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Abstract

Vector generalized additive models (VGAMs) are an extension of the class of generalized

additive models (GAMs) to include multivariate regression models in a very natural way

by using vector smoothing. The current VGAM class is very large and includes many statistical

distributions and models, for example, univariate and multivariate distributions, categorical data

analysis, quantile and expectile regression, time series, survival analysis, extreme value analysis,

and nonlinear least-squares models. Parameter estimation is performed by a combination of

IRLS and modified vector backfitting using vector splines. A major issue, however, is that it is

not easy to efficiently integrate smoothness estimation methods with the backfitting approach.

The aim of this research study is to introduce a new efficient method based on penalized

regression splines for estimating parameter coefficients to the VGAM class, and to integrate au-

tomatic numerical procedures to determine the shape of non-linear terms from the data into the

VGAM framework. To achieve these, we develop VGAMs based on penalized regression splines

using P-spline smoothers, which we term ‘P-spline VGAMs’. P-spline VGAMs are represented

in this thesis as penalized vector generalized linear models (VGLMs), where each smooth compo-

nent of a P-spline VGAM is represented using penalized B-splines or P-spline smoothers and has

an associated discrete penalty measuring its wiggliness controlled by the smoothing parameter.

P-spline VGAMs can be then fitted by the usual iteratively reweighted least squares (IRLS)

scheme for VGLMs, except that a penalized least squares problem, in which the set of smoothing

parameters must be estimated alongside the other model parameters, is solved at each iterate.

The smoothing parameters are estimated by minimizing the approximate unbiased risk estima-

i



tor (UBRE) using the computational procedure for the automatic and stable multiple smoothing

parameter selection based on the pivoted QR decomposition and singular value decomposition.

Importantly, the new fitting procedure is developed for the full range of VGAM models involving

infrastructure such as constraints on model terms.

This research study describes the theoretical and practical aspects of the proposed method (P-

spline vector generalized additive models). The methods have been implemented as R functions

and the practical performance of the proposed method is investigated and compared to the

existing approaches (VGAMs based on the classical backfitting) via simulation. As an illustration

of the developments, the proposed method is applied to data from a cross-sectional workforce

study combined with a health survey from New Zealand during the 1990s, and data from a

survey study of the pregnancy and birth process during 1990 − 2004, using several statistical

models, which include the multinomial logit, proportional and non-proportional odds models,

bivariate logistic model, and the LMS method for quantile regression.
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Introduction

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986, 1990) are a nonpara-

metric extension of generalized linear models (GLMs) (Nelder and Wedderburn, 1972).

GAMs are now widely used and have become a standard statistical technique that allows con-

siderable flexibility. Consider a univariate response y that belongs to the exponential family,

where µ = E(y) is related to p covariates x = (x1, x2, . . . , xp)
T . GLMs model µ parameter

in terms of a linear combination of the explanatory variables connected by a link function g

g (µ) = η (x) = β1x1 + β2x2 + · · ·+ βpxp, (1.1)

where x1 ≡ 1 if the model contains an intercept and β1, β2, · · · , βp are a set of unknown

parameters. GAMs generalize (1.1) to:

g (µ) = η (x) = β1x1 + f2 (x2) + · · ·+ fp (xp) . (1.2)

The key feature of (1.2) is that the mean of the response depends on the covariates through a sum

of smooth terms, where the fk’s are arbitrary smooth functions. The use of smooth functions

adds much flexibility for the modeling of nonlinear relationships between the predictor variables

and the dependent variable. The exact parametric form of these smooth functions is unknown,

1
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as is the degree of smoothness appropriate for each of them. GAMs as introduced by Hastie and

Tibshirani (1990) were based on the classical backfitting approach. In backfitting, the algorithm

iterates through the individual smooth components in the model and updates each component

using an appropriate smoother. It does this by iteratively smoothing partial residuals from the

model with respect to the covariate that the smooth relates to. The cycles continue until the

smooth fits stabilize. GAMs within the backfitting framework can be fitted by minimizing a

penalized weighted least-squares problem, where the backfitting algorithm is used in conjunction

with the local-scoring algorithm. Representation of GAMs using linear smoothers and estimation

performed by backfitting have the advantage that a wide range of smoothers can be used, but

choosing the amount of smoothing to perform model selection is still difficult. The backfitting

framework is poorly suited to dealing with the issue of automatically estimating the amount of

smoothing for the smooth terms.

The issue of estimating the amount of smoothing for smooth terms of GAMs has been recog-

nized and discussed in Hastie and Tibshirani (1990). Several authors suggested using penalized

regression splines for GAM modeling (Hastie and Tibshirani, 1990; Hastie, 1996; Eilers and Marx,

1996; Wand, 2000; Wood, 2000, 2004, 2006b). Eilers and Marx (1996), Marx and Eilers (1998)

and Wood (2000) proposed suitable parametric representations for the smooth functions based

on the penalized regression spline approach. They represented GAMs as penalized generalized

linear models (GLMs), where each smooth term of (1.2) is represented using an appropriate set

of basis functions and has an associated penalty measuring the wiggliness, where the smoothing

parameters are given to each penalty in the penalized likelihood to control the wiggliness. Mod-

els were fitted by penalized iteratively reweighted least squares (P-IRLS). The generalization of

GAMs using penalized regression splines allowed the models to be estimated by penalized regres-

sion methods. Furthermore, this allowed smoothing parameter selection to be integrated as part

of the P-IRLS scheme in a computationally efficient manner using well-founded criteria such as

a generalized cross validation (GCV) or unbiased risk estimator (UBRE which can be used as an

approximation of AIC for many GAMs) (see Wood, 2006b). Wood (2000, 2004, 2006b) proposed
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a computational method to control and choose the degrees of smoothness appropriately. His

penalized likelihood-based approach did, by contrast, make possible an efficient computational

method for automatic multiple smoothing parameter selection used to determine the functional

form of any relationship from the data. This approach presented a substantial advantage over

the original GAM class.

More recently, Marra and Radice (2011) extended the penalized likelihood approach with

regression splines to a bivariate binary response modeling problem. They proposed a fitting

procedure based on penalized regression spline approach for a nonstandard semipametric bivari-

ate probit analysis (whose model exhibits the recursive structure). They represented smooth

terms in the models using penalized regression splines and fitted by maximization of the pe-

nalized likelihood. Once again, representation of such model using penalized regression splines

allowed the models to be estimated by penalized regression methods and the appropriate degree

of smoothness for the smooth components can be estimated from the data using the UBRE score.

There have been many extensions proposed to the GLM family. One of them called vector

generalized linear models (VGLMs) and vector generalized additive models (VGAMs) was devel-

oped by Yee and Wild (1996). VGLMs/VGAMs extended the class of GLMs/GAMs to include

classes of multivariate regression models. This generalization covers a broad range of models

such as multiple logistic regression model for nominal responses, continuation ratio models and

proportional and nonproportional odds models for ordinal responses, and bivariate probit and

bivariate logistic models for corrected binary responses.

Yee and Wild (1996) described VGLMs as a model of the conditional distribution of Y given

x of the form

f (y|x; B) = h (y, η1, . . . , ηM ) , (1.3)

where, the observed response y is a q-dimensional vector (q ≥ 1), h (·) is some known function,

B = (β1 β2 · · · βM ) is a p ×M matrix of unknown regression coefficients. VGLMs model

each of a set of parameters as a linear combination of the covariate variables x, specified in
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terms of a parametric class written as

ηj = ηj(x) = β(j)1x1 + β(j)2x2 + · · ·+ β(j)pxp, j = 1, . . . ,M. (1.4)

VGAMs extend (1.4) to

ηj = ηj(x) = β(j)1x1 + f(j)2(x2) + · · ·+ f(j)p(xp), j = 1, . . . ,M. (1.5)

That is, VGAMs specify the model in terms of smooth functions rather than linear functions.

As with GLMs, VGLMs can be fitted using the IRLS algorithm in the same manner as it was

done for the GLM class.

For VGAMs, once again, the f(j)k(xk) are fitted using smoothers. In fact, fk(xk) =(
f(1)k(xk), . . . , f(M)k(xk)

)T are fitted simultaneously using vector smoothers. Like the original

GAMs based on the backfitting approach of Hastie and Tibshirani (1990), VGAMs can be es-

timated by IRLS combined with modified vector backfitting using vector splines. The most

complete reference for VGAMs is Yee (2015b). Only one type of smoother, the vector cubic

smoothing spline smoother, is currently implemented by Yee’s R package VGAM. The theory

and software of VGAMs are based on the backfitting approach proposed by Hastie and Tibshi-

rani (1990) and thus inherit the same difficulties for integrating automatic smoothness-estimation

procedures. Current software implementations of the VGAM framework, the R package VGAM,

do not deal with this problem satisfactorily. In fact, the backfitting approach obtained from

the VGAM library defaults is likely to overfit when the shapes are less complex or results in

the model underfitting when the shapes are more complex. Papers such as Marra and Radice

(2010) demonstrated the impact of the degree of smoothness choice on the shape of the estimated

smooth functions using the backfitting approach. They showed that the estimated curves ob-

tained from GAMs based on the backfitting approach using the default settings are more wiggly

than they should be when the shapes are less complex. This indicates that the absence of a

numerical procedure for smoothing parameter estimation leads to the model overfitting. On the

other hand, with more complicated trend shapes, backfitting resulted in the model underfitting
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because the degrees of freedom from the default settings did not provide enough flexibility. The

development of automatic smoothness-estimation procedure for VGAMs is thus highly desirable.

The more modern GAM formulation based on penalized regression splines (Wood, 2000, 2004,

2006b, 2008) overcomes the issue of estimating the amount of smoothing for smooth terms of

GAMs based on the backfitting approach. In this research, we extended these ideas to the vector

GAM class. The main challenge for this thesis was to develop a penalized regression spline

formulation of VGAMs, together with automated smoothness estimation and then to implement

these methods in R. Our approach provided an efficient computational method for automatic

smoothing parameter selection for a VGAM class covering a wide range of multivariate response

types and models. This way, an advantage of automatic smoothing parameter selection was

conveyed to a very large class of models. Currently the VGLM/VGAM classes are very large;

potentially, hundreds of models lie within this framework.

1.1 Goals

The main purpose of this research is to introduce an alternative estimation procedure based on

penalized regression splines for estimating model coefficients to the VGAM class, and to integrate

an efficient computational method for automatic multiple smoothing parameter selection used

to determine the functional shape of any relationship from the data into the VGAM framework.

To achieve this, more specific goals include the following.

1. Developing a fitting procedure based on the penalized regression spline (P-splines) approach

of Eilers and Marx (1996), Marx and Eilers (1998) and Wood (2006b) for the full range of

VGAM models including complications such as constraints on model terms (Yee and Wild,

1996).

2. Developing a stable and efficient smoothing parameter selection procedure for the VGAM

framework by generalizing the approaches of Wood (2004), Marra and Radice (2011), Marra
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et al. (2013b), Marra and Radice (2013), Marra (2013), Marra et al. (2013a), and Radice

et al. (2015). The plan involved:

a) developing the general forms of smoothing parameter selection criteria such as a gen-

eralized cross validation (GCV) and the unbiased risk estimator (UBRE) for VGAMs,

and

b) implementing computational methods for smoothing parameter selection for the VGAM

framework by generalizing the approach of Wood (2004).

3. Implementing the above methods in R.

4. Investigating the practical performance of the method proposed (P-spline vector generalized

additive models) and comparing it to that of the existing approaches (VGAMs based on

the backfitting approach) via simulation.

5. Applying the new approach to data from a cross-sectional workforce study combined with

a health survey from New Zealand during the 1990s, and data from a survey study of

the pregnancy and birth process during 1990 – 2004, with multivariate response types and

models.

1.2 Outline

The outline of the thesis is as follows. Chapter 2 begins by discussing theoretical and practical

aspects of GAMs based on the penalized likelihood approach with regression splines (Eilers and

Marx, 1996; Marx and Eilers, 1998; Wood, 2006b). It then discusses the basics of smoothing

parameter estimation and the effect of smoothing parameter choices on the shape of the estimated

smooth functions. Chapter 3 summarizes the development of VGLMs/VGAMs emphasizing the

theory required for model construction, constraint matrices and model estimation. Chapter 4

develops the P-spline formulation of the VGAM class and computational algorithms for the case

of given smoothing parameters. Chapter 5 develops the theory and computational details for
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automated smoothing-parameter estimation and compares the new and existing methods using

simulation. Chapter 6 applies the new method developed in this study to data from a cross-

sectional workforce study combined with a health survey from New Zealand during the 1990s,

and data from a survey study of the pregnancy and birth process during 1990 − 2004, with

several multivariate response types and models, which include the multinomial logit, proportional

and non-proportional odds models, bivariate logistic model, and the LMS method for quantile

regression. The thesis concludes with a discussion of the new approach and some suggestions for

future research in Chapter 7.
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2
GAMs based on Penalized Regression

Splines

Generalized additive models (GAMs) as introduced by Hastie and Tibshirani (1990) were

fitted using the classic backfitting approach. More recently, other procedures have been

employed for estimating GAMs. Marx and Eilers (1998) and Wood (2000, 2004, 2006b) developed

GAMs using the penalized regression spline approach. When using such an approach, GAMs

can be estimated by penalized regression methods, and the appropriate degree of smoothness for

smooth terms can be automatically estimated from the data using well-founded criteria such as

generalized cross-validation (GCV) or the Akaike information criterion (AIC).

In this chapter, the focus is on penalized regression-spline methods. Our objective is to

present the basic ideas of the penalized likelihood approach proposed by Marx and Eilers (1998)

and Wood (2000, 2004, 2006b) in a way that will lay the ground work for extending these

approaches to the vector GAM setting of Yee and Wild (1996).

We begin by reviewing some of the basics of generalized linear models (GLMs) and GAMs

based on the classic backfitting of Hastie and Tibshirani (1990). We will then describe some

9
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theoretical and practical aspects that underpin the GAM approach based on the penalized likeli-

hood approach with regression splines of Wood (2000, 2004, 2006b) and Marx and Eilers (1998).

The basics of smoothing parameter estimation and the effect of smoothing parameter choices on

the shape of the estimated smooth functions will be discussed. The methodology will be then

illustrated by modeling the kyphosis data and daily air pollution and daily death rate.

2.1 GLMs

Nelder and Wedderburn (1972) introduced the class of generalized linear models. GLMs specify

a relationship between the mean of the random variable and a function of a linear combination of

predictors. This generalization allows for a response distribution to follow any distribution from

the exponential family, and allows a description of the variance as a function of the mean. The

family of distributions includes the Gaussian or normal, Poisson, binomial, gamma, and inverse

Gaussian. GLMs have the basic structure

g (µi) = ηi = xTi β,

where µi = E(Yi), g(·) is a monotone, differentiable function called the link function, xi is a

p×1 vector of explanatory variables, and β is the p×1 vector of parameters. In addition, the

random responses,Yi, are independent from a distribution belonging to the exponential family.

The probability density functions are of the form

f(y; θ, φ) = exp
[
yθ − b(θ)
a(φ, ω)

+ c(y, φ)

]
,

where θ ∈ R and φ ∈ R+ are parameters, ω is some known constant, and a(·), b(·) and

c(·) are arbitrary functions. The parameter θ is known as the natural parameter. The

parameter φ is the dispersion parameter, and the function a(φ, ω) can be written in the

form φ/ω. The mean and variance of such a distribution are E(Y ) = b′(θ) = µ and

var(Y ) = a(φ, ω) b′′(θ), respectively. We can define a function V (µ) = b′′(θ)/ω, such that

var(Y ) = V (µ)φ. Then, we wish to estimate parameters β which are related to the Yis



2.1. GLMs 11

through E(Yi) = µi and g (µi) = xTi β. Thus the log-likelihood function is

`(β) =
n∑
i=1

[
yiθi − b(θi)
a(φ, ω)

+ c(yi, φ)

]
. (2.1)

The vector β can be estimated by maximizing (2.1). Maximization proceeds by partially differ-

entiating ` with respect to each element of β , setting the resulting expressions to zero, and solv-

ing for β. For GLMs, maximum likelihood estimators are obtained by an iteratively reweighted

least squares (IRLS) procedure. We will discuss the IRLS algorithm for the exponential-family

model in the next section.

2.1.1 IRLS

IRLS is an algorithm for calculating quantities of statistical interest using weighted least squares

calculations iteratively. The IRLS fitting algorithm applies naturally for GLMs as follows. We

begin by considering the use of Newton’s method to maximize the log-likelihood ` (β). This

provides an iterative procedure

β(t+1) = β(t) −
(

∂2`

∂β ∂βT

)−1
∂`

∂β
, (2.2)

where the derivatives are computed at β(t) (t is the iteration number). Since we know that

var(Yi) = V (µi)φ, by using the chain rule, we can express the scalar derivatives of vector β as

∂`

∂βj
=

n∑
i=1

yi − µi
var (Yi)

(
dµi
dηi

)
xij , for j = 1, . . . , p.

We can replace the second derivatives in (2.2) with their expectation. This gives a modification

of Newton’s method known as the Fisher scoring method. The second derivative term can be

written as

−E
(

∂2`

∂βj ∂βk

)
=

n∑
i=1

(
dµi
dηi

)2 xij xik
var (Yi)

.

If W is a diagonal matrix with diagonal elements

wi =
1

var (Yi)

(
dµi
dηi

)2

,
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and z is a vector of pseudodata (working response) with ith element

zi = ηi + (yi − µi)
(

dηi
dµi

)
,

then, at iteration t, the Fisher-scoring modification of the algorithm (2.2) can be written in

matrix notation as

XT W(t)Xβ(t+1) = XT W(t) z(t). (2.3)

The maximum likelihood estimate of β is then obtained as follows. An initial approximation

β(0) is chosen to give an initial estimate of z(0) and W(0). Then (2.3) is solved in order to

obtain β(1), which is used to get improved new values for z(t) and W(t), and so on until

adequate convergence is achieved. The maximum likelihood estimate β(t+1) is taken when the

difference between successive approximations β(t) and β(t+1) are sufficiently small.

2.2 GAMs

Classical GAMs are GLMs where y has a distribution in the exponential family, and the linear

predictor η is specified as a sum of smooth functions of p covariates x = (x1, x2, . . . , xp)
T ,

where x1 ≡ 1 corresponds to the intercept. GAMs have systematic component

g (µ) = η (x) = β1x1 + f2 (x2) + · · ·+ fp (xp) , (2.4)

where the fk’s are arbitrary smooth functions. GAMs specify the model in terms of ‘smooth’

functions instead of using only parametric relationships. This approach extends traditional GLMs

by allowing the automatic computation of possible nonlinear effects of covariates on a response

variable of interest. The term ‘additive’ refers to the multivariate assumption underlying the

model which gives the p-predictor function η a low-dimensional additive structure. The additive

predictor η can be a simple term, a semiparametric term and a full additive model as in (2.4).

In its simple form it gains simplicity by making a no-interaction assumption, though some forms

of interaction can be incorporated by adding term like fj(x1 ·x3). No interaction models are very

attractive as they are much more easier to interpret than a p-dimensional multivariate surface
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Figure 2.1: (a) – (c): Smoothing spline fits to a simulated motorcycle accident dataset (mcycle in

MASS).(a) – (c) using three different values of degrees of smoothness. The dash lines are approximate

95% pointwise confidence intervals. (d): with 95% confidence shading, uses penalized regression splines

with integrated smoothness estimation.

which allows arbitrary interaction in all dimensions. GAMs as described by Hastie and Tibshirani

(1990) are based on the local scoring algorithm, which iteratively fits a weighted additive model

by backfitting. The backfitting approach has the advantage of allowing the component functions

of an additive model to be represented using almost any smoothing or modeling technique. But

choosing a ‘good’ degree of smoothness is difficult with this approach. Wood (2006b) on the

other hand, developed an approach to fitting GAMs using a more amenable penalized likelihood-

based method. In contrast to classical backfitting, his penalized likelihood framework allows an

efficient computational method for automatic multiple smoothing-parameter selection, which can

automatically determine the shape of non-linear terms to be used from the data. This approach
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is a big advance on manually tuning some spline parameters, which is used in a classic backfitting

approach. Fig. 2.1 (a) – (c) shows how the shape of the estimated function can be affected by the

manual choice of degree of smoothness of a smooth term. By changing the value of the degree

of smoothness, a variety of models of different smoothness can be obtained. Wood (2006b)’s

penalized likelihood approach has a major advantage over the fixed-degree smoothing approach

by Hastie and Tibshirani

Several methods have been proposed to achieve the objective of fitting of smooth function of

GAMs. Hastie and Tibshirani (1990) minimized a weighted penalized least squares of GAMs by

modified backfitting. They estimated the component functions by using simple linear scatterplot

smoothers and standard least squares methods. Smoothing-parameter estimation is difficult to

integrate into this approach. Wahba (1990), Wahba et al. (1995) and Gu (2002) introduced

smoothing-spline analysis-of-variance (SS-ANOVA) which provides an underlying mathematical

theory for function estimation, including GAMs. Gu and Wahba (1991) also developed an

algorithm for estimating smoothing parameters for whole generalized spline smoothing (GSS)

models and generalized this algorithm to GAMs that employs smoothing splines. However, their

methods are extremely computational expensive. Other procedures that have been proposed

for fitting GAMs are the marginal integration method by Linton and Nielsen (1995) and the

penalized-based boosting procedure by Tutz and Binder (2006).

Due to the high computational cost of the SS-ANOVA approach and the problem of integrat-

ing the smoothing parameter estimation in the Hastie and Tibshirani (1990) methods, several

authors have proposed using penalized regression splines for GAM modeling (see Hastie and

Tibshirani 1990; Hastie 1996; Eilers and Marx 1996; Wand 2000; Wood 2000, 2004, 2006b). For

example, Hastie and Tibshirani (1990) studied the use of regression splines, which a smooth

function is modeled as the sum of B-splines. Eilers and Marx (1996) and Marx and Eilers (1998)

developed P-splines based on a B-spline basis, usually defined on equally-spaced knots, with a

penalty based on finite differences of the coefficients on adjacent B-splines applied directly to

the parameter, to control function “wiggliness”. B-splines were developed as a very stable basis
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for large scale spline interpolation (see De Boor, 1978), and can be used as a parametric way

to represent a nonparametric function in regression splines. With the P-spline method, GAMs

can be then transformed into the GLM framework. Consequently, all smooth components are

estimated simultaneously. P-splines are very attractive for implementing the GAM framework:

not only are they extremely easy to set up and use, they also allow a great deal of flexibility. For

example, users can combine any order of penalty with any order of B-splines basis, as they see

fit. More details of P-splines will be provided in section 2.3. In a series of papers, Marra and

Radice (2011), Marra et al. (2013b), Marra (2013), Marra et al. (2013a), and Radice et al. (2015)

extended the penalized likelihood approach with regression splines to a bivariate binary response

modeling problem. They showed that once a basis for the smooth functions has been chosen,

together with associated measures of function wiggliness, the penalized likelihood maximization

problem can be solved by penalized iteratively re-weighted least squares (P-IRLS), while the

smoothing parameters can be estimated using related criteria.

Another interesting approach for fitting semiparametric regression is penalized splines. Pe-

nalized splines are very similar to smoothing splines. Actually, they are a generalization of

smoothing splines that allow more flexible choices of the spline model, the basis function and

the penalty. O’Sullivan (Section 3, 1986) represented penalized splines based on B-spline basis

functions. His penalized splines are a direct generalization of smoothing splines and come with

attractive properties such as natural boundary behavior. Wand and Ormerod (2008) studied the

use of O’Sullivan penalized splines and formulated an exact algebraic expression for the corre-

sponding penalty matrix when the basis consists of truncated power splines or B-splines. They

reformulated a model formulation of O’Sullivan penalized splines in a convenient manner for

implementing in a computing language such as R.

Efficient smoothing-parameter selection methods are critically important for GAM modeling.

There are a number of possible methods for automatic selection of the smoothing parameters

in GAMs. For example, a generalized cross validation (GCV) (Wahba and Craven, 1978), the

Akaike information criterion (AIC), unbiased risk estimator (UBRE) (see Wood, 2006b) and
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generalized maximum likelihood (GML) (see Gu and Wahba, 1991). Gu and Wahba (1991)

optimized GCV and GML scores with multiple smoothing parameters using a modified version of

the Newton method. Their approaches provided a well-founded smoothing-parameter selection,

as well as good coverage probabilities of confidence intervals. However, this method comes at

high computational cost. Wood (2000) achieved developing an efficient smoothing-parameter

selection method for GAM models estimated by penalized least squares. He developed a GCV

for multiple smoothing parameter selection based on a similar optimization strategy of Gu and

Wahba’s (1991) approach. Although the methods from Wood (2000) are usually effective, they

cannot deal adequately with the numerical rank-deficiency of the GAMs fitting problem. In 2004,

he improved the multiple smoothing parameter estimation method to deal with fixed penalties.

The method is based on the pivoted QR decomposition and the singular value decomposition.

It is capable of detecting and coping with numerical rank-deficiency (see Wood 2004). More

recently, Wood (2011) developed the new restricted maximum likelihood (REML) and maximum

(marginal) likelihood (ML) methods for the estimation of smoothing parameters. These methods

not only cope with numerical rank deficiency in the fitted model, they also provide a slight

improvement in numerical robustness.

2.2.1 GAMs based on penalized regression splines

We now move on to consider how GAMs can be reconceived using penalized regression splines.

As described in Section 2.2, GAMs model a response variable, Yi, using a model structure of the

form (2.4), where µi = E(Yi), Yi has a distribution in the exponential family and the fk (·)

are a smooth function of covariates xk. To estimate model (2.4) a basis for each smooth function

must be chosen, as well as “wiggliness” measures for the smooth terms. The smooth terms have

been represented using regression splines such as cubic splines (Wood, 2006b), P-splines (Eilers

and Marx, 1996; Marx and Eilers, 1998) and thin plate regression splines (see Duchon, 1977;

Wood, 2003). Specifically, the regression-spline representation for an explanatory variable is

made up of a linear combination of known basis functions, Bsk (·) , and unknown regression
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parameters, βsk,

fk(xk) =

S∑
s=1

βsk Bsk(xk). (2.5)

Here, k indicates the smooth term for the kth explanatory variable and S is the number of basis

functions. Each smooth component is subject to a centering constraint such as
∑

i fk(xik) = 0

to ensure that the model is identifiable. Given a basis like (2.5) for each smooth, Wood (2006b)

wrote model equation (2.4) as

ηi = Xi β, (2.6)

where Xi = (1 |Xi2 | . . . |Xip) is a row of the model matrix X, where X is constructed

from the basis function values given in (2.5) and the vector β =
(
βT1 ,β

T
2 . . . ,β

T
p

)T contains

the β-parameters to be estimated. (2.6) is a GLM, which can be fitted by maximum likelihood.

Wood (2006b) controlled the smoothness for each term by applying a set of penalties to the

likelihood ` (β) . A penalized approach was then adopted. Therefore, a penalized likelihood for

the model can be written as

`p(β) = `(β)− 1

2

∑
k

λk

∫
{f ′′k (xk)}2 dxk (2.7)

(k = 1 relates to the intercept). Here, a wiggliness penalty has been included for each smooth

function. The λk’s are the smoothing parameters that control the trade-off between model fit

and model smoothness. The integral of the square of the second derivatives of a fitted function

in (2.7) is commonly used as a smoothness penalty (see Reinsch, 1967; Green and Silverman,

1993). To show how this penalty can be calculated for a given fk(·) that have a basis expansion

(2.5), we write

f
′′
k (xk) =

S∑
s=1

βsk B
′′
sk(xk) = b

′′
k(xk)

Tβk,

where b
′′
k(xk) is a vector containing the second derivatives of the basis functions for the kth

smooth term with respect to xk and βk is a parameter vector. We then have

∫
{f ′′k (xk)}2 dxk =

∫
βTk b

′′
k(xk)

T b
′′
k(xk)βk dxk = βTk Sk βk,
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where

Sk =

∫
b
′′
k(xk)

Tb
′′
k(xk) dxk.

