

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CELL-MEDIATED IMMUNE RESPONSES TO THE 18 KILODALTON PROTEIN OF *MYCOBACTERIUM LEPRAE*

Björn Thomas Bäckström, BSc(Hons)

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

> Department of Molecular Medicine University of Auckland New Zealand September 1991

University of Angleland Library PHE LIBRARY SCHOOL MEDICINE PARKELL, AUCKLAND

Thesis W4 B126 92/5176/02

LOGICAL THINKING CANNOT YIELD US ANY KNOWLEDGE OF THE EMPIRICAL WORLD: ALL KNOWLEDGE OF REALITY STARTS FROM EXPERIENCE AND ENDS IN IT. PROPOSITIONS ARRIVED BY PURELY LOGICAL MEANS ARE COMPLETELY EMPTY OF REALITY.

ALBERT EINSTEIN

TABLE OF CONTENTS

ACKI	NOWLE	DGEMENTS	1
ABSTRACT			
LIST	OF FIG	JRES	4
LIST	OF TAB	LES	6
ABBI	REVIAT	IONS	7
СНА	PTER	1 INTRODUCTION	9
1.1	LEPRO	SY: THE DISEASE	9
	1.1.1	Control of Leprosy	9
	1.1.2	Genetic Factors and Leprosy	11
	1.1.3	MHC and T Cell Receptor Repertoire	11
1.2	ANTIG	EN PROCESSING AND PRESENTATION	13
	1.2.1	Recognition and Processing of Antigens by APC	13
	1.2.2	Antigen-MHC Interactions	14
	1.2.3	T Cell Activation and Costimulatory Factors	15
	1.2.4	Antigenicity of Proteins	17
1.3	T CELI	RESPONSES	19
	1.3.1	The CD4+ and CD8+ $\alpha\beta$ T Cell Subsets	19
	1.3.2	Delayed-Type Hypersensitivity	21
	1.3.3	The $\gamma\delta$ T Cell Subset and Heat-Shock Proteins	21
1.4	IMMUI	NE RESPONSES TO INTRACELLULAR PARASITES	23
	1.4.1	Functional T Cell Subsets and Immunity	23
	1.4.2	T Cell Responses to M. leprae Proteins	24
	1.4.3	T Cell Responses to the 18 kDa Protein of M. leprae	25
1.5	APPRO	ACHES TO ANTI-MYCOBACTERIAL IMMUNITY	26
	1.5.1	The Aims of Work Presented in this Thesis	27

CHA	PTER	2 MATERIALS AND METHODS	28
2.1	CELL (CULTURES	28
	2.1.1	Animals	28
	2.1.2	Immunisations	28
	2.1.3	Antigens	28
	2.1.4	Cell Culture Reagents and Solutions	33
	2.1.5	Cytokines	34
Ę	2.1.6	Cell Lines	34
	2.1.7	Antibodies	35
	2.1.8	Preparation of Cell Suspensions	36
	2.1.9	Generation of Proliferative T Cells	36
	2.1.10	Depletion of T Cell Subsets	37
	2.1.11	Limiting Dilution Analysis of Proliferative T Cells	37
	2.1.12	Preparation of Lymph Node Cell Culture Supernatant for Bioassay	38
	2.1.13	T Cell Purification	38
	2.1.14	Preparation of Antigen-Presenting Cells	38
	2.1.15	Generation of Cytotoxic T Cells	40
	2.1.16	Retroviral Infection of Tumour Cell Lines and Splenocytes	41
	2.1.17	Generation of Delayed-Type Hypersensitivity	41
	2.1.18	Establishment of T Cell Lines	41
	2.1.19	Proliferative Assay of T Cell Lines	42
	2.1.20	Preparation of T Cell Line Culture Supernatant for Bioassay	42
	2.1.21	Cytokine Bioassays	42
	2.1.22	Immunofluorescent Staining	43
2.2	BIOCH	IEMISTRY AND MOLECULAR BIOLOGY	45
	2.2.1	Biochemical Solutions	45
	2.2.2	Polyacrylamide Gel Electrophoresis	46
	2.2.3	Western Blot Analysis	46
	2.2.4	Enzyme-Linked Immunosorbent Assay	46

