following intuitive inverse 

inferences based on the sample: 

  

 

 

 

 

 

 

 

 

 

                                                      
188

 If need be, we can also suppose that they (somehow) know that the population of emeralds in the area is 

1,000,000 or some other number. 
189

 In doing so, we will use an idealisation of the space of possible proportions whereby the space consists of 

101 values in [0,1]  that are separated by equal distances. The use of this idealisation should not be too 

objectionable since it is a commonplace and (frequently) harmless practice in statistics to represent the 

“parameter space” of possible proportions with idealised continuous or discrete spaces. See, for example, the 

use of idealised continuous spaces alluded to in Howson and Urbach, Scientific Reasoning, 32.  
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Sarah’s distribution after sampling 10,000 green emeralds  

 

 

 

Mitchell’s distribution after sampling 10,000 green emeralds  
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Sarah’s distribution is fairly sensible. The sample of emeralds makes her highly confident 

that at least almost all emeralds are green even though she still attaches a positive but 

negligible probability to the other proportion formulas that are consistent with the evidence. 

Mitchell’s distribution is less sensible. The thousands of emeralds that are consistently 

observed to be green has given him an almost non-committal attitude about the proportion of 

emeralds that are green. While Sarah’s distribution seems sensible or close to it, we might say 

that Mitchell’s is radically under-confident that at least most emeralds are green. 

But suppose Mitchell also has other bizarre proclivities. Suppose that the thought 

experiment is same as the above except that the agents sample only two sapphires, both of 

which are blue, to estimate the proportion of sapphires in the area that are blue. They then 

have the following distributions where %(𝐵𝑥|𝑆𝑥) is the proportion of sapphires in the area 

that are blue, 𝑆𝑥 stands for “x is a sapphire in the area” and 𝐵𝑥 stands for “x is blue”. 

 

Sarah’s distribution after sampling two blue sapphires  
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Mitchell’s distribution after sampling two blue sapphires  

 

 

 

Sarah’s distribution is largely non-committal and at least somewhat sensible. The slight 

amount of evidence causes her intuitively to slightly favour the formulas where 

(approximately) over two thirds of sapphires are blue. In contrast, Mitchell’s distribution is 

radically over-confident that almost all sapphires are blue. 

How do intuitions play a role in these distributions?  

Well, perhaps Sarah and Mitchell update in a Bayesian style and intuition features in the 

determination of priors for the proportions. Maybe Sarah has an objective Bayesian intuition 

that she should use a distribution that is uniform over the above proportion formulas. Maybe 

Mitchell is also an objective Bayesian who, in the case of emeralds, intuitively thinks he 

should use a complicated language featuring a dazzling amount of possible colour predicates. 

This gives rise to a very complicated space of probability vectors for proportion expressions 

for each of the colours. (For example, consider a probability vector of proportion formulas 

corresponding to the statement “1% of emeralds are slightly pink with purple dots, 2% are 

blue with red stripes, 0% are magenta,…, and the other 97% are a yellowy-green”.) The 

enormity of colour predicates and consequent enormity of outcomes leads him to a uniform 

prior distribution that assigns minuscule probabilities to the formulas where at least most 

emeralds are green. They then update with the different intuitive priors to obtain drastically 
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different posteriors. So that’s one story. But perhaps both agents are instead just subjective 

Bayesians where the prior probabilities reflect intuitions that do not necessarily conform to 

some formal principle.  

Or perhaps both agents just reflect on the sample evidence, then they directly form the 

distributions in a way which does not reflect Bayesian updating and they cannot specify why 

they think that those distributions are correct aside from just appealing to “intuition”. This 

case may be more realistic insofar as agents seldom have a precise probability distribution 

which they then systematically update; they may not reflect on their credences or even have 

relevant credences until after the relevant evidence is presented to them. They may both also 

have putatively relevant background evidence, perhaps concerning the constancy of colour 

for other types of gemstone, but they may have different intuitions about the relevance of this 

evidence.  

In any case, the details do not matter so much. What does matter is that intuition somehow 

influences the distributions and that no matter how this is done, one final distribution is more 

sensible than another. 

In any case, I will assume that the reader shares the intuitions of myself and certain others 

that Sarah’s distributions are at least close to being sensible whereas Mitchell’s distributions 

are far from it.
190

 

So Mitchell’s intuitions are bizarre. We can suppose that, unknowingly for Mitchell, they 

are induced by some rare brain disorder triggered by observing certain colours. We can also 

suppose that they are nevertheless consistent with his evidence and other (perhaps equally 

bizarre) intuitions. From this perspective, Mitchell is blameless for his radical intuitions 

insofar as he knows no better than to make such inferences. 

Regardless, we probably think that there is a sense in which Mitchell’s intuitions and 

inverse inferences are incorrect.  

Furthermore, these intuitions are, I would say, objectively incorrect in the sense that they 

are wrong irrespective of anyone’s perspective, just as the claims that 2 + 2 = 5 or that the 

earth is under 10,000 years old are objectively incorrect, irrespective of anyone’s 
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 Even if the reader is unsympathetic with either agent’s distributions, I suspect they would agree (along with 

the others that I have spoken to) that evidence of this kind should affect one’s credences for proportion 

expressions. After all, how could the observation of 10,000 green emeralds fail to affect one’s confidence that 

all or almost all emeralds are green? Presumably, then, the reader would think that an agent in these 

circumstances should have some probability distribution and that some distributions are more or less sensible 

than others. The reader can then substitute a more and a less sensible distribution of their choosing into the 

above thought experiment. 
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perspective.
191

 In this sense, I take the thought experiment to suggest that there is an objective 

standard of correct intuitions just as there is an objective standard of correct claims about the 

physical world or mathematical truths. 

The critic might object that claims of objective correctness about intuitions have 

unacceptably spooky truth-makers since it is unclear what makes it true that such intuitions 

are objectively correct.  

However, one does not need to know what the truth-makers of a claim are in order to 

know that it is true. Indeed, I do not know what makes it true that 2 + 2 = 4 (is it a platonic 

fact or some claim about the real-world?), but this is an objectively true claim irrespective of 

my ignorance (or indeed suspicion) of any truth-makers.
192

 Presumably advocates of basic 

direct inference or the principle of indifference often agree that the intuitions underlying 

these norms are objectively correct while failing to agree about what makes them correct. 

Likewise, I may not know what makes it true that Mitchell’s intuitions are objectively 

incorrect, but this is still a true claim irrespective of my comparable ignorance or suspicion.  

Nevertheless, there are some candidate truth-makers for objective correctness. For 

example, perhaps, as a matter of objective fact, a certain kind of intuition relative to a certain 

kind of body of evidence would hinder the agent from the truth most of the time. Consider 

again Mitchell’s under-confident or over-confident intuitions whereby enormous amounts of 

evidence make him only slightly confident that (approximately) all emeralds are green and 

slight amounts of evidence make him enormously confident that (approximately) all 

sapphires are blue. Statistically speaking, people may be hindered from getting close to the 

truth about relative frequencies most of the time if they had similar intuitions about similar 

evidence.
193

   

I think that something like this kind of truth-maker is plausible. There arguably is 

something about the world that would make these kinds of intuitions deter the agent from the 

                                                      
191

 This notion of objective correctness may or may not sit well with what the reader’s concept of ‘objectivity’ 

or ‘correctness’ is. In a sense, though, I am not necessarily trying to adhere to those concepts. I am just 

appealing to the intuition that, independent of anyone’s perspective, there is something wrong about Mitchell’s 

inferences and intuitions and then I am labelling this thing ‘objective incorrectness’ even if the reader objects to 

the label. 
192

 As with almost any position in philosophy, there are opponents of the notion that mathematical claims are 

true, namely, fictionalists about mathematics. Nevertheless, I am conforming to the widely held thought that 

some mathematical claims are objectively correct. In any case, presumably the fictionalist has some story about 

why we should take seriously, or act on the assumption of, claims like 2 + 2 = 4 instead of 2 + 2 = 5. Perhaps 

something like this story may be articulated in defence of taking certain inductive intuitions seriously or acting 

on them as if they were objectively correct. The theory I outline may then be articulable with such a story. 
193

 This kind of thinking resembles certain accounts of justification, including certain kinds of reliabilism and 

Ernest Sosa’s account of aptness in his virtue epistemology. See Ernest Sosa, Knowledge in Perspective: 

Selected Essays in Epistemology (Cambridge, U.K.; New York: Cambridge University Press, 1991), ch. 9 and 

Lemos, An Introduction, ch. 5. 
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truth in some sense. Regardless, defending this thought would require more space for 

definition and defence than I can afford here, particularly when closeness to the truth may 

require a technical account like so-called gradational accuracy and this thought also 

encounters an analogue of the reference-class problem known as the generality problem.
194

  

So I settle for the claim that some intuitions are objectively correct or incorrect, even if we 

do not what know the truth-makers are for correctness claims. 