The penalty term in (2.7) can be written as

∑
k

λk

∫
{f ′′k (xk)}2 dxk =

∑
k

λk β
T
k Sk βk.

Defining S = blockdiag (0, λ2 S2, . . . , λp Sp) then

∑
k

λk

∫
{f ′′k (xk)}2 dxk = βT Sβ.

Since smooth functions fk are linear in parameters β, the penalty
∑

k λk
∫
{f ′′k (xk)}2 dxk can

always be written as a quadratic form in β, with the penalty matrix S. Wand and Ormerod

(2008) studied the use of O’Sullivan penalized splines and formulated an exact algebraic expres-

sion for the roughness penalties
∫
{f ′′k (xk)}2 dxk when the basis consists of truncated power

splines or B-splines. To formulate this penalty, they wrote

Ω
(m)
kk′ =

∫ b

a
B

(m)
2m−1,k(x)B

(m)
2m−1,k′(x) dxk, (2.8)

where B2m−1,1, . . . , B2m−1,K+2m are B-splines of degree (2m− 1) and the sequence of knots is

given by:

a = K1 = · · · = K2m < K2m+1 < · · · < K2m+K < K2m+K+1 = · · · = K4m+K = b.

They then formulated the penalty term in (2.8) as

Ω(m) =
(
B̃

(m)
)T

diag(w) B̃
(m)

. (2.9)

Here, they defined B̃
(m)

as the (2m−1)(K+4m−1)× (K+2m) matrix with (i, j)th element

given by B
(m)
2m−1,j(x̃i), and w is a (2m − 1)(K + 4m − 1) × 1 vector with ith element given

by wi. The values of x̃i and wi are obtained as follows:

x̃(2m−1)(l−1)+l′+1 = Kl + l′hm,l, w(2m−1)(l−1)+l′+1 = hm,lΩm,l′.

The matrix expressions for the penalty of O’Sullivan splines that they developed are easy to

set up and implement in a matrix-based computing language such as R. Full details about the
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exact matrix expression for the penalty of O’Sullivan splines are given in Wand and Ormerod

(Section 6, 2008). Several penalty functions such as
∫
{f ′k(xk)}2 dxk,

∫
{f ′′′k (xk)}2 dxk, or the

discrete approximate wiggliness measurement by Eilers and Marx (1996) have been used in the

literature. In practice, the maximization of the penalized likelihood can be performed using

penalized iteratively reweighted least squares (P-IRLS) in a way that we will now describe. The

penalized likelihood can be written in general matrix-vector form, so that (2.7) becomes

`p(β) = `(β)− 1

2
βTSβ. (2.10)

Wood (Chapter 4, 2006b) maximized (2.10) by solving the partial derivative of `p with respect

to each element of β. He then set the resulting system of equations to zero:

∂`p
∂βk

=
∂`p
∂βk
− [Sβ]k =

1

φ

n∑
i=1

yi − µi
V (µi)

(
∂µi
∂βk

)
− [Sβ]k = 0, (2.11)

where [·]k denotes the kth row of a vector. The solution to (2.11) solves the penalized non-linear

weighted least squares problem

minimize Sp =

n∑
i=1

(yi − µi)2

var(Yi)
+ βTSβ, (2.12)

where µi is treated as depending non-linearly on β, while the var(Yi) is treated as known.

Wood (2006b) showed that a penalized non-linear least squares problem like (2.12) can be dealt

with using a penalized version of iterative linear least squares. Penalized maximum likelihood

estimation was achieved by the iterative solution of

minimize
∥∥∥√W(t)

(
z(t) −Xβ

)∥∥∥2 + βTSβ, (2.13)

with respect to β, where z(t) is a vector of pseudodata defined as

zi = g′
(
µ
(t)
i

) (
yi − µ(t)i

)
+ Xiβ̂

(t)
,

and W(t) is a diagonal matrix with diagonal elements

w
(t)
ii =

1

V
(
µ
(t)
i

)
g′
(
µ
(t)
i

)2 .
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Given the smoothing parameters, the maximum penalized likelihood estimates of β were ob-

tained as follows. The current β̂
(t)

is used in order to calculate z and W and, next, the least

squares objective (2.13) is minimized w.r.t. β to find the updated β(t+1). Then the linear

predictor η(t+1) and fitted values µ(t+1) are evaluated, and a pseudodata z and the working

weights W are updated. All steps are repeated until convergence is achieved. This procedure

is known as P-IRLS.

Given the smoothing parameters, the maximum penalized likelihood estimates, β̂ can then

be obtained by using P-IRLS algorithm. It turns out that an iterative estimation for β is given

by

β̂
(t+1)

=
(
XT W(t)X + S

)−1
XTW(t) z(t).

With the iterative equation above, it is fairly straightforward to show that the formal expression

for the influence matrix (or hat matrix) for a GAM model is

A = X
(
XTWX + S

)−1XTW. (2.14)

Therefore, the flexibility of the fitted model is measured by tr(A) defined as the effective degrees

of freedom (EDF) (Wood (Chapter 4, 2006b)). If all smoothing parameters are equal to zero,

the degrees of freedom of the model are equal to the dimension of parameter coefficients. The

degrees of freedom decreases as the smoothing parameters increase.

2.2.2 Smoothing parameter estimation

The most traditional algorithm for smoothing-parameter selection involves the backfitting algo-

rithm based on a univariate scatterplot-smoother applied iteratively and cubic smoothing splines.

The idea of the backfitting is based on univariate smooth components which are applied itera-

tively. The backfitting algorithm starts by iteratively estimating the updated individual smooth

component by smoothing partial residuals from the model. These residuals are formed using the

current estimates of smooth components. This algorithm is repeated until the estimates stabilize.

A stepwise procedure is integrated into the traditional backfitting in order to obtain the degrees
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of freedom for each smooth component. Cubic smoothing splines are used as a smoother and

the smoothing parameters are selected by stepwise selection of the degrees of freedom for each

component. The procedure begins with a model where all terms enter linearly and then improves

the AIC by upgrading or downgrading the degrees of freedom for one component by one level.

But this method of adapting backfitting to smoothing parameter estimation is very slow when

each smooth term has one of a fairly large number of alternative degrees of freedom.

An alternative to smoothing parameter selection methods of GAMs is based on a penalized

likelihood framework. Two such approaches have been proposed. The first group develops an

efficient GCV or AIC based on smoothness selection methods for the simple additive model case.

Those criteria are applied to each working additive model of the P-IRLS scheme which is used

to fit the GAMs. Wood (2000, 2004, 2006b) adapted the GCV score and the UBRE criterion for

smoothing parameter selection for GAM models estimated by penalized least squares. It can be

shown that the estimation of smoothing parameters for GAMs can be achieved by minimizing

the GCV score and the UBRE criterion with respect to multiple smoothing parameters (Wood,

2000, 2004, 2006b), where the GCV score and the UBRE criterion are in the form

Vwg =
n‖
√

W (z −Xβ) ‖2

[n− tr (A)]2
,

Vwu =
1

n
‖
√

W (z −Xβ) ‖2 − σ2 +
2

n
tr(A)σ2,

respectively. Here,
√

W =
[
(wii)

1/2
]
. A globally-applicable GCV score (see Hastie and Tibshi-

rani, 1990; Wood, 2006b) and the UBRE criterion (Wood, 2006b) can be obtained by

Vg =
nDev (β̂)

[n− tr (A)]2
,

Vu =
1

n
Dev (β̂)− σ2 +

2

n
tr(A)σ2,

where Dev is the deviance of the fitted model, and A is the influence matrix (cf. equation (2.14)).

The model deviance Dev is defined as the saturated log-likelihood minus log-likelihood of the

fitted model, all multiplied by 2φ. This deviance can be seen as the residual sum of squares

for a linear model. According to Wood (2006b), there are two possible numerical strategies for
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estimating smoothing parameters: using Vg or Vv minimization. The first method, originally

proposed by Gu (1992), is known as performance iteration. This method is achieved by mini-

mizing Vwg/u with respect to multiple smoothing parameters, and then smoothing parameters are

chosen for each working penalized linear model of the P-IRLS iteration. In the second method,

is outer iteration (Wood, 2006b), the maximization of Vg/u with respect to the model smoothing

parameters can be done directly. This means that the P-IRLS process must be iterated to con-

vergence for each trial set of smoothing parameters. For the second group, Wood (2011) treated

GAMs as generalized linear mixed models (GLMMs) (see Ruppert et al., 2003), and in which the

smoothing parameters are variance components which can be estimated by maximum (marginal)

likelihood (ML) (Anderssen and Bloomfield, 1974), or restricted maximum likelihood (REML)

in the non-generalized case. In the generalized case, the methods that are based on iterative

fitting of working generalized linear mixed models (GLMM’s) (see Breslow and Clayton, 1993)

are used.

There are now a number of packages available implementing the GAM framework and related

models for R. The GAM framework of Hastie and Tibshirani (1990) was implemented in the gam

package by Hastie. In general, the functions in gam share many of the features of glm() and lm(),

with some added flexibility. Gu (2002) introduced the gss R package developed for smoothing

spline ANOVA models. Wood (2006b) developed the mgcv R package (Wood, 2007), which is

based on his penalized likelihood approach with penalized regression splines. His software design

is based somewhat on Hastie (Chambers and Hastie, 1993, chapter 7). The main difference is

that smooth terms s() and te() are incorporated in the gam() model formula and the automatic

smoothing parameter selection is provided. Yee (2008) describes the VGAM package, which is

more similar to gam but for a wider class of models.

2.2.3 Illustration of GAMs using the penalized likelihood approach

We will now illustrate these approaches using the Kyphosis data from Hastie and Tibshirani

(1990). These data come from Bell et al. (1989). The response outcome of interest is the presence
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(a) GAMs based on backfitting are obtained from the gam package.

(b) GAMs based on the penalized likelihood approach are obtained from the mgcv package.
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Figure 2.2: (a): The estimated smooth components of backfitting with partial residuals and pointwise

standard errors. (b): The estimated smooth terms of the penalized likelihood approach with 95% Bayesian

intervals. The estimated smooth curves of backfitting from (a) are overlaid in (b) represented by the dash

lines in order to show the comparison.

(1) or the absence (0) of kyphosis, defined as postoperative spinal deformity in children. The

available regressors are Age in months at the time of the surgery, the starting range of vertebrae

levels involved in the surgery (Start), and the number of vertebrae involved (Number). The data

are available in the data frame kyphosis from gam. There are 81 observations, resulting in 17

presences and 64 absences. Fig. 2.2 shows GAMs estimated using backfitting (Fig. 2.2 (a)) and

penalized likelihood (Fig. 2.2 (b)). Penalized likelihood is performed using the mgcv package

and backfitting computation is performed using the gam library. The goal of the analysis is

to investigate the relationship between kyphosis and the three predictor variables. In order

to investigate this relationship, a logistic additive model is used to describe the conditional

probability of kyphosis given the predictor variables. We then fit the additive logistic model to
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the three predictors using the function gam() in the mgcv package, where the default settings are

thin plate regression splines and penalties based on the second-order derivatives. The automatic

smoothing parameter selection is obtained through minimization of the UBRE. The dimension,

k, of the basis for the predictors, Number, and Start is adjusted as these variables are heavily

tied. The partial contributions of each predictor to the conditional probability of kyphosis with

95% Bayesian intervals are represented in (b) of Fig. 2.2. The EDF estimates of Age, Number,

and Start are 2.22, 1.14, and 1.94 respectively. These EDF estimates support the presence of

non-linearity as they are higher than 1. The smooth functions for Age and the starting range of

vertebrae levels (Start) clearly show non-linear features, while the smooth term for Number of

vertebrae involved shows much less curvature. The results from Fig. 2.2 (b) show that children

aged about 100 months have higher risk of kyphosis than those of younger or older age. The risk

of kyphosis decreases when the starting range of vertebrae levels increases. But conversely, the

risk of kyphosis increases with the higher number of vertebrae levels involved.

We investigated the backfitting approach to determine whether it led to different conclu-

sions. We followed Hastie and Tibshirani’s 1990 suggestion of fitting each smooth term by using

a smoothing spline with 3 degrees of freedom for each smooth term (dfj = 3) and used the gam

library. Note that an automatic smoothing parameter selection procedure is not available with

the backfitting approach. The plots in Fig. 2.2 (a) are the estimated components with partial

residuals and pointwise standard errors obtained from backfitting. Although the estimated com-

ponents from the backfitting with gam library lie within the Bayesian intervals obtained from the

penalized likelihood approach, the estimated points differ quite substantially from the estimated

points obtained from the mgcv package when the number of vertebrae is higher than about 7.

With backfitting, the relationship between kyphosis and the number of vertebrae from becomes

negative suggesting that the risk of kyphosis goes down with higher number of vertebrae levels

in contrast to the continued rise in the penalized likelihood curve (of course, there is almost no

data in this region).

Marra and Radice (2010) studied the impact of smoothing parameter choice on the shape of
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the estimated smooth functions by investigating the performance of GAMs based on backfitting

and GAMs based on the penalized likelihood approach. Their underlying objectives were to

show the importance of implementing an automatic and stable multiple smoothing parameter

selection procedure in a GAM framework. They compared the backfitting approach using the

gam library to the penalized likelihood approach based on Wood (2006b). In their simulation

study, they used the linear predictor of the form

ηi = s1(xi1) + s2(xi2) + s3(xi3), (2.15)

where the three test functions in (2.15) represented smooth functions ranging from less com-

plex to more complex. For observations, they generated data from four error models (gamma,

binomial, normal, and Poisson) at each of three signal to noise ratios, at each of three sam-

ple sizes (n = 250, 500, 1000). In each case, they simulated the covariates independently from

a uniform distribution on the unit interval. They then generated 500 replicate data sets and

fitted GAMs using the two frameworks to each of 500 replicates at each sample size, model

structure, distribution and error level combination. All computations for the two frameworks

were preformed using the default settings. For each replicate and for each test function, Marra

and Radice (2010) measured the performance of GAMs using the percentage mean squared er-

ror (PMSE), which they defined as

PMSE =

{
1

n

n∑
i=1

(ŝk(xik)− sk(xik))2
}
× 100, k = 1, 2, 3.

In the simulation study of Marra and Radice (2010), the penalized likelihood smooths with

mgcv library defaults performed better than backfitting smooths with gam library defaults. The

complexity of the shapes directly affects PMSE. The backfitting approach is likely to overfit

when the shapes are less complex. Marra and Radice (2010) indicated that this is because the

backfitting does not have any procedures to prevent complex smooth components when the data

is not complex. On the other hand, with more complicated trend shapes, backfitting performed

poorly because the degrees of freedom from the default settings did not provide enough flexibility.

However, the function estimates by using backfitting could be improved by changing the target
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equivalent degrees of freedom, used as a smoothing parameter, which requires the users to tune

these parameters.

2.3 P-splines

Eilers and Marx (1996) originally proposed the penalized likelihood using B-splines with a rel-

atively large number of knots and a difference penalty on coefficients of adjacent B-splines for

nonparametric modeling with one predictor variable. They called this method “P-splines”. Marx

and Eilers (1998) extended the P-spline approach to include more than one predictor and aimed

to fit all smooth GAM components simultaneously. They constructed each smooth component

using penalized B-spline smoothers, which they called P-spline smoothers (P-spline GAMs were

actually penalized GLMs). They were then able to directly fit GAMs using a slightly adjusted

version of the Fisher scoring algorithm with all smooth GAM components being estimated at

once.

P-splines are low-rank smoothers using B-spline basis functions. Eilers and Marx (1996)

and Marx and Eilers (1998) used a relatively large number of equidistant knots, which would

purposely overfit each B-spline component. To prevent overfitting, P-splines impose a difference

penalty on adjacent B-spline coefficients during model fitting, which is designed to ensure the

smoothness of the fitted model. The smoothing parameters of this approach are easily chosen

through the minimization of well-founded criteria such as the AIC or the GCV score. P-splines

are an efficient implementation of penalized regression splines, and come with many attractive

properties:

1. P-splines use a sparse smoothing basis and penalty, enabling efficient and numerically stable

computation.

2. Since only a small number of parameters are used to estimate GAMs, the resultant P-

spline GAMs have a compact summary. This makes the use of P-splines easier for making

predictions.
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3. P-splines provide great flexibility. Users can choose: the degree of the B-splines basis, the

order of the penalty, and the number of knots.

The next subsection sketches the basic theory of P-splines and discusses the representation

and estimation of the smooth functions using penalized regression splines based on the P-spline

approach. Then we will explain how GAMs can be constructed using the P-splines, and estimated

using penalized regression methods. We also discuss in some details how optimal smoothing

parameter values are obtained. An example of P-spline generalized additive modeling is provided

using a study of the air pollution in Chicago.

2.3.1 Penalized regression splines based on P-splines

P-spline methods use B-splines as basis functions, together with a large number of equally-spaced

knots. (Over-wiggly fitted models are prevented by applying a discrete approximate “wiggliness"

penalty to the model fitting objective.) B-splines are a sequence of polynomial basis functions

possessing special properties related to the continuity of the derivatives at the positions of the

knots (De Boor, 1978). They are constructed from a set of polynomial pieces, connected at the

certain values of knots, using a recursive algorithm given by De Boor (1978). Fig. 2.3 represents

sequences of B-splines of degree 1 (linear B-splines), degree 2 (quadratic B-splines), and degree

3 (cubic B-splines) using equally-spaced knots. A single B-spline of degree q consists of q + 1

polynomial pieces, cf. the individual curves depicted in Fig. 2.3, connected at q inner knots,

where knots are the points on the horizontal axis at which the pieces merge together. For

example, a single B-spline of degree 2 consists of 3 quadratic pieces, joined at two inner knots.

In general, B-splines can be defined for an arbitrary grid of knots, but in our research we simplify

and generalize the approach of Eilers and Marx (1996) and Marx and Eilers (1998). We will only

use equidistant knots. More details on B-splines and related algorithms can be found in the

books by De Boor (1978) and Dierckx (1995).

Let us suppose that there are n observations (xi, yi). A model represented by a single smooth
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Figure 2.3: The sequence of B-splines of degrees 1 to 3.

function can be written in the form

yi = f (xi) + εi, for i = 1, . . . , n, (2.16)

where yi is a response variable, xi is a covariate, f (·) is a smooth function, and εi are indepen-

dent and identically distributed with mean zero and variance σ2. Here, we consider a smooth

function f (·) constructed from B-splines, each of degree q and a grid of knot points in [L,U ]

f(xi) =

S∑
s=1

asBs(xi; q), for s = 1, . . . ,S (< n). (2.17)

Here, Bs(x; q) is the value at x for the s-th B-spline, and {as} are coefficients associated with

the B-spline basis functions. These coefficients will be estimated as part of the model fitting.

The model (2.16) can be estimated by minimizing the quantities

S =
n∑
i=1

{
yi −

S∑
s=1

asBs(xi; q)

}2

. (2.18)
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Figure 2.4: A fitted curve by 10 B-spline bases with (a) degree 1 and (b) degree 2.

When the degree of B-splines has been clearly defined in the context, we then use Bs(xi) instead

of Bs(xi; q). In Fig. 2.4, we have fitted (2.16) using B-splines to the data simulated from the

model

y = 2.5 + sin (5.5x) + ε, (2.19)

where εi ∼ N (0, 0.3) , and a covariate x, was generated from uniform (0, 1). Fig. 2.4 (a)

shows smooth curves obtained by 10 B-splines of degree 1 and Fig. 2.4 (b) does the same thing

using B-splines of degree 2. The thin curves in Fig. 2.4 (a) and Fig. 2.4 (b) display each B-spline

multiplied by its associated coefficient. The thick lines in Fig. 2.4 show the resulting smooth

curves computed by the sum of estimated coefficients multiplied by the B-spline basis functions.

Although regression spline modeling as (2.18) is easy to understand and solve, in practice,

the knot placement problems seriously affect the modeling results. One standard method to

prevent these problems are to use penalized regression splines. With the penalized regression

approach, a relatively large number of knots is used, but the penalty is applied to the model

fitting in order to avoid the danger of over-fitting. Fig. 2.5 (a) shows a fitted curve of the model

(2.19) using B-splines with a relatively large number of knots (16 B-splines of degree 3). With

such a large number of knots, the fitted model is over-fitted (wiggly) as shown in Fig. 2.5 (a).

One can control the wiggliness of the fitted model by incorporating a penalty during the model
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Figure 2.5: (a): Fitting 16 B-splines of degree 3 to the model (2.19). (b): A wiggliness penalty based

on the discrete approximate wiggliness measurement by Eilers and Marx (1996) is added to the model

fitting objective.

fitting. When a wiggliness penalty is added to the model fitting objective, a reasonable smooth

curve is obtained as shown in Fig. 2.5 (b).

Eilers and Marx (1996) proposed using a discrete approximate wiggliness penalty based on

(higher order) finite differences of the coefficients of adjacent B-splines to tune the amount of

smoothness instead of using the integral of squared higher derivative of the fitted curve in the

penalty. They used the difference penalty on neighbor B-spline coefficients to ensure that neigh-

boring coefficients do not differ too much from each other. This results in a smoother curve fit.

In addition they also showed that there is a strong connection between a penalty on a second-

order differences of the B-spline coefficients and a penalty on the second derivative of the fitted

function given by O’Sullivan (1986). Their approach reduced the dimensionality of the derivative

based-penalty problem to the number of B-splines instead of the number of observations as in

smoothing splines and offered computational advantages as the penalty is based on difference

formulas. But the discrete penalties are somewhat difficult to interpret in terms of function

shape than the traditional derivative based spline penalties (cf. Wood, 2016).
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Adding the wiggliness measure of Eilers and Marx (1996) to (2.18), the P-spline penalized

least squares objective for the model can be expressed as

S =
n∑
i=1

{
yi −

S∑
s=1

asBs(xi)

}2

+ λ
S∑
s=1

(
∆[d] as

)2
. (2.20)

Here, λ is a non-negative smoothing parameter controlling the trade off between model fit and

model smoothness. The function’s wiggliness is measured by
∑S

s=1

(
∆[d] as

)2
, where ∆[d] is

the dth order difference of as defined as ∆[d]as =
∑d

t=0 (−1)t
(
d
t

)
as−t, where s ∈ n, and

s = 2, 3, . . . ,S. Given the definition of the operator, ∆[d]as, the first difference of as, ∆[1]as is

as − as−1. Higher-order differences of as can be then obtained by using the same computation,

e.g., ∆[2]as = ∆as −∆as−1 = as − 2as−1 + as−2, and ∆[3]as = as − 3as−1 + 3as−2 − as−3.

The wiggliness penalty,
∑S

s=1

(
∆[d] as

)2
, can be represented in a computationally convenient

matrix-vector form. Consider first the wiggliness measure using the first order differences of as,

S∑
s=1

(
∆[1] as

)2
=

S∑
s=1

(as − as−1)2 .

We can write the operator ∆[1] as as

−a1 + a2

−a2 + a3
...

−aS−1 + aS


=



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
...

0 0 0 · · · −1 1


a = D[1] a,

where a = (a1, . . . , aS) . The penalty can be then obtained in the simple form of

S∑
s=1

(
∆[1] as

)2
= aT DT

[1]D[1] a.

Equivalent matrices D[d] for second and third-order differences can be written as
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D[2] =



1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

...
...

...
...

0 0 0 0 · · · 1 −2 1


,

D[3] =



−1 3 −3 1 0 0 · · · 0 0 0 0

0 −1 3 −3 1 0 · · · 0 0 0 0

0 0 −1 3 −3 1 · · · 0 0 0 0

...
...

...
...

0 0 0 0 0 0 · · · −1 3 −3 1


respectively. More generally, the matrix, D[d] constructs dth order difference of the coefficients,

D[d] a = ∆[d] a. By the definition of the matrixD[d], the penalty
∑S

s=1

(
∆[d] as

)2 can be written

as a quadratic form in the parameter vector a as

S∑
s=1

(
∆[d] as

)2
= aT DT

[d]D[d] a (2.21)

= aT P[d] a, (2.22)

where P[d] = DT
[d]D[d]. This enables the P-spline penalized-least-squares objective (2.20) to be

re-written in a general matrix-vector form as

S(a) = (y −Ba)T (y −Ba) + λaT P[d] a, (2.23)

where yT = (y1, . . . , yn), xT = (x1, . . . , xn), and aT = (a1, . . . , aS) is the vector of coefficients.

We define B (xi) = (B1(xi), B2(xi), . . . , BS(xi))
T as a vector containing each B-spline evalu-

ated at the values of xi and B is a B-spline matrix of dimension n× S containing the vectors

B (xi) as its columns. Given the smoothing parameter λ, the penalized least squares estimator

of a is

â =
(
BTB + λP[d]

)−1 BT y.
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Then, the influence, or hat matrix, A for the model can be written

A = B
(
BTB + λP[d]

)−1BT .

It is not difficult to generalize to more than two smooth components. Consider modeling data

(yi, xi1, . . . , xip) using

yi = β1xi1 + f2 (xi2) + · · ·+ fp (xip) + εi, yi ∼ N
(
µi, σ

2
)
, (2.24)

where xi1 = 1 denote the intercept, and εi ∼ N
(
0, σ2

)
independently. This model is known

as an additive model (AM). Here, the fk are smooth functions constructed using B-splines.

Given the smoothing parameters λk, the model can be estimated by penalized least squares in

the same way as described above for the simple univariate model. In Marx and Eilers (1998),

the smoothing parameters are selected by cross validation (CV).

The fitting objective for this model is given by

minimize
n∑
i=1

{
yi − β1 −

p∑
k=2

Sk∑
s=1

askBsk(xik)

}2

+

p∑
k=2

S∑
s=1

λk

(
∆[d] ask

)2
. (2.25)

Using matrix-vector notation, this AM fitting problem becomes

minimize (y −Ba)T (y −Ba) + aT Pa, (2.26)

with respect to a. Here, we define a =
(
bT1 , a

T
2 , . . . , a

T
p

)T
, y =

(
yT1 , . . . ,y

T
p

)T
, and the ma-

trix B = (1 |B2 | . . . |Bp) is the model matrix of dimension n×
(
1 +

∑p
k=2 Sk

)
, whereBk is the

B-spline matrix generated from the values of xik. The matrixP = blockdiag
(
0, λ2P[d]2, . . . , λpP[d]p

)
is a block diagonal matrix of the penalties of the model. The zero appearing on the first diago-

nal element of the matrix P is related to the intercept term, and the remaining block diagonal

elements represent the values of λkP[d]k, where P[d]k = DT
[d]kD[d]k. Given values for λk, the

penalized least squares estimator of a is

â =
(
BTB + P

)−1 BT y.

In the next section, we will show how GAMs can be represented using the P-spline approach,

and estimated by penalized regression methods.
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2.3.2 P-splines GAM likelihood and estimation

As described in section 2.2, GAMs replace the linear predictor in a GLM by a sum of smooth

functions of the covariate variables, assuming that the response follows an exponential family

distribution. The general form of GAMs is represented by (2.4). In order to generalize the

P-spline method to GAMs, Marx and Eilers (1998) introduced a linear predictor in the form of

g (µ) = η = Ba,

where yi ∼ exponential family and aT = (b1, a2, . . . , ap) . The matrix B is the model matrix

consisting of the B-spline matrix constructed in the same way as the model matrix of an AM as

explained in the discussion following (2.24). To ensure smooth function estimates, a wiggliness

measure based on the differences of coefficients of adjacent B-splines is given for each smooth

function as before. Therefore, the penalized log-likelihood version of fitting P-splines for each

GAM component is expressed as

`∗p = ` (y;a)− 1

2

p∑
k=2

λka
T
k P[d]kak, (2.27)

where the log-likelihood function, ` (y;a) is given by

`(y;a) =
n∑
i=1

[
yi θi − b(θi)
a(φ, ω)

+ c(yi, φ)

]
,

and the λk’s are the smoothing parameters. The natural parameter θi is determined by µi

through E(Yi) = µi = b′(θi), providing θi = (b′)−1 (µi) = g(µi) = [Ba]i, where [·]i

denotes the ith element of Ba. The structure of the block diagonal matrix P for GAMs is the

same as for AMs (cf. equation (2.26)), that is, P = blockdiag
(
0, λ2P[d]2, . . . , λpP[d]p

)
, where

P[d]k = DT
[d]kD[d]k. Marx and Eilers (1998) suggested that users assign the different order-

difference, d, to each P[d]k, and that in practice, any order up to three is considered adequate.