	Construction of pLSNL Vector Containing the <i>M. leprae</i> 18 kDa Gene	47
2.2.6	Transfection of the pLSNL18k Vector into the ψ -2 Packaging Cell Line	48
2.2.7	Northern Blot Analysis	49
2.2.8	Immunoprecipitation Assay	50
PTER	3 RESULTS	51
		51
3.1.1	Priming Effect of Complete and Incomplete Freund's Adjuvant	52
3.1.2	Effect of Priming Dose on, and Specificity of Proliferative Responses	53
3.1.3	Kinetics of In Vivo Primary and Secondary Responses	55
3.1.4	Effect of LNC Concentration on Proliferation	56
3.1.5	Kinetics of In Vitro Proliferative Responses	57
3.1.6	Conclusions from Experiments Presented in Section 3.1	58
		59
3.2.1	H-2 and Non-H-2 Genes Influence Responsiveness	59
3.2.2	Low Responder Mice Require a High Immunising Dose to Induce Proliferative T Cells	60
3.2.3	Antigen-Specific Proliferation of Immune LNC is Dependent upon CD4+ T Cells	62
3.2.4	The Proliferative Response is MHC class II Restricted	63
3.2.5	Bone Marrow-Derived Macrophages Present Antigen Efficiently to 18 kDa Protein-Primed T Cells	64
3.2.6	Immune LNC Secrete IL-2 upon Challenge In Vitro with 18 kDa Protein	65
3.2.7	M. tuberculosis Antigen Possesses Epitope(s) that Cross-React with M. leprae 18 kDa Protein	67
3.2.8	Frequency Analysis of 18 kDa-Immune LNC Responding to 18 kDa, <i>M. leprae</i> , and <i>M. tuberculosis</i> Antigens	69
3.2.9	<i>M. leprae</i> -Immune LNC Respond to <i>M. leprae</i> and <i>M. tuberculosis</i> Antigens but not to the 18 kDa Protein	72
3.2.10	Frequency Analysis of <i>M. leprae</i> -Immune LNC Responding to <i>M. leprae</i> and 18 kDa Antigens	73
3.2.11	Conclusions from Experiments Presented in Section 3.2	75
	2.2.7 2.2.8 PTER ESTAB TO THI 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 CHARA 18 kDa 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.7 3.2.8 3.2.9 3.2.10	 2.2.7 Northern Blot Analysis 2.2.8 Immunoprecipitation Assay PTER 3 RESULTS ESTABLISHMENT OF OPTIMUM CONDITIONS FOR <i>IN VITRO</i> RESPONSES TO THE 18 kDa PROTEIN 3.1.1 Priming Effect of Complete and Incomplete Freund's Adjuvant 3.1.2 Effect of Priming Dose on, and Specificity of Proliferative Responses 3.1.3 Kinetics of <i>In Vivo</i> Primary and Secondary Responses 3.1.4 Effect of LNC Concentration on Proliferation 3.1.5 Kinetics of <i>In Vitro</i> Proliferative Responses 3.1.6 Conclusions from Experiments Presented in Section 3.1 CHARACTERISTICS OF THE CELLS RESPONDING <i>IN VITRO</i> TO THE 18 kDa PROTEIN 3.2.1 H-2 and Non-H-2 Genes Influence Responsiveness 3.2.2 Low Responder Mice Require a High Immunising Dose to Induce Proliferative T Cells 3.2.3 Antigen-Specific Proliferation of Immune LNC is Dependent upon CD4+ T Cells 3.2.4 The Proliferative Response is MHC class II Restricted 3.2.5 Bone Marrow-Derived Macrophages Present Antigen Efficiently to 18 kDa Protein Primed T Cells 3.2.6 Immune LNC Secrete IL-2 upon Challenge <i>In Vitro</i> with 18 kDa Protein 3.2.7 <i>M. tuberculosis</i> Antigen Possesses Epitope(s) that Cross-React with <i>M. leprae</i> 18 kDa Protein 3.2.8 Frequency Analysis of 18 kDa-Immune LNC Responding to 18 kDa, <i>M. leprae</i>. and <i>M. tuberculosis</i> Antigens but not to the 18 kDa Protein 3.2.9 <i>M. leprae</i>-Immune LNC Respond to <i>M. leprae</i> and M. tuberculosis Antigens antigens but not to the 18 kDa Protein