But even if we do not know what the truth-makers are, we do know something about what 

they are not. Mitchell’s intuitions are not objectively incorrect just because they conflict with 

our perspective of what is correct or some community’s shared perspective of what is correct. 

If Mitchell believed that that the earth is currently less than 10,000 years old or that it is not 

the case that 2 + 2 = 4 , these beliefs are not incorrect because they conflict with the 

perspectives that we or our communities have. Supposing that we or our communities did not 

exist for there to even be such a conflict, Mitchell’s inferences would still be objectively 

incorrect in a sense similar to these beliefs. For example, if Mitchell was the only person in 

existence and still had under-confident intuitions given enormous amounts of evidence and 

over-confident intuitions given scant amount of evidence, these intuitions would still be 

incorrect, perhaps because they would statistically lead him to be overly confident in false 

propositions and underly confident, so to speak, in true propositions a high percentage of the 

time.  Intuitively, then, intuitions can be incorrect in a sense which transcends the perspective 

of any agent just as the falsity of these other beliefs do. 

So I suggest we say that an inverse inference is objectively rational to the extent that it 

accords with relevant and objectively correct intuitions about the agent’s evidence.
195

 Note 

that this definition refers to relevant intuitions. This is because, in theory, some intuitions are 

relevant to the credence(s) of interest whereas others are not. The agent may have objectively 

correct intuitions underlying her inverse inferences, but objectively incorrect intuitions 

underlying her direct inferences. Yet the latter are (we suppose) irrelevant to her inverse 

inferences and so should not count against them.  

This definition accommodates the possibility that one can have an objectively rational 

inverse inference on the basis of intuition despite lacking a formal method to tell them as 
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 For the generality problem, see Lemos, An Introduction, 93-94. Richard Pettigrew informally characterises 

gradational accuracy as a measure of “how good an agent’s credal state is by its proximity to the omniscient 

state” which assigns credences of only 1 or 0 to true and false propositions respectively. See Richard Pettigrew, 

“Accuracy, Risk, and the Principle of Indifference,” Philosophy and Phenomenological Research 92, no. 1 

(2016): 36. 
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 I would follow tradition by instead speaking of objectively rationally permissible inverse inferences, but this 

term is more cumbersome. Hence, I just speak of objectively rational inverse inferences instead. 



 

94 

 

such. This should not be objectionable. It is analogous to one having an objectively rational 

basic direct inference because they have the putatively correct intuition which Kyburg, Teng, 

Bacchus et al. and others share even though one lacks a formal method to tell them as such. 

However, a few disclaimers are warranted. The existence of an objective standard of 

correct intuition does not entail that we necessarily know what it is or that we agree about it. 

Like intuitions, certain mathematical theorems or hypothesised laws of physics may be 

(approximately) objectively correct even if no one knows or agrees as such. Furthermore, the 

correctness of an intuition is not necessarily solely a binary matter whereby the intuition is 

either correct or not. Instead, correctness may be graded concept whereby an intuition’s 

degree of correctness is assessed by its proximity to some correct intuition.
196

 Additionally, 

there might not necessarily be only one correct intuition in a given case. Perhaps there may 

be a set of objectively correct intuitions and a set of incorrect ones. These are topics that I 

wish to remain neutral on. 

Also note that this definition of objectively rational inverse inferences does not negate the 

utility and normative power of formal methods. Perhaps the set of objectively correct 

intuitions for certain cases are those which align with the prescriptions of a formal method, 

such as those in statistics. 

  

 

7.2. Subjectively Rational Inverse Inferences 

 

Yet there is a sense in which Mitchell’s inferences are not wrong. 

Let me spell this out with an analogy. Suppose that a man named Daniel sees a hungry dog 

and, out of his compassion, feeds the dog a block of chocolate. Unbeknownst to Daniel, 

however, the chocolate is poisonous to the dog. Hence, it kills the dog gradually and painfully 

within a couple of hours. A question arises: did Daniel do something wrong? There is a sense 

in which he did do something wrong insofar as his action had a bad outcome relative to the 

objective fact that he painfully killed the innocent dog. But there is a sense in which he did 

not do something wrong insofar as his action was entirely well-motivated from his 

perspective and he could not have known better. After all, it was not as if he did something 

wrong in the sense that he intended to knowingly harm the dog to no benefit. 
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 For example, if there is exactly one correct intuition specifying that a particular credence should have value f 

given evidence e, then the proximity and degree of correctness for some other intuition prescribing value g 

regarding the same credence and evidence could be measured by the numerical distance between f and g. 
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Inverse inferences likewise are assessable relative to two dimensions of rightness or 

wrongness, for lack of better words. There is the objective dimension according to which 

Mitchell’s inferences were objectively irrational. However, there is a sense in which 

Mitchell’s inference were not wrong insofar as, from his perspective, he was blameless. His 

evidence did not obviously entail that his intuition was wrong. For example, it is not as if 

knowledge that 10,000 emeralds are green is logically equivalent to knowledge that 10,000 

emeralds are green and the probability that all emeralds are green should be 87%. His 

intuition also did not conflict with any of his other intuitions. He just unknowingly had a 

misleading intuition brought about by a brain disorder. Given his innocence from his 

perspective, then, we might say that there is a sense in which his inference was subjectively 

rational, but not objectively rational. The subjective rationality of an inverse inference, then, 

is another dimension along which the rightness or wrongness of an inverse inference may be 

assessed. 

On this note, we may say that an agent’s inverse inference is subjectively rational to the 

extent that it accords with the agent’s relevant intuitions and evidence.
197

 

One might object that this definition of subjective rationality entails that agents like 

Mitchell have subjectively rational inferences when we think that they are irrational. Yet we 

can accommodate such thinking by saying that agents like Mitchell have objectively 

irrational inferences. 

It is important to distinguish these two dimensions for appraising inductive inferences. 

Otherwise, like the case with Daniel, there is a potentially confusing tension between the 

desires to evaluate the rightness of an inference relative to factors internal to the subject’s 

perspective or relative to factors that somehow transcend or are external to it. Indeed, in 

traditional epistemology, an analogous tension manifests itself in debates between internalists 

and externalists about justification, with some such as Sosa resolving the tension by 

appealing to two dimensions of the epistemic merit of a belief.
198

  Somewhat following Sosa, 

I likewise propose two distinct dimensions – one regarding subjectively rational inferences 

and the other regarding objectively rational inferences.
199

 

Nevertheless, the two dimensions are related. All objectively rational inferences are the 

subjectively rational inferences of some agent, if not only a hypothetical one. I would also 
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 This does not rule out the possibility of subjectively irrational inferences. For example, one could have 

intuitions that their evidence shows that something bad is very probably about to happen but they may choose to 

irrationally ignore to the evidence and wishfully think that it will not happen. 
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 See a useful summary of the debate in Lemos, An Introduction to the Theory of Knowledge, ch. 6. 
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 See Sosa, Knowledge in Perspective, ch. 9. 
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say that subjectively rational inferences (tacitly) aim to be objectively rational and one 

estimates what the objectively rational inference would be via what their subjectively rational 

inference would be. Just as Daniel aimed to have an action that had objectively good 

consequences according to his subjective viewpoint, so too do epistemically rational agents 

aim to have objectively rational inverse inferences through their subjectively rational 

inferences. 

However, subjectively rational inverse inferences can fail to achieve their goal. Indeed, 

although Mitchell was subjectively rational, his inference failed to be objectively rational. 

 

 

 

7.3. Arguments for and against Trusting in Intuition 

  

So we have categorised epistemically rational inverse inferences based on intuition into 

subjectively and objectively rational inferences, but it is another question to ask whether 

people should sometimes rely on their intuitions when making inverse inferences even though 

they lack a formal method to guide them. 