The P-spline penalized log-likelihood (2.27) can then be re-written compactly as

`∗p = ` (y;a)− 1

2
aTPa. (2.28)
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Given values for λk, when `∗p is maximized with respect to â using penalized Fisher scoring,

the current estimate of a at the tth iteration is updated using

a(t+1) = a(t) + IE
(
a(t)
)−1

U
(
a(t)
)
, (2.29)

where

U (a) =
∂`∗p
∂a

and IE (a) = E

(
−

∂2`∗p
∂a ∂aT

)
.

Here, all matrices and vectors are evaluated at the value of a at the current iteration. Using

the chain rule of differentiation, U (a) and IE (a) can be written as follows:

U (a) =

n∑
i=1

(yi − µi)
var(Yi)

dµi
dηi

Bi −Pa,

IE (a) =
n∑
i=1

1

var(Yi)

(
dµi
dηi

)2

BiBT
i + P, (2.30)

and the Fisher weight matrix is defined as

W = diag

{
1

var (Yi)

(
dµi
dηi

)2
}
,

where wii is the ith diagonal elements of W. Thus, IE (a) can be written in matrix-vector

form as

IE (a) = BTWB + P. (2.31)

Similarly, U (a) satisfies the equations

U (a) =

{
n∑
i=1

wii (yi − µi)
dηi
dµi

Bi

}
−Pa,

= BTW
{

(yi − µi)
dηi
dµi

}
−Pa. (2.32)

Substituting (2.32) and (2.31) into (2.29), the update becomes

a(t+1) =
(
BT W(t)B + P

)−1
BT W(t) z(t), (2.33)
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where the “adjusted dependent vector”, z, has the ith element

zi = ηi + (yi − µi)
(

dηi
dµi

)
.

The term ηi is the ith element of Ba = η. Since P-spline GAMs use a penalized version of

the Fisher scoring algorithm, then for given values of λk, the maximization of `∗p in (2.28) with

respect to a can be achieved by iteratively using (2.33). In P-IRLS, Marx and Eilers (1998)

fitted a generalized weighted linear model using the data augmentation on a response, regressors,

and weights until the convergence is achieved, where the augmented response, regressors, and

weights are given by

y∗ =

y
0

, B∗ =

 B

D∗

, W∗ =

W 0

0 I∗

.
Here, 0 is a vector of dimension 1 +

∑p
k=2(Sk − dk) and I∗ is the {1 +

∑p
k=2(Sk − dk)} ×

{1 +
∑p

k=2(Sk − dk)} identity matrix. The matrix D∗ is defined as follows

D∗ = blockdiag
(

0,
√
λ1D[d]2, . . . ,

√
λpD[d]p

)
.

Smoothing parameter selection

In a P-spline approach for GAMs, an optimal value for the smoothing parameters λk can

be selected through the minimization of an information criterion (IC), the generalized cross-

validation (GCV) score, or some other criteria, depending on whether the scale parameter is

known. If the scale parameter is known, the minimization of an IC, e.g., Akaike information

criterion (AIC), unbiased risk estimator (UBRE), or the Bayesian information criteria (BIC) is

preferred. Thus, with non-normal responses, such as Poisson count or binary data, the smoothing

parameters λ are estimated by minimizing AIC, where the AIC for the P-spline GAMs (Eilers

and Marx, 1996; Marx and Eilers, 1998) is equivalent to

AIC (λ) = Dev + 2 tr(A).
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On the other hand, if the scale parameter is unknown, and has to be estimated, such as for normal,

gamma, and negative binomial responses, the smoothing parameters λ are obtained from the

minimization of an approximation to the GCV objective function (Hastie and Tibshirani, 1990),

GCV(λ) =
nDev

[n− tr(A)]2
.

Here, λ is a vector of smoothing parameters, and Dev is the deviance of the fitted model.

The smoother matrix A is given by B
(
BT WB + P

)−1 BT W, where W contains the weights,

generated at convergence. The term tr(A) is the estimated degrees of freedom of the model.

The regression diagnostics and model checking for the P-spline GAMs will be similar to what is

done for the GLMs. The model including the parametric components can be directly estimated

by the P-spline GAMs.

2.3.3 An example

The data on daily air pollution and the daily death rate in Chicago, USA, from Peng and Welty

(2004) is used to illustrate the P-spline approach. This data was presented by Wood (2006b)

as an application of generalized additive modeling. The specific outcome of interest is the daily

death rate in Chicago (death), and the available predictors are the air quality measured by levels

of ozone (o3median), levels of particulates such as diesel exhaust (pm10median), level of sulphur

dioxide (so2median), and mean daily temperature in degrees Fahrenheit (tmpd). The data are

contained in a data frame called chicago from gamair. For homogeneity, the missing values are

removed from the dataset beforehand. All computations were performed using the mgcv package,

with P-splines being used as smooth terms within the gam model formulas.

Since the purpose of this illustration is to provide the basic application of P-splines to GAMs,

and show that all the smooth components are estimated simultaneously with the P-spline ap-

proach, the details of model development will not be discussed here. We are interested in the

relationship between the air pollution and the daily death rate. In order to investigate this rela-

tionship, we model the daily death rates as a smooth function of the four predictors. Since the
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Figure 2.6: Scatterplots with loess smoother relating the outcome variable, death to each of the four

predictors, o3median, pm10median, so2median, and tmpd respectively.

response variable is a count, we will use an additive Poisson model with the log link. Fig. 2.6

shows the scatterplots of pairs death rate with each of the four predictors. We added a loess

smoother to the pairwise scatterplots to summarize trend. Fig. 2.6 indicates that there is a linear

trend between the sulphur dioxide levels and the daily death rate while the daily temperature,

the levels of ozone, and the particulates levels provide a nonlinear trend to the outcome.

Next, we fit an additive Poisson model to the count response, death, with smooth terms

for the air quality covariates. All the smooth terms are fitted using the P-spline approach with

the default settings for cubic B-splines, and the penalty based on the second order differences

in the coefficients. The smoothness selection for these models has been performed using the

UBRE score. The default model-checking plots for this model shown in Fig. 2.7 indicate that

the distribution assumption is reasonable, and the variance is approximately constant.
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Figure 2.7: Some basic model checking plots for the air pollution mortality models.

The resulting curves for all predictor variables are shown in Fig. 2.8. The fitted curves of

the three predictors o3median, pm10median, and tmpd have some interesting non-linear features,

while the estimated curve for the effect of sulphur dioxide appears linear. The EDF estimates

for the predictors o3median, pm10median, so2median, and tmpd are 2.75, 1.87, 1, and 4.64

respectively. The three EDF estimates for the predictors o3median, pm10median, and tmpd

suggest the presence of non-linearity, whereas the EDF estimate of so2median supports linearity

as its EDF estimate is equal to 1. The estimated smooths show that the mean mortality is

moderately stable, when the ozone levels were approximately between 0 to 10 part per billion.

There is some suggestion that the mean death rates go up when the ozone levels rise above about

10 part per billion. However, there is very little data in this region and the confidence intervals

are wide. There is a strong positive non-linear relationship between the pollution levels produced
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Figure 2.8: Fitted functions for o3median, pm10median, so2median, and tmpd using the P-spline approach

to the air pollution in Chicago dataset. The shaded region represents twice the pointwise standard errors

of the estimated curve.

from the diesel exhaust (pm10median) and the number of deaths. Therefore, as the pollution

levels increase, there is a tendency for the mean mortality to also increase. For the temperature

variable, the estimated smooth curves show that the mean daily death rates are higher with lower

temperatures. More details of the model development for the Chicago air pollution mortality

data can be found from Wood (2006b, p.247).

2.4 Conclusions

The aim of this chapter is to provide the important ideas of a recent development of GAMs

based on the approach of Wood (2000, 2004, 2006b, 2008, 2011). We have illustrated how

GAMs can be generalized to penalized regression splines, and estimated by penalized likelihood
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maximization via penalized iterative least squares. We have discussed the basics of smoothing

parameter estimation, and highlighted the effect of smoothing parameter choices on the shape of

the estimated smooth functions. The kyphosis data example and the simulation study by Marra

and Radice (2010) show that the choice of smoothing parameter plays a crucial role in determining

the flexibility of models, and the estimated shape of the smooth functions. Automatic numerical

procedures used to determine the shape of non-linear terms from the data is highly desirable

for GAMs. Wood (2000, 2004, 2006b, 2008) succeeded in developing penalized likelihood-based

methods and implementing an automatic procedure for stable multiple smoothing parameter

selection for GAMs. His approaches resolve the issue of determining the shape of non-linear

components and lead the GAM method based on the penalized likelihood approach has a major

advantage over the backfitting approach.

We have also discussed the representation and estimation of the smooth functions using

penalized regression splines based on the P-spline approach of Eilers and Marx (1996) and Marx

and Eilers (1998), and illustrated the approach by modeling daily air pollution and daily death

rate. P-splines come with many attractive properties. On the computation side, P-splines are

very easy to construct and use. Standard errors and regression diagnostics can be easily obtained.

All these numerous advantages make P-splines the preferred method method to estimate GAMs.

In subsequent chapters, we will take the ideas of penalized likelihood-based approach devel-

oped by Eilers and Marx (1996), Marx and Eilers (1998), and Wood (2000, 2004, 2006b, 2008,

2011) and extend them to vector GAMs.
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3
VGLMs/VGAMs

Generalized linear models (GLMs) were formulated by Nelder and Wedderburn (1972),

and its nonparametric extension known as generalized additive models (GAMs) were

introduced by Hastie and Tibshirani (1990). These models were confined to data where the dis-

tribution of the response variable comes from the exponential family of distributions. To extend

the GLM and GAM classes, Yee and Wild (1996) developed the class of vector generalized linear

models (VGLMs) and vector generalized additive models (VGAMs). VGLMs model each of a

set of parameters as a linear combination of the covariate variables x, specified in terms of a

parametric class, while VGAMs are VGLMs with linear predictors replaced by a sum of smooth

functions of the covariates. Thus, VGAMs specify the model in terms of ‘smooth functions’

rather than parametric relationships. The VGLM and VGAM classes extended the model set-

tings of GLMs and GAMs to include (i) responses y, with distribution that are not restricted to

the exponential family, (ii) multivariate or multiple responses y, and multivariate or multiple

linear or additive predictors η, and (iii) linear or additive predictors η that are not necessarily

functions of a mean. VGLMs/VGAMs (which include GLMs/GAMs) were developed to encom-

pass and unify as many distributions and models as possible. The conditional distribution of the

43
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response is intended to be completely general. The currently implemented class of VGLMs and

VGAMs is very large and includes many statistical distributions and models.

The theoretical basis of parameter estimation in the VGLMs is the method of maximum

likelihood. Its implementation uses IRLS. VGAMs, on the other hand, are fitted by a combination

of IRLS and modified vector backfitting using vector splines. An additional underlying idea that

allows VGLMs/VGAMs to cover many distributions and models is provision for “constraints

on the functions”. The summary details of the VGLM/VGAM classes and the ideas of the

constraints on the functions will be described in the next sections. The aim of this chapter is to

give a brief and partial sketch of the key ideas underpinning the VGLMs/VGAMs framework.

For further details about VGLMs and VGAMs can be found in Yee and Hastie (2003) and Yee

and Wild (1996) respectively. The most complete reference on the theory and applications of

the VGLM/VGAM classes is Yee (2015b).

3.1 VGLMs

Let us suppose that the observed response y is a q-dimensional vector (q ≥ 1), and the

observed covariate x = (x1, . . . , xp)
T is a p-dimensional vector, where x1 = 1 denotes the

intercept. Yee and Wild (1996) described VGLMs as a model of the conditional distribution of

Y given x written by

f (y|x; B) = h (y, η1, . . . , ηM ) , (3.1)

where, h (·) is some known function, B = (β1 β2 · · · βM ) is a p ×M matrix of unknown

regression coefficients, and the jth linear predictor is given by

ηj = ηj(x) =

p∑
k=1

β(j)k xk, j = 1, . . . ,M. (3.2)

Let xi be the vector of explanatory variables for the ith observation, i = 1, . . . , n. Then, the

set of linear predictors for the ith individual, ηi, can be written as follows:
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ηi = η (xi) =


η1 (xi)

...

ηM (xi)

 = BTxi (3.3)

=


β(1)1 · · · β(1)p
...

...

β(M)1 · · · β(M)p

 xi. (3.4)

The full vector of the model coefficients can be then written as

β =
(
βT(1), . . . ,β

T
(p)

)T
, (3.5)

where β(k) =
(
β(1)k, . . . , β(M)k

)T
, k = 1, . . . , p. Given (3.5), the log-likelihood of the model

(3.1) can be written as

` (β) =

n∑
i=1

wi `i {η1 (xi) , . . . , ηM (xi)} . (3.6)

Here, ηj = ηj (x) = βTj xi, and wi are known positive prior weights which allow for a minor

generalization of (3.1). The Newton-Raphson algorithm for maximizing the log-likelihood (3.6)

to estimate β is then given by

β(t+1) = β(t) + I
(
β(t)

)−1
U
(
β(t)

)
, (3.7)

where U (β) is the score vector for the model and I (β) is the observed information matrix

written as

U (β) =
∂` (β)

∂β
,

I (β) = − ∂2`(β)

∂β ∂βT
.

The VGAM package uses the Fisher-scoring modification of Newton-Raphson which replaces

I (β) by its expectation which ensures that all the individual working weight matrices are

positive-definite. The result is an IRLS algorithm of the form

β(t+1) =

(
n∑
i=1

XT
i W

(t)
i Xi

)−1( n∑
i=1

XT
i W

(t)
i z

(t)
i

)
. (3.8)
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Here, Xi is a M ×Mp block-diagonal matrix where each main diagonal block is a copy of xTi ,

Wi is a M ×M matrix with (j, k)th element given by

(Wi)jk = −wiE
(

∂2`i
∂ηj ∂ηk

)
, (3.9)

the “adjusted dependent vector” is given by

z
(t)
i = η

(t)
i +

(
W(t)

i

)−1
u
(t)
i ,

the score vector ui has j element

(ui)j = wi
∂`i
∂ηj

,

and η
(t)
i = Xi β

(t). The Newton-Raphson algorithm is rarely used as the observed information

matrix (OIM) tends only to be positive-definite over a smaller portion of the parameter space.

If Newton-Raphson is used, then the working weights matrices are given by

(Wi)jk = −wi
∂2`i

∂ηj ∂ηk
.

As explained in Yee and Wild (1996), β(t+1) in (3.8) is the solution to the generalized least

squares (GLS) problem

z(t) = Xvlm β
(t+1) + ε(t). (3.10)

Here, they defined z =
(
zT1 , . . . ,z

T
p

)T
, Xvlm = Xlm ⊗ Im =

(
XT

1 , . . . ,X
T
n

)T
, where Xlm

is the “linear model” model matrix generally used for the small model matrix for one ηj , and

Var(ε) = blockdiag
(
W−1

1 , . . . ,W−1
n

)
. In VGLMs, Xvlm is called the “vector linear model”

model matrix. For practical computation, Yee and Wild (1996) converted the GLS system of

equations of (3.10) to ordinary least squares (OLS). To achieve this, they first constructed the

“square root” of Wi from a Cholesky decomposition given by

W = UT U = blockdiag
(
UT

1 U1, . . . ,UT
n Un

)
,

and then premultiplied (3.10) by U(t). The system of equations in (3.10) can be therefore written

as

z∗∗(t) = X∗∗vlm β
∗∗(t+1) + ε∗∗(t), (3.11)
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where Var(ε∗∗(t)) = σ2∗∗ InM . The inversion of the working weight matrices involves evaluating

the Cholesky decomposition Wi = UT
i Ui to each working weight matrix, where Ui is upper-

triangular. Since the working weight matrix is positive-definite, a Cholesky decomposition exits

and is unique. Full details about computing the working weights are given in Yee (Section

A.3.1, 2015b). In the IRLS scheme, a current η(t) is computed, then the adjusted dependent

vector z(t) and the working weights W(t) are calculated. The adjusted dependent vector

z(t) is then regressed against Xvlm with weights W(t) to obtain β(t+1), using (3.11) Then

η(t+1) = Xvlm β
(t+1) is evaluated. The process is repeated, till convergence is achieved.

In VGAMs, the expected information matrix (Fisher scoring) is much preferred over the

observed information matrix (Newton-Raphson algorithm). This is because all working weight

matrices Wi are required to be positive-definite over a larger region of the parameter space. As

explained by Seber and Wild (Chapter 13, 2003), one reason for failure with the Newton-Raphson

method is that although the Hessian is positive-definite at a local maximum in most applications,

it may not be positive-definite at each iteration. This can cause the Newton method to fail. If

the negative definite Hessian is encountered, the method may converge to the local maximum.

Indeed, the Hessian at the tth iteration may be indefinite or even singular. The Fisher scoring

method therefore uses the expected negative Hessian which is always positive-definite, so that

the step taken at the tth iteration, β(t+1) − β(t), leads uphill. The Newton method however is

usually faster compared to the Fisher scoring since the former will converge at a quadratic rate

whereas the latter has a superlinear rate of convergence.

3.2 VGAMs

Yee and Wild (1996) introduced an extension of the class of GAMs to include multivariate

regression models using vector smoothers. VGAMs are defined as an additive model extension

of VGLMs. They did this by replacing the linear function of the covariates in (3.2) by a sum of
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smooth functions of the individual covariates, written as

ηj (x) =

p∑
k=1

f(j)k (xk), or equivalently,

η (x) =

p∑
k=1

fk (xk), j = 1, . . . ,M. (3.12)

Here, x = (x1, . . . , xp)
T , with x1 = 1 if there is an intercept. In (3.12), there is no requirement

for ηj to be a function of a mean. The term fk is defined as

fk(xk) =
(
f(1)k(xk), . . . , f(M)k(xk)

)T
. (3.13)

Before describing some theoretical aspects of VGAM estimation, we need to discuss the basics

of vector splines and the vector “measurement model” that are used as the building block for

estimating VGAMs. Vector smoothing splines given in Yee andWild (1996) were generalized from

the idea of the classical smoothing splines as described by Hastie and Tibshirani (1990, chapter

2, 3). As explained in Yee and Wild (1996), implementation of VGAMs involved computational

procedures for the vector smoothing problem. This problem involves a “measurement model” for

a vector response yi, of dimension M at each value of xi given by

yi = f (xi) + εi, i = 1, . . . , n,

εi ∼ (0, Σi) independently,
(3.14)

where yi ∈ RM , and Σi are known symmetric and positive-definite error covariances. Yee

and Wild (1996) estimated the smooth vector function f(x), written (f1(x), . . . , fM (x))T by

minimizing the generalized least squares objective of (3.14), and the roughness penalty approach∑M
j λj

∫
{f ′′j (x)}2 dx of Green and Silverman (1993):

n∑
i=1

{yi − f(xi)}T Σ−1i {yi − f(xi)}+
M∑
j=1

λj

∫
{f ′′j (x)}2 dx. (3.15)

The first term of (3.15) measures the lack of fit, while the second term is called the roughness

penalty, which penalizes wiggliness. Each of the smoothing parameters λ1, . . . , λM are assumed

non-negative and fixed constants. In (3.15), vector splines are used to smooth vector values of
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yi against xi using a weights matrix Wi. The matrix Wi is defined as the inverse of the

covariance matrix for yi. Fessler et al. (1991) gave an O(nM3) algorithm based on Reinsch

(1967) for fitting (3.14) called VSPLINE. Yee and Wild (1996) then gave a modification of

VSPLINE, called YEE-SPLINE, for fitting VGAMs more effectively.

Recall from Section 3.1 that models of the form (3.1) have the log-likelihood in the form of

(3.6). This log-likelihood can be estimated using the IRLS algorithm and β(t+1) results in the

solution to the generalized least squares problem

minimize
n∑
i=1

(zi −Xiβ)T Wi (zi −Xiβ) =
n∑
i=1

{zi − η(xi)}TWi{zi − η(xi)} (3.16)

with respect to β, where η(xi) is anM -vector with jth element ηj(xi) = βTj xi. To estimate

VGAMs, Yee and Wild (1996) updated η by minimizing the objective

n∑
i=1

{zi − η (xi)}T Wi {zi − η (xi)}+

p∑
k=2

M∑
j=1

λ(j)k

∫
f ′′(j)k(t)

2 dt, (3.17)

where the integrated square of second derivative penalizes models that are too “wiggly” and

ηj (x) =
∑p

k=1 f(j)k(xk), j = 1, . . . ,M.

For a single covariate, the minimization of (3.17) involves solving vector splines (3.15) iden-

tifying terms in (3.17) with Wi = Σ−1i . For multiple covariates, they applied a backfitting

algorithm with vector smoothing instead of the usual y-scalar smoothing. This procedure, called

the “vector backfitting algorithm”, is used for fitting the vector additive model

E(yi) = β(1) +

p∑
j=1

f j(xij)

to response vectors yi. They solved the problem of (3.17) for when there is more than one covari-

ate by applying vector backfitting to the adjusted dependent vector zi. To avoid identifiability

problems, they centered the intercept β(1) and fk’s using a suitable constraint.
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3.3 Constraints on the functions

In this section, we are going to discuss the imposition of constraints primarily as they apply to

VGLMs. Recall from Section 3.1 that VGLMs have the form of

ηj = ηj(x) =

p∑
k=1

β(j)k xk, j = 1, . . . ,M. (3.18)

In (3.18) a covariate acts differently for each linear predictor. In practice, there are many

occasions on which we may wish to constrain the effects of a single covariate to be the same for

different ηj , or else constrain the covariate to have no effect for a given ηj . For example, we

may wish to constrain the effects of a covariate x2 on η1 and η2 to be the same as in

η1 = β(1)1 + β(1)2 x2 + β(1)3 x3

η2 = β(2)1 + β(1)2 x2 + β(2)3 x3. (3.19)

We may also wish to specify one parameter to be independent of covariate x2 as in

η1 = β(1)1 + β(1)2 x2

η2 = β(2)1. (3.20)

Yee and Wild (1996) proposed a unified way of accommodating any constraints of the types

described above by imposing constraints on the functions. In the “constraints on the functions”

framework, “constraint matrices” are applied directly to the linear/additive predictors to control

how the covariates act. These constraints allow VGLMs/VGAMs to cope with the special struc-

tures, e.g., parallelism, exchangeability between functions and functions that use only a subset

of the covariates. They are very useful especially when we wish to model categorical data.

In the next subsection, two specific models from applied statistics: (i) negative binomial

regression and (ii) bivariate logistic model that use the constraint ideas will be used to illustrate

how the constraints on the functions can be accommodated within the VGLM framework.
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3.3.1 Poisson and negative binomial regression

Modeling count variables is common in a wide range of settings, e.g., ecology, economics and

the social sciences. The usual model for count data is Poisson regression with the probability

distribution function given by

P (Y = y;µ) =
e−µ µy

y!
, y = 0, 1, 2, . . . , µ > 0,

and where the mean and variance functions of the Poisson distribution are identical: that is,

E(Y ) = Var(Y ) = µ(x).

However, with real data it is common for the variance of the dependent variable to exceed the

mean. This is called overdispersion. This problem may be modeled using a quasi-Poisson model

or negative binomial regression. The negative binomial distribution has probability function

P (Y = y;µ, k) =

(
y + k − 1

y

) (
µ

µ+ k

)y ( k

k + µ

)k
,

where y = 0, 1, 2, . . . , and µ > 0, and k > 0. The overdispersion parameter is 1/k, and

Var(Y ) = µ +
µ2

k
> µ. The Poisson and negative binomial models described in the GLM

framework are implemented in R using the glm() function (Chambers and Hastie, 1993) in the

stats package and the glm.nb() function in the MASS package (Venables and Ripley, 2002). But

in the implementations of these functions, the parameter k is a scalar or ‘intercept-only’, that

is, the parameter k cannot be modeled as a function of covariates x, as for example in:

logk = β(2)1 + β(2)2 x2. (3.21)

In contrast, in the VGLM framework, equation (3.21) can be fitted as follows:

logµ = η1 = βT1 x,

log k = η2 = βT2 x. (3.22)

Suppose that there are three covariate terms (p = 3) of interest, where xi1 = 1 corresponding

to the intercept, and xik is the value of the variable xk for individual i. Then, model (3.22)
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can be written as

η1(xi) = β(1)1 + β(1)2 xi2 + β(1)3 xi3,

η2(xi) = β(2)1 + β(2)2 xi2 + β(2)3 xi3.

The usual negative binomial is a special case in which the covariates x2 and x3 are constrained

to have no effect on η2, leaving an “intercept-only model”

logµ = η1 = βT1 x,

log k = η2 = β∗(2)1.

Therefore, we would wish to fit

η1(xi) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η2(xi) = β∗(2)1, (3.23)

where only the starred quantities in (3.23) need to be estimated. The model can be re-written

as

η(xi) =

η1(xi)
η2(xi)



=

β∗(1)1 β∗(1)2 β∗(1)3

β∗(2)1 0 0



xi1

xi2

xi3


=

1 0

0 1

 β∗(1)1
β∗(2)1

 xi1 +

1

0

 β∗(1)2 xi2 +

1

0

 β∗(1)3 xi3, (3.24)

which is of the form
3∑

k=1

Hk β
∗
k xik with the set of constraint matrices H1, H2, and, H3 as

follows:

H1 =

1 0

0 1

 , H2 = H3 =

1

0

 .
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3.3.2 Bivariate logistic model

Let us consider modeling two binary responses for the presence or absence of cataracts in elderly

patients’s eyes. Here, y1 and y2 are the presence or absence of cataracts of the left and

right eye respectively. The bivariate logistic model is a natural choice for modeling this type

of data. The responses of this model are generally dependent and the association between

the two binary responses is modeled in terms of the odds ratio. Let y = (y1, y2)
T be the

bivariate binary response variables with the distribution expressed as the four joint probabilities

of prs = Pr(y1 = r, y2 = s), r, s = 0, 1. McCullagh and Nelder (1989, Section 6.5.6) and

Palmgren (1989) specified the bivariate logistic (or logit) model as the logistic transforms of the

marginal distributions of each yi, together with an equation for the odds ratio, ψ, as

pj = Pr(yi = 1) =
exp{ηj(x)}

1 + exp{ηj(x)}
, j = 1, 2,

logψ(x) = η3(x). (3.25)

In (3.25), the odds ratio is ψ = p00 p11/(p01 p10). A probability, p11 can be obtained in terms

of the marginal probabilities p1 = p11 + p10, p2 = p11 + p01, and ψ as

p11 =


1

2
(ψ − 1)−1{a−

√
a2 + b}, ψ 6= 1,

p1p2, ψ = 1,

where a = 1 + (p1 + p2)(ψ − 1) and b = −4ψ(ψ − 1)p1p2. The remaining joint probabilities

can also be obtained from the marginal probabilities in a similar way.

For example, with a bivariate logistic (odds ratio) model applied to two binary responses

for the presence or absence of cataracts in elderly patients’s eyes, one should test whether the

covariates have the same effect on the responses. Therefore, we would need to constrain η1 = η2.

This error structure is called “exchangeable” (cf. Yee and Wild, 1996):

logit pj(x) = η1(x), j = 1, 2, (3.26)

logψ(x) = η3(x). (3.27)
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In McCullagh and Nelder (1989, Section 6.5.6) and Palmgren (1989), the odds-ratio is modeled as

a single parameter. If we combine this with constraining intercepts to be equal and the covariates

(x2 and x3) to act in the same way for both eyes (η1 and η2), then we have

η1(xi) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η2(xi) = β∗(1)1 + β∗(1)2 xi2 + β∗(1)3 xi3,

η3(xi) = β∗(2)1. (3.28)

Here, the odds ratio has an intercept-only model, with three covariate terms (p = 3), and we

assume that xi1 = 1 is an intercept. The model (3.28) can be re-written as

η(xi) =


η1(xi)

η2(xi)

η3(xi)



=


β∗(1)1 β∗(1)2 β∗(1)3

β∗(1)1 β∗(1)2 β∗(1)3

β∗(2)1 0 0



xi1

xi2

xi3



=


1 0

1 0

0 1


β∗(1)1
β∗(2)1

 xi1 +


1

1

0

 β∗(1)2 xi2 +


1

1

0

 β∗(1)3 xi3, (3.29)

which is again of the form
3∑

k=1

Hk β
∗
k xik with slightly different constraint matrices Hk.