3.3	PROLI	FERATIVE T CELL EPITOPES OF THE 18 kDa PROTEIN	76
	3.3.1	Mice Immunised with the 18 kDa Protein Respond to few Immuno- Dominant Regions	76
	3.3.2	Peptide-Immunisation Reveals Additional T Cell Epitopes of the 18 kDa Protein	80
	3.3.3	Conclusions from Experiments Presented in Section 3.3	82
3.4		TOXIC T CELL RESPONSES SPECIFIC FOR the 18 kDa PROTEIN AND DES	83
	3.4.1	Peptide 79-98 Induces Cytotoxic Responses	83
	3.4.2	Cytotoxic Effector Cells Express CD8 and Thy-1 Antigens	85
	3.4.3	Anti-Peptide 79-98 Cytotoxicity is Restricted to the H-2 ^b Haplotype	86
	3.4.4	Generation of Cell Lines Expressing the M. leprae 18 kDa Gene	87
	3.4.5	No 18 kDa-Specific Cytotoxic T Cells Detected after In Vivo-Priming	88
	3.4.6	Determining Protein Production of Cell Lines Carrying the 18 kDa Gene	89
	3.4.7	Conclusions from Experiments Presented in Section 3.4	90
3.5	DELA PROTI	YED-TYPE HYPERSENSITIVITY RESPONSES TO THE 18 kDa EIN	91
	3.5.1	The 18 kDa Protein Induces Delayed-Type Hypersensitivity	91
	3.5.2	Multiple Immunisations Induce IgG and Reduce DTH Responses	92
	3.5.3	Conclusions from Experiments Presented in Section 3.5	93
3.6	THE N	ATURE OF RESPONSE OF 18 kDa-SPECIFIC TCL	94
	3.6.1	Analysis of Surface Antigens Expressed	94
	3.6.2	Determination of Stimulatory T Cell Epitopes	96
	3.6.3	Cytokine Production Profiles of TCL	99
	3.6.4	Influence of the H-2 Class II Locus on Proliferation	101
	3.6.5	Effect of APC Subsets on Proliferation	103
	3.6.6	Conclusions from Experiments Presented in Section 3.6	104

CHA	PTER	4 DISCUSSION	106
4.1	GENER	AL DISCUSSION	106
	4.1.1	Factors Affecting Responsiveness to the 18 kDa Protein	
	4.1.2	Efficacy of APC Populations on Proliferation	109
	4.1.3	Class of Immune Response	109
	4.1.4	Immunological Cross-Reactivity	
	4.1.5	T Cell Epitopes of the 18 kDa Protein	
	4.1.6	T Cell Epitope Mapping using Algorithms	
	4.1.7	A Comparison between T and B Cell Responses to the 18 kDa Protein	
	4.1.8	Cytotoxic T Cell Responses to the 18 kDa Protein	116
	4.1.9	DTH Responses to the 18 kDa Protein	117
	4.1.10	Responses of 18 kDa-Specific TCL	118
4.2	PERSP	ECTIVE AND FUTURE DIRECTIONS	
	4.2.1	Stress Proteins as Immunogens	120
	4.2.2	T Helper Subsets and Genetic Markers	122
	4.2.3	Vaccines and Immune Response Patterns	123
	4.2.4	Final Comments	125
RFF	FRENC	ES	126

and Na

ACKNOWLEDGEMENTS

I thank my supervisor Professor Jim Watson for encouraging me to come all the way from Sweden to New Zealand and providing me with the opportunity to undertake post-graduate studies in the Department of Molecular Medicine. I also thank Jim for his excellent guidance and his concern for my welfare. I thank my assistant supervisor Professor John Marbrook for all the beneficial scientific discussions we have had and teaching me how to think and understand science. I also would like to express a very special appreciation to John for his invaluable assistance in the preparation of this thesis and personal generosity.

I am grateful to all the members of the department for their helpful assistance and friendly manner. In particular, I thank Dr Ross Prestidge for his "never-ending-always-smiling-helping" attitude and contribution toward my research. Dr Roger Booth has been very helpful throughout my three and a half years studies, by providing useful advice and constructive criticism of my research, especially during the preparation of this thesis. I am grateful to Prudence Grandison and Liz Doolin for their technical skills, producing recombinant 18 kDa protein and managing with my always increasing demand for more. I have appreciated and benefitted from discussions with Drs Phil Crosier, John Fraser, Paul Tan and Margot Skinner. I express my gratitude to Drs Kathy and Phil Crosier for critical reading of this thesis. I also thank Louise Moffatt for linguistic help in preparation of the thesis and for putting up with me in her office during that time. I owe Louise and Tui Harfield a great deal for keeping the mice in a very good condition and breeding all possible combinations of "high and low responder mice". I thank my golf-partner Euphemia Leung for teaching me the methods of molecular biology her way: "there are no short cuts". I thank Dr Hanxiu Liu for looking after my "pets" (T cell lines) during the last four of months of this study. I would also like to thank Kuljeet Singh for supporting and helping during the home stretch of preparing this thesis.