Let us consider arguments for and objections to an affirmative answer to this question.
200

 

One objection is that people’s intuitions sometimes can lead them astray (à la Mitchell) 

and so they should not rely on intuition, but they should instead rely on or try to find formal 

methods of inductive inference. This is a particularly seductive objection given the findings 

from the so-called heuristics and biases research programme. The findings show that 

humans often have misleading intuitions underpinning their probability judgments.
201

 For 

example, an occasionally pernicious heuristic is known as the availability heuristic whereby 

the probability of a proposition is judged based on how easily instances of that proposition 

(or similar propositions) being true come to mind. This is problematic when, say, the agent is 

afraid that there is a decent chance of being attacked by a shark at a beach merely because she 

recently watched the film Jaws, even though the chance such an attack is negligible. The 

objection may then take these findings as evidence that people can have untrustworthy 

intuitions. 
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  For many of the following objections, I thank a commentator who shall remain anonymous. 
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 See a concise and insightful discussion of the programme in Anthony O’Hagan, Caitlin E. Buck, Alireza 

Daneshkhah, J. Richard Eiser, Paul H. Garthwaite, David J. Jenkinson, Jeremy E. Oakley and Tim Rakow, 

Uncertain Judgements: Eliciting Experts’ Probabilities (London; New Jersey: Wiley, c2006), 31-52. 
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However, that some intuitions are untrustworthy does not entail that all others are 

similarly untrustworthy. Someone’s proclivity to fall prey to the availability heuristic does 

not mean that I or numerous others should discard our intuitions supporting, say, the 

rationality of basic direct inference or the principle of indifference in certain circumstances. 

Furthermore, formal methods, just like intuitions, sometimes also lead us astray for certain 

inferences - arguably methods like classical confidence interval estimation.
202

 Presumably 

this shows that we need not use theories like these for the inferences that we have mistakenly 

applied them to. Yet we similarly need not use misleading intuitions for guiding the 

inferences that we have mistakenly applied them to. 

Surely the lesson is that if a formal method or intuition is untrustworthy, it is because of 

factors specific to the formal method or intuition and not just because other methods or 

intuitions were untrustworthy. 

In any case, it is consistent with the preceding discussion that one should sometimes 

reason in accordance with a formal method. Arguably a formal method is just codified 

intuition dressed in formal clothing inasmuch as, say, the random-worlds method formally 

encodes intuitions about basic direct inference, independence, indifference and others. 

Perhaps, in fact, the set of objectively correct intuitions for inductive inference are ultimately 

expressible in some statistical theory to be discovered (although I doubt it). Plausibly, many 

statistical theories do reflect objectively correct intuition, including certain forms of Bayesian 

and classical data analysis for random-samples. So trusting in intuition accommodates their 

guidance. But it can also guide agents in the innumerable everyday contexts of interest where 

the agent needs to make inferences but does not have enormous amounts of time, expertise 

and money to design and implement a sophisticated probability sampling strategy. 

Another objection is that trusting in intuition as Sarah does and as the theory allows has no 

precedent in statistical practice and so it should be treated with suspicion. But it explicitly 

does have precedent in subjective Bayesian data analysis where the priors (and, by 

implication, the posteriors in part) are determined with the help of intuition. Even then, as 

mentioned, other formal methods for statistical analysis are arguably just codified intuitions 

in disguise. 

A further objection is that something better than intuition may come along, so we should 

not trust intuition. However, something better than any formal method may come along too, 
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 See Jaynes and Kempthorne, “Confidence Intervals vs. Bayesian Intervals.” 
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so this cannot count as a good objection to trusting intuition any more than it is a good 

objection to trusting formal methods. 

One might also object that some do not have intuitions to guide inverse inferences in the 

first place, so they cannot be relied on. But at most, this objection only shows that some 

people lack intuitions, not that those who have them should not rely on them. 

Another objection is that people disagree about the right intuitions for inverse inferences 

and so this should cause us to doubt their trustworthiness. However, people have such 

disagreement about all sorts of things including basic direct inference (think of Kyburg and 

Levi), the principle of indifference (think of White and James Joyce), Chinese rooms and the 

like.
203

 Yet I have never seen someone doubt the trustworthiness of their intuitions merely 

because others do not have them, and rightly so.
204

 I would not then think that any 

disagreement about intuitions regarding inverse inferences should make trusting in these 

intuitions particularly controversial or objectionable. Furthermore, the disagreement about 

appropriate intuitions for inverse inferences should not be exaggerated so as to obscure any 

agreement about them. For instance, the six people I have asked all agree that Sarah’s 

inferences and intuitions are at least better than Mitchell’s; while this is not a large sample to 

draw rigorous inferences from, it does support (to whatever the extent) the possibility that 

there is intersubjective agreement about epistemically rational inverse inferences. So I do not 

find this objection compelling both because we rationally trust in intuitions despite 

disagreement and because it is not clear that there is that much significant disagreement about 

intuitively rational inverse inferences in any case.   

 A further objection is that we have unclear intuitions about appropriate inverse inferences 

and so we should not trust the intuitions. We might only be able to intuitively specify, for 

instance, that the reasonable inference lies in the general ballpark of a range of possible 

inferences, but intuition does not make it clear exactly where it is. Regardless, one might not 

sympathise with this objection since they might have clear intuitions about what their 

distribution should be. But even if intuitions are unclear, this does not mean that there should 

be no inferences based on them; rather, the inferences, or one’s opinion about them, should 

just reflect the unclarity in the intuitions. For example, one’s inferred probability distribution 

may be understood as a rough approximation to their (unclear) intuition. Or perhaps their 
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 See White’s defence of the principle in White, “Evidential Symmetry.” See also Joyce’s critique of it in 

James M. Joyce, “A Defense of Imprecise Credences in Inference and Decision Making,” Philosophical 

Perspectives 24, no. 1 (2010): 281-323. 
204

 Unless I do not have those intuitions or similar ones, in which case that someone should doubt those 

intuitions. 
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inference should somehow involve indeterminate or imprecise probabilities which specify 

the range of (possibly) permissible inferences. Or perhaps their distribution should be a 

weighted average of the distributions which could possibly reflect their unclear intuitions. 

Precedents for these kinds of probabilities and inferences are found either in practice or in 

theory, and it is doubtful that something like them would not be useful here.
205

 In any case, 

even if we do have some unclear intuitions which do not to favour specific inferences, this 

does mean that we should not trust them, but just that it is unclear what trusting in them 

would mean.  

However, if one can rely on their intuitions for assigning probabilities, this raises the 

potentially troubling question of why one might want to gather more evidence to further 

inform their probabilities, including perhaps random-samples analysed with a formal 

statistical theory. Yet this question arises for many forms of inference, including inferences 

with the principle of indifference or direct inferences where one might want to gather more 

specific statistics or evidence to inform probabilities. Surely it should not then be a 

particularly concerning problem for intuitive inverse inferences. 

One might also object that we will descend a slippery slope if we abandon the use and 

pursuit of formal methods when making inverse inferences from non-probability samples. In 

particular, one could argue that if we do abandon such methods because they are frequently 

unable to accommodate intuitions about similarity, background evidence and other issues, 

then we may also abandon the pursuit and use of other useful theories because they also 

occasionally conflict with intuition. However, this is not necessarily true. For example, one 

might (as I do) accept the random-worlds method as an insightful theory of direct inference to 

validate and guide our intuitions and they may even seek to extend its applications. This is 

perfectly consistent with abandoning formal methods of inverse inference from non-

probability samples. Recall also that the motivation for abandoning formal methods of 

inverse inference from non-probability samples is simply that the relevant factors guiding 

such inferences are too subjective, vague or complicated to be stuffed into a general formal 

method, either now or in the future. This is not necessarily the case for many other subjects 

which theories speak to, so there is no reason to think that we will descend such a slippery 

slope when the motivation for doing so is lacking. 
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 Brendon Brewer informs me that statisticians occasionally see their distributions as approximations to the 

appropriate distribution or treat their distribution as a weighted average of the set of possibly appropriate 

distributions. We have also seen that the concept of indeterminate probabilities is advocated by, or sympathised 

with, a range of scholars, including Levi, Hájek, Smithson and others. 
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Against these objections, I would like to contend that (at least some) agents should 

sometimes trust in their inverse inferences and the intuitions underpinning them, even if the 

intuitions might (unknown to the agents) be objectively incorrect.  

Defending my contention, however, is problematic. 

Let us see why.  

Three potentially appealing arguments may be given for this contention. One argument 

relies on the premise that humans make inverse inferences that are or appear to be reliable 

most of the time and hence most other inverse inferences are likely to be reliable. An 

example of such a reliable inference is when the agent inversely infers that most of the people 

at a party know Ben based on a sample of the party-goers and the agent subsequently finds 

that most of the party-goers do in fact know Ben. One could probably give many other 

personal success stories like this, success stories which arise so frequently that their banal 

success goes unnoticed. A second argument is that nature has fashioned humans through 

evolution so as to have (at least approximately) correct intuitions as these would conduce to 

survival and reproduction; hence, we should trust in our intuition. A third argument is that we 

make progress in determining what intuitions are correct by considering different situations 

(like thought experiments) and potential responses to them; so we should be confident that 

these intuitions which we have progressed to are trustworthy. Examples of such progress 

have arguably been the intuitions spoken to in chapter 5 and 6 and which I list in the next 

section (Section 6.4.). 