The next subsection describes a maximum likelihood estimation based on iteratively reweighted

least squares for the constrained VGLMs and the method used to estimate the constrained

VGAMs.

3.3.3 VGLMs and constraint matrices

Equations (3.24) and (3.29) illustrate how constraint matrices can be accommodated within the

VGLM framework with the general form of

η(xi) = BTxi =

p∑
k=1

Hk β
∗
(k) xik,
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where H1, H2, . . . , Hp are known full-column-rank matrices known as constraint matrices,

β∗(k) =
(
β∗(1)k, . . . , β

∗
(Rk)k

)T
, is a vector containing a possibly reduced set of regression coeffi-

cients, and

BT =
(
H1 β

∗
(1) H2 β

∗
(2) · · · Hp β

∗
(p)

)
.

Where no constraints are imposed on a set of β-coefficients, then the relevant constraint matrix

is an M ×M identity matrix. Unconstrained coefficients such as this are said to be subject to

“trivial constraints” in VGAM. The parameter vector to be estimated is given by

β∗ =
(
β∗T(1), . . . ,β

∗T
(p)

)T
.

Yee and Wild (1996) maximized the log-likelihood of the constrained problem using Fisher

scoring or Newton Raphson, which can be implemented by iteratively minimizing the objective

function

minimize

n∑
i=1

(
zi −

p∑
k=1

Hk β
∗
k xik

)T
Wi

(
zi −

p∑
k=1

Hk β
∗
k xik

)
with respect to {β∗k}. The relevant minimization problem is again the GLS problem (as described

in the unconstrained problem, cf. equation (3.10)), but with a transformed “vector linear model”

model matrix given by

Xvlm =

(
(Xlm e1)⊗H1

∣∣∣∣ (Xlm e2)⊗H2

∣∣∣∣ · · · ∣∣∣∣ (Xlm ep)⊗Hp

)
, (3.30)

cf. Xvlm for the unconstrained problem in equation (3.10), where ⊗ is the Kronecker product

and ek is a zero vector with a one in the kth position. In IRLS, Yee and Wild (1996) regressed

adjusted dependent vectors zi = ηi+W−1
i ui on Xvlm given by (3.30), with ui = wi ∂`i/∂ηi

and the working weights Wi = −wiE
(
∂2`i/

(
∂ηi ∂η

T
i

))
, until convergence is met (cf. the

IRLS procedure for the unconstrained problem in Section 3.1).

3.3.4 VGAMs and constraint matrices

Yee and Wild (1996) also used “constraints on the functions” to enforce relationship between

the f(j)k of VGAMs. Analogous to the constrained VGLM case in Sections 3.3.1 and 3.3.2, the
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smooth-function equivalent of (3.23) and (3.28) can be written as

η1(xi) = β∗(1)1 + f∗(1)2(xi2) + f∗(1)3(xi3),

η2(xi) = β∗(2)1, (3.31)

and

η1(xi) = β∗(1)1 + f∗(1)2(xi2) + f∗(1)3(xi3),

η2(xi) = β∗(1)1 + f∗(1)2(xi2) + f∗(1)3(xi3),

η3(xi) = β∗(2)1. (3.32)

respectively. For VGAMs, Yee and Wild (1996) represented these models using

η(x) =

p∑
k=1

Hk f
∗
k (xk) (3.33)

where f∗k is a vector containing a possibly reduced set of component functions written in the

forms of f∗k =
(
f∗(1)k (xk) , . . . , f

∗
(rk)k

(xk)
)T

, and Hk are the constraint matrices. Like fk,

each smooth component in f∗k is centered for uniqueness. If there are no constraints, the relevant

constraint matrix is an M ×M identity matrix and f∗k = fk =
(
f(1)k (xk), . . . , f(M)k (xk)

)T
.

To estimate the constrained VGAMs, Yee and Wild (1996) extended linear constraints on the

component functions Hk f
∗
k (xik) to restrictions of the form Hk f

∗
k (xik)+ck, for some vector ck.

They fitted the kth variable within the backfitting algorithm by minimizing the problem
n∑
i=1

{
z
[k]
i −Hkf

∗
k(xik)− ck

}T
Wi

{
z
[k]
i −Hkf

∗
k(xik)− ck

}
+
∑
j

λ(j)k

∫
f∗
′′

(j)k(t)
2 dt, (3.34)

= constant +

n∑
i=1

{
z
∗[k]
i − f∗k(xik)

}T
W∗

i,k

{
z
∗[k]
i − f∗k(xik)

}
+
∑
j

λ(j)k

∫
f∗
′′

(j)k(t)
2 dt,

cf. equations (3.15) and (3.17), where

x
∗[k]
i =

(
HT
kWiHk

)−1HT
k Wi

(
z
[k]
i − ck

)
(3.35)

and W∗
i,k = HT

k WiHk. (3.36)

The relevant minimization problem is again a vector spline problem, but with a dependent vector

and weight matrix transformed respectively into (3.35) and (3.36). A detailed explanation of the

constrained VGAMs is given in Yee and Wild (1994).
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3.4 Conclusions

VGLMs/VGAMs are extensions of GLMs/GAMs made to include a wide class of multivariate

regression models. The underlying algorithm of VGLMs is IRLS, while VGAMs are fitted via

IRLS and modified vector backfitting using vector splines. The constraints on the functions are a

very important component of the VGLM/VGAM class for applied work as they add a great deal

of modeling flexibility. In this chapter, we have provided an introduction to the theory required

for model construction, constraint matrices, and estimation for VGLMs/VGAMs, emphasizing

elements that will be extended or modified later in this thesis.





C
h

a
p

t
e

r

4
P-spline VGAMs

VGAMs (Yee and Wild, 1996) are VGLMs with linear predictors replaced by a sum of

smooth functions of covariates. The model has the form of ηj (x) =
∑p

k=1 f(j)k (xk)

(cf. equation (3.12)). Parameter estimation was achieved by a combination of IRLS and modified

vector backfitting using vector splines. In general, the backfitting approach requires the users

to manually investigate the possible values for the target equivalent degrees of freedom, used

as a smoothing parameter. In backfitting, the algorithm used for estimating all the smooth

terms in the models is suitable only for estimating single smooth terms individually. Its iterative

procedure does not provide straightforward expressions for the estimation of smooth components.

This is why a computational method for automatic smoothing parameter estimation cannot be

implemented easily within the backfitting approach. This leads to difficulties with VGAMs for

smoothness estimation and inference.

To show how the manual choice of degrees of smoothness affects the shape of the estimated

functions of VGAMs based on the backfitting approach, we consider the fitted curves from the

LMS method for quantile regression on the age-centile curves of European women using the

VGAM approach. The LMS method is a popular technique for quantile regression. It was
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originally proposed by Cole (1988) and Cole and Green (1992). Yee (2004) called this the

classical LMS-normal method. The basic idea is as follows. At a fixed value of x, a Box-Cox

power transformation is applied to a response in order to transform it to normality. Smooths

of quantiles are then obtained on the normal scale, and these are then back-transformed to the

original scale. LMS was named from the starting letter ‘L-M-S’ of the three parameters λ, µ, σ

which have to be estimated. Cole and Green (1992) estimated the three parameters by penalized

likelihood using an iterative smoothing spline. Yee (2004) fitted all three functions simultaneously

using a vector smoothing spline. Further information is given in Green and Silverman (1993)

and Wright and Royston (1997).

For illustrative purposes, we will use a cross-sectional data set from the VGAMdata package

of a company’s workforce data combined with health-survey data, from New Zealand during the

1990s. The variables of interest are: age ranging between 16 and 88 years (age), and body mass

index ( BMI = weight/height2, kg m−2), used for measuring obesity. We confine our analysis

to a subset of 2600 European women. Missing values were removed. The LMS-normal method

was fitted to this data set with Y = BMI and X2 = age using the VGAM package (Yee,

2008) with the family function lms.bcn. Three different sets of manual choices of degrees of

freedom will be used: c(1.5, 1.5, 1.5), c(4, 15, 4), and c(1, 4, 1) coded as follows:

1 fit1 <- vgam(BMI ~ s(age , df = c(1.5, 1.5, 1.5)), lms.bcn(zero = NULL),

2 data = women.eth0s)

3 fit2 <- vgam(BMI ~ s(age , df = c(4, 15, 4)), lms.bcn(zero = NULL),

4 data = women.eth0s)

5 fit3 <- vgam(BMI ~ s(age , df = c(1, 4, 1)), lms.bcn(zero = NULL),

6 data = women.eth0s)
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Figure 4.1: Quantile regression fits to dataset xs.nz in VGAMdata using the LMS method. The numbers

in brackets at the top of each panel are the manual choice of the degrees of freedom. The solid lines

represent the estimated smooth quantiles. The plots represent underfitting, overfitting, and a good fit

respectively.

Fig. 4.1 shows the smooth quantile estimates that the modified vector backfitting yields.

By changing the value of the degrees of smoothness, we obtain a variety of fitted models. The

left panel in Fig. 4.1 shows that a small value for the degrees of freedom leads to nearly linear

estimates or the model underfitting, while a large value of the degrees of freedom results in an

excessive wiggliness of the estimated smooth function from model overfitting as shown in the

middle panel of Fig. 4.1. Fig. 4.1 shows that the choice of degree of smoothness of smooth

terms plays a crucial role in determining the flexibility of models, and the estimated shape of

the smooth functions. Being able to automatically determine the shape of nonlinear terms from

the data for VGAMs is highly desirable. While a reasonable fitted model can be obtained by

manually turning the degrees of freedom as shown in Fig. 4.1 (right panel), a well-experienced

researcher is required to tune these spline parameters.

We will develop an alternative estimation procedure for estimating model coefficients for the

VGAM class by adapting automatic numerical procedures previously described to determine the

shape of nonlinear terms from the data to the VGAM framework. We do this by generalizing

the ideas of penalized regression splines for GAM modeling to the VGAM class.

To construct VGAMs using penalized regression splines, we need a basis for the smooth
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function, which is large enough to approximate the function well, but small enough for efficient

computation. And to avoid overfitting with smooths, we need a measure of function “wiggliness”

that can be used to penalize overly complex models during fitting. P-splines are an attractive

approach for representing VGAMs as penalized regression splines. They are low-rank smoothers

represented by B-splines, usually defined on equally-spaced knots, together with a difference

penalty applied directly to the parameters to control function wiggliness. They also have the

attractive properties described in Section 2.3.

We will develop VGAMs based on penalized regression splines using P-spline smoothers,

which we term “P-spline VGAMs”. By using P-spline smoothers for every smooth component,

we will transform VGAMs into the VGLM framework and fit P-spline VGAMs by penalized

likelihood maximization.

4.1 Setting up P-spline VGAMs as penalized VGLMs

The purpose of this section is to document exactly how P-spline VGAMs can be constructed

using penalized regression splines in a way that allows the smoothness selection to be integrated,

and to describe penalized likelihood estimation for the approach proposed.

4.1.1 Modeling P-spline VGAMs with basis functions

We will now reformulate VGAMs using penalized regression splines based on P-spline smoothers.

Each smooth term in (3.12) is rewritten using a set of B-splines and has an associated ‘discrete’

penalty measuring its wiggliness. The model is considered in the form of

ηj (x) =

p∑
k=1

f(j)k (xk), j = 1, . . . ,M,

or in vector form

η (x) =

p∑
k=1

fk (xk), (4.1)
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where x = (x1, . . . , xp)
T . Each smooth term f(j)k (xk) in (4.1) is represented as

f(j)k(xk) =

Sk∑
s=1

a(j)k:sBk:s(xk), (4.2)

where Sk is the number of B-spline basis functions used for f(j)k(xk), the Bk:s(xk) are B-spline

basis function and the {a(j)k:s} are coefficients associated with the B-spline basis functions that

are estimated as part of model fitting. We define fk(xk) in (4.1) in the same ways as it was

defined in VGAMs (cf. equation (3.13)),

fk(xk) =
(
f(1)k(xk), . . . , f(M)k(xk)

)T
.

Recall if there is an intercept, x1 = 1. The f(j)k (xk) of equation (4.1) is fitted using a set of

B-splines as basis functions, usually defined on evenly spaced knots (cf. Marx and Eilers, 1998).

Let

f (j) =
(
f(j)1(x1), . . . , f(j)p(xp)

)T
be a vector containing all smooth components modeled at the jth smooth predictor. Each smooth

component function in f (j) is subject to a centering constraint in order to ensure that the model

is identifiable. Following Gill et al. (1981) and Wood (2006b, Sections 1.8.1 and 4.2), we use the

constraint such as ∑
i

f(j)k(xik) = 0

for each smooth component in f (j). In this thesis, we model each smooth component function

in fk(xk) with the same knots. Given a set of B-splines as a basis, we re-write (4.2) in the

matrix notation as

f (j)k = X∗k β(j)k, (4.3)

where β(j)k =
(
a(j)k:1, . . . , a(j)k:Sk

)T is a Sk × 1 B-spline coefficient vector at the jth smooth

predictor and kth predictor, and X∗k is an n× Sk matrix containing B-splines generated from

the values of xk. Here, Sk is the number of knots for xk. We then define the parameter vector

for one ηj , β(j) =
(
βT(j)1, . . . ,β

T
(j)p

)T
. Given centered model matrices for each smooth term,
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we re-write (4.1) as

ηj(x) =

p∑
k=1

f(j)k (xk)

=

p∑
k=1

X∗k β(j)k

= X∗ β(j), (4.4)

where X∗ =
(
X∗1 | . . . |X∗p

)
is an n×

∑p
k=1 Sk block matrix containing the matrices X∗k, as its

column blocks, k = 1, . . . , p. Let x∗ik = (Bk:1(xik), . . . , Bk:Sk
(xik))

T be a Sk× 1 vector of B-

splines generated from the values of xik, and x∗i =
(
x∗Ti1 , . . . ,x

∗T
ip

)T
be a (

∑p
k=1 Sk)×1 vector

stacking the x∗ik. We now write the smooth predictor vector η in terms of the observations as

follows:

ηi = η(xi) =


η1 (xi)

...

ηM (xi)


= f1(xi1) + · · ·+ fp(xip)

=


a(1)1:1 · · · a(1)1:S1

...
...

a(M)1:1 · · · a(M)1:S1

 x∗i1 + · · ·+


a(1)p:1 · · · a(1)p:Sp

...
...

a(M)p:1 · · · a(M)p:Sp

 x∗ip

=
(
β1:1 · · ·β1:S1

)
x∗i1 + · · ·+

(
βp:1 · · ·βp:Sp

)
x∗ip, (4.5)

where βk:s =
(
a(1)k:s, . . . , a(M)k:s

)T
, k = 1, . . . , p and s = 1, . . . ,Sk. Before proceeding,

we need to define the ‘vectorization’ of a matrix. The ‘vectorization’ of a matrix is a linear

transformation which converts the matrix into a column vector. For example, the vectorization

of an n×m matrix A, denoted by vec(A), is the nm× 1 column vector obtained by stacking

the columns of the matrix A below one another:

vec(A) = (a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm)T .
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By applying the ‘vectorization’ to the matrix
(
βk:1 . . .βk:Sk

)
, we obtain a (Sk ·M)×1 B-spline

coefficient vector βk as follows:

βk = vec
(
βk:1 . . .βk:Sk

)

= vec


a(1)k:1 · · · a(1)k:Sk

...
...

a(M)k:1 · · · a(M)k:Sk



= vec


βT(1)k
...

βT(M)k

 , (4.6)

where β(j)k =
(
a(j)k:1, . . . , a(j)k:Sk

)T
. We re-write (4.5) as follows:

ηi = η(xi) = (η1(xi), . . . , ηM (xi))
T

= f1(xi1) + · · ·+ fp(xip)

= (x∗Ti1 ⊗ IM )β1 + · · ·+ (x∗Tip ⊗ IM )βp

= Xi1 β1 + · · ·+ Xip βp

=

p∑
k=1

Xik βk, (4.7)

where Xik = x∗Tik ⊗ Im is an M × (Sk ·M) matrix. In other words, the matrix Xik here is a

block diagonal matrix made up of M copies of x∗Tik . Let

Xi = (Xi1 | . . . |Xip) (4.8)

be an M ×
(∑p

k=1 Sk ·M
)

block matrix containing the matrices Xik as its column blocks.

Let β =
(
βT1 , . . . ,β

T
p

)T is a
∑p

k=1(Sk · M) × 1 parameter vector. If the intercept is in a

model, then the matrix Xi becomes an M ×
(
M +

∑p
k=2 Sk ·M

)
matrix given by Xi =

(Im |Xi2 | . . . |Xip) , and β1 =
(
β(1)1, . . . , β(M)1

)T
. We then re-write equation (4.7) in a

general matrix-vector form as

η = Xvam β, (4.9)
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where η =
(
ηT1 , . . . ,η

T
n

)T
, and

Xvam = Xam ⊗ Im =
(
XT

1 , . . . ,X
T
n

)T (4.10)

is the “vector additive model” model matrix with dimensions (n ·M) ×
(∑p

k=1 Sk ·M
)
. Here,

Xam =
(
X∗1 | . . . |X∗p

)
is the “additive model” model matrix constructed in the manner described

in Section 2.3, and Im is the M ×M identity matrix. By using B-splines for each smooth

component function f(j)k(xk), and imposing the identifiability constraints on the model before

fitting, we have transformed equation (4.1) into the form of VGLMs to that shown in (4.9),

where the ith row of the model matrix is now equivalent to Xi, and the parameter vector is

β =
(
βT1 , . . . ,β

T
p

)T
. We therefore write down its log-likelihood as (cf. equation (3.6))

`(β) =
n∑
i=1

wi `{η1(xi), . . . , ηM (xi)}. (4.11)

Here, ηj(xi) =
∑p

k=1 f(j)k(xk) = βT(j)x
∗
i .

If the number of B-spline basis functions is large enough, then the estimated smooth compo-

nents are able to approach the unknown underlying true function, and the β can be estimated

by ordinary likelihood maximization. But with a relatively large number of basis functions, this

can cause substantially overfitting. So, as in Chapter 2, we have to impose penalties during

model fitting to control model’s smoothness. In this thesis, we use the penalty based on finite

differences of adjacent B-splines coefficients (cf. Section 2.3) to control overfitting.

4.1.2 The penalty for P-spline VGAMs

Now we consider how measures of function wiggliness based on finite differences of adjacent

B-spline coefficients can be constructed for VGAMs. Recall that the function’s wiggliness for

univariate GAMs is measured by (for variable xk)

Sk∑
s=1

(
∆[d] ak:s

)2
= βTk D

T
[d]kD[d]k βk = βTk P[d]k βk, (4.12)

where P[d]k = DT
[d]kD[d]k is a Sk × Sk penalty matrix, and βk = (ak:1, . . . , ak:Sk

)T denote

the vector of the B-spline coefficients for the kth predictor. The matrix D[d]k is a (Sk−dk)×Sk
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penalty building-block matrix, where each row consists of the contrasts of dth order polynomial,

and Sk is the number of knots for xk. To extend the penalty in (4.12) to the VGAM class, we

first define the penalty at the jth smooth predictor as follows:

Jj(λ) =

p∑
k=1

Sk∑
s=1

λ(j)k

(
∆[d] ak:s

)2
=

p∑
k=1

λ(j)k β
T
(j)kD

T
[d]kD[d]k β(j)k

=

p∑
k=1

βT(j)k

{
λ(j)k

(
DT

[d]kD[d]k

)}
β(j)k. (4.13)

Here, λ(j)k ≥ 0 for all j > 0 and k > 0 are the smoothing parameters that control the tradeoff

between fit and smoothness, and β(j)k =
(
a(j)k:1, . . . , a(j)k:Sk

)T (cf. equation (4.3)). Then, we

define Pλ(j) as a
∑p

k=1 Sk ×
∑p

k=1 Sk diagonal block matrix, where the main diagonal blocks

are the Sk × Sk matrix of λ(j)k
(
DT

[d]kD[d]k

)
. Thus, Pλ(j) is in the form of

Pλ(j) =


λ(j)1

(
DT

[d]1D[d]1

)
· · · 0

...
. . .

...

0 · · · λ(j)p

(
DT

[d]pD[d]p

)
 .

If there is an intercept, Pλ(j) = blockdiag
(

0, λ(j)2

(
DT

[d]2D[d]2

)
, . . . , λ(j)p

(
DT

[d]pD[d]p

))
is a(

1 +
∑p

k=2 Sk
)
×
(
1 +

∑p
k=2 Sk

)
matrix. We now write the penalty in (4.13) as a quadratic form

in the parameter vector β(j) as

Jj(λ) = βT(j)Pλ(j) β(j).

Next, we will show how the discrete wiggliness penalty Jj(λ) can be extended to more

than one smooth predictor. Since the smoothing parameters are given to the objective in order

to smooth each component function, each smooth component function in fk(xk) will obtain

the different values of the smoothing parameters. Let λk =
(
λ(1)k, . . . , λ(M)k

)T be a vector

containing a set of the smoothing parameters for each smooth component function in fk(xk).

Let Pλk =
(
DT

[d]kD[d]k

)
⊗diag

(
λ(1)k, . . . , λ(M)k

)
be a (Sk ·M)× (Sk ·M) penalty matrix for
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each smooth vector fk(xk). We then write the penalty term for the P-spline VGAMs as follows:

J(λ) =

p∑
k=1

M∑
j=1

λ(j)k β
T
(j)kD

T
[d]kD[d]k β(j)k

=

p∑
k=1

βk

{(
DT

[d]kD[d]k

)
⊗ diag

(
λ(1)k, . . . , λ(M)k

)}
βk

=

p∑
k=1

βTk Pλk βk. (4.14)

In this thesis, we model each smooth component function in fk(xk) with the same penalty

building-block matrix D[d]k. Let

Pλ = blockdiag (Pλ1, · · · ,Pλp) (4.15)

be the
(∑p

k=1 Sk ·M
)
×
(∑p

k=1 Sk ·M
)

penalty matrix of the model. Here, Pλk corresponds

to the smooth vector fk(xk). The matrix Pλ1 is replaced by 0 if there is an intercept. We

therefore re-write the penalty J(λ) into the forms of the quadratic penalty on the parameter

vector β as

J(λ) = βT Pλ β.

As usual, β here is a parameter vector with βk in its kth element. Clearly, given B-splines as

a basis, we can always generate the matrix Pλ which allows the penalty J(λ) to be written as

a quadratic form in the parameter vector β (cf. Marx and Eilers (1998)). Given a wiggliness

measure for each smooth function for all smooth predictors, a penalized log-likelihood for the

P-spline VGAM model can be expressed as

`∗(β) = `(β)− 1

2

p∑
k=1

M∑
j=1

λ(j)k β
T
(j)kD

T
[d]kD[d]k β(j)k. (4.16)

For notational compactness, we re-write the log-likelihood objective (4.16) as

`∗(β) = `(β)− 1

2
βT Pλ β. (4.17)

Given values for the λ(j)k, then we would fit the P-spline VGAM by maximizing the penalized

log-likelihood objective (4.17) in order to obtain β̂.



4.2. P-IRLS formulation via Fisher scoring 69

4.1.3 P-spline VGAMs with parametric terms

The model structure presented so far has considered only models consisting of smooth terms.

There is no difficulty, however, in combining parametric components and smooth functions of

covariates (cf. Wood (Chapter 4, 2006b)). If a parametric term, such as, dummy and categorical

variables is included as the kth term in the model, then Xik in (4.8) corresponds to an M ×M

vector with corresponding parameter vector βk of M dimensions, and in (4.15), the Pλk term

for a strictly parametric model component is set to a zero matrix as such terms are not penalized.

4.2 P-IRLS formulation via Fisher scoring

Given a B-spline as a basis and discrete wiggliness penalty for each smooth in the model, then,

for given smoothing parameters λ(j)k, the P-spline VGAMs can be estimated using penalized

likelihood maximization. The penalized log-likelihood of the P-spline VGAM is estimated in

the same manner as the log-likelihood objective of VGLMs is solved and this can be done using

penalized iteratively reweighted least squares (P-IRLS). In this section, we will describe how

P-spline VGAMs can be estimated using P-IRLS.

4.2.1 The Fisher scoring algorithm

We now spell out some of the details of maximizing the penalized log-likelihood using the Fisher

scoring algorithm. The Newton algorithm for maximizing `∗(β) (4.17) is given by

β(t+1) = β(t) + I
(
β(t)

)−1
U
(
β(t)

)
, (4.18)

where (suppressing the superscript (t) for simplicity)

U (β) =
∂`∗ (β)

∂β

=
∂` (β)

∂β
− 1

2

∂
(
βT Pλ β

)
∂β

, (4.19)
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and

I (β) = −∂
2`∗(β)

∂β ∂βT

= −

{
∂2`(β)

∂β ∂βT
− 1

2

∂2
(
βT Pλ β

)
∂β ∂βT

}
. (4.20)

Here, U (β) is the score vector for the model and I (β) is the observed information matrix.

Recall from equation (4.17) that the log-likelihood `(β) is of the form

`(β) =

n∑
i=1

wi `{η1(xi), . . . , ηM (xi)},

where ηj(xi) =
∑p

k=1 f(j)k(xk) = βT(j)x
∗
i and wi are known positive prior weights (cf.

equation (3.6)). Using the chain rule, the first derivatives of the log-likelihood `(β) in (4.19)

can be written as

∂`

∂βj
=

n∑
i=1

wi
∂`i
∂ηj
· ∂ηj
∂βj

=

n∑
i=1

wi
∂`i
∂ηj

x∗i . (4.21)

The second derivatives of the log-likelihood `(β) in (4.20) satisfies the equations

− ∂2`

∂βj ∂β
T
k

=

n∑
i=1

−wi
{

∂2`i
∂ηj ∂ηk

}
∂ηj
∂βj

∂ηk
∂βk

,

=

n∑
i=1

−wi
∂2`i

∂ηj ∂ηk
x∗i x

∗T
i . (4.22)

Taking (4.19) and (4.20), then substituting in (4.21) and (4.22) as well as derivative of the penalty

terms we have
∂`∗

∂βj
=

n∑
i=1

wi
∂`i
∂ηj

x∗i − [Pλ](j) βj , (4.23)

and

− ∂2`∗

∂βj ∂β
T
k

= −
n∑
i=1

wi
∂2`i

∂ηj ∂ηk
x∗i x

∗T
i + [Pλ](j) · δjk, (4.24)

where [Pλ](j) the jth diagonal block of Pλ, and δjk is defined as

δjk =

{
1 if j = k

0 if j 6= k
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Here,
∂`∗

∂βj
and − ∂2`∗

∂βj ∂β
T
k

are a (
∑p

k=1 Sk)-vector and a (
∑p

k=1 Sk ×
∑p

k=1 Sk) matrix

respectively. If there is an intercept, the equivalent dimension of (4.23) and (4.24) is respectively

given by (1 +
∑p

k=2 Sk)× 1 and (1 +
∑p

k=2 Sk)× (1 +
∑p

k=2 Sk).

In the context of simultaneous equation estimation methods, Fisher scoring is preferable

to Newton-Raphson since it results in more stable computations (Yee and Wild, 1996). The

Fisher scoring algorithm uses the expected rather than observed information matrix in (4.18).

Equation (4.24) is replaced by

E

(
− ∂2`∗

∂βj ∂β
T
k

)
=

n∑
i=1

wiE

(
− ∂2`i
∂ηj ∂ηk

)
x∗i x

∗T
i + [Pλ](j) · δjk. (4.25)

Let W be the “working weights matrix” made up of the diagonal blocks of W1, . . . ,Wn, where

Wi is an M ×M matrix with (j, k)th element

(Wi)jk = −wiE
(

∂2`i
∂ηj ∂ηk

)
.