I am appreciative to The Leprosy Mission, particularly the Director Mr Gordon Coombs, for the financial support and continued interest of my research and welfare.

Finally, I am very grateful for the love and support from all my friends, here (New Zealand) and there (the rest of the World, mainly Sweden), and from my family, especially my mother Birgitta, always caring and supporting me "whatever I do, wherever I do it".

ABSTRACT

The cell-mediated immune system plays an important role in protective immunity against *Mycobacterium leprae*. The aim of work presented in this thesis was to study various T cell responses in mice to one protein of *M. leprae*, designated the 18 kDa protein.

Mice were immunised with recombinant 18 kDa protein and lymph node cells tested later in proliferative T cell assays. The *in vitro* response was specific for the 18 kDa protein and proliferation dependent on the immunising dose as well as *in vitro* antigen concentration. The proliferative response required CD4+ T cells, which recognised the antigen in the context of major histocompatibility class II molecules. The T cell response was tested in various recombinant and congenic pairs of mouse strains. BALB/cJ (H-2^d), BALB.B (H-2^b), B10.BR (H-2^k), and B10.M (H-2^f) mice were all high responder strains, while the C57BL/10J (H-2^b) mouse strain was a low responder. By comparing the genetic characteristics of these high and low responding strains, it was deduced that both H-2 and non-H-2 gene(s) contributed to the magnitude of responsiveness. F₁ progeny mice from high and low responder parents responded in a way that showed that high responsiveness was inherited in a dominant manner. Limiting dilution assays indicated that the frequency of cells proliferating in response to the 18 kDa protein correlated with high and low responding lymphocytes to the 18 kDa protein probably accounted for the reduced *in vitro* IL-2 production observed in this mouse strain.

The T cell response of mice immunised with either the 18 kDa or *M. leprae* antigens revealed the following. The 18 kDa protein-primed lymph node cells responded to both *M. leprae* and *M. tuberculosis*, suggesting a shared 18 kDa protein T cell epitope by these pathogens. The *M. leprae*-primed lymph node cells showed no significant response to the 18 kDa protein, but responded similarly to *M. leprae* and *M. tuberculosis* antigens. The results were obtained using both bulk cultures and limiting dilution experiments. This indicated that the 18 kDa protein was probably not a dominant antigen in primary murine immune responses against *M. leprae*.

Proliferative T cell epitopes on the 18 kDa protein were examined in several mouse strains. Each mouse strain responded to one dominant region after immunising with 18 kDa protein. The dominant T cell epitope was not identical in all strains. The peptide consisting of residues 106-125 of the 18 kDa protein was dominant in BALB/cJ and BALB.B mice, whereas the B10.BR mice responded to peptide 31-50 and C57BL/10J mice to peptide 16-35. Lymph node cells primed with individual synthetic peptides and challenged with 18 kDa protein *in vitro* revealed additional T cell epitopes which were not recognised following immunisation with 18 kDa protein.

Cytotoxic T cell epitopes on the 18 kDa molecule were investigated, using an *in vitro*-priming system. Only one region of the 18 kDa protein elicited cytotoxic T cell responses. This T cell epitope was restricted to mouse strains of H-2^b haplotype. The cytotoxic response was a feature of CD8⁺ T cells and the lysis of target cells depended upon peptide concentration. Cells infected with a recombinant retrovirus carrying the 18 kDa gene were used to prime mice for the induction of cytotoxic T cells *in vivo*. Cytotoxic T cell responses were detected but none were specific for the 18 kDa protein.

Inflammatory T cell responses to the 18 kDa protein were investigated in a number of mouse strains, using a delayed-type hypersensitivity footpad assay. The C57BL/10J mouse strain elicited a similar or even greater response than other strains tested, in contrast to proliferative T cell responses where C57BL/10J was a low responder strain. The number of immunisations influenced the type of immune response elicited in mice. Multiple immunisations with the 18 kDa protein resulted in a reduced delayed-type hypersensitivity response concomitant with the appearance of antigen-specific IgG antibodies.

Several 18 kDa-specific T cell lines derived from BALB/cJ, B10.BR, and C57BL/10J mouse strains were generated. T cell lines from the BALB/cJ strain showed characteristics of $T_{\rm H}1$ and $T_{\rm H}0$ phenotypes and one line responded to peptide 46-65 of the 18 kDa protein. The B10.BR- and C57BL/10J-derived T cell lines responded to peptide 31-50 and 106-125 respectively and secreted IL-3 upon stimulation, but neither IL-2 nor IL-4 were detected.