While I am sympathetic to these arguments and think they should (somehow) make us feel 

more comfortable about relying on intuition, they are not entirely compelling. The first tacitly 

presupposes the conclusion that intuitions can be trusted; it relies on an intuitive inverse 

inference about the reliability of a population of inverse inferences based on the reliability of 

a sample of such inferences. The second argument merely as it is presented above is not 

compelling since it is possible (albeit not necessarily probable) that nature fashioned us to 

have unreliable intuitions. So we need a reason to discredit this possibility if the argument is 

to work. But we cannot have this reason without the first argument or an analogously circular 

and intuitive inference that evolution would be likely to bestow adaptive and correct 

intuitions on humans given a sample of other beneficial adaptations that it has bestowed.
206
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 This “analogous intuitive inference” may take the form of a singular predictive inference rather than an 

inverse inference. The inference might be, for example, that a sample of human faculties (such as sight, hearing 

and others) proved to be well-adapted to the environment, so the human faculty of intuitive probability 

estimation is probably likewise well-adapted and reliable. But this predictive inference likewise presupposes 

some trust in intuition by intuitively assigning the probability on the basis of this sample evidence.  
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The circularity here is reminiscent of the problem confronting structuralism which was 

mentioned in Section 4.1. The third argument is also weak since we cannot assume that we 

have made progress toward trustworthy intuitions unless we already question-beggingly trust 

the intuitions that we supposedly progressed to, at least more so than prior intuitions.  

Here, then, is how I support the contention. 

First, I do not contend that anyone should trust any of their intuition and inferences, but 

only that certain intuitions may be trusted. More specifically, these are the intuitions that I 

think are objectively correct, that I and others somewhat like me have and that Mitchell and 

others like him lack. Of course, specifying what these intuitions are is beyond the scope of 

this thesis just as much as the task is of specifying what one’s evidence is or should be 

generally speaking; the appropriate intuitions vary from context to context just as the 

evidence does. 

Then I take a foundationalist approach insofar as I rely on intuitions that I cannot articulate 

non-circular justifications for: I intuitively think that we need to make inductive inferences in 

everyday life, that I should trust these intuitions even if they are possibly incorrect and that 

there is no better alternative to such trust. Naturally, I cannot defend such thinking without 

(controversially) presupposing the trustworthiness of one or another set of intuitions.
207

 

Regardless, I take this thinking as foundational in the sense that I can trust it despite lacking 

articulable reasons for doing so.
208

   

The critic might ask, “Why do you think that your thinking is right, especially when 

someone like Mitchell could think similarly regarding the trustworthiness of his bizarre 

intuitions and inferences?”  

I have no answer to give, but the critic should not be dissatisfied. If Hume’s problem of 

induction has taught us anything, I would say it is that induction inevitably involves 

foundational assumptions about rational inferences which we regard as (objectively) correct 

and which cannot be given articulable and non-circular justifications.
209

 Despite this, 

everyone relies on induction and thinks that this is (often) the right thing to do. So why not 
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 I do concede that one might take the premises of the first two aforementioned arguments about past success 

and evolution as foundational and use these premises to justify the trustworthiness of intuitions about 

appropriate inferences. I do not find this approach remarkably objectionable. Regardless, I intuitively take the 

intuitions about rational inferences themselves to be the natural stopping point in the chain of justification, and I 

do so for no articulable reason. In any case, the substance of the theory of inverse inference that I endorse does 

not need to rest on treating this as the natural stopping point. 
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 See a useful introduction to foundationalism in Lemos, An Introduction, Chapter 3. 
209

 See the problem of induction discussed in Section 4.1 and Vickers, “The Problem of Induction.” I think this 

lesson from the problem of induction would be accepted as uncontroversial, particularly since Howson, Urbach 

and others appear to think that the problem of justifying induction non-circularly is insoluble. See Howson and 

Urbach, Scientific Reasoning, 2. 
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just extend this foundational reliance to intuitions about appropriate inverse inferences where 

formal methods are lacking? In fact, I think that we often can do no better, that this is often 

exactly what we do and that this is rightly so.  

  

  

7.4. A Theory without Content? 

 

The ideas that I endorse in the preceding discussion, then, constitute a theory about inverse 

inference. The theory specifies two dimensions by which to assess the epistemic rationality of 

inverse inferences, permits one to make such inferences in the absence of a formal method 

and recommends that certain intuitions be trusted in doing so. 

Yet the critic might object that this theory lacks normative content; it does not constrain or 

tell us what specific credences we should have. 

This is dubious since the theory can have normative content for the individual who accepts 

it. For example, unlike any other theory that I know of in the literature, it allows me to claim 

that some of my necessary inverse inferences in every day contexts are objectively rational 

(or close to it) while Mitchell’s are not, even though I lack a formal method telling me as 

such. Not only does no formal method tell me as such, but the problems in Chapter 6, I 

believe, raise doubts that a formal method will ever be able to claim as such by objectively 

and quantitatively accommodating all of my background evidence and judgments of 

similarity between the sample(s) and population(s) of interest. The formal methods of 

objective Bayesians and proponents of (quasi-)classical statistical theory either do not speak 

specifically to it or do speak to it but are unable to accommodate cases with varying 

background evidence and judgments of similarity. Subjective Bayesianism only validates part 

of this claim on certain conditions. So long as one’s credences conform to the probability 

calculus and updating by conditionalisation, they are rational and in this sense I can form 

probability distributions based on intuitions. However, subjective Bayesianism does not 

permit me to object to Mitchell’s inferences as being objectively irrational. This is because 

there are (updated) probability distributions which accord with Mitchell’s distributions and 

are permissible in the subjective Bayesian’s eyes because they accord with the calculus and 

conditionalisation. In a sense, the theory presented in this chapter harmonises the subjective 

Bayesian thought that rational inferences have intuitive and non-formal elements with the 

objective Bayesian thought that not all such elements are objectively correct. What I propose, 
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then, is a mixture of the two thoughts, one that is perhaps best called sobjective 

Bayesianism.
210

 

In any case, the theory I have articulated has no less content than subjective Bayesianism 

and surely subjective Bayesianism is a theory with enough content to deserve some 

attention.
211

 

Of course, the theory does not answer all specific questions about what one’s distribution 

should be. For example, just as Bacchus et al.’s method does not specify what one’s 𝐾𝐵 

should be, so too does the theory not specify exactly what all of one’s intuitions should be 

(although I list some suggestions in what follows). But like every theory of inductive 

inference, its content has to stop somewhere. The theory articulated here, I believe, is at least 

worth some attention insofar as it started to make some progress. However, specifying 

exactly where current formal method signs off and brute intuition begins to guide inference is 

a task beyond the scope of this thesis. Nevertheless, inverse inferences from non-probability 

samples are beyond the boundaries of formal methods, at least in many cases. 

Regardless, I think that several substantive points for guiding our inferences already have 

emerged from this thesis. 

We make progress toward obtaining inferences that are objectively rational by a process of 

acquiring, refining and discarding intuitions (and perhaps by other things).
212

 This is done 

through considering various situations (whether hypothetical thought experiments or real-

world scenarios) and the various inferences that can be made from them. This thesis has 

appealed to many thought experiments to uncover intuitions for assessing particular 

inferences. This was the case for thought experiments regarding the pigeons (see Sub-Section 

6.3.5.), the toy car factory (see Sub-Section 5.1.) and others. 

Consequently, via these experiments and other considerations, this thesis has unearthed  

various more specific intuitions that should guide intuitive inverse inferences. These are some 

of them: 
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 The fact that at least one scholarly commentator on the theory has objected to it also inclines me to think that 

it has some significant content. 
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 Perhaps an analogous point can be made for John Norton’s material theory of induction. 
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 Note that acquiring better intuitions about evidence is distinct from acquiring better evidence to inform 

inferences. 
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- Non-Zero Probability of Universal Generalisations: Universal generalisations in 

infinite domains should not receive a probability of 0 when counter-evidence to the 

generalisation is lacking.
213

 (See Section 5.1.) 

- Sensitivity to the Population Size: The probabilities of proportion formulas about 

populations should (often) be sensitive to the (perhaps estimated) size of the 

population so that the probabilities would be affected were the population size to vary. 

(See Section 5.1.) 

- Method of Sampling: Inferences from samples should consider whether the sample 

has been obtained in a way which is biased or should affect the inferences from the 

sample evidence. (See Sub-Section 6.3.1.) 