Thus, the expected second derivatives of `(β) become

E

(
− ∂2`(β)

∂β ∂βT

)
=

n∑
i=1

XT
i WiXi

= XT
vamWXvam,

where Xi and Xvam are respectively given by (4.8) and (4.10). The expected information

matrix IE (β) is therefore

IE (β) = E

(
−∂

2`∗(β)

∂β ∂βT

)
= XT

vamWXvam + Pλ. (4.26)

Let ui be the vector with jth element

(ui)j = wi
∂`i
∂ηj

,

and u =
(
uT1 , . . . ,u

T
n

)T
. We then obtain

∂`

∂β
in the form of

∂`

∂β
=

n∑
i=1

XT
i ui

= XT
vam u.
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Now U (β) from (4.19) can be written as

U (β) =
∂`∗ (β)

∂β
= XT

vam u−Pλ β. (4.27)

Then the maximum log-likelihood estimates for the P-spline VGAM at iteration t can be derived

as following:

β(t+1) =
(
XT

vamW
(t)Xvam + Pλ

)−1 (
XT

vamW
(t)Xvam + Pλ

)
β(t)

+
(
XT

vamW
(t)Xvam + Pλ

)−1(
XT

vamW
(t)
(
W(t)

)−1
u−Pλ β

(t)
)

=
(
XT

vamW
(t)Xvam + Pλ

)−1(
XT

vamW
(t)Xvam β

(t) + XT
vamW

(t)
(
W(t)

)−1
u
)

=
(
XT

vamW
(t)Xvam + Pλ

)−1(
XT

vamW
(t)
(
Xvam β

(t) +
(
W(t)

)−1
u
))

=
(
XT

vamW
(t)Xvam + Pλ

)−1(
XT

vamW
(t) z(t)

)
.

From the expression above, our iterative procedure for maximizing `∗(β) is given by

β(t+1) =
(
XT

vamW
(t)Xvam + Pλ

)−1 (
XT

vamW
(t) z(t)

)
. (4.28)

Here, z(t) = Xvam β
(t)+

(
W(t)

)−1
u(t) is an nM -vector called the adjusted dependent variable

and can be partitioned as z =
(
zT1 , . . . ,z

T
n

)T
. Given values for the smoothing parameters,

β(t+1) is the solution to the penalized iteratively reweighted least squares problem

minimize
(
z(t) −Xvam β

)T
W(t)

(
z(t) −Xvam β

)
+ βT Pλ β (4.29)

with respect to β. Consequently, η(t+1) = Xvam β
(t+1). Thus, for given values of the smoothing

parameters, our penalized likelihood approach using P-spline smoothers proposed here directly

fits VGAMs through a slightly modified method of scoring algorithm. All the smooth components

are estimated simultaneously.
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4.2.2 The geometry of penalized regression for P-spline VGAMs

In practice, we do not use (4.28) and (4.29) for the computation. We prefer the greater numerical

stability offered by orthogonal-matrix methods. This can be achieved by facilitating models

fitted by least squares by taking a geometric view of the fitting process. In general, the geometry

of linear and generalized linear model fitting becomes more complicated when the quadratic

penalties are applied to the model. This is because when penalized estimation is used, the

geometry in terms of projections requires a larger space than the data space that was considered in

linear and generalized linear models (cf. Wood, 2006b, Sections 1.4, 2.2, and 4.10.3,). To achieve

the greater numerical stability, we will take a geometric interpretation of penalized estimation

for GAMs and extend it to our proposed method. Recall from equation (4.9) that the P-spline

VGAM model is written in the form of

η = Xvam β,

and this model can be estimated by the minimization of the penalized objective function (4.29).

For practical computation, we re-write (4.29) as∥∥∥∥∥∥∥∥
 W 0

0 I


1/2

 z
0

−
 Xvam

P̃λ

 β

∥∥∥∥∥∥∥∥
2

, (4.30)

where P̃λ is any square root of the matrix Pλ such that P̃
T

λ P̃λ = Pλ. It can be obtained

by Cholesky decomposition. Here, P̃λ = blockdiag
(
P̃λ1, . . . , P̃λp

)
is {

∑p
k=1(Sk − dk) ·M}×

(
∑p

k=1 Sk · M) matrix. Each diagonal element P̃λk = D[d]k ⊗ diag
(√

λ(1)k, . . . ,
√
λ(M)k

)
is a {(Sk − dk) ·M} × (Sk ·M) matrix. The expression in (4.30) is simply the un-penalized

GLS objective function for an augmented version of the P-spline VGAM models. So the sum

of squares term in (4.30) is a GLS objective for a model in which the model matrix has been

augmented by a square root of the penalty matrix, while the adjusted dependent vector has been

augmented with
∑p

k=1 (Sk − dk) ·M zeros. The working weights matrix has been augmented by

a
{∑p

k=1 (Sk − dk) ·M
}
×nM zero matrix, and added an additional column of a 2×1 block ma-
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trix, where the first and second blocks are a
{∑p

k=1(Sk − dk) ·M
}
×
{∑p

k=1(Sk − dk) ·M
}

zero

matrix, and a
{∑p

k=1(Sk − dk) ·M
}
×
{∑p

k=1(Sk − dk) ·M
}

identity matrix respectively. The

augmented working weights matrix, W
′
can be simply written as W

′
= blockdiag (W, Iϑ) ,

where ϑ =
∑p

k=1(Sk − dk) ·M. The augmented z, Xvam, and W, can be written as follows:

z
′

=

 z
0ϑ

 , X
′
vam =

Xvam

P̃λ

 , W
′

= blockdiag (W, Iϑ) . (4.31)

Then, the equivalent minimization becomes

minimize
(
z
′ −X

′
vam β

)T
W
′
(
z
′ −X

′
vam β

)
(4.32)

with respect to β. In (4.32), the estimates of β can be obtained by solving the GLS problem,

z
′

= X
′
vam β + ε, (4.33)

where Var(ε) = blockdiag
(
W−1, Iϑ

)
= W

′−1. The standard method based on a Cholesky

decomposition is applied in order to convert the GLS system of equations to ordinary least

squares (OLS). We premultiply both sides of the regression equation of (4.33) by a Cholesky

decomposition of the W
′
. Importantly, U

′
is a matrix square root such that

U
′TU

′
= W

′
= blockdiag

(
UT

1U1, . . . ,UT
nUn, Iϑ

)
, (4.34)

where UT
i Ui = Wi, and the matrices U

′
i can be obtained by the Cholesky decomposition.

By premultiplying (4.33) by U
′
, we obtain a new regression equation

z
′′

= X
′′
vam β + ε

′′
, (4.35)

where z′′ = U
′
z
′
, X

′′
vam = U

′
X
′
vam, ε

′′
= U

′
ε
′ and Var

(
ε
′′
)

= σ2I{nM+
∑p

k=1(Sk−dk)·M}.

The augmented GLS problem (4.32) is now reduced to the OLS normal equations (4.35).

Given smoothing parameters, the maximum penalized log-likelihood estimates of β at iter-

ation t are obtained by the following steps. Given a current coefficient vector β(t), with cor-

responding linear predictor η(t), construct the adjusted dependent variable z(t) and working
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weights W(t). Data augmentation is applied to obtain X
′
vam, z

′(t), and W
′(t). The algorithm

proceeds by regressing z
′(t) on X

′
vam with weights W

′(t) to obtain an improved estimate

β(t+1) using (4.35). Then, a new η(t+1), z(t+1), and W(t+1) are computed, a new z
′(t+1),

and W
′(t+1) are constructed, and the process is repeated, until the change in the coefficients

is sufficiently small. This procedure forms the P-IRLS algorithm. Hence, given smoothing pa-

rameters, we maximize the P-spline VGAM penalized log-likelihood (4.17) by P-IRLS. For the

moment, the smoothing parameters are taken as known. In Chapter 5, smoothing parameter

estimation will be performed by minimizing the GCV or the UBRE score with respect to the

smoothing parameters.

The OLS procedure (4.35) is the simplest type of estimation procedure used in statistical

analyzes with its underlying computation being based on orthogonal methods which provide us

with the greater numerical stability with respect to numerical problems due to ill-conditioned

design matrices. As stated by Yee (2015b, chapter 3), to solve this OLS problem, the QR

algorithm can be operated using modified LINPACK subroutines to give stable ordering and rank

estimation. For a large n×m matrix, the QR decomposition costs approximately 2nm2 floating

point operations (flops). Therefore, formulation of a major component of fitting P-spline VGAMs

with trivial constraints costs about 2
(
nM +

∑p
k=1 (Sk − dk) ·M

)
M2

(∑p
k=1 Sk

)2 ≈ 2nM3p2S2k

flops at each P-IRLS iteration for X
′′(t−1)
vam . Also, the storage demand of Xvam with dimensions(

nM +
∑p

k=1 (Sk − dk) ·M
)
×
∑p

k=1 Sk ·M involves approximately nM2pSk. These indicate

that the computational load and storage requirements for fitting P-spline VGAMs rise rapidly

with respect to M, followed by p, Sk, and then n. Following Yee (2015b, chapter 3), the

storage costs of the algorithm proposed can be reduced by reducing the number of parameters,

such as, imposing the constraints on the functions and reducing the number of knots.
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4.3 P-spline VGAMs with constraint matrices

The definition of Xvam in (4.10) can only accommodate “trivial constraints” (Hk = IM for all k) .

We saw in Section 3.3 that facility called “constraints on the functions” is one key idea allowing

the VGAM approach to be much more useful in many more situations. In this section, we will

generalize these ideas to the P-spline VGAM framework.

4.3.1 Setting up the constrained P-spline VGAMs as penalized VGLMs

Recall from (4.1) that ηj (x) =
∑p

k=1 f(j)k (xk). Then η = (η1, . . . ,ηn)T is given by η =

f1(x1) + · · ·+ fp(xp). We will use constraint matrices to constrain the behavior of ηj (x) term

(cf. Yee and Wild (1996)). The approach to handling constraints on the model terms can be

written as

η = f1(x1) + · · ·+ fp(xp)

= H1 f
∗
1(x1) + · · ·+ Hp f

∗
p(xp), (4.36)

where f∗k =
(
f∗(1)k(xk), . . . , f

∗
(Rk)k

(xk)
)T

, k = 1, . . . , p, is a vector consisting of a possibly

reduced set of smooth functions to be estimated, and each Hk is a “constraint matrix”. Recall

from Section 3.3 that the constraint matrices are known full column-rank matrices with the

dimension M × Rk. The starred quantities in (4.36) are unknown and have to be estimated.

When no constraints are imposed on a set of smooth functions, then the relevant constraint

matrix is again an M ×M identity matrix, so that f∗k = fk =
(
f(1)k(xk), . . . , f(M)k(xk)

)T
.

In our implementation, each smooth component in f∗k will share the same set of knots in the

way we described for fk in Section 4.1. The vector containing all smooth terms at the jth

smooth predictor f (j) is defined and subjected to centering constraints in the same manner as

described in Section 4.1.

We now write the smooth predictor vector η in terms of the observations as follows:
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ηi = H1 f
∗
1(xi1) + · · ·+ Hp f

∗
p(xip)

= H1


a(1)1:1 · · · a(1)1:S1

...
...

a(R1)1:1 · · · a(R1)1:S1

 x∗i1 + · · ·+ Hp


a(1)p:1 · · · a(1)p:Sp

...
...

a(Rp)p:1 · · · a(Rp)p:Sp

 x∗ip

= H1

(
β∗1:1 · · ·β∗1:S1

)
x∗i1 + · · ·+ Hp

(
β∗p:1 · · ·β∗p:Sp

)
x∗ip, (4.37)

where β∗k:s =
(
a(1)k:s, . . . , a(Rk)k:s

)T
, k = 1, . . . , p and s = 1, . . . ,Sk. By applying

‘vectorization’ (cf. equation (4.6)) to the matrix
(
β∗k:1 . . .β

∗
k:Sk

)
, we obtain a (Sk · Rk) × 1

vector containing a possibly reduced set of B-spline coefficients β∗k as follows:

β∗k = vec
(
β∗k:1 . . .β

∗
k:Sk

)

= vec


a(1)k:1 · · · a(1)k:Sk

...
...

a(Rk)k:1 · · · a(Rk)k:Sk



= vec


β∗T(1)k
...

β∗T(Rk)k

 , (4.38)

where β∗(j)k =
(
a(j)k:1, . . . , a(j)k:Sk

)T
, j = 1, . . . ,Rk. Therefore, equation (A.2.2) is equiva-

lent to

ηi = H1

(
x∗Ti1 ⊗ IR1

)
β∗1 + · · ·+ Hp

(
x∗Tip ⊗ IRp

)
β∗p

= H1X∗i1 β
∗
1 + · · ·+ HpX∗ip β

∗
p

=

p∑
k=1

HkX∗ik β
∗
k.

Here, X∗ik = x∗Tik ⊗IRk
is an Rk×(Sk · Rk) matrix. Next, we will illustrate how the constraint

ideas can be accommodated within the P-spline VGAM framework. All the essential points are

illustrated by considering the bivariate logistic models (cf. Section 3.3.2).
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1. Bivariate logistic models

As an example, let us revisit the example of two binary responses for the presence or

absence of cataracts in elderly patients’s eyes, where y1 and y2 are respectively the the

presence or absence of cataracts for the left and right eye. We will now illustrate the

P-spline VGAM analog of the VGLM in Section 3.3.2:

logitpj(x) = η1(x), j = 1, 2,

logψ(x) = η3(x) = β∗(2)1. (4.39)

The smooth-function equivalent of (3.28) is

η1(xi) = β∗(1)1 + f∗(1)2(xi2) + f∗(1)3(xi3),

η2(xi) = β∗(1)1 + f∗(1)2(xi2) + f∗(1)3(xi3),

η3(xi) = β∗(2)1. (4.40)

Here,

η(xi) =


η1(xi)

η2(xi)

η3(xi)



=


1 0

1 0

0 1


β∗(1)1
β∗(2)1

 xi1 +


1

1

0

 f∗(1)2(xi2) +


1

1

0

 f∗(1)3(xi3)

=


1 0

1 0

0 1

 X∗i1 β
∗
1 +


1

1

0

 X∗i2 β
∗
2 +


1

1

0

 X∗i3 β
∗
3

=
3∑

k=1

HkX∗ik β
∗
k. (4.41)

We have the same set of constraint matrices H1, H2, and, H3
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H1 =


1 0

1 0

0 1

 , H2 = H3 =


1

1

0

 .

The vectors β∗k, k = 1, 2, 3, (cf. equation (4.38)) are as follows:

β∗1 =
(
β(1)1, β(2)1

)T
, β∗2 = vec

(
a(1)2:1 · · · a(1)2:S2

)
, and

β∗3 = vec
(
a(1)3:1 · · · a(1)3:S3

)
.

Equation (4.41) illustrates how constraint matrices can be applied directly in the P-spline VGAM

framework with the general form of

η(xi) =

p∑
k=1

HkX∗ik β
∗
k. (4.42)

We now develop the computational theory for the general constrained problem (4.42). Let

β∗ =
(
β∗T1 , . . . ,β∗Tp

)T be a
(∑p

k=1 Sk · Rk
)
× 1 vector containing all of the possibly reduced

sets of B-spline coefficients in the models, and

Xvam =

((
Xam Ẽ1

)
⊗H1

∣∣∣∣ (Xam Ẽ2

)
⊗H2

∣∣∣∣ · · · ∣∣∣∣ (Xam Ẽp
)
⊗Hp

)
(4.43)

be an (nM)× p∗∗ model matrix (cf. Xvam for the unconstrained problem in equation (4.10)).

Here, p∗∗ =
∑p

k=1 Sk · ncol (Hk) and the matrix Ẽk’s are
(∑p

k=1 Sk
)
× Sk matrices defined as

follows:

Ẽ1 =


I(S1×S1)

O
...

O

 , Ẽ2 =



O

I(S2×S2)

O
...

O


, . . . ,

Ẽp =


O
...

O

I(Sp×Sp)

 .
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Analogous to ek in the “vector linear model” model-matrix settings for the constrained VGLMs,

we can simply write Ẽk = ek ⊗ ISk
where ek is a zero vector with a one in the kth position

(cf. equation (3.30)).

The class of P-spline VGAMs subjected to the constraint matrices can be then written as

η = Xvam β
∗, (4.44)

which is the same form as (4.9) for the unconstrained problem, but with a redefined Xvam

matrix. The expression in (4.44) has the same form as a VGLM.

4.3.1.1 The penalty for the constrained P-spline VGAMs

We now turn our attention to controlling the model’s smoothness by adding wiggliness penal-

ties to the log-likelihood objective ` (β∗) of (4.44) (cf. equation (4.11)). The wiggliness

penalty for the constrained P-spline VGAMs can be constructed in the same way as we con-

structed the wiggliness penalty for the unconstrained P-spline VGAMs (cf. Section 4.1.2). Let

λ∗k =
(
λ(1)k, . . . , λ(Rk)k

)T be a Rk × 1 vector containing a possibly reduced set of smoothing

parameters. We, therefore, write the penalty for the constrained P-spline VGAMs as follows:

J(λ) =

p∑
k=1

Rk∑
j=1

λ(j)k β
∗T
(j)kD

T
[d]kD[d]k β

∗
(j)k

=

p∑
k=1

β∗Tk

{(
DT

[d]kD[d]k

)
⊗ diag

(
λ(1)k, . . . , λ(Rk)k

)}
β∗k

=

p∑
k=1

β∗Tk P∗λk β
∗
k, (4.45)

where P∗λk =
(
DT

[d]kD[d]k

)
⊗ diag

(
λ(1)k, . . . , λ(Rk)k

)
is a (Sk · Rk) × (Sk · Rk) matrix. As

before, the penalty matrix P∗λ is

P∗λ = blockdiag
(
P∗λ1, . . . ,P

∗
λp

)
, (4.46)

which has the dimensions
(∑p

k=1 Sk · Rk
)
×
(∑p

k=1 Sk · Rk
)
. Given P∗λ, we re-write (4.45) as

J(λ) = β∗T P∗λ β
∗.
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Given a wiggliness measure for each smooth function, the penalized log-likelihood for the con-

strained P-spline VGAMs is

`∗(β∗) = `(β∗)− 1

2

p∑
k=1

Rk∑
j=1

λ(j)k β
∗T
(j)kD

T
[d]kD[d]k β

∗
(j)k. (4.47)

We re-write the penalized log-likelihood objective (4.47) in matrix notation as

`∗(β∗) = `(β∗)− 1

2
β∗T P∗λ β

∗. (4.48)

4.3.2 Estimating β∗ for given smoothing parameters

Given values for the λ(j)k, the coefficient estimates β̂
∗

can be obtained by maximizing the

`∗ (β∗) . We estimate `∗(β∗) in (4.48) in exactly the same way as in the unconstrained P-spline

VGAM case (cf. Sections 4.2 and 4.2.2). The only change is a more complicated model matrix

Xvam, parameter vector β∗, and penalty matrix P∗λ. Following Section 4.2, the penalized

maximum likelihood estimation of (4.48) is therefore performed by repeated solution of

minimize

n∑
i=1

(
zi −

p∑
k=1

HkX∗ik β
∗
k

)T
Wi

(
zi −

p∑
k=1

HkX∗ik β
∗
k

)
+

p∑
k=1

β∗Tk P∗λk β
∗
k,

which is equivalent to

minimize
(
z −Xvam β

∗
)T

W
(
z −Xvam β

∗
)

+ β∗T P∗λ β
∗ (4.49)

with respect to β∗. The updated adjusted dependent vector and a weight matrix are constructed

in the same way as we demonstrated in Section 4.2. Following Section 4.2.2, data augmentation

is applied to (4.49) in order to achieve penalization. This gives the minimization of

(
z
′ −X

′
vam β

∗
)T

W
′
(
z
′ −X

′
vam β

∗
)

with respect to β∗. Hence β∗ is the solution to the GLS problem

z
′

= X
′
vam β

∗ + ε
′
. (4.50)

We note that the relevant minimization problem is again the GLS problem (cf. the minimization

problem for the unconstrained problem in Section 4.2.2) but with a model matrix Xvam and
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penalty matrix P∗λ given by (4.43) and (4.46) respectively (cf. equation (4.31)). We then

convert the GLS problem to OLS in the same manner as we did with the unconstrained case

by premultiplying both sides of (4.50) by U
′
, where U

′
is any matrix square root such that

U
′TU

′
= W

′
(cf. equation (4.34)). This gives the OLS equation (cf. equation (4.35))

z
′′

= X
′′
vam β

∗ + ε
′′
, (4.51)

where Var
(
ε
′′
)

= σ2I{nM+
∑p

k=1(Sk−dk)·Rk}. Hence given smoothing parameters, the maximum

penalized likelihood estimates for β∗ at iteration t are again obtained by regressing z′(t) upon

X
′
vam with W

′(t) using (4.51) to obtain an updated β∗(t+1) until specified convergence, cf.

the P-IRLS procedure for the unconstrained problem in Section 4.2. The entire procedure for

fitting P-spline VGAMs is summarized in algorithm 1 to follow.
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Algorithm 1 The P-spline VGAM estimation procedure: prescribed smoothing parameters with
constraints

1. Construct:

a) Xvam from Xam and H1, . . . ,Hp :

Xvam =

((
Xam Ẽ1

)
⊗H1

∣∣∣∣ (Xam Ẽ2

)
⊗H2

∣∣∣∣ · · · ∣∣∣∣ (Xam Ẽp
)
⊗Hp

)
(cf. equation (4.43)),

b) P∗λ = blockdiag
(
P∗λ1, . . . ,P

∗
λp

)
, where P∗λk =

(
DT

[d]kD[d]k

)
⊗ diag

(
λ(1)k, . . . , λ(Rk)k

)
(cf. equation (4.46)).

2. Initialize: η(0), e.g., from β∗(0) or µ(0) (if necessary, compute µ(0), `0, define a β∗(0),
etc).

3. Compute u(0) and the working weights W(0).

4. Compute an adjusted dependent variable from z(0) = η(0) +
(
W(0)

)−1
u(0).

5. Construct the augmented X
′
vam =

Xvam

P̃
∗
λ

 , where P̃
∗T
λ P̃

∗
λ = P∗λ (cf. equation (4.31)).

6. For t = 0, 1, 2, . . .

a) Construct the augmented z(t) and W(t) (cf. equation (4.31)):

z
′(t) =

z(t)
0ϑ

 , W
′(t) = blockdiag

(
W(t), Iϑ

)
.

b) Regress z′(t) upon X
′
vam with weights W

′(t) to obtain estimated β̂
∗(t+1)

using

z
′′(t) = X

′′(t)
vam β

∗ + ε
′′(t) (cf. equation (4.51)).

c) Evaluate the smooth predictor η(t+1).

d) Compute the convergence criterion

∆
(
β∗(t+1), β∗(t)

)
=
∥∥∥β∗(t+1) − β∗(t)

∥∥∥ .
e) Compute u(t+1) and the working weights W(t+1).

f) Compute the adjusted dependent variable z(t+1) = η(t+1) +
(
W(t+1)

)−1
u(t+1).

7. Repeat step 6, replacing η(t) by η(t+1) until ∆
(
β∗(t+1), β∗(t)

)
is sufficiently small.
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4.4 Degrees of freedom for P-spline VGAMs

As mentioned in Section 2.2.1, the effective degrees of freedom (EDF), defined as tr(A) is one

method of measuring the flexibility of the fitted model of GAMs based on penalized regression

splines. The question is how to measure the flexibility of the fitted model of P-spline VGAMs and

how many degrees of freedom do the fitted P-spline VGAMs have? Since P-spline VGAMs are

developed under the GAMs based on the penalized regression splines, the influence matrix (or

hat matrix) Aλ is naturally evaluated from the fitted model, and the flexibility of the fitted

model for P-spine VGAMs can be measured using tr(Aλ), in the same way that it is evaluated

in GAMs based on the penalized likelihood-based approach (cf. Wood (Section 4.4, 2006b)).

In our computation, data augmentation is applied to convert the penalized iteratively reweighted

least squares problem in (4.29) (for the unconstrained P-spline VGAMs) to the GLS problem in

(4.32), and a Cholesky decomposition of the working weights W is then used to convert (4.32)

to the OLS problem in (4.35). This gives the final expression of the parameter estimates β̂ as

β̂ =
(
X
′′T
vamX

′′
vam

)−1 (
X
′′T
vam z

′′
)
. (4.52)

Given (4.52), the augmented influence-matrix can be written:

X
′′
vam

(
X
′′T
vamX

′′
vam

)−1
X
′′T
vam. (4.53)

Recall from equation (4.35) that X
′′
vam = U

′
X
′
vam, where U

′
is any square root of the matrix

W
′
such that U

′TU
′

= W
′
, and can be written as

U
′

=

U 0

0 Iϑ

 , and X
′
vam =

Xvam

P̃λ


(cf. equations (4.31) and (4.34)), so that

X
′′
vam = U

′

Xvam

P̃λ

 =

UXvam

P̃λ

 .

We will now see that tr(Aλ) can be obtained from the sum of the first n ·M elements on the

leading diagonal of (4.53).
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X
′′
vam

(
X
′′T
vamX

′′
vam

)−1
X
′′T
vam

=

UXvam

P̃λ

 (
XT

vamWXvam + Pλ

)−1 (
XT

vamU
T P̃

T

λ

)

=

UXvam
(
XT

vamWXvam + Pλ

)−1 XT
vamU

T UXvam
(
XT

vamWXvam + Pλ

)−1 P̃T

λ

P̃λ

(
XT

vamWXvam + Pλ

)−1 XT
vamU

T P̃λ

(
XT

vamWXvam + Pλ

)−1 P̃T

λ

 .

The influence matrix Aλ for the P-spline VGAM model can be then taken as

Aλ = UXvam
(
XT

vamWXvam + Pλ

)−1 XT
vamU

T , (4.54)

computed upon convergence. However,

tr(Aλ) = tr
{
Xvam

(
XT

vamWXvam + Pλ

)−1 XT
vamW

}
(4.55)

= tr
{
XT

vamWXvam
(
XT

vamWXvam + Pλ

)−1}
, (4.56)

and we use the latter equation, following Marx and Eilers (1998) as it leads more efficient

computation. The matrix operations performed in (4.56) are always cheaper to evaluate than

those of (4.55). We note that for the constrained P-spline VGAMs, Xvam and Pλ for the

influence matrix Aλ in (4.54) are given by (4.43) and (4.46) respectively.

Since tr(Aλ) in (4.55) gives the EDF for the whole model, it is natural to divide this EDF

into the effective degrees of freedom for each smooth term at each smooth predictor. For GAMs

constructed using penalized regression splines, Wood (Section 4.4, 2006b) decomposed the el-

ements on the leading diagonal of A (cf. equation (2.14)) into components relating to the

different terms within the model to obtain the EDF for each smooth term. Following Wood

(Section 4.4, 2006b), the EDF for each smooth term for our cases can be obtained as follows.

We first define F =
(
XT

vamWXvam + Pλ

)−1 XT
vamW, which yields β̂ = F z (in the uncon-

strained P-spline VGAM case). Hence Aλ = XvamF (cf. equation (4.55)) and each row of F

is associated with one parameter. Then, let F(j)k be the matrix F with all rows zeroed except
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for those associated with the parameters of the jth smooth predictor and the kth smooth term.

Therefore,

Aλ =

p∑
k=1

M∑
j=1

XvamF(j)k. (4.57)

Equation (4.57) gives a straightforward way of calculating the EDF of the kth smooth term at

the jth smooth predictor, i.e., the EDF for each smooth term for our cases can be taken as

tr(XvamF(j)k). For the constrained P-spline VGAMs, equation (4.57) is replaced by Aλ =∑p
k=1

∑Rk
j=1XvamF(j)k.

4.5 Confidence Intervals

The generalization of GAMs using penalized regression splines allows the models to be estimated

by penalized regression methods. This way, GAMs is reduced to GLMs. Furthermore, inference

is straightforward. Following Marx and Eilers (1998) and Wood (Chapter 4, 2006b), confidence

interval estimation for P-spline VGAMs can be described as follows. Recall that our parameter

estimators are of the form (cf. equation (4.28))

β̂ =
(
XT

vamWXvam + Pλ

)−1XT
vamW y, (4.58)

where the data or the adjusted dependent variable y have variance-covariance matrix W−1.