Various subsets of T cells might play different roles in the immune response against pathogens. The T cell subsets involved in protection might not be identical to those eliciting a strong immunological reaction. T cell responses against intracellular parasites are discussed in relation to factors that govern protective immunity.

LIST OF FIGURES

2.1	SDS-PAGE and Western blot analyses of the 18 kDa protein	29
2.2	Schematic presentation of the one letter amino acid code for the <i>M. leprae</i> 18 kDa protein and synthesised R.L.Prestidge (RLP)-designated peptides	31
2.3	Schematic diagram of overlapping peptides from the M. leprae 18 kDa protein	32
2.4	Schematic presentation of tryptic M. leprae 18 kDa protein-derived peptides	32
2.5	The proliferative response of the indicator cell lines FT/IL-3 and HT-2 to cytokines .	44
2.6	Scheme for insertion of the 18 kDa gene into the pLSNLneo retrovirus vector	48
3.1	The effect of priming with complete or incomplete Freund's adjuvant on proliferative T cell responses to the 18 kDa protein	52
3.2	The effect of priming dose on proliferative T cell response to yeast-derived 18 kDa protein	53
3.3	Specific proliferative T cell responses to the 18 kDa protein	54
3.4	The kinetics of <i>in vivo</i> primary and secondary responses on <i>in vitro</i> proliferation to the 18 kDa protein	56
3.5	The effect of <i>in vitro</i> lymph node cell concentration on proliferative T cell responses to the 18 kDa protein	57
3.6	The kinetics of 18 kDa primed LNC on the in vitro proliferative T cell response	58
3.7	Influence of H-2 haplotype on T cell proliferative responses to the 18 kDa protein	60
3.8	The effect of 18 kDa protein immunising dose in a high and a low responder mouse strain on proliferation	61
3.9	The proliferative response of CD4-, CD8-, and Thy-1- LNC populations primed with the 18 kDa protein	62
3.10	The effect of anti-MHC class II antibodies on T cell proliferation to the 18 kDa protein	63
3.11	Comparison of antigen-presentation by different APC populations to 18 kDa protein-primed T cells	65
3.12	IL-2 and IL-4 production in vitro by 18 kDa protein-primed LNC	66
3.13	The proliferative T cell response of 18 kDa protein-primed LNC to <i>M. leprae</i> and <i>M. tuberculosis</i> antigens	67
3.14	The proliferative T cell response of 18 kDa protein-, PBS-primed, or unprimed LNC to <i>M. leprae</i> and <i>M. tuberculosis</i> antigens	68
3.15	Precursor frequency analyses of 18 kDa protein-primed LNC responsive to 18 kDa, <i>M. leprae</i> , or <i>M. tuberculosis</i> antigens	71
3.16	The proliferative T cell response of <i>M. leprae</i> primed LNC to <i>M. leprae</i> , <i>M. tuberculosis</i> , and 18 kDa antigens	72

3.17	Precursor frequency analyses of <i>M. leprae</i> -primed LNC responsive to <i>M. leprae</i> or 18 kDa antigens	74
3.18	The T cell recognition sites of the 18 kDa protein by protein-primed LNC defined by RLP-peptides	77
3.19	The T cell recognition sites of the 18 kDa protein by protein-primed LNC defined by 20-mer peptides	79
3.20	Stimulatory T cell epitopes of the 18 kDa protein by LNC primed with RLP- peptides	80
3.21	Stimulatory T cell epitopes of the 18 kDa protein by LNC primed with 20-mer peptides	81
3.22	The cytotoxic T cell epitopes of the 18 kDa protein determined by primary <i>in vitro</i> stimulation with peptides	84
3.23	The effect of concentration of peptide 79-98 on cytotoxicity	84
3.24	The 79-98 peptide-specific effector cells are CD8+ T cells	85
3.25	The cytotoxic response to peptide 79-98 is H-2 ^b restricted	86
3.26	Northern blot analysis of mRNA from transfected and infected cell lines specific for the 18 kDa gene	88
3.27	In vivo immunisation with 18 kDa gene-infected spleen cells	89
3.28	The effect of immunising dose and mouse strain on DTH responses to the 18 kDa protein	92
3.29	The DTH response to the 18 kDa protein of multiply-immunised mice	93
3.30	The expression of surface antigens by the 18 kDa-specific TCL B10-1	95
3.31	The stimulation of B10.BR-derived TCL with 18 kDa protein and peptides, and <i>M. leprae</i> and <i>M. tuberculosis</i> antigens	96
3.32	The stimulation of BALB/cJ-derived TCL with 18 kDa protein and peptides, and <i>M. leprae</i> and <i>M. tuberculosis</i> antigens	97
3.33	The stimulation of C57BL/10J-derived TCL with 18 kDa protein and peptides, and <i>M. leprae</i> and <i>M. tuberculosis</i> antigens	98
3.34	IL-2 and IL-4 production by 18 kDa-specific TCL	100
3.35	IL-3 and IL-4 production by 18 kDa-specific TCL	100
3.36	The effect of MHC class II specific mAbs on proliferation of 18 kDa-specific TCL	102
3.37	Proliferative responses of 18 kDa-specific TCL to whole spleen cells, bone marrow- derived macrophages (BM-MØ), and purified splenic B cells (sB-cell)	103
4.1	Predicted T cell epitopes of the 18 kDa protein and a summary of responses to the 18 kDa protein and peptides	114