- Evidence about Other Populations and Samples: Where relevant, evidence about 

other populations or samples should be taken into account. Perhaps this could be done 

via the direct route of assigning probabilities directly to proportion formulas on the 

basis of all the relevant evidence or it may be done indirectly by affecting the prior 

probabilities of proportion formulas which are then updated on the basis of sample 

evidence (as per  subjective Bayesian data analysis). (See Sub-Section 6.3.2.) 

- Language Invariance: Probabilities for propositions should depend on the evidence 

bearing on the propositions themselves and not on the choice of language by which 

propositions are expressed. (See Sub-Section 6.3.3.) 

- Accommodating Uncertainty about the Categories in a Population: Probability 

distributions should take into account evidence or intuitions about the categories of 

object that could possibly be in the population, particularly given observed variation 

in categories in the sample. In particular, if it is possible that an unobserved category 

could appear in the population, then the proportion formulas should have probabilities 

which do not preclude this possibility. For example, a sample consisting of only green 

emeralds (that does not include the whole population of emeralds) should not itself 

cause one to assign a probability of 1 to the proportion formula stating that all 

emeralds are green since this precludes this possibility.
214

 (See Sub-Section 6.2.4.) 

- Evidential Implications of Similarity: Loosely speaking, the more similar a non-

probability sample is to the population that it is a subset of, the greater the probability 
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 It should go without saying that I am assuming that such counter-evidence does not include the assumptions 

that the domain size is infinite and that this requires the use of a limit for the probability which tends to zero as 

the domain size goes to infinity. 
214

 Of course, to give rigour to this guideline, one would need to give an account of what is “possible” in terms 

of logical possibility, physical possibility or some other concept. I do not currently have such an account, but I 

still think that this guideline provides useful, albeit rough, guidance for inverse inferences. 
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that the sample relative frequency of interest reflects the population relative frequency. 

However, the agent should consider the relevance of certain similarities or 

dissimilarities as some may be more significant than others (such as similarities that 

are causally relevant to any target property of interest). (See Sub-Section 6.3.5.) 

- Heuristics and Biases: The agent should guard against the undue influence of biases 

and heuristics such as the availability heuristic. 

 

This list of guidelines may not prescribe specific inferences from non-probability samples, 

but I think that it, or indeed any theory, can do no better given the complexity of the issues 

involved. Note also that these are not the only guidelines that one might take into account and 

indeed other guidelines may be relevant in the agent’s specific context. In particular, the 

theory I have outlined is consistent with a Bayesian guideline that many would endorse 

(including myself) but that I cannot argue for or elaborate on here: the agent should conform 

to axioms of probability and where she has subjectively rational prior credences and 

likelihoods and (virtually) certain new evidence, she should update via conditionalisation. 

  

  

7.5. Summary and Further Research 

 

So we can now summarise what we can jestingly call a sobjective Bayesian theory of inverse 

inference.
215

  There is a standard of objectively correct intuitions which an agent’s intuitions 

may or may not satisfy, even if no one knows what the correct intuitions are or what makes 

them correct. An inverse inference is objectively rational to the extent that it accords with 

relevant and objectively correct intuitions about the agent’s evidence. An agent’s inverse 

inference is subjectively rational to the extent that it accords with the agent’s relevant 

intuitions and evidence. When evaluating the epistemic “rightness” or “wrongness” of an 

agent’s inverse inference, we do so with respect to at least one of these dimensions of 

epistemic rationality. Through our subjectively rational inverse inferences, we aim for 

objectively rational inverse inferences and we appraise inferences as (perhaps more or less) 

objectively rational. One progresses toward objectively correct intuitions via (perhaps among 

other things) considering various responses to situations like thought experiments or real-

world problems. From this thesis, a list of more specific intuitions have emerged to guide 

                                                      
215

 I have narrowly avoided the temptation to self-servingly call this the intuitive theory of inverse inference. 
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inverse inferences. Formal methods provide useful norms for inverse inferences in some 

contexts (such as those involving random samples), but they do not and may never provide 

useful norms in other contexts. In these latter contexts, the agent might nevertheless make 

objectively rational inferences using intuition while lacking such a method. Agents 

sometimes should (in a foundationalist manner) trust in their intuitions and subjectively 

rational inverse inferences, even if they are potentially not objectively rational. So that is the 

sobjective Bayesian theory of inverse inference. 

However, this theory, like other philosophical theories, has problems and areas for further 

research. These include: 

   

- explicating the relationship of intuition to credence  

- accommodating the possibility of incoherent intuitions 

- formulating the theory in a way which accommodates unclear intuitions 

- articulating a specific account what the truth-makers are for claims about objectively 

correct intuitions and 

- ascertaining more precisely where formal methods of inverse inference are not helpful 

and where brute intuitions are. 

 

Another problem and area for further research concerns the question of how to represent the 

space of possible proportions or relative frequencies in a population, particularly when the 

population size is unknown. Some insight on this question may be gained by turning to 

statistical practice whereby the space of proportions is idealised in a continuous or discrete 

manner, seemingly with no harm.
216

  

And there may be other problems for the theory which I have not considered, especially 

given philosophical tradition whereby someone proposes a theory and another person 

completely disagrees it and has an objection to show why.  

   

 

 

  

                                                      
216

 That this is statistical practice is affirmed by Brendon Brewer and also Howson and Urbach, Scientific 

Reasoning, 32.  
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8. Random-Worlds and Total Probability 

 

  

The preceding chapter presented a theory about epistemically rational inferences to 

probability values for proportions formulas.  

This theory can supplement the random-worlds method. Both the random-worlds method 

and the aforementioned theory are concerned with answering the following question: given 

information about frequencies, what credences are the right or rational inferences? The 

random-worlds method is a theory about direct inference from proportion formulas; the 

theory in the preceding chapter is a theory about inverse inferences to probabilities for 

proportion formulas. How, then, can the resulting probability distribution over the proportion 

formulas be integrated with the random-worlds method to constrain credences? 

In response to this question, this chapter outlines a proposal for integrating the resulting 

probability distributions with the insights from the random-worlds method, one which 

invokes the spirit of the theorem of total probability.
217

 

 

 

8.1. The Core Idea 

 

It is useful to outline this proposal using a thought experiment. Suppose the agent picks up a 

newspaper at a café which someone has spilled coffee onto. The headline reads “…0% fatally 

injured on Midnight Express train yesterday” where part of the first digit is covered in 

coffee.
218

 Nevertheless, the first digit visibly has an “o” shape at the bottom of it, meaning 

that it is either “6” or “8”. Unfortunately, the rest of the newspaper does not indicate what the 

percentage of fatally injured passengers was. The agent is concerned because she knows that 

her friend Aaron was on that train yesterday when it crashed because she saw him off when 

the train departed. 

                                                      
217

 An alternative to this proposal may be to somehow introduce probability statements for proportion formulas 

into the language of the random-worlds method and thereby into knowledge bases. Bacchus et al. briefly hint at 

the possibility of this alternative in Bacchus et al., “From Statistical Knowledge Bases,” 129. Assessing the 

merit of this alternative is beyond the scope of this thesis.  
218

 I thank Jeremy Seligman for proposing this more realistic and cunning version of a previous hypothetical 

situation of mine. 
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Given the visible information on the newspaper, the agent is indifferent between the 

proportion formulas that are consistent with the headline. So she has the credences 

𝑃(%(𝐴𝑥|𝐵𝑥) = 0.6) = 0.5  and 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.8) = 0.5  where 𝐴𝑥  stands for “x was 

fatally injured”, and 𝐵𝑥 stands for “x was a passenger on the Midnight Express”. The agent is 

wondering what her credence 𝑃(𝐴𝑎) should be where a stands for Aaron and 𝐴𝑎 expresses 

the proposition that Aaron was fatally injured. Clearly this headline should affect the agent’s 

credence that Aaron had been fatally injured, but the agent is not sufficiently confident in 

either proportion formula in order for one of them to be accepted into her knowledge base. 

What should be the value of 𝑃(𝐴𝑎), then? 