At the convergence, the variance-covariance matrix for the estimators β̂ is

Var
(
β̂
)

=
(
XT

vamWXvam + Pλ

)−1XT
vamWXvam

(
XT

vamWXvam + Pλ

)−1 (4.59)

and so

Var
(̂
f
)
≈ Xvam

(
XT

vamWXvam + Pλ

)−1XT
vamWXvam

(
XT

vamWXvam + Pλ

)−1XT
vam.

(4.60)

The diagonal elements of (4.60) are used to construct twice standard error bands for P-spline

VGAM smooth term. As stated by Wood (Chapter 4, 2006b) and Wood (2006a), generally

E
(
β̂
)
6= β because the penalty induced bias, so that confidence intervals based on the use of
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β̂ and the corresponding variance-covariance matrix in (4.59) generally provide poor results in

terms of realized coverage probabilities. Wood (2006a) overcame the poor performance of these

intervals using a Bayesian approach proposed by Wahba (1983). Full details of approximate

Bayesian interval estimates for GAMs are given by Wood (2006a).

4.6 Model Comparison

In model building process, we might be sometimes interested in testing a null hypothesis that

the simpler of the two nested models is correct, against the alternative that the more complex of

the two models is correct. Wood (Sections 2.1.6 and 4.10.1, 2006b) stated that the generalized

log-likelihood ratio test is often used for such comparison, that is, the difference in deviance

between the two models is applied as a test statistic. Consider testing,

H0 : X0β0 against H1 : X1β1,

where Xj is a model matrix including any strictly parametric model components and the terms

representing spline bases for the smooth components with corresponding parameter vector βj ,

and the column space of X0 is contained in the column space of X1. If H0 is true, then a

rough approximation in the large sample limit is given by

Dev0 −Dev1 ∼ χ2
EDF1−EDF0

, (4.61)

where Dev0 and Dev1 are the deviance under H0 and H1 respectively. The difference

Dev0 − Dev1 is treated as following a χ2 distribution with degrees of freedom given by

the difference of EDF between the two models. If the scale parameter is unknown and has to be

estimated, the F-ratio test is used for this comparison

F =
(Dev0 −Dev1) / (EDF1 − EDF0)

Dev1/ (n− EDF1)
∼ FEDF1−EDF0,n−EDF1 . (4.62)

In (4.62), the F-ratio test is treated as following an F distribution with degrees of freedom

given by EDF1 − EDF0 and n− EDF1.
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Since P-spline VGAMs are developed based on the penalized regression splines, following

Wood (Section 4.10.1 2006b), for any comparison of nested models in the P-spline VGAMs

approach can be formed in the same way as Wood (2006b) did with GAMs using (4.61), or

(4.62) if the scale parameter has to be estimated, and with the residual degrees of freedom

approximated by (cf. Section 4.4.1, Wood, 2006b)

df err ≈ nM − tr(Aλ).

4.7 Conclusions

In this chapter, we have proposed a fitting procedure based on generalizing the penalized re-

gression spline approach of Marx and Eilers (1998) and Wood (2006b) to the VGAM class. We

have shown a very natural extension from the P-spline implementation of GAMs to P-spline

implementations of VGAMs. We have shown how penalized likelihood maximization for P-spline

VGAMs can be implemented using penalized iteratively reweighted least squares (P-IRLS). Im-

portantly, we have developed a model structure which allows the data to reveal the nature of an

effects curve in a fairly unconstrained way and by constraining it to have suitable forms by taking

the “constraints on the functions” approach of Yee and Wild (1996), and incorporating this idea

into the P-spline VGAM framework to cover the full range of VGAM models. We concluded by

defining “effective degrees of freedom” (EDF) and confidence intervals for P-spline VGAMs and

providing further tools that are useful for applied modeling with our purposed method such as

comparing models. We have also developed the necessary computational procedures. These have

also been coded as R functions (see appendix A).
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5
Smoothing parameter selection and

simulation study

In chapter 4, we generalized the ideas of penalized regression splines, based on P-spline

smoothers from classical GAM modeling to the VGAM class, and developed an estimation

procedure based on the penalized likelihood approach, which we called “P-spline VGAMs”. This

approach maximized the penalized log-likelihood which was of the form (cf. section 4.2 and 4.3)

`∗(β∗) = `(β∗)− 1

2
β∗T P∗λ β

∗. (5.1)

In Chapter 4, the smoothing parameters involved in (5.1) were taken as known rather than

estimated. As noted by Wood (2006b), the smoothing parameters cannot be estimated by max-

imizing (5.1) jointly over β∗ and λ because this maximization always yields an estimated

smoothing-parameter of zero. The most complex model will always be chosen since the high-

est value for (5.1) would be obtained when smoothing parameters equal zero. Therefore, the

smoothing parameters have to be estimated using an alternative criterion. If the model has

only one smooth term, then estimation of smoothing parameters by applying direct grid-search

89
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optimization to a criterion such as generalized cross validation (GCV) or the Akaike information

criterion (AIC) works well. But if there is more than one smooth term in the model, then this

estimation can be computationally expensive. In Section 2.2, we discussed a number of possible

techniques for automatic selection of the multiple smoothing parameters within the penalized

likelihood framework, mainly drawn from work by Wood who proposed suitable parametric rep-

resentations for the smooth functions, and a computational method to control and choose the

degree of smoothness appropriately. He developed an efficient computational method for auto-

matic multiple smoothing-parameter selection for GAMs based on penalized regression splines.

In a series of papers, Marra and Radice (2011), Marra et al. (2013b), Marra (2013), Marra et al.

(2013a), and Radice et al. (2015) extended GAMs based on penalized regression splines to a

simultaneous system of two binary equations. Their model constructions allowed the degree of

smoothness of the model component functions to be estimated using Wood (2004)’s method.

They showed how the minimization of the UBRE score version developed for a simultaneous

system of two binary outcomes can be achieved using the approach of Wood (2004).

In this chapter, we will discuss the theory and computational details for automatic smoothing-

parameter estimation developed by Wood (2004) and an extension of the penalized likelihood

approach presented in Marra and Radice (2011) for the simultaneous system of two binary

equations in which the amount of smoothing for the smooth components is allowed to be chosen

automatically through minimization of the UBRE score. We will then extend the smoothness-

selection procedures discussed in Wood (2004) and Marra and Radice (2011) to the P-spline

VGAM formulated using penalized regression splines described in Chapter 4, and develop the

general form of smoothing-parameter selection criteria such as the GCV and UBRE scores for the

full range of VGAM models including those complications such as constraints on model terms.

We will then discuss simulation studies conducted to investigate the empirical performance of

the method proposed.
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5.1 Stable and efficient multiple smoothing parameter

estimation for GAMs

As discussed in Chapter 2, GAMs represented using penalized regression splines can be employed

in a straightforward manner using penalized regression methods and this makes it possible to

integrate the smoothing parameter selection into model fitting in a manner that is both com-

putationally efficient and stable using well-founded criteria such as GCV or UBRE. Smoothing-

parameter estimation under such criteria can be included as part of the P-IRLS scheme used

to fit GAMs by penalized likelihood maximization. Wood (2004) proposed the method for do-

ing this. In this section, we will discuss some theoretical aspects that underpin the method for

smoothing-parameter selection developed by Wood (2004) and also discuss in some detail how

this method can be integrated into the model fitting in an efficient manner.

Recall from equation (2.13) that the basic GAM fitting problem can be written in the form

minimize
∥∥∥√W (z −Xβ)

∥∥∥2 + βTSβ. (5.2)

For given the smoothing parameters, (5.2) can be easily solved, but the smoothing parame-

ters have to be estimated. As discussed in Section 2.2.2, for the problem (5.2) the smoothing

parameters can be estimated by minimizing the GCV or the UBRE scores:

Vwg =
n‖
√

W (z −Xβ) ‖2

[n− tr (A)]2
, or (5.3)

Vwu =
1

n
‖
√

W (z −Xβ) ‖2 − σ2 +
2

n
tr(A)σ2, (5.4)

with respect to the smoothing parameter vector λ. Here, A is the influence matrix for the

model and depends on the smoothing parameters. Wood (2004) used an approach based on an

optimization strategy of Gu (1992) known as “performance iteration”, for estimating smoothing

parameters using (5.3) or (5.4) minimization. This approach uses the fact that at each P-IRLS

iteration a penalized weighted least squares problem is solved, and the smoothing parameters

of that problem can be estimated by minimizing the GCV or UBRE scores (cf. Section 2.2.2).
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Therefore, for each working penalized linear model of the P-IRLS iteration, Wood (2004) mini-

mized the score V, in (5.3) or (5.4) with respect to the smoothing parameters using a numerical

approach based on Newton’s method parameterized in terms of the log smoothing parameters:

V(λ) ' V(λ(t)) + (λ− λ(t))Tm+
1

2
(λ− λ(t))TM (λ− λ(t)),

where m and M are the first derivative vector and second derivative matrix of V(λ) with

respect to the smoothing parameters. He worked with log-transformed smoothing parameters

to ensure that the smoothing parameter estimates stayed positive. The tth estimate of λ was

updated by minimizing the approximating quadratic to give

λ(t+1) = λ(t) −M−1m. (5.5)

The process is repeated, till convergence is met. Importantly, he implemented (5.5) in a way

that the GCV and UBRE scores and their derivatives can be evaluated in a manner that is

both computationally efficient and stable. To do this, he used a method based on pivoted QR

decomposition and a singular value decomposition. He first transformed the influence matrix:

A = X
(
XTWX + S

)−1XTW (cf. equation (2.14)) involved in the expression for V and

therefore is m and M, into a more useful form using the QR decomposition of
√
WX,

√
WX = QR, (5.6)

where Q is made up of columns of an orthogonal matrix and R is an upper triangular matrix.

He defined S =
∑p

k=1 λk Sk and B to be any matrix square root of S such that BTB = S,

(e.g., obtained by Cholesky decomposition or by eigen decomposition) and formed a singular

value decomposition of an augmented matrix of R with B :R
B

 = UDVT . (5.7)

Here, the matrix U has orthogonal columns, V is an orthogonal matrix and D is the diagonal

matrix of singular values. Wood (2004) stated that numerical rank deficiency of the fitting



5.1. Stable and efficient multiple smoothing parameter estimation for GAMs 93

problem can be reliably identified by examining the singular values in matrix D. He then

defined U1 is the sub-matrix of U, so gives the explicit form, e.g., U =
(
UT

1 ,U
T
2

)T
, so that

R = U1DVT . This gives

√
WX = QU1DVT , while XTWX + S = VD2VT . (5.8)

As a consequence, A and tr(A) can be written as

A = QU1UT
1Q

T , and tr(A) = tr(U1UT
1 ). (5.9)

Since the main computational cost is by forming the QR decomposition, the calculations of the

quantities related to A, for example tr(A) (5.9), for new trial values of λ become relatively

cheap. Using the orthogonal matrix factorizations above, Wood (2004) obtained convenient

expressions for the component derivatives of the GCV and UBRE scores. For each updated

λ, these derivatives can be evaluated in a stable manner, giving an efficient implementation of

Newton’s method for finding the optimum λ. Further details of the stable multiple smoothing-

parameter estimation by GCV or UBRE can be found in Wood (2004). An implementation of

Wood (2004)’s method is the function magic() in the mgcv package.

Function magic implemented the computational method of applying GCV or UBRE to prob-

lem of smoothing parameter selection in the context of a penalized least squares problem (5.2).

The smoothing parameters are then chosen to minimize either the GCV score (5.3) or the UBRE

score (5.4) using Newton’s method parameterized in terms of the log smoothing parameters de-

scribed above. The major inputs for magic() are the model matrix (X for the unweighted case

and
√
WX for the weighted case), the response vector or the adjusted dependent vector (y

for the unweighted case and
√
W z for the weighted case), the array of smoothing parameters

({λ1, . . . , λp}) and a list of penalty matrices ({S1, . . . ,Sp}). The function returns a list of sev-

eral items and the major outputs are as follows: the estimated parameters given the estimated

smoothing parameters, the estimated (GCV) or supplied (UBRE) scale parameter, the mini-

mized GCV or UBRE score and the estimated smoothing parameters. In Section 5.3, we will

extend the smoothness selection procedure described in this section to our framework and the
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magic() function will be employed to minimize the GCV score or the UBRE score with respect

to the smoothing parameters for our problem.

5.2 Penalized likelihood approach to binary response modeling

and smoothness component selection

In this section, we will discuss the work done by Marra and Radice (2011) that extended the

penalized likelihood approach to the simultaneous system of two binary equations in which their

model structure allows the degree of smoothness for the smooth components to be estimated

automatically by minimizing the UBRE score.

Marra and Radice (2011) introduced a fitting procedure based on the penalized regression

spline approach for nonstandard semiparametric bivariate probit model (whose model exhibits

the recursive structure) of the form

y∗1i = x+
1iα1 +

K1∑
k1=1

fk1(z1k1i) + ε1i,

i = 1, . . . , n, (5.10)

y∗2i = β y1i + x+
2iα2 +

K2∑
k2=1

fk2(z2k2i) + ε2i,

where the observed binary outcomes y1i and y2i are specified according to the rule:

yvi =

{
1 if y∗vi > 0

0 if y∗vi ≤ 0
; v = 1, 2,

and x+
1i and x+

2i are respectively the ith row vector of the model matrices x+
1 and x+

2 for any

parametric model components, with corresponding parameter vectors α1 and α2; and fk1 and

fk2 are unknown smooth terms for z1k1i and z2k2i. The error terms (ε1i, ε2i) are identically

distributed as bivariate normal with zero mean, unit variance and correlation coefficient θ3,

independently across observations:
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(
ε1i

ε2i

)
iid∼ N

(0

0

 ,
 1 θ3

θ3 1

).
Marra and Radice (2011) represented the smooth model components using the regression spline

approach, where basis functions such as P-splines, cubic regression and thin plate regression

splines were used. They defined the linear predictor for (5.10) as

η1i = x1iθ1,

η2i = x2iθ2,

where x1i consists of x+
1i and the quantities corresponding to the spline bases for the smooth

functions, and θ1 contains parameter α1 and the regression coefficients associated with the

smooths. They defined x2i and θ2 in the same way as for x1i and θ1, except that, x2i and

θ2 contain yi1 and β, respectively.

Replacing the smooth components in (5.10) with their regression spline expressions results in

a fully parametric recursive bivariate probit model. Marra and Radice (2011) therefore expressed

two binary responses y1i and y2i as the bivariate probit model of the form

Pr(y1i = 1, y2i = 1|x1i,x2i) = Φ2(η1i, η2i; θ3), (5.11)

where Φ2 is the cumulative distribution function of a standard bivariate normal distribution

with zero mean, unit variance and correlation coefficient θ3. They then employed penalized

likelihood maximization to estimate (5.11). The penalized likelihood for their models is given by

`p(θ) = `(θ)− 1

2
θT Sλ θ,

where Sλ is the penalty matrix of the model and θ = (θ1,θ2, θ3) is the parameter vector.

Given values for smoothing parameters, they maximized `p(θ) with respect to θ̂ using Fisher

scoring. The current estimate of θ at the tth iteration is updated using

θ̂
(t+1)

= θ̂
(t)

+
(
I(t) + Sλ

)−1 (
g(t) − Sλθ̂

(t)
)
, (5.12)
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where I is the Fisher information matrix, and g is defined by the two subvectors g1 = ∂`/∂θ1

and g2 = ∂`/∂θ2, and a scalar g∗3 = ∂`/∂θ∗3, where

θ∗3 = tanh−1(θ3) = (1/2) log{(1 + θ3)/(1− θ3)}

is the common transform for correlation θ3 (cf. Marra and Radice (2011)). Parameter estimation

for model (5.11) can also be achieved using the VGAM approach of Yee and Wild (1996).

Given values for the smoothing parameters, Marra and Radice (2011) considered Fisher

scoring step (5.12) in the P-IRLS form, and estimated θ̂
(t+1)

by solving the problem

minimize
∥∥∥ √W(t)

(
z(t) −Xθ

) ∥∥∥2 + θT Sλ θ, (5.13)

with respect to θ. Here,
√
W

(t)
is any matrix square root of W(t), i.e., satisfying

√
W

(t)T√
W

(t)
= W(t),

while z(t) is a pseudo data-vector, and Xi = diag(x1i,x2i, 1). They estimated smoothing

parameters for problem (5.13) by minimizing a prediction error criterion such as the UBRE

score

Vwu =
1

n
‖
√
W (z −Xθ) ‖2 − 1 +

2

n
γ tr(A), (5.14)

where A = X(XTWX + Sλ)−1XTW is the influence matrix, and γ is a tuning parameter

used to obtain smoother models. They applied the “performance iteration” approach of Gu

(1992) for smoothing-parameter estimation. They then minimized the UBRE score with respect

to the smoothing parameters using the computational procedure of Wood (2004), and selected

smoothing parameters for each working penalized linear model of the P-IRLS iteration. The two

steps of estimating the model parameters θ fixing λ and estimating the smoothing parameters

λ fixing θ were iterated until convergence is met. Their simulation results show that their

proposed method performs well, and yields precise estimates in most data settings and under

correct model specification.

Marra et al. (2013b) and Radice et al. (2015) extended the procedures discussed in Marra

and Radice (2011) to deal simultaneously with two binary regression models involving semipara-



5.3. Smoothing parameter estimation for P-spline VGAMs 97

metric predictors in the presence of non-random sample selection, and the binary outcome in

the presence of unobserved confounding, respectively. Both approaches are based on the penal-

ized likelihood approach, and the smoothing parameters are estimated by minimizing the UBRE

score in the same manner as proposed in Marra and Radice (2011). The methods discussed in

Marra and Radice (2011), Marra et al. (2013b), and Radice et al. (2015) are implemented in the

SemiParBIVProbit package (Marra and Radice, 2013).

5.3 Smoothing parameter estimation for P-spline VGAMs

Section 5.1 showed how smoothing-parameter estimation for GAMs based on the penalized like-

lihood approach can be achieved by minimizing the GCV or UBRE scores. This estimation pro-

cedure can be included as part of the P-IRLS scheme used to fit GAMs by penalized likelihood

maximization in an efficient and stable manner. Section 5.2 showed that smoothing-parameter

estimation for the penalized likelihood approach to the binary response modeling can be achieved

by minimizing the UBRE score in the same manner as it was done for GAMs. This leads to a

solution to the unresolved question from the previous chapter: how to choose λ for P-spline

VGAMs? Since P-spline VGAMs are based on the penalized likelihood approach, following Sec-

tions 5.1 and 5.2, the smoothing parameters can be estimated by minimizing the GCV or UBRE

scores in the same manner as proposed in Wood (2004) and Marra and Radice (2011). The

only change is that such criteria are formulated using a more complicated model matrix, penalty

matrix and influence matrix (cf. equations (5.3), (5.4) and (5.14)). In this section, we will for-

mulate the general form of smoothing-parameter selection criteria such as the UBRE score for

our problem. We will then show how the minimization of our UBRE score can be achieved using

the computational approach of Wood (2004) and show how this minimization can be included in

our P-IRLS scheme using the “performance iteration” approach.

Recall from equation (4.28) that the Fisher scoring method for the constrained P-spline
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VGAMs gave an iterative estimation for β∗ in the form of

β∗(t+1) =
(
XT

vamW
(t)Xvam + P∗λ

)−1 (
XT

vamW
(t) z(t)

)
, (5.15)

which we implemented by solving the equivalent weighted penalized least squares problem

minimize
∥∥∥ U(t)

(
z(t) −Xvam β

∗
) ∥∥∥2 + β∗T P∗λ β

∗, (5.16)

with respect to β∗(cf. the weighted penalized least squares problem of Wood (2004) in (5.2)

and Marra and Radice (2011) in (5.13)). Here, as we saw in (4.34) U(t) is the Cholesky

decomposition of W(t) such that

UT (t)U(t) = W(t),

W(t) is working weights, z(t) is the adjusted dependent vector given by

z(t) = Xvam β
∗(t) +

(
W(t)

)−1
u(t),

Xvam is the “vector additive model” model matrix and P∗λ is the penalty matrix (cf. equations

(4.43) and (4.46)). Again, for given smoothing parameters (5.16) can be easily solved, but the

smoothing parameters have to be estimated. Following Sections 5.1 and 5.2, the smoothing

parameters for our problem (5.16) can be estimated by minimizing the GCV or UBRE scores.

To do this, we first formulate the general forms of smoothing parameter selection criteria such

as the UBRE score for our problem.

To obtain the general form of the UBRE score for our case, we re-write the penalized iterative

solution of (5.16) in the form of

∥∥∥ z̃(t) − X̃
(t)

vam β
∗
∥∥∥2 + β∗T P∗λ β

∗. (5.17)

We note that (5.17) is equivalent to the unweighted form for the penalized least squares objective

used for the smoothing parameter selection method by Wood (2004). Here, z̃(t) = U(t) z(t) =

U(t)Xvam β
∗(t) + U(t)

(
W(t)

)−1
u(t), and X̃

(t)

vam = U(t)Xvam. Following Radice et al. (2015),

we treat z̃ as if it had a standard linear model. Then z̃ = E(z̃) + ε, where E(z̃) = µz̃ =
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UXvam β
∗
0, β

∗
0 is a true parameter vector and ε = UW−1 u, having 0 mean and an identity

covariance matrix I. The predicted vector for z̃ is given by µ̂z̃ = Aλ z̃. Recall from equation

(4.54) that Aλ is the “influence matrix” for the model being fitted, and is given by

Aλ = X̃vam

(
X̃
T

vam X̃vam + P∗λ
)−1

X̃
T

vam (5.18)

We now wish to select λk in a way that leads the estimated smooth functions to get closer

to the true functions. In our cases, we would like to choose the smoothing parameters that tend

to make µ̂z̃ as close as possible to the true µz̃ . An appropriate metric is the expected mean

square error (MSE) of the model (cf. Chapter 4 (Wood, 2006b)). Following Wood (2006b), the

expected MSE for our cases can be obtained in the following way

E
(
‖µz̃ − µ̂z̃‖

2/ñ
)

= E
(
‖µz̃ −Aλ z̃‖2

)
/ñ = E

(
‖z̃ − ε−Aλ z̃‖2

)
/ñ = E

(
‖z̃ −Aλ z̃ − ε‖2

)
/ñ

= E
(
‖z̃ −Aλ z̃‖2

)
/ñ+ E

(
εT ε

)
/ñ− E

(
2εT (z̃ −Aλ z̃)

)
/ñ

= E
(
‖z̃ −Aλ z̃‖2

)
/ñ+ E

(
εT ε

)
/ñ− E

(
2εT

(
µz̃ + ε

)
− 2εTAλ

(
µz̃ + ε

))
/ñ

= E
(
‖z̃ −Aλ z̃‖2

)
/ñ+ E

(
−εT ε− 2 εT µz̃ + 2 εT Aλµz̃ + 2 εT Aλ ε

)
/ñ

= E
(
‖z̃ −Aλ z̃‖2

)
/ñ− 1 + 2 tr(Aλ) /ñ, (5.19)

where

ñ = nM, E
(
εT ε

)
= nM, E

(
εT µz̃

)
= 0, E

(
εT Aλµz̃

)
= 0,

E
(
εT Aλ ε

)
= E{tr

(
εT Aλ ε

)
} = E{tr

(
Aλ ε ε

T
)
} = tr (Aλ)

Then, an estimate of the expected MSE of the model (5.19) can be written as

Vu (λ) =
1

ñ
‖z̃ −Aλ z̃‖2 − 1 +

2

ñ
tr(Aλ). (5.20)

The expression (5.20) is equivalent to the UBRE score defined in Wood (2004) (cf. equation (5.4))

and the approximate UBRE version of Marra and Radice (2011), Marra et al. (2013b), and

Radice et al. (2015) (cf. equation (5.14)). It is the form used for automatic multiple smoothing-

parameter estimation by Wood (2004). (5.20) is the approximate UBRE score for the P-spline
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VGAM. Smoothing parameter selection for our case can be now achieved by applying the UBRE

estimation of λ to each working linear model of the P-IRLS scheme used to fit the model. The

method for doing this will be described in the next subsection.

5.3.1 Estimating smoothing parameters λ for given β̂
∗

Given an estimate for β∗, we now can estimate λ by minimizing (5.20). That is, λ(t+1) solves

the problem

min
λ

Vu (λ) =
1

ñ
‖z̃(t) −A(t)

λ z̃(t)‖2 − 1 +
2

ñ
tr(A(t)

λ ). (5.21)

Here, the working penalized linear model quantities related to (5.21) are calculated using the

parameter estimates from the optimization step (5.16). Recall that the influence matrix is Aλ

and the smoothing parameter vector λ enters (5.21) via Aλ. For each working penalized linear

model of the P-IRLS iteration, we minimize (5.20) with respect to the smoothing parameter

vector. Following Wood (2004) and Marra and Radice (2011), the two steps of our estima-

tions are as follows: at each iteration, (i) the penalized iteratively re-weighted least squares

problem in (5.16) is solved and (ii) the smoothing parameters for the problem (5.16) are esti-

mated by minimizing the approximate UBRE score (5.20). Steps (i) and (ii) are iterated until

∆
(
β∗(t+1), β∗(t)

)
=
∥∥∥β∗(t+1) − β∗(t)

∥∥∥ is sufficiently small. The two steps can be stated more

precisely as follows:

Step 1 The smoothing parameter vector is fixed at λ(t), the estimate of β∗ is updated

to

β∗(t+1) = argmax
β∗

`∗(β∗).

Step 2 β∗ is fixed at β∗(t+1), the estimate of λ is updated to

λ(t+1) = argmin
λ

Vu (λ) .

The working penalized linear model quantities related to Vu(λ) in (5.20) are calculated using

(5.16). We solve the problem (5.21) using the computational approach by Wood (2004) (cf.
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Section 5.1). Following Wood (2004)’s method, our UBRE score (5.20) can be estimated using

Newton’s method with log-transformed smoothing parameters in which the UBRE score and

their derivatives can be evaluated in a manner that is both computationally efficient and stable

using a method based on pivoted QR decomposition and a singular value decomposition. To

do this, our influence matrix Aλ in (5.18) involved in the expression for Vu (λ) in (5.20) and

therefore is m and M in (5.5), is first transformed into a more useful form. For our case,

the relevant QR decomposition of the model matrix is X̃vam = QR (cf. equation (5.6)) and

the relevant singular value decomposition of an augmented matrix of R with the matrix square

root of the penalty is
(
R
P̃
∗

)
= UDVT (cf. equation (5.7)), where Q, R, U, D and V are

defined in the same way as they are defined in Section 5.1 and recall that P̃
∗T
λ P̃

∗
λ = P∗λ (cf.

equation (4.30)). Based on this, the evaluation of the quantities relating to Aλ (5.18), for new

trial values of λ is relatively cheap and therefore the derivatives of Vu (λ) in (5.20) can be

evaluated in a efficient and stable manner (cf. Section 5.1).

Recall from Section 5.1 that Wood (2006b) suggested two basic approaches to smoothing-

parameter estimation. The first approach attempts to minimize the expected mean square error

which leads to estimation by UBRE, while the second approach attempts to minimize prediction

error which leads to estimation by GCV. In this research, we will adapt the arguments of the

GCV score in the generalized case for univariate GAMs described in Wood (2004) to our current

context as well. Following Wood (2004), given an estimate for β∗(t), smoothing parameter

selection for the problem (5.16) can be achieved by minimization of the GCV score

min
λ

Vg (λ) =
ñ
∥∥∥ U(t)

(
z(t) −Xvam β

∗) ∥∥∥2[
ñ− tr(A(t)

λ )
]2 ,

λ(t+1) = argmin
λ

Vg (λ) . (5.22)

For the univariate GAMs, if the scale parameter is known, smoothing-parameter estimation

can be achieved through the minimization of the UBRE but GCV is used otherwise. For most

VGLMs used in practice, the scale parameter is φ = 1 (cf. Yee (2015b, Chapter 3)) and does not
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have to be estimated.