LIST OF TABLES

Cytokines: Concentrations of Stock and Working Solutions	34
Cell line: Cell Type, Supplement, Mouse Strain of Origin (H-2 Haplotype), and Reference	34
Monoclonal Antibodies: Specificity, Ig Class, Source, and Reference	35
Frequency Analysis of 18 kDa-Immune LNC Responding to 18 kDa, <i>M. leprae</i> , or <i>M. tuberculosis</i> Antigens	70
Frequency Analysis of <i>M. leprae</i> -Immune LNC Responding to <i>M. leprae</i> or 18 kDa Antigens	73
Detection of Cytokines Secreted by TCL	101
Summary of all Characteristics of 18 kDa TCL Investigated in Section 3.6	104
Properties of T _H 1 and T _H 2 Cells	110
Comparison of T and B cell Responses to the 18 kDa Protein	
	Cell line: Cell Type, Supplement, Mouse Strain of Origin (H-2 Haplotype), and Reference Monoclonal Antibodies: Specificity, Ig Class, Source, and Reference Frequency Analysis of 18 kDa-Immune LNC Responding to 18 kDa, M. leprae, or M. tuberculosis Antigens Frequency Analysis of M. leprae-Immune LNC Responding to M. leprae or 18 kDa Antigens Detection of Cytokines Secreted by TCL Summary of all Characteristics of 18 kDa TCL Investigated in Section 3.6 Properties of T _H 1 and T _H 2 Cells

ABBREVIATIONS

a.a.	Amino acid(s)
APC	Antigen-presenting cell(s)
BCG	Bacille Calmette-Guérin
BM-MØ	Bone marrow-derived macrophage(s)
bp	base pair(s)
CFA	Complete Freund's adjuvant
Con A	Concanavalin A
Counts/min	Counts per minute
CTL	Cytotoxic T lymphocyte(s)
CWP	Cell wall protein(s)
DEAE	Diethylaminoethyl
DNA	Deoxyribonucleic acid
DTH	Delayed-type hypersensitivity
EDTA	Ethylenediamide tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
ER	Endoplasmic reticulum
FACS	Fluorescence-activated cell sorter
FITC	Fluorescein isothiocyanate
8	Acceleration of gravity
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HEL	Hen egg lysozyme
HLA	Human leukocyte antigen(s)
HPLC	High-performance liquid chromatography
HSP	Heat-shock protein(s)
IFA	Incomplete Freund's adjuvant
IFN	Interferon (e.g., IFN-γ)
Ig	Immunoglobulin(s)
Б	Invariant chain
IL-	Interleukin (e.g., IL-2)
kDa	Kilodalton
KLH	Keyhole limpet haemocyanin
LDA	Limiting dilution analysis
LNC	Lymph node cell(s)

LPS	Lipopolysaccharide
LT	Lymphotoxin
mAb	Monoclonal antibod(y)(ies)
mIg	Membrane immunoglobulin(s)
MHC	Major histocompatibility complex(es)
mRNA	Messenger RNA
OVA	Ovalbumin
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
RNA	Ribonucleic acid
sB-cell	Purified B cell population(s)
SDS	Sodium dodecyl sulphate
SE	Standard error(s)
SI	Stimulation ind(ex)(ices)
TCL	T cell line(s)
TCR	T cell receptor(s)
[³ H]-TdR	Tritiated thymidine
T _H	T helper cell(s) (e.g. T _H 1)
TNF	Tumour necrosis factor
Tris	2-amino-2 (hydroxymethyl) propane-1-3-diol