As a first step, we can model the agent’s evidence as consisting of two parts, a (virtually) 

certain part and an uncertain part. The first part is a set of accepted statements that we can 

symbolise with 𝐾𝐵′. Here, this includes statements such as 𝐵𝑎 (Aaron was a passenger on the 

train). The second part is a set of propositions that the agent is uncertain about. In this case, 

we can suppose that %(𝐴𝑥|𝐵𝑥) = 0.6 and %(𝐴𝑥|𝐵𝑥) = 0.8 constitute the uncertain part of 

the agent’s evidence. We can suppose here that if the agent were to accept either  

%(𝐴𝑥|𝐵𝑥) = 0.6  or %(𝐴𝑥|𝐵𝑥) = 0.8  into her knowledge base, then she would have a 

knowledge base 𝐾𝐵 which satisfies the conditions of Bacchus et al.’s theorem for basic direct 

inference (see Sub-Section 4.2.1.). That is, if  𝐾𝐵 ≡  (%(𝐴𝑥|𝐵𝑥) = 𝑓 & 𝐾𝐵′)  where f is 

either 0.8 or 0.6, then a does appear in 𝐴𝑥, 𝐵𝑥 or 𝐾𝐵′ and so 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) = 𝑓 

(supposing that the limit exists). 

As a second step, we can turn to the spirit of the total probability theorem and a related 

norm known as Jeffrey conditionalisation. The theorem of total probability is as follows:  

 

𝑃(𝑒) = 𝑃(𝑒|ℎ1)𝑃(ℎ1) + ⋯ + 𝑃(𝑒|ℎ𝑘)𝑃(ℎ𝑘) 

where e denotes some proposition and {ℎ1, … , ℎ𝑘} is a partition of hypotheses. 

 

The structure of the theorem of total probability finds expression in Jeffrey conditionalisation, 

also known as probability kinematics.
219

  Jeffrey sought to provide an extension of standard 

conditionalisation via Bayes’s theorem where some hypothesis h is updated in the light of 

                                                      
219

 This rule can be found in Richard C. Jeffrey, The Logic of Decision, 2
nd

 ed.  (Chicago: University of Chicago 

Press, 1983), ch. 11. The rule is also implied by Maximum Entropy methods. See Ariel Caticha,“Lectures on 

Probability, Entropy, and Statistical Physics,” arXiv: 0808.0012 (2008): 139.  
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some evidentiary statement e where one’s credence for e is some value aside from 0 or 1.
220

 

Jeffrey conditionalisation is the prescription to update in accordance with the following 

formula: 

 

𝑃′(ℎ)  =  𝑃(ℎ|𝑒)𝑃′(𝑒)  +  𝑃(ℎ|~𝑒)𝑃′(~𝑒) 

where 𝑃(. ) and 𝑃′(. ) are respectively the agent’s prior and posterior credences 

relative to the receipt of the evidence.  

 

We can then reflect the agent’s two-part evidence in an equation similar to the two above, 

an equation that integrates the agent’s uncertainty about the proportion formulas and random-

worlds credences. However, the random-worlds credence will be used in an unconventional 

way. They will involve formulas whose probabilities are conditional, so to speak, on 

proportion formulas such as 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝛼(𝑐)|%(𝛼(𝑥)|𝛽(𝑥)) = 𝑓 & 𝐾𝐵′) where 𝛼(𝑐) is 

some target formula mentioning c, %(𝛼(𝑥)|𝛽(𝑥)) = 𝑓  is a proportion formula and 

𝛽(𝑐)𝐾𝐵′. The discussion concerns proportion formulas which the agent is uncertain about 

and so it is misleading to represent them in part with a 𝐾𝐵  symbol which denotes a 

knowledge base of accepted propositions. Hence, we will use cases in which the proportion 

expressions feature in the antecedent of the random-worlds credences without being included 

in, or denoted by, a 𝐾𝐵.  

The proposal is that: 

 

𝑃(𝐴𝑎) = 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.8  & 𝐾𝐵′)𝑃(%(𝐴𝑥|𝐵𝑥) = 0.8  & 𝐾𝐵′)

+ 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.6  & 𝐾𝐵′)𝑃(%(𝐴𝑥|𝐵𝑥) = 0.6  & 𝐾𝐵′) 

 

We can now calculate 𝑃(𝐴𝑎). Recall that 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.6) = 0.5 and 𝑃(%(𝐴𝑥|𝐵𝑥) =

0.8) = 0.5 . By the probability calculus and the supposition that 𝐾𝐵′  is certain, 

𝑃(%(𝐴𝑥|𝐵𝑥) = 0.6 & 𝐾𝐵′) = 0.5  and (%(𝐴𝑥|𝐵𝑥) = 0.8 & 𝐾𝐵′) = 0.5  . Recall also that 

if 𝐾𝐵 ≡  (%(𝐴𝑥|𝐵𝑥) = 𝑓 & 𝐾𝐵′) where f is either 0.8 or 0.6, then a does appear in 𝐴𝑥, 𝐵𝑥 

or 𝐾𝐵′  and so 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) = 𝑓 .  Hence, 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) =

0.8  & 𝐾𝐵′) = 0.8 and 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.6  & 𝐾𝐵′) = 0.6. 

 

                                                      
220

 Here, I understand an evidentiary statement to be a statement expressing some proposition which is uncertain 

but which should have implications for the agent’s other credences. 
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Therefore, we have all the assignments necessary to assign a value to 𝑃(𝐴𝑎): 

 

𝑃(𝐴𝑎) = 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.8  & 𝐾𝐵′)𝑃(%(𝐴𝑥|𝐵𝑥) = 0.8  & 𝐾𝐵′)

+ 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.6  & 𝐾𝐵′)𝑃(%(𝐴𝑥|𝐵𝑥) = 0.6  & 𝐾𝐵′) 

= 0.8 × 0.5 + 0.6 × 0.5 = 0.7 

 

0.7 is an intuitively reasonable value for 𝑃(𝐴𝑎) to take in the agent’s case, irrespective of the 

probabilistic machinery by which one obtains it.  

Here, then, the proposal preserves the insights from the random-worlds method by 

utilising random-worlds credences and it also accommodates the clearly relevant information 

about the uncertain proportion formulas %(𝐴𝑥|𝐵𝑥) = 0.8 and %(𝐴𝑥|𝐵𝑥) = 0.6.  

From this, it should also be clear how the proposal can be implemented with other kinds of 

uncertain propositions, such as those of the form Ba. Nevertheless, I will not dwell on this 

topic here as it is not the focus of the thesis. 

 

 

8.2. The Reference Class Problem and Combinations of Uncertain Evidence 

 

The proposal can be extended to cases where the agent is uncertain about multiple partitions 

of evidentiary statements, particularly involving ones about alternative reference classes 

Here we will take the problem of “incomparable reference classes” as our point of 

illustration (recall the discussion of such classes in Sub-Section 4.2.7.). Let us make the 

proposal more abstract and suppose that A, B and C are some arbitrary one-place predicates 

and a some arbitrary constant. Suppose a is known to belong to the two incomparable 

reference classes, B and C. Suppose further that the agent has the credences 𝑃(%(𝐴𝑥|𝐵𝑥) =

0.9 & 𝐾𝐵′) = 0.5 , 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.8 & 𝐾𝐵′) = 0.5 , 𝑃(%(𝐴𝑥|𝐶𝑥) = 0.1 & 𝐾𝐵′) = 0.5 

and 𝑃(%(𝐴𝑥|𝐶𝑥) = 0.4 & 𝐾𝐵′) = 0.5 . Similarly to the preceding case, suppose that 

if  𝐾𝐵 ≡  (%(𝐴𝑥|𝐵𝑥) = 𝑓 & %(𝐴𝑥|𝐶𝑥) = 𝑔 & 𝐾𝐵′)  where f is either 0.9 or 0.8 and 𝑔  is 

either 0.1 or 0.4, then 𝐾𝐵  meets Bacchus et al.’s theorem regarding the treatment of 

incomparable reference classes. In this case, neither B or C mention 𝐴𝑥 or a, the intersection 

of the classes B and C is known to consist of exactly one member denoted by a, 𝐾𝐵 contains 

no other information and so 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|𝐾𝐵) =
𝑓𝑔

𝑓𝑔+(1−𝑓)(1−𝑔)
. Suppose also that 
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these proportion formulas are independent; so 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.9 &%(𝐴𝑥|𝐶𝑥) =

0.1 & 𝐾𝐵′) = 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.9 &𝐾𝐵′)𝑃(%(𝐴𝑥|𝐶𝑥) = 0.1 & 𝐾𝐵′)  and similarly for the 

probabilities for the other pairs of proportion formulas. In this sense, the agent is uncertain 

about two partitions of evidentiary statements, the partition {%(𝐴𝑥|𝐵𝑥) = 0.8, %(𝐴𝑥|𝐵𝑥) =

0.9} and the partition {%(𝐴𝑥|𝐶𝑥) = 0.1, %(𝐴𝑥|𝐶𝑥) = 0.4}. This gives rise to a probability 

distribution over what I will call a partition of all of the possible evidentiary outcomes. In this 

case, this is the partition: 

 

{%(𝐴𝑥|𝐵𝑥) = 0.9 & %(𝐴𝑥|𝐶𝑥) = 0.1, %(𝐴𝑥|𝐵𝑥) = 0.9 & %(𝐴𝑥|𝐶𝑥) = 0.4, 

 %(𝐴𝑥|𝐵𝑥) = 0.8 & %(𝐴𝑥|𝐶𝑥) = 0.1, %(𝐴𝑥|𝐵𝑥) = 0.8 & %(𝐴𝑥|𝐶𝑥) = 0.4} 

 

By the probability calculus, the aforementioned assignments of 0.5 to each proportion 

formula and the assumption of independence, 𝑃(%(𝐴𝑥|𝐵𝑥) = 𝑓 & %(𝐴𝑥|𝐶𝑥) =

𝑔 & 𝐾𝐵′) = 0.25 where f is either 0.9 or 0.8 and 𝑔 is either 0.1 or 0.4. Hence, the probability 

of each of the possible evidentiary outcomes has a value of 0.25. 