As explained by Wood (2004), a penalized version of IRLS does not guarantee convergence in

all circumstances, especially when the smoothing parameters have to be estimated. Wood (Chap-

ter 4, 2006b) stated that one technical problem for performance iteration relates to divergence of

the P-IRLS algorithm. This divergence can occasionally occur with all models, e.g., GLMs fitting

using iteratively reweighted least squares but this can be always dealt with by repeatedly halving

the length of the step until the step is found that actually increase the likelihood if divergence is

detected. For performance iteration, this divergence cannot be detected easily. This is because

model likelihood, GCV/UBRE score and penalized likelihood may all fairly increase may as well

decrease from one iteration to the next.

The iteration must be examined in order to detect convergence. In VGAM, three obvious

methods for doing this are to record relative changes in parameter estimates, absolute changes

in the log-likelihood and absolute changes in deviance. Regarding the divergence issue for per-

formance iteration, the first method is applicable to our problem. In VGAM, the exact criteria

for testing the convergence of the coefficients is given by∣∣∣β∗(t+1)
(j)k − β∗(t)(j)k

∣∣∣
epsilon +

∣∣∣β∗(t+1)
(j)k

∣∣∣ < epsilon (Yee, 2015b) (5.23)

for all j = 1, . . . ,ncol(Hk) and k = 1, . . . , p. Note that the default for epsilon is 1e-7, as

given in vglm.control(). The convergence criteria in (5.23) will be adapted to our framework.

5.4 Simulation study

To gain insight into the practical effectiveness of the method that we developed, a simulation

study was conducted to investigate the performance of the method proposed. We examined the

performance of P-spline VGAMs by considering three multivariate response types and models

involving semiparametric predictors, in which their model structures involve constraints on the

model terms. Under a wide range of settings and using a number of test functions for these three
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models, P-spline VGAMs and VGAMs were compared in terms of predictive accuracy. The three

models were as follows:

(i) a semiparametric bivariate probit model under a non-exchangeable structure and an intercept-

only model for the correlation parameter ρ,

(ii) a semiparametric bivariate logistic model under a non-exchangeable structure and an

intercept-only model for the odds ratio, and

(iii) a semiparametric bivariate logistic model under an exchangeable structure and an intercept-

only model for the odds ratio.

P-spline VGAMs were fitted using the psvgam() function which implements the ideas proposed

in Chapter 4 and Section 5.3, and VGAMs based on backfitting computation were fitted using

the VGAM package. We measured and compared the performance of each test function for model

(i) – (iii) using the root mean squared error (RMSE) defined as (cf. Marra et al. (2013b))

RMSE
(
f̂(j)k(xik)

)
=

{
1

n

n∑
i=1

(
f̂(j)k(xik)− f(j)k(xik)

)2}1/2

.

5.4.1 Semiparametric bivariate probit model

The standard bivariate probit model is a joint model for two binary responses introduced by

Ashford and Sowden (1970). The model is given by

Pr(Yj = 1|x) = Φ{ηj(x)}, j = 1, 2,

Pr(Y1 = 1, Y2 = 1|x) = Φ2{η1(x), η2(x); ρ(x)}, (5.24)

where Φ(·) is the cumulative distribution function of a standard normal distribution and

Φ2(·, ·; ρ) is the cumulative distribution function of a standard bivariate normal distribution

with zero mean, unit variance and correlation coefficient ρ. The association between the re-

sponses is modeled via the parameter ρ. As −1 < ρ(x) < 1, Yee and Wild (1996) used the
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default link for η3(x) = log ((1 + ρ(x)) / (1− ρ(x))) and therefore they used

ρ (x) =
exp{η3(x)} − 1

exp{η3(x)}+ 1
(5.25)

to satisfy the range restrictions. The additive model extension of (5.24) can be achieved by

replacing all linear predictors of (5.24) with (cf. Yee and Wild (1996))

ηj (x) =

p∑
k=1

f(j)k (xk), j = 1, . . . ,M.

The bivariate probit model can be simply expressed using the latent variable representation:

y∗1i = η1 + ε1i, (5.26)

y∗2i = η2 + ε2i, (5.27)

where the binary responses y1i and y2i are determined according to the rule:

yvi =

{
1 if y∗vi > 0

0 if y∗vi ≤ 0
, v = 1, 2. (5.28)

The error terms (ε1i, ε2i) are identically distributed as bivariate normal with zero mean, unit

variance and correlation coefficient ρ, independently across observations (e.g. Greene, 2007;

Marra et al., 2013b): ε1i
ε2i

 iid∼ N

0

0

 ,
1 ρ

ρ 1


. (5.29)

5.4.1.1 Design and model fitting details

We conducted a simulation study based on equations (5.26) to (5.29) with

η1(xi) = β(1)1 + β(1)2 xi2 + f(1)3(xi3) + f(1)4(xi4), (5.30)

η2(xi) = β(2)1 + β(2)2 xi2 + f(2)3(xi3) + f(2)4(xi4), (5.31)

η3(xi) = β(3)1, (5.32)



5.4. Simulation study 105

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x3

f (1
)3
(x

3)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x3

f (2
)3
(x

3)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x4

f (1
)4
(x

4)

Figure 5.1: The three test functions used for the simulation study of a semiparametric bivariate probit

model under a non-exchangeable structure and an intercept-only model for the correlation ρ.

where η3 is related to correlation coefficient ρ through (5.25). The model (5.32) is a “non-

exchangeable” structure in which the marginal probabilities are not the same and η3 is modeled

as a single parameter only, that is, ‘intercept-only’ for the correlation parameter ρ (cf. Yee

(2015b)). We used the three test functions: f(1)3(xi3) = cos(2πxi3), f(2)3(xi3) = 2 sin(πxi4),

and f(1)4(xi4) = f(2)4(xi4) = 0, displayed in Fig. 5.1. These functions are often used by Wood

(2006b) in simulations. Covariates were simulated independently from a uniform distribution on

(0, 1). Bivariate normal correlated errors (ε1i, ε2i) were generated using the rmvnorm() function

from the mvtnorm package (Genz et al., 2008).

In this simulation study, we considered three different correlation levels ρ = (0.1, 0.5, 0.9),

and three different sample sizes: 1000, 2000 and 3000. For given x-values and the correla-

tion ρ, we generated bivariate binary observations for (5.30) and (5.31) with the intercepts

(β(1)1, β(2)1) = (−1.55,−0.25) and the linear-term coefficients (β(1)2, β(2)2) = (2,−1.25). A

total 500 replicate data sets were generated. P-spline VGAMs were then fitted to each of 500

replicates at each sample size and correlation combination. For P-spline VGAMs, the smooth

terms for (5.30) and (5.31) were estimated using penalized B-splines of degree 3, together with

a second order penalty, and 8 equally spaced B-spline knots with the smoothing parameters be-

ing selected automatically through minimization of the UBRE score as described in Section 5.3.

VGAMs based on backfitting were fitted to the same data-generating process described above

using the vector cubic smoothing splines with the default 4 degrees of freedom for each smooth
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term. For each replicate and for each test function, we calculated the RMSE of the estimated

smooth functions of interest.

5.4.1.2 Results

The simulation results are summarized in the following figures. Boxplots of the estimates of the

linear-term coefficients β(1)2 and β(2)2 are given in Figs. 5.2 and 5.3 respectively, while those in

Fig. 5.4 plot the estimates of the correlation parameter ρ. Fig. 5.5 shows the boxplots of the

RMSEs of the estimated smooth functions f̂(1)3, f̂(2)3, f̂(1)4 and f̂(2)4 based on 500 replications

when employing P-spline VGAMs at each sample size and correlation combination. Figs. 5.6 –

5.8 display the boxplots of the RMSEs of the estimated smooth functions f̂(1)3, f̂(2)3 and f̂(1)4

comparing P-spline VGAMs and VGAMs. The plots of the RMSEs of the estimated smooth

function f̂(2)4 are omitted as they lead to the same conclusions as that of f̂(1)4. The results can

be summarized as follows:

(i) From Figs. 5.2 – 5.4, for the estimates of the linear-term coefficients β(1)2 and β(2)2, and

the correlations ρ, the two methods perform very similarly. There is very little evidence

of bias and the variability in estimate reduces with sample size as expected.

(ii) From Fig. 5.5, the RMSEs obtained using P-spline VGAMs are largely unaffected by the

correlation level and get smaller as the sample size increases regardless of correlation (the

reductions in RMSE are small for f̂(1)3.).

(iii) From Figs. 5.6 – 5.8, the RMSEs for the estimated smooth functions f̂(1)3, f̂(2)3, and

f̂(1)4 indicate that the P-spline VGAM approach outperforms the default VGAM method,

at all correlations, sample sizes, for these test functions. With the exception of the fitted

curve f̂(1)4, the differences in performance are greater at higher correlations. In all cases,

a Wilcoxon signed rank test yields a p-value of < 10−16. The effective degrees of freedom

used by the P-spline VGAMs does appear to adapt to the data as desired.
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Figure 5.2: Boxplots of the estimates of the linear-term coefficient β(1)2 when employing P-spline VGAMs

and VGAMs. The true value (dashed lines) is 2. The parameter ρ denotes the correlation coefficients.
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Figure 5.3: Boxplots of the estimates of the linear-term coefficient β(2)2 when employing P-spline

VGAMs and VGAMs. The true value (dashed lines) is −1.25.
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Figure 5.4: Boxplots of the estimates of the correlation parameter ρ when employing P-spline VGAMs

and VGAMs. The true values are indicated by dashed lines.
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Figure 5.5: Boxplots of the RMSEs of the estimated smooth functions f̂(1)3, f̂(2)3, f̂(1)4, and f̂(2)4 when

employing P-spline VGAMs.
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Figure 5.6: Boxplots of the RMSEs of the estimated smooth function f̂(1)3 when employing P-spline

VGAMs and VGAMs.
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Figure 5.7: Boxplots of the RMSEs of the estimated smooth function f̂(2)3 when employing P-spline

VGAMs and VGAMs.
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Figure 5.8: Boxplots of the RMSEs of the estimated smooth function f̂(1)4 when employing P-spline

VGAMs and VGAMs.

5.4.2 Non-exchangeable semiparametric bivariate logistic model

In this section we discuss simulations for the cases in which the responses of the model are

generally dependent and the association between the two binary responses is modeled in terms

of the odds ratio. A natural regression model here is the bivariate logistic model discussed in

Section 3.3.2. The non-exchangeable model is specified in the form of

logit pj(x) = ηj(x), j = 1, 2,

logψ(x) = η3(x), (5.33)

where ψ is the odds ratio.
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5.4.2.1 Design and model fitting details

We conducted a simulation study based on the bivariate logistic model (5.33) with:

η1 = logitP (Y1 = 1|xi) = β(1)1 + β(1)2xi2 + f(1)3(xi3) + f(1)4(xi4),

η2 = logitP (Y2 = 1|xi) = β(2)1 + β(2)2xi2 + f(2)3(xi3) + f(2)4(xi4),

η3 = log ψ(xi) = β(3)1. (5.34)

The model (5.34) taken here has a “non-exchangeable” structure in which no constraints are

imposed on η1 and η2, and η3 is modeled as an intercept-only for the odds ratio (see equation

(3.28)). Following Wood (2006b) and Marra et al. (2013b), we used:

f(1)3(xi3) = cos(2πxi3), (5.35)

f(2)3(xi3) = 2 sin(πxi3), (5.36)

f(1)4(xi4) = −0.7
(
4xi4 + 2.5x2i4 + 0.7 sin(5xi4) + cos(7.5xi4)

)
, (5.37)

f(2)4(xi4) = exp(2xi4)− 3.75. (5.38)

These are plotted in Fig. 5.9. We used three different levels of odds ratio ψ = (1.5, 2, 3) and

three different sample sizes: 1000, 2000 and 3000. We set the intercepts (β(1)1, β(2)1) =

(−1,−2), and the linear-term coefficients (β(1)2, β(2)2) = (1.5, 1). Covariates were simulated

independently from a uniform distribution on (0, 1). The linear predictors were made up of a

sum of linear terms and smooth terms of the form (5.34), and applied to the simulated covariates

to give the true linear predictor. The inverse of link for model (5.34) was applied to the linear

predictors to give the true response means, and then data were simulated from a bivariate binary

regression model using an odds ratio as the measure of dependency. These data were generated

using the function rbinom2.or() from the VGAM package. We fitted the model using the data

generating process described above with the two estimation frameworks to each of 500 replicates

at each sample size, and odds ratio combination. Again, the non-linear terms for P-spline VGAMs

were based on B-splines of degree 3, a second order penalty, and 8 equally-spaced B-spline

knots with the smoothing parameters being estimated by minimizing the UBRE score. VGAMs
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Figure 5.9: The four test functions used for the simulation study of a semiparametric bivariate logistic

model under a non-exchangeable structure and an intercept-only model for the odds ratio (see equations

(5.35) – (5.38)).

were fitted to the same data described above using the default settings. For each dataset and

estimation procedure, we obtained the estimates of the linear-term coefficients, the odds ratio

and the RMSEs for the estimated smooth function of the variable of interest.

5.4.2.2 Results

The simulation results are summarized in the following figures. Boxplots of the estimates of the

linear-term coefficients β(1)2 and β(2)2 are given respectively in Figs. 5.10 and 5.11 and those

of the odds ratio ψ are shown in Fig. 5.12. Fig. 5.13 shows the boxplots of the RMSEs of the

estimated smooth functions for f(1)3, f(2)3, f(1)4, and f(2)4 when employing the P-spline VGAM

approach at each sample size and odds ratio combination. Figs. 5.14 – 5.17 show the boxplots of

the RMSEs of the estimated smooth functions f̂(1)3, f̂(2)3, f̂(1)4, and f̂(2)4 comparing P-spline

VGAMs and VGAMs. The results can be summarized as follows:
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(i) From Figs. 5.10 – 5.11, for the estimates of the linear-term coefficients β(1)2 and β(2)2,

and the odds ratio ψ, the two methods perform very similarly. There is again very little

evidence of bias and the variability of the estimates become smaller as the sample size

increases.

(ii) From Fig. 5.13, we see that the RMSEs obtained using the method proposed are largely

unaffected by the levels of the odds ratio and become smaller as the sample size n increases

irrespective of the odds ratio.

(iii) From Figs. 5.14 – 5.17, the RMSEs for the estimated smooth functions f̂(1)3, f̂(2)3, f̂(1)4

and f̂(2)4 indicate that P-spline VGAMs perform significantly better than the default

VGAM method, at all levels of odds ratio, sample sizes, for these test functions. In all

cases, a Wilcoxon signed rank test yields a p-value of < 10−16. The results again show

that the automatic choice of degree of smoothness obtained using P-spline VGAMs does

better capture the shape of non-linear terms from the data as desired.
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Figure 5.10: Boxplots of the estimates of the linear-term coefficient β(1)2 when employing P-spline

VGAMs and VGAMs. The true value (dashed lines) is 1.5. The parameter ψ denotes the odds ratio.
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Figure 5.11: Boxplots of the estimates of the linear-term coefficient β(2)2 when employing P-spline

VGAMs and VGAMs. The true value (dashed lines) is 1.
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Figure 5.12: Boxplots of the estimates of the odds ratio ψ when employing P-spline VGAMs and VGAMs.

The true values are indicated by dashed lines.
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Figure 5.13: Boxplots of the RMSEs of the estimated smooth functions f̂(1)3, f̂(2)3, f̂(1)4 and f̂(2)4 when

employing P-spline VGAMs.
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Figure 5.14: Boxplots of the RMSEs of the estimated smooth function f̂(1)3 when employing P-spline

VGAMs and VGAMs.
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Figure 5.15: Boxplots of the RMSEs of the estimated smooth function f̂(2)3 when employing P-spline

VGAMs and VGAMs.
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Figure 5.16: Boxplots of the RMSEs of the estimated smooth function f̂(1)4 when employing P-spline

VGAMs and VGAMs.
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Figure 5.17: Boxplots of the RMSEs of the estimated smooth function f̂(2)4 when employing P-spline

VGAMs and VGAMs.
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5.4.3 Exchangeable semiparametric bivariate logistic model

The last section investigated the non-exchangeable version of the semiparametric bivariate logistic

model. In this section we investigate the exchangeable version.

5.4.3.1 Design and model fitting details

Our simulation study was based on the model:

η1 = logitP (Y1 = 1|xi) = β(1)1 + β(1)2xi2 + f(1)3(xi3) + f(1)4(xi4),

η2 = logitP (Y2 = 1|xi) = β(1)1 + β(1)2xi2 + f(1)3(xi3) + f(1)4(xi4),

η3 = log ψ(xi) = β(2)1, (5.39)

with

f(1)3(xi3) = cos(2πxi3), (5.40)

f(1)4(xi4) = −0.7
(
4xi4 + 2.5x2i4 + 0.7 sin(5xi4) + cos(7.5xi4)

)
. (5.41)

These are plotted in Fig. 5.18. We again used three different levels of odds ratio and three

different sample sizes as described in Section 5.4.2.1. We set the intercept β(1)1 = −1 and

the linear-term coefficients β(1)2 = 1.5. Both P-spline VGAMs and default VGAMs were again

compared in terms of the RMSEs in predicting the test functions.

5.4.3.2 Results

The simulation results are summarized in the following figures. Boxplots of the estimates of the

linear-term coefficient β(1)2 and those of the odds ratio ψ are given respectively in Figs. 5.19

and 5.20. Fig. 5.21 shows the boxplots of the RMSEs of the estimated smooth functions for

f(1)3 and f(1)4 when employing the P-spline VGAM approach at each sample size and odds

ratio combination. Figs. 5.22 – 5.23 show the boxplots of the RMSEs of the estimated smooth

functions f̂(1)3 and f̂(1)4 comparing P-spline VGAMs and VGAMs. Overall, our findings are

much the same as for the previous section (as might be expected).
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Figure 5.18: The two test functions used for the simulation study of a semiparametric bivariate logistic

model under an exchangeable structure and an intercept-only model for the odds ratio (see equations

(5.40) – (5.41)).

(i) From Figs. 5.19 – 5.20, for the estimates of the linear-term coefficient β(1)2 and the odds

ratio ψ, the two methods perform very similarly. There is very little evidence of bias and

the variability in estimate becomes smaller with sample size as expected.

(ii) From Fig. 5.21, the RMSEs of the estimated smooth functions obtained using P-spline

VGAMs become smaller as the sample size increases regardless of the odds ratio.

(iii) From Figs. 5.22 – 5.23, the RMSEs for the estimated smooth functions f̂(1)3 and f̂(1)4

indicate that P-spline VGAMs perform better than the default VGAM method, at all

levels of odds ratio, sample sizes, for these test functions. In all cases, a Wilcoxon signed

rank test yields a p-value of < 10−16.
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Figure 5.19: Boxplots of the estimates of the linear-term coefficient β(1)2 when employing P-spline

VGAMs and VGAMs. The true value (dashed lines) is 1.5. The parameter ψ denotes the odds ratio.
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Figure 5.20: Boxplots of the estimates of the odds ratio, ψ, when employing P-spline VGAMs and

VGAMs. The true values are indicated by dashed lines.
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Figure 5.21: Boxplots of the RMSEs of the estimated smooth functions f̂(1)3 and f̂(1)4 when employing

P-spline VGAMs.
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Figure 5.22: Boxplots of the RMSEs of the estimated smooth function f̂(1)3 when employing P-spline

VGAMs and VGAMs.
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Figure 5.23: Boxplots of the RMSEs of the estimated smooth function f̂(1)4 when employing P-spline

VGAMs and VGAMs.

5.5 Conclusions

This chapter discussed the problem of incorporating the automatic estimation of smoothing

parameters in P-spline VGAMs. We do this using GCV or the UBRE, adapting the methods of

Wood (2004) and Marra and Radice (2011). We have also discussed implementation details for

our methods which we have coded as R functions (see appendix A).

We then conducted a simulation study to compare the performance of our implementation

of P-spline VGAMs to default VGAMs related models. The automatic smoothness estimation

performed well in these simulations in terms of estimating smooth components for model struc-

tures involving constraints on the model terms and that did not. The P-spline VGAM approach

performs significantly better than the default VGAM method in terms of predictive accuracy.

The new methods do appear to adapt well to simplicity or complexity in the effects of covariates.

One limitation of the P-spline VGAMs that has not been reported in this chapter so far is
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that this method may suffer occasionally from convergence problems, especially at small sample

sizes. For example we have had some problems for sample sizes under 500 for the simulation

study of the non-exchangeable semiparametric bivariate probit model, especially for fairly high

correlations between two responses (cf. Section 5.4.1). Similar convergence problems were also

reported by Freedman and Sekhon (2010) and Marra and Radice (2011).
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6
Applications

In this chapter, we apply P-spline VGAMs to two real datasets with multivariate response

types and models, and show some of the scope of P-spline VGAMs for additive modeling.

We will use several statistical models: the multinomial logit, proportional and non-proportional

odds models, bivariate logistic model, and the LMS method for quantile regression. The two

data sets used are: (i) the xs.nz data frame in the VGAMdata package which contains data from

a cross-sectional workforce study combined with a health survey from New Zealand during the

1990s, and (ii) the birth data frame in the catdata package which contains data from a survey

study of the pregnancy and birth process during 1990−2004.We will compare fitted models from

VGAMs and P-spline VGAMs. Inference based on the deviance test described in section 4.6 is

used for comparing models. Hypothesis testing used the two types of approximation from Wood

(2006b, chapter 5), that is, the tests are based on estimated smoothing parameters, and treating

the P-spline VGAM penalized fits as if they were un-penalized fits, with degrees of freedom given

by the effective degrees of freedom of the models.

125
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6.1 Some implementation details

Before moving on to the applications discussed above, we will briefly review implementation de-

tails for the P-spline VGAM approach. All necessary functions to construct P-spline VGAMs are

written in R. P-spline VGAMs are based methodologically on penalized regression splines using

P-spline smoothers of Marx and Eilers (1998) and the VGLM/VGAM framework. Therefore,

the underlying functions for fitting P-spline VGAMs are mainly developed from P-spline GAMs

and VGLM/VGAM frameworks. The primary function psvgam() and the support functions,

namely, psvglm.fit() and psvlm.wfit() were adapted from vgam(), vglm(), vglm.fit() and

vlm.wfit() in the VGAM package, and have similar functionality. The call sequence of the

psvgam() function is:

1 psvgam <- function(formula , family , data , weights , etastart ,

2 mustart , coefstart ,

3 control = vglm.control(maxit = 50 ,...),

4 constraints method = "psvglm.fit", ...)

The formula argument is the most interesting. It has the form (vector) response ∼

(linear/additive predictor) and provides a symbolic description of the model to be fit. The

RHS of the formula is applied to each linear/additive predictor. By default, constraint matrices

are the M ×M identity matrix unless arguments in the family function itself override these

values, e.g., parallelism and exchangeability. In the P-spline VGAM framework, we use a new

function called ps() adapted from Marx and Eilers’s (1998) ps() function, in the definition of

(vector) smooth terms within psvgam() formulas. The ps() function for P-spline VGAMs has

call sequence:

1 ps <- function(x, ps.intervals = NULL , lambda = 0, degree = 2,

2 order = 2, ridge.adj = 1e-005, ridge.inv = 1e-004)

The arguments in the ps() function are defined in the same way as the ps() function in P-spline

GAMs, except that the argument lambda in the ps() of P-spline VGAMs allows for smoothing
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parameters, which are in the form of either scalar or vectors. To illustrate the usage of psvgam(),

the nonparametric proportional-odds model (McCullagh and Nelder, 1989, p.179) can be fitted to

the pneumoconiosis data from the pneumo data frame in the VGAM package as in the expression:

1 pneumo <- transform(pneumo , let = log(exposure.time))

2 fit <- psvgam(cbind(normal , mild , severe) ~ ps(let , ps.interval = 5),

3 family = cumulative(reverse = TRUE , parallel = TRUE),

4 data = pneumo)

The term on the RHS of the formula notation of the model above indicates that P-splines are

used in a penalized maximization likelihood to fit the variable let, where the number of knots

is given by ps.interval = 5. B-splines of degree 3 with 2nd order difference penalty are

used as the default settings, while smoothing parameters are chosen automatically through the

minimization of the UBRE score. Further details of codes and implementation are given in

appendix A.

6.2 Multinomial logit fits to marital status data

The multinomial logit model was introduced by Nerlove and Press (1973). This model is a

generalization of logistic regression to model categorical responses with more than two categories,

and is commonly used when the responses are “nominal” (consisting of unordered categories).

The model is used to predict the probability of falling in each of the levels of the “nominal”

response, given a set of independent variables. In VGAMs, the multinomial logit models the

probability of Y falling into category j when there are (M + 1) categories as follows (Yee and

Mackenzie, 2002),

P (Y = j|x) =
exp{ηj(x)}

M+1∑
t=1

exp{ηt(x)}

, ηM+1 ≡ 0, j = 1, . . . ,M + 1.

We will now compare P-spline VGAM and VGAM fits to the marital status data from the

xs.nz data frame in the VGAMdata package. These data were presented by Yee (2010) as an
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application of categorical data analysis. MacMahon et al. (1995) and Yee and Wild (1996)

stated that the xs.nz data set can be reasonably used for representing the white male New

Zealand population in the early 1990s. The specific outcome of interest is the nominal re-

sponse Y = marital status of European males, categorized according to divorced or separated

(Divorced/Separated), married or partnered (Married/Partnered), single (Single) and wid-

ower (Widowed), where these levels are defined as Y = 1, 2, 3, 4 respectively. The married

or partnered is chosen as the baseline category (Y = 2). The predictor available is age. We

confine our analysis to a subset of 6053 European males. Missing values are removed. P-spline

VGAMs are performed using the psvgam() function and VGLMs/VGAMs are performed using

the VGAM package.

The objective of our analysis is to investigate how the relative chances of falling into the

marital status categories depend upon the covariate age. We fit a nonparametric multinomial

logit model to this data set. The model is formulated as (cf. Yee (2010))

ηj = log (P (Y = t)/P (Y = 2)) = β(j)1 + f(j)2(x2). (6.1)

Here, j = 1, 2, 3 indicates the jth additive predictor, t = 1, 3, 4 indicates the category of the

response, and x2 is age. For purposes of comparison, we will analyze this dataset using the

proposed modeling framework as well as three models from the VGLM/VGAM approach. The

four models and the corresponding calls are as follows:

(i) default VGAMs with 4 degrees of freedom for each smooth term (df(j) = 4) (default of

s())

1 fit.ms1 <- vgam(mstatus ~ s(age),

2 family = multinomial(refLevel = 2),

3 data = marital.nz)
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(ii) VGAMs with 3 degrees of freedom for each smooth term (df(j) = 3) (Yee, 2010) [Note:

this means 3 degrees of freedom allocated to nonlinearity (1 df = linear part).]

1 fit.ms <- vgam(mstatus ~ s(age , df = 3),

2 family = multinomial(refLevel = 2),

3 data = marital.nz)

(iii) a parametric polynomial model (quadratic in age for Divorced/Separated group, piecewise

quadratic in age for Single group, and linear in age for Widowed group) using VGLMs

(Yee, 2010)

1 foo <- function(x, elbow = 50) poly(pmin(x, elbow), 2)

2 clist <- list("(Intercept)" = diag (3),

3 "poly(age , 2)" = rbind(1, 0, 0),

4 "foo(age)" = rbind(0, 1, 0), age = rbind(0, 0, 1))

5 fit2.ms <- vglm(mstatus ~ poly(age , 2) + foo(age) + age ,

6 family = multinomial(refLevel = 2),

7 constraints = clist , data = marital.nz)

(iv) P-spline VGAMs using penalized B-splines of degree 3, together with a second order

penalty, and 10 equally spaced B-spline knots with the smoothing parameters being se-

lected automatically through minimization of the UBRE score

1 fit.ps <- psvgam(mstatus ~ ps(age , ps.interval = 10),

2 family = multinomial(refLevel = 2),

3 data = marital.nz)
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Table 6.1: EDF estimates for each smooth term obtained from (i) default VGAMs (fit.ms1), (ii) VGAMs

(df(j) = 3) (fit.ms) and (iii) P-spline VGAMs (fit.ps).

Model f̂(1)2(x2) f̂(2)2(x2) f̂(3)2(x2)

(i) s(age) 3.7 3.6 3.6

(ii) s(age,3) 2.8 2.7 2.7

(iii) ps(age,10) (λ̂(j)2) 1.9 (1.32) 3.4 (0.015) 1.0 (2.0× 107)

The resulting curves for the four models are shown in Fig. 6.1. Table 6.1 shows the EDF

estimates for each smooth term from the three models and the optimal smoothing parameters

(λ̂(j)2) obtained from P-spline VGAMs (fit.ps). The EDF estimates obtained from the P-spline

VGAM approach suggest that f̂(1)2(x2) and f̂(2)2(x2) are nonlinear, while f̂(3)2(x2) is linear.

We now interpret each plot obtained from the method proposed with interest. The f̂(2)2(x2)

in Fig. 6.1 ((d): middle panel) indicates that from the age of approximately 16 to about 40, the

log relative risk of being single relative to being married/partnered goes down significantly and

then is roughly horizontal between ages 45 and 80. The fitted function for the Widowed group

increases in an approximately linear fashion as the age increases (Fig. 6.1 (d): right panel). One

might surmise that marital conflict reaches its highest level at approximately 50 years of age

(Fig. 6.1 (d): left panel).
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(a) Fitted functions from VGAMs using the default settings

(b) Fitted functions from VGAMs using df = 3

(c) Fitted functions from the polynomial model

(d) Fitted functions from P−spline VGAMs

Figure 6.1: Fitted functions f̂(j)2(x2), j = 1, 2, 3 (see equation (6.1)) using (a) default VGAMs, (b)

VGAMs (df(j) = 3), (c) VGLMs using polynomial terms and (d) P-spline VGAMs fitted to the NZ

marital status data.
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Figure 6.2: (a) – (c) Fitted functions f̂(j)2(x2), j = 1, 2, 3. VGAMs (df(j) = 3) (fit.ms) and P-spline

VGAMs (fit.ps) are overlaid and respectively given by the green and orange lines.

Figs. 6.1 (a) – (d) show the estimated smooth functions of f(j)2(x2) for ηj , j = 1, 2, 3

obtained using default VGAMs (fit.ms1), VGAMs (df(j) = 3) (fit.ms), VGLMs (fit2.ms)

and P-spline VGAMs (fit.ps) respectively. In particular, the differences are more pronounced

for functions f(1)2(x2) and f(3)2(x2) (Fig. 6.1 (a): left and right panels) when employing default

VGAMs. These plots indicate that the estimated curves for these functions are more wiggly

than they should be since backfitting does not have any procedures to prevent complex smooth

components when the data are not complex. Reducing a value for degrees of freedom of functions

f(1)2(x2) and f(3)2(x2), as Yee (2010) did, improves the situation, as shown in Fig. 6.1 ((b):

left and right panels). The P-spline VGAM approach (Fig. 6.1 (d)), on the other hand, performs
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Figure 6.3: (a) – (c) Fitted functions f̂(j)2(x2), j = 1, 2, 3. VGLMs (fit2.ms) and P-spline VGAMs

(fit.ps) are overlaid and respectively given by the green and orange lines.

quite well compared to the default VGAMs (Fig. 6.1 (a)) since the amount of smoothing is

estimated automatically. Overlaying plots of the fitted functions of f(j)2(x2) for ηj , j = 1, 2, 3

in Fig. 6.2 indicate that the fitted curves obtained using the method proposed are very similar to

the reasonable fitted models (fit.ms) given by Yee (2010). Yee (2010) suggested that functions

f(1)2(x2) and f(2)2(x2) may be naturally quadratic, while function f(3)2(x2) may be well fitted

using a linear parametric component. He then simplified the nonparametric version of VGAMs

(df(j) = 3) (fit.ms) to a parametric polynomial model (quadratic in Divorced/Separated,

piecewise quadratic in Single, and linear in Widowed) (fit2.ms), which the results are shown

in Fig. 6.1 (c). Overlaying plots of the fitted functions of f(j)2(x2) for ηj , j = 1, 2, 3 in Fig. 6.3
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again indicate that the fitted curves obtained using the method proposed are very similar to

the parametric polynomial model given by Yee (2010). This illustration depicts that P-spline

VGAMs can be an effective approach to automatically find parametric components of VGAMs.

Fig. 6.4 shows the estimated smooth functions for f(j)2(x2), j = 1, 2, 3 and their 2-standard-

error bands obtained using the four models. As with GAMs, the 2-standard-error bands are useful

as they give a rough indication of how much to trust the fitted functions. It may be seen that

when there is almost no data in the region, the confidence limits obtained using backfitting, e.g.,

for the Widowed group and the Single group (Fig. 6.4 (b): left and right panels) are particularly

wider than the estimated smooths obtained using the method proposed (Fig. 6.4 (d): left and

right panels). This result depicts that the fitted curves obtained from the method proposed

appear quite reasonable as compared with backfitting.

The deviance for the fitted VGAM model (fit.ms) considered as reasonable given by Yee

(2010) is 6542.64 with df err = 18147.85. Here, df err is the residual “degrees of freedom” (cf.

the residual degrees of freedom approximated for P-spline VGAMs in Section 4.6). Using P-spline

VGAMs (fit.ps), the deviance drops to 6532.10 with df err = 18149.71. The results indicate

that the fit of the P-spline VGAM model, as measured by deviance, is better with a “smaller”

model.



6.2. Multinomial logit fits to marital status data 135

20 40 60 80

−3

−2

−1

0

1

age

s(
ag

e)
:1

20 40 60 80

−2

0

2

4

age

s(
ag

e)
:2

20 40 60 80

−8

−6

−4

−2

0

2

4

age

s(
ag

e)
:3

20 40 60 80

−2

−1

0

1

age

s(
ag

e,
 d

f =
 3

):
1

20 40 60 80
−2

−1

0

1

2

3

4

5

age

s(
ag

e,
 d

f =
 3

):
2

20 40 60 80

−6

−4

−2

0

2

4

age

s(
ag

e,
 d

f =
 3

):
3

20 40 60 80

−2

−1

0

1

age

po
ly

(a
ge

, 2
)

20 40 60 80

0

2

4

6

age

fo
o(

ag
e)

20 40 60 80

−2

0

2

4

age

pa
rt

ia
l f

or
 a

ge

20 40 60 80

−2

−1

0

1

age

ps
(a

ge
, 1

0)
:1

20 40 60 80

−2

0

2

4

6

age

ps
(a

ge
, 1

0)
:2

20 40 60 80

−2

0

2

4

age

ps
(a

ge
, 1

0)
:3

(a) Fitted functions from VGAMs using the default settings

(b) Fitted functions from VGAMs using df = 3

(c) Fitted functions from the polynomial model

(d) Fitted functions from P−spline VGAMs

Figure 6.4: Fitted functions f̂(j)2(x2), j = 1, 2, 3 (see equation (6.1)) and their 2-standard-error bands

using (a) default VGAMs, (b) VGAMs (df(j) = 3), (c) VGLMs using polynomial terms and (d) P-spline

VGAMs fitted to the NZ marital status data.
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Figure 6.5: Estimated probabilities for each group of the NZ male European marital status using the

P-spline VGAM approach.

Fig. 6.5 shows the four estimated response probabilities of the outcomes (divorced or sepa-

rated, married or partnered, single and widower) for European males as a function of age from

the nonparametric multinomial logit fit using the P-spline VGAM approach. From Fig. 6.5, the

percentage of single starts to decrease sharply from 90% to 10% between the late teens and

mid-30s, and then is roughly horizontal between 40 – 60. In contrast, the percentage of mar-

ried/partnered increases steeply from 20% to over 80% between the early-20s and the mid-30s.

Overall, approximately 80 – 90% of NZ males with age ranging from early-30s to early-70s were

married/partnered. The proportion of divorced/separated hits the highest level of approximately

0.1 at the age of approximately 50. The percentage of widowed is almost zeros and then starts

increasing to approximately 10% from the age over 70s.
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6.3 Proportional-odds model fits to body mass index (BMI)

data

When the responses are “ordinal” (consisting of ordered categories), the regression models can

incorporate this ordering through the logit transformations of the response probabilities. The

most frequently used models for an ordered response are the proportional and non-proportional

odds models. We consider an ordered multinomial response variable y with categorical outcomes

denoted by 1, 2, . . . ,K, and x denote a vector of covariates. Yee and Wild (1996) described

this model in terms of modeling each of the binary events y ≥ j versus y < j using a logistic

model:

Pr(y ≥ j|x) =
exp{ηj(x)}

1 + exp{ηj(x)}
, j = 2, . . . ,K. (6.2)

The probabilities for observing a particular response category j are obtained by

Pr(y = j) = Pr(y ≥ j)− Pr(y ≥ j + 1).

The proportional-odds model of McCullagh (1980) assumes that the effect of the explanatory

variables on the odds ratio is identical across the K-cut points. So that ηj(x) in (6.2) is

constrained to be in the form

ηj(x) = αj + η(x).

An unconstrained model that imposes no such assumptions is represented by

ηj(x) = αj + ηj(x), (6.3)

where the effect of the explanatory variables on the odds ratio are now allowed to vary arbitrarily

across the cutpoints of y. This equation is referred to the non-proportional odds model (Arm-

strong and Sloan, 1989). The additive version of the proportional-odds model can be obtained

by using an additive predictor (Hastie and Tibshirani, 1990)

ηj(x) =

p∑
k=1

fk(xk).
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The body mass index (BMI) data from the xs.nz data frame in the VGAMdata package is

used to illustrate our approach with ordinal responses. The response outcome of interest is BMI

y = BMI, transformed into three categories as follows: < 18.5 − 24.9: underweight or normal

weight (y = 1); 25− 29.9: overweight (y = 2); ≥ 30: obese (y = 3). Note that we combine the

underweight category with the normal weight category as the frequency counts in underweight

category are very small. The considered explanatory variable is age ranging between 18 − 88

years (age). For homogeneity, we confine our analysis to a subset of 2600 European women and

missing values are removed. Again, P-spline VGAMs are performed using the psvgam() function

and VGAMs are performed using the VGAM package.

We are interested in how y = BMI-group varies as a function of age. Since the response

variable is ordinal, we will use the proportional-odds model. The model is then

logit Pr (y ≥ j|age) = f(j) (age) , j = 2, 3.

We fit the nonparametric proportional-odds model using P-spline VGAMs. We smooth with B-

splines of degree 3, a second order penalty and 10 equally-spaced B-spline knots with smoothing

parameters being chosen automatically by minimizing the UBRE score. The resulting call to

psvagm() is given by

1 fitps.pom <- psvgam(ordBMI ~ ps(age , 10), family = propodds ,

2 data = women.bmi)

Since the proportional-odds model imposes the parallelism assumption, one should first inves-

tigate whether the proportional-odds assumption is reasonable. It turns out that the deviance

for the nonparametric proportional-odds model is 4716.40, while that for the nonparametric

non-proportional odds model is 4716.47. A comparison yields 0.07 on 2.54 degrees of freedom

suggesting that the proportional-odds assumption is not unreasonable.
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Table 6.2: EDF estimates for each smooth term obtained from (i) default VGAMs (fit.pom) and (ii)

P-spline VGAMs (fitps.pom).

Model f̂

(i) s(age) 4

(ii) ps(age,10) (λ̂) 2.6 (1.68)

To find out whether the VGAM approach leads to different results, we fit a nonparametric

proportional-odds model using VGAMs as well. We smooth using cubic smoothing splines with

default degrees of freedom (df(j) = 4). The resulting call to vgam() is given by

1 fit.pom <- vgam(ordBMI ~ s(age), family = propodds , data = women.bmi)

Figs. 6.6 (a) – (b) show the fitted functions f̂ that P-spline VGAMs (fitps.pom) and default

VGAMs (fit.pom) respectively yield. Table 6.2 shows the EDF estimates for f̂ from the two

models and the optimal smoothing parameters λ̂ obtained from P-spline VGAMs (fitps.pom).

The estimated function f̂ shown in Fig. 6.6 (a) measures overweight or obesity for European

women and its EDF suggests the presence of non-linearity. It may be seen that the fitted function

f̂ is generally increasing with age until about 60, and reaches the maximum at the age of mid-60s,

and then starts to decrease.
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Figure 6.6: Estimate functions f̂ using P-spline VGAMs (a) and default VGAMs (b) fitted to the body

mass index data. The fitted functions are overlaid in (c) with P-spline VGAMs (fitps.pom) and default

VGAMs (fit.pom) given respectively by the blue and orange lines.

Fig. 6.6 (c) shows that the estimated curves from the default VGAM method do not differ

much from the estimated smooths obtained using the method proposed. Fig. 6.7 shows that the

confidence limits obtained using P-spline VGAMs are generally very similar to those of default

VGAMs. This could suggest that the value of the degree of smoothness given by the default

VGAM method is an appropriate choice of degree of smoothness for the given data.
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Figure 6.7: Estimate functions f̂ and their 2-standard-error bands using P-spline VGAMs (a) and default

VGAMs (b) fitted to the body mass index data. The fitted functions and their 2-standard-error bands are

overlaid in (c) with P-spline VGAMs (fitps.pom) and default VGAMs (fit.pom) are respectively given

by the blue and orange lines.
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Table 6.3: The deviance and the residual “degrees of freedom” of the two fits to the body mass index

data.

Model Dev df err ∆Dev ∆df err

(i) ps(age,10) 4716.47 5223.40

(ii) s(age) 4713.53 5222.02 2.94 1.38

Although the models are not nested, we will use the informal deviance tests described in

Section 4.6 as a rough guide for comparing models. Table 6.3 summarizes the results from the

two models. For each model, we show the deviance of the fit (Dev) and the residual “degrees of

freedom” (df err). The change in deviance between each model fit (∆Dev) and the difference in

the number of parameters between each model fit (∆df err) are also shown. The approximate chi-

square test statistic under the null hypothesis that the nonparametric proportional-odds model

obtained using P-spline VGAMs (fitps.pom) is suitable yields a p value of Pr
(
χ2
1.38 > 2.94

)
=

0.14, indicating that the simpler nonparametric proportional-odds model obtained using the

method proposed appears quite reasonable compared to the default VGAM.
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Figure 6.8: Estimated probabilities for each BMI-group of a subset of European women using the P-spline

VGAM approach.

The fitted probabilities for individual categories of BMI obtained using the P-spline VGAM

approach are shown in Fig. 6.8. The probability trends for being overweight and obese for

European women are the same but the probability of being overweight is almost twice as large

as that of being obese of the same age. The plot shows that the probability of being overweight

and obese for European women increases with age, and reaches a maximum level at the age of

mid-60s, and then starts to decrease. Sometimes data like this decreases past a maximum point.

This may be a selection bias because people with high BMIs are more susceptible to certain

diseases such as cardiovascular disease, diabetes and cancer, and therefore die younger.
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6.4 Bivariate logistic fits to cat and dog data

We will compare P-spline VGAM and VGAM fits using the example of cat and dog pet ownership

from the xs.nz data. These data were presented by Yee (2015b, section 4.4.3) as an application

of VGAM fitting. The response outcome of interest is a European woman Yj , j = 1, 2, classified

as having a household cat (Y1 = 1) and having a household dog (Y2 = 1). A single covariate

considered, namely age (age). For homogeneity, we confine our analysis to a subset of 2569

European women and remove missing values. P-spline VGAMs are performed using the psvgam()

function and VGAMs are performed using the VGAM package.

We will investigate how having a household cat and a household dog, together with their

interactions, and how this is related to people’s ages. We then fit a nonparametric bivariate

logistic model to the two binary responses Yj . The model is as follows (cf. Yee (2015b)):

η1 = logitP (Y1 = 1|x2) = β(1)1 + f(1)2(x2),

η2 = logitP (Y2 = 1|x2) = β(2)1 + f(2)2(x2),

η3 = log ψ(x2) = β(3)1 + f(3)2(x2), (6.4)

where ψ(x2) =
odds (Y1 = 1|Y2 = 1, x2)

odds (Y1 = 1|Y2 = 0, x2)
is the odds ratio. The model (6.4) taken here is a

“non-exchangeable” error structure which the marginal probabilities are different and the odds

ratio is modeled as a function of all the explanatory variables. We will fit the model above

using the the P-spline VGAM approach and the VGLM/VGAM approach. The models and the

corresponding calls are as follows:

(i) default VGAMs with 4 degrees of freedom for each smooth term

1 fit.cd0 <- vgam(cbind(cat , dog) ~ s(age),

2 family = binom2.or(zero = NULL),

3 data = women.eth0.catdog)
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(ii) VGAMs with 4, 4, and 2 degrees of freedom for f(j)2, j = 1, 2, 3 (Yee, 2015b)

1 fit.cd1 <- vgam(cbind(cat , dog) ~ s(age , df = c(4, 4, 2)),

2 family = binom2.or(zero = NULL),

3 data = women.eth0.catdog)

(iii) a parametric model (linear B-splines with 40 and 50 knots in age for European women

who have a household cat (Y1) and a household dog (Y2) respectively, and quadratic in age

for the odds ratio) using VGLMs (Yee, 2015b)

1 Hlist <- list("(Intercept)" = diag (3),

2 "bs(age , degree = 1, knot = 40)" = rbind(1, 0, 0),

3 "bs(age , degree = 1, knot = 50)" = rbind(0, 1, 0),

4 "poly(age , 2)" = rbind(0, 0, 1))

5 fit.cd3 <- vglm(cbind(cat , dog) ~ bs(age , degree = 1, knot = 40) +

6 bs(age , degree = 1, knot = 50) + poly(age , 2),

7 family = binom2.or(zero = NULL),

8 data = women.eth0.catdog , constraints = Hlist)

[Note: vglm() allocates the first age term to η1, the second to η2 and the third to η3.]

(iv) P-spline VGAMs using penalized B-splines of degree 3, together with a second order

penalty, and 10 equally-spaced B-spline knots with the smoothing parameters being se-

lected automatically through minimization of the UBRE score

1 fitps.cd1 <- psvgam(cbind(cat , dog) ~ ps(age , ps.interval = 10),

2 family = binom2.or(zero = NULL),

3 data = women.eth0.catdog)
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Table 6.4: EDF estimates for each smooth term obtained from (i) default VGAMs (fit.cd0), (ii) VGAMs

(df(j) = (4, 4, 2)) (fit.cd1) and (iii) P-spline VGAMs (fitps.cd1).

Model f̂(1)2(x2) f̂(2)2(x2) f̂(3)2(x2)

(i) s(age) 4.0 3.8 3.8

(ii) s(age,df=c(4,4,2)) 4.0 3.8 1.9

(iii) ps(age,10) (λ̂(j)2) 2.51 (2.08) 2.63 (0.94) 1.97 (3.02)

Fig. 6.9 shows the three fitted functions f̂(j)2(x2), j = 1, 2, 3 that each of the four models

yield. Table 6.4 shows the EDF estimates for each smooth term from the three models and

the optimal smoothing parameters (λ̂(j)2) obtained from P-spline VGAMs (fit.ps). The EDF

estimates obtained using P-spline VGAMs suggest that f̂(1)2(x2), f̂(2)(x2) and f̂(3)(x2) are

nonlinear.

We now interpret each plot obtained from the method proposed with interest. Plots in Fig. 6.9

((d): left and middle panels) correspond to European women who have a household cat and a

household dog respectively. Both plots indicate that the probability of having a cat and a dog

increases with age, reaches a maximum of the age of about 40 (cat) and 45 (dog), and then

starts to decrease. To interpret the plot in Fig. 6.9 ((d): right panel), we will use the definition

of the term ψ in equation (6.4) interpreted as the odds ratio of Y1 = 1 for a European woman

with a covariate (Y2 = 1, x2) relative to a European woman with a covariate (Y2 = 0, x2) .

We therefore describe the plot in Fig. 6.9 ((d): right panel) as follows. Over the age about 50,

European women who have a cat are increasingly more likely to have a dog than those who do

not have a cat.
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(a) Fitted functions from VGAMs using the default settings

(b) Fitted functions from VGAMs using df = c(4, 4, 2)

(c) Fitted functions from the parametric models

(d) Fitted functions from P−spline VGAMs

Figure 6.9: Fitted functions f̂(j)2(x2), j = 1, 2, 3 (see equation (6.4)) using (a) default VGAMs, (b)

VGAMs (df(j) = (4, 4, 2)), (c) VGLMs using polynomial terms and (d) P-spline VGAMs fitted to a

subset of European women with household cat and dog pet ownership data.
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Figure 6.10: (a) – (c) Fitted functions f̂(j)2(x2), j = 1, 2, 3. VGAMs (df(j) = (4, 4, 2)) (fit.cd1) and

P-spline VGAMs (fitps.cd1) are overlaid and respectively given by the blue and red lines.

Figs. 6.9 (a) – (d) show the estimated smooth functions f(j)2(x2) for ηj , j = 1, 2, 3 obtained

respectively using default VGAMs (fit.cd0), hand-tuned VGAMs (df(j) = (4, 4, 2)) (fit.cd1)

and VGLMs (fit.cd3), and P-spline VGAMs (fitps.cd1). Again, Fig. 6.9 ((a): right panel)

shows that a value of the degrees of freedom given by the default VGAM method results in excess

wiggliness in the estimated smooth function f̂(3)2(x2). Yee (2015b) tuned this spline parameter

to obtain a better fit (VGAMs (df(j) = (4, 4, 2)) (fit.cd1)) as shown Fig. 6.9 (b). He then

simplified the nonparametric version of VGAMs (fit.cd1) by substituting smooth terms with

parametric terms (VGLMs (fit.cd3)) resulting in Fig. 6.9 (c). P-spline VGAMs (Fig. 6.9 (d)), by

contrast, automatically yield a closer fit to the hand-tuned fit than the default VGAM method.
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Figure 6.11: (a) – (c) Fitted functions f̂(j)2(x2), j = 1, 2, 3. VGLMs (fit.cd3) and P-spline VGAMs

(fitps.cd1) are overlaid and respectively given by the blue and red lines.

Overlaying plots of the fitted functions for f(j)2(x2), j = 1, 2, 3 show that the fitted curves

obtained using the method proposed are quite similar to the reasonable fitted models (fit.cd1)

(Fig. 6.10) and very similar to the hand-tuned parametric polynomial version (fit.cd3) (Fig.

6.11) given by Yee (2015b) as might be expected. These results again suggest that P-VGAMs

can be effectively used to automatically find parametric components of VGAMs.

Fig. 6.12 shows the fitted functions for f(j)2(x2), j = 1, 2, 3 and their 2-standard-error

bands obtained using the four models. With the exception of the model from the parametric

models with their shape “elbows”, the confidence intervals of the models are generally very similar

(Figs. 6.12 (b) – (d)).
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(a) Fitted functions from VGAMs using the default settings

(b) Fitted functions from VGAMs using df = c(4, 4, 2)

(c) Fitted functions from the parametric models

(d) Fitted functions from P−spline VGAMs

Figure 6.12: Fitted functions f̂(j)2(x2), j = 1, 2, 3 (see equation (6.4)) and their 2-standard-error bands

using (a) default VGAMs, (b) VGAMs (df(j) = (4, 4, 2)), (c) VGLMs using polynomial terms and (d)

P-spline VGAMs fitted to a subset of European women with household cat and dog pet ownership data.
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Table 6.5: The deviance and the residual “degrees of freedom” of the two fits to a subset of European

women with household cat and dog pet ownership data.

Model Dev df err ∆Dev ∆df err

(i) ps(age,10) 6167.48 7696.89

(ii) s(age,c(4,4,2)) 6160.23 7694.35 7.25 2.54

Table 6.5 summarizes the deviance and the residual “degrees of freedom” of the models ob-

tained using P-spline VGAMs (fitps.cd1) and VGAMs (df(j) = (4, 4, 2)) (fit.cd1). If we use

the approximate chi-square test as a rough guide (these models are not nested), we get a p value

of Pr
(
χ2
2.54 > 7.25

)
= 0.05, which might suggest a degree of underfitting. If we increase the

number of knots to 15 (following the increased number of knots in the Yee’s (2015b) parametric

model (fit.cd3)), then the fits become almost indistinguishable.
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Figure 6.13: Estimated probabilities for all four combinations (both cats and dogs, cats only, dogs only,

and no cats or dogs) of a subset of European women from the xs.nz data frame using the P-spline VGAM

approach.

Fig. 6.13 shows the fitted probabilities for all four combinations (both cats and dogs, cats

only, dogs only, and no cats or dogs) obtained using the method proposed. The probability

of having cats only at home for European women is higher than that of having dogs only for

European women of the same age. The proportion of having cats alone generally increases with

age, reaches a maximum of 0.4 at the age between the mid-30s and the mid-40s, and then

starts to decrease. The probability trends for having both types of pets and having cats only for

European women are very similar in shape but the the probability of having cats only is almost

twice as large as that of having both types of pets of the same age. The proportion having a

dog only stays fairly stable over the age between 20 to 60 and then starts to decrease. The

proportion of having no pets drops from the ages of 15 to 40 and then starts to climb quite

steeply.
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6.5 Bivariate logistic fits to pregnancy and birth data

We will use the birth data in the catdata package to illustrate the proposed method in a dataset

with two binary responses and more than one covariate. These data were presented by Boulesteix

(2006) as an application of the method used for the selected chi-square statistics for ordinal

variables. The data of 620 labours contain several variables related to the birth process. The

responses of interest are whether instruments have been used during labour (Y1 = 1) for each

labour and whether birth has been induced (Y2 = 1). The predictors are age at labour (Age)

and weight of the baby at birth (Weight, in grams). We have removed cases with missing values.

P-spline VGAMs are fitted using the psvgam() function and VGAMs are fitted using the VGAM

package.

We are interested in examining how the probability of requiring the instruments during labour

and/or birth and induced labour varies as a function of labour’s age (x2) and baby’s weight (x3).

The nonparametric bivariate logistic model for these two predictors is given by

η1 = logitP (Y1 = 1|x) = β(1)1 + f(1)2(x2) + f(1)3(x3),

η2 = logitP (Y2 = 1|x) = β(2)1 + f(2)2(x2) + f(2)3(x3),

η3 = log ψ(x) = β(3)1 + f(3)2(x2) + f(3)3(x3), (6.5)

where ψ(x) is the odds ratio. We note that (6.5) has a “non-exchangeable” structure in which no

constraints are imposed on η1, η2 and η3. As in previous examples, we fit the nonparametric

bivariate logistic model in (6.5) using the P-spline VGAMs approach and the VGAM method.

The models and the corresponding calls are as follows :
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(i) default VGAMs with the default 4 degrees of freedom for each smooth term

1 fit.bi1 <- vgam(cbind(Instrument , Induced) ~ s(Age) + s(Weight),

2 family = binom2.or(zero = NULL), data = birth.b)

(ii) P-spline VGAMs using penalized B-splines of degree 3, together with a second order

penalty, and 8 equally-spaced B-spline knots with the smoothing parameters being selected

automatically through minimization of the UBRE score

1 fitps.bi1 <- psvgam(cbind(Instrument , Induced) ~ ps(Age , 8) +

2 ps(Weight , 8), family = binom2.or(zero = NULL),

3 data = birth.b)

Table 6.6: EDF estimates for each smooth term obtained from (i) default VGAMs (fit.bi1) and (ii)

P-spline VGAMs (fitps.bi1).

Model f̂(1)2(x2) f̂(1)3(x3) f̂(2)2(x2) f̂(2)3(x3) f̂(3)2(x2) f̂(3)3(x3)

(i) s(Age)+s(Weight) 3.7 3.9 4.1 3.6 3.8 3.3

(ii) ps(Age,8)+ps(Weight,8) 2.5 2.6 2.2 2.6 2.0 1.0

(λ̂(j)k) (0.53) (0.46) (3.52) (0.22) (0.74) (1.7× 107)

Figs. 6.14 and 6.15 show the fitted functions f̂(j)k(xk), j = 1, 2, 3 and k = 2