The proposal is that we can use a total-probability-style formula to determine 𝑃(𝐴𝑎) in 

this case with the four possible outcomes: 

 

𝑃(𝐴𝑎) = 

𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.9 & %(𝐴𝑥|𝐶𝑥) = 0.1 & 𝐾𝐵′) 

× 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.9 &%(𝐴𝑥|𝐶𝑥) = 0.1 & 𝐾𝐵′) 

+ 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.9 & %(𝐴𝑥|𝐶𝑥) = 0.4  & 𝐾𝐵′) 

× 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.9 & %(𝐴𝑥|𝐶𝑥) = 0.4  & 𝐾𝐵′) 

+ 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.8 & %(𝐴𝑥|𝐶𝑥) = 0.1  & 𝐾𝐵′) 

× 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.8 & %(𝐴𝑥|𝐶𝑥) = 0.1  & 𝐾𝐵′) 

+ 𝑃𝑅𝑎𝑛𝑑𝑜𝑚−𝑊𝑜𝑟𝑙𝑑𝑠(𝐴𝑎|%(𝐴𝑥|𝐵𝑥) = 0.8 & %(𝐴𝑥|𝐶𝑥) = 0.4  & 𝐾𝐵′) 

× 𝑃(%(𝐴𝑥|𝐵𝑥) = 0.8 & %(𝐴𝑥|𝐶𝑥) = 0.4  & 𝐾𝐵′) 

 

The values of the random-worlds credences are provided by the random-worlds method (see 

Sub-Section 4.2.7.). As mentioned, the other probabilities in the right-hand expression are 

each 0.25.  
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We then have the following result: 

 

𝑃(𝐴𝑎) =  0.6 = 0.5 × 0.25 + 0.86 × 0.25 + 0.31 × 0.25 + 0.73 × 0.25  

 

This illustrates how the proposal may be extended to handle cases involving relevant 

statistics for multiple reference classes, and indeed cases with multiple relevant but uncertain 

statements in general.  

 

 

8.3. Summary and Further Research 

 

So this is the core idea behind the proposal in this chapter. Suppose 𝛼(𝑐) is some formula 

which mentions the constant c.
221

 Suppose also that the agent’s evidence consists of 1) some 

uncertain and relevant proportion formula(s) of the form %(𝛼(𝑥)|𝛽(𝑥)) that give rise to a 

partition of all of the possible evidentiary outcomes and 2) a 𝐾𝐵′ that, if conjoined with one 

of the outcomes, satisfies the conditions for a 𝐾𝐵 in some relevant random-worlds theorem. 

Then, credences for 𝛼(𝑐) should be calculated via an equation patterned after the theorem of 

total probability. The left-hand expression in the equation is 𝑃(𝛼(𝑐)) . The right-hand 

expression in the equation is the sum of the products of pairs of terms. One of the terms in 

such a pair is a random-worlds credence for 𝛼(𝑐) given the proportion formula(s) and the 

𝐾𝐵′. The other term is the agent’s credence for the proportion formula(s) conjoined with 𝐾𝐵′. 

These credences for proportion expressions collectively form a (complete) probability 

distribution over the partition of all of the possible evidentiary outcomes. (Of course, if no 

relevant random-worlds credence exists, perhaps because the relevant limits do not exist, then 

the proposal is silent on how to constrain one’s credences.)  

We might say, then, that the proposal is one for direct inference from uncertain relative 

frequencies. As far as I know, a proposal of this kind is fairly novel since the extant theories 

on direct inference assume that the relevant proportion formulas for the relative frequencies 

are accepted. 

The values of credences for proportion formulas might be obtained in different ways. One 

way is via intuitive inverse inferences from sample evidence. Another way is via probability 

                                                      
221

 The proposal can also be extended to handle direct inferences about multiple objects in a sample, not just one, 

but this is more complex. 
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assignments to proportion formulas on the basis of testimonies that are relevant to the 

formulas (such as the case of the newspaper).  

The proposal bears structural similarities to the theorem of total probability and it 

resembles Jeffrey conditionalisation insofar as one’s uncertainty for a formula equals a sum 

of products for two functions. However, it differs from Jeffrey conditionalisation in that 

Jeffrey conditionalisation is a dynamic constraint for updating: it specifies that if one has 

certain prior credences and then they receive some uncertain evidence at a later time, then 

their posterior credence for a formula should be a function of their other credences at that 

time as well as their prior credences. The proposal above, however, is a static constraint 

regulating one’s credences at one time: it specifies that if one’s evidence can be modelled in a 

certain way at a given time, then some other credence should be a function of the random-

worlds credences as well as some of their other credences at that same time.  

How the proposal relates to updating is a topic that is beyond the topic of this thesis, 

particularly when it may be relevant to such complicated topics as belief revision and 

commutativity.
222

 This, then, is an area for further research. 

 

 

8.4. Problems 

  

So that is the proposal. 

As is always the case, however, there are problems. In this section, I will survey the ones 

that appear salient to me. 
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 For example, there is a complicated debate about whether the non-commutativity of Jeffrey 

conditionalisation is a defect. See Marc Lange, “Is Jeffrey Conditionalization Defective by Virtue of being Non-

Commutative? Remarks on the Sameness of Sensory Experiences,”Synthese 123, no. 3 (2000): 393-403, Zoltan 

Domotor, “Probability Kinematics and Representation of Belief Change,” Philosophy of Science 47, no. 3 

(1980): 395, Brian Skyrms, Choice and Chance: an Introduction to Inductive Logic, 2
nd

 ed. (Encino, Calif.: 

Bickenson Pub. Co., 1975), 197 and Frank Döring, “Why Bayesian Psychology is Incomplete,” Philosophy of 
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8.4.1. Direct Inference and Intuitive Inverse Inference vs. Intuitive Predictive 

Inference 

 

This chapter and the preceding one outlined ideas by which one may make inferences from a 

sample to credences about a population and then inferences from those credences to 

credences about another sample, perhaps consisting of one object.  

Yet if one can intuitively make an inverse inference from a sample and then direct 

inferences from possible proportions to a credence about an object of interest as per the 

proposal, why not just make an intuitive singular predictive inference straight from the 

sample to the object? 

I cannot see anything objectionable about such predictive inferences. However, any such 

inference would ideally be coherent with the agent’s other inferences. 

Does this mean that this chapter and the preceding have no significance? 

Well, my answer is partly “no” and partly “maybe no”.  

The “maybe no” part is that the most rational way of making inferences about the probable 

features of currently unobserved objects might (often) consist of inverse inferences from a 

sample and direct inferences. Yet that is a topic that I am agnostic about. 

Regardless, the “no” part of my answer is that the proposals of this chapter and the 

preceding are useful in their own right. Agents may have uncertain information about 

proportion formulas that derives from sources other than sampling (as per the newspaper case 

above). Hence, the proposal in this chapter may be useful even in the absence of relevant 

inverse inferences. Additionally, the theory in the preceding chapter may provide guidance 

for inverse inferences that are of interest independently of direct or predictive inferences. For 

example, a bus company manager may be considering whether to give a bus driver a salary 

raise based on how punctual a driver he is. So she takes a non-probability sample of trips 

from the bus driver to estimate how punctual his trips generally are. Here, the manager’s 

intention is to make an inverse inference about the proportion of bus trips that are punctual to 

estimate the punctuality of the driver. The intention is not to make a direct or predictive 

inference about the next sampled trip. Here, then, the theory about intuitive inverse inferences 

is relevant. Hence, the proposals in this chapter and the preceding one are arguably 

significant in their own right. 
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In any case, this thesis has responded to a problem posed by Bacchus et al., that is, the 

problem of how to account for sampling and for uncertainty about proportion formulas on the 

random-worlds account. Insofar as this problem is significant, so too is my response to it. 

Regardless, this thesis has followed in the footsteps of Kyburg, Teng and Pollock in 

considering constraints on probabilities arising from both inverse and direct inferences rather 

than predictive inferences. So if they do not consider these kinds of constraints to be 

objectionable or useless, perhaps others would not too. 

  

 

8.4.2. Computational Complexity 

 

The reader may have noticed that the preceding cases in which I outline the proposal are 

often unrealistic. They involve credences for only a few proportion formulas, but the agent is 

often best understood as having non-zero credences for many proportion formulas, or rather a 

continuous space of proportion formulas. This makes the calculation of probabilities 

computationally complex. 

To me, this is not a theoretical problem. The agent could, in principle, utilise the proposal 

with credences for finitely many proportion expressions, irrespective of their number. I also 

think that the proposal could be extended to continuous spaces. 

Regardless, utilising the proposal with many credences is computationally complex. This, 

in turn, may make the proposal difficult to implement in practical circumstances. 

In a sense, I agree that this a problem, but it is not my problem. The aim of this thesis has 

been to propose an epistemically rational approach to constraining credences on the basis of 

information about relative frequencies.  There is no requirement that an epistemically rational 

approach be one that is practically easy to adopt. This is particularly the case for Bayesians 

who advocate conformity to the standard axioms of probability, a putatively rational standard 

that is impossible for real agents to fully satisfy. Therefore, I do not see how the difficulties 

in implementing this proposal would constitute a serious objection, at least any more so than 

for many widely-accepted norms of rationality. 
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8.4.3. The Problems Confronting the Random-Worlds Credences 

 

The proposal to use the random-worlds method as per the aforementioned proposal risks 

inheriting various problems from the method. In particular, the proposal may be thought to be 

language dependent (see Sub-Section 6.3.3.). 

My response to this worry is to suggest that the random-worlds credences only be used 

when the agent has their own probability distribution over the relevant proportion formulas or 

when such formulas are accepted. This entails that the proposal will only utilise probabilities 

that, as mentioned in Sub-Section 6.3.3., are not dependent on language by virtue of their 

dependence on proportion formulas.  

However, this response risks accusations of ad hockery as it appears to say that the method 

merely should not be used to address some questions which it clearly delivers counter-

intuitive verdicts on and which clearly count against its general applicability. 

I sympathise with this accusation and I will respond to it in the next sub-section. 

 

 

8.4.4. The Problem of a Better Measure, Ad Hockery and Other Problems 

 

While I have defended the proposal in this chapter, I also candidly acknowledge some 

reasons to doubt its finality or legitimacy as an answer to the question of how to constrain 

credences on the basis of frequency information. 

For one, as mentioned, the proposal might look ad hoc.  

Furthermore, if there is a better measure which prescribes useful inverse inferences, it very 

probably does not look like the random-worlds method’s uniform measure. So perhaps this 

better measure will ultimately invalidate inferences sanctioned by the random-worlds method. 

Perhaps a case of this would include the method’s prescribed inferences that involve 

incomparable reference classes. 

In response to these concerns, I confess to ad hockery and acknowledge the possibility of 

there being a better measure or theory which would rightly supplant using this proposal. 

Nevertheless, I still think that the proposal is rational. This proposal, while not problem 

free, at least validates intuitions about reasonable inductive practices (such as the newspaper 

case above) and it allows for uncertainty regarding proportion formulas to be incorporated 

into inductive inferences. The random-worlds method faces problems, but only in 



 

117 

 

circumstances where we need not apply it. Additionally, in other circumstances where it does 

not appear to face problems (such as the problem of incomparable reference classes), there is 

no reason to think that some other particular inference is better than the one which it 

prescribes. 

For these reasons, I offer the proposal regardless of these problems, suggesting that we use 

the method where it appears to work well and ignore it where it does not.
 223

 

  

  

                                                      
223

 This suggestion is analogous to how scientists, particularly physicists, use idealised models. They will 

sometimes use idealised models for making certain predictions that are adequate for their purposes and even if 

the models deliver false predictions about a subject matter that is not of immediate interest. For example, the 

physicist’s model of an ideal pendulum swinging in a room without air resistance may be adequate for making 

approximate predictions about the movements of certain swinging pendulums but inadequate for making 

specific predictions about the air resistance acting on those pendulums. Similarly, the random-worlds method 

may be adequate as an idealised model of rational direct inferences, but inadequate as, say, a model of rational 

inverse inferences. For more on the widespread use of idealisations in science, see Nancy Cartwright, How the 

Laws of Physics Lie (Oxford: Oxford University Press, 1983) and Paul Teller, “Fictions, Fictionalization, and 

Truth in Science,” in Fictions in Science: Philosophical Essays on Modelling and Idealisation, ed. Mauricio 

Suárez (New York: Routledge, 2009). 
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9. Conclusion 

 

This thesis considered the question of how information about frequencies should constrain 

credences. The random-worlds method was presented as a potential answer to the question 

that has favourable features. Nevertheless, the method has its limitations, particularly when it 

comes to prescribing rational inverse inferences and encapsulating the uncertainty that agents 

occasionally have about proportion formulas. I explored some alternative measures which 

hoped to overcome these limitations, ultimately concluding that they face a variety of 

problems which make the measures often inapplicable to actual cases of interest.  

The thesis then took a positive route in articulating some new ideas. I outlined and 

defended a theory of inverse inference, one which is consistent with agents potentially 

making epistemically rational and intuitive inferences from samples with or without formal 

methods. Lastly, I presented a proposal for how to constrain credences via integrating the 

resulting uncertainty from these inferences with the random-worlds method. These ideas, 

then, constitute a suggestion for how evidence about relative frequencies should influence 

Bayesian probabilities. 
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Appendix: Logical Glossary 

 

What follows is an informal glossary of logical notation which attempts to provide non-

specialist audiences with a rough understanding of the notation in this thesis. 

 

Symbol Informal Translation Example 

 

Fx  “x has the property F.” “x has the property of 

being a frog.” 

 

F “The set of all objects 

satisfying Fx.” 

 

“The set of all frogs.” 

~𝛼 “It is not the case that 𝛼.” “It is not the case that 

Adam is happy.” 

 

𝛼  𝛽 “If 𝛼, then 𝛽.” 

“𝛼 implies 𝛽.”
224

 

“If Adam is happy, then 

Billy is sad.” 

 

𝛼 & 𝛽 “𝛼 and 𝛽 are true.” “Adam is happy and Billy 

is sad.” 

 

𝛼 ∨ 𝛽 “𝛼 is true, 𝛽 is true or both α 

and 𝛽 are true.” 

“Adam is happy, Billy is 

sad or Adam is happy and 

Billy is sad.” 

 

𝛼 ≡ 𝛽 “𝛼 is true if and only if 𝛽 is 

true.” 

“𝛼 implies 𝛽 and 𝛽 implies 𝛼.” 

“If Adam is happy, then 

Billy is sad and if Billy is 

sad, then Adam is happy.” 

                                                      
224

 The relevant concept of implication here is material implication, not the concept of metalinguistic implication 

which features at the end of the glossary. 



 

120 

 

 

𝑥(𝐹𝑥) “For all x, Fx is true.” “Everything is a frog.” 

 

𝑥(𝐹𝑥  𝐺𝑥) “For all x, such that Fx is true, 

Gx is true.” 

“Every F is a G.” 

 

“All frogs are green.” 

𝑥(𝐹𝑥) “There exist some x such that 

Fx.” 

“There exists some thing 

such that it is a frog.” 

“A frog exists.” 

 

𝑥(𝐹𝑥 & 𝐺𝑥) “There exists an x such that Fx 

and Gx.” 

“There exists a thing such 

that it is a frog and it is 

green.” 

“A green frog exists.” 

 

%(𝐹𝑥) = 𝑓 “The proportion of things for 

which 𝐹𝑥 is true is f.” 

“The proportion of things 

that are frogs is 

0.000000000001.” 

 

%(𝐺𝑥|𝐹𝑥) = 𝑓 “The proportion of things 

satisfying 𝛽(𝑥) that also satisfy 

𝛼(𝑥) is f.” 

 

“The proportion of frogs 

that are green is 0.8.” 

𝛼 ⊨ 𝛽 “𝛼 implies 𝛽.” 

“In every model in which 𝛼 is 

true, 𝛽 is also true.” 

“In every model in which 

it is true that there is a 

square object, it is also true 

that there is a rectangular 

object.” 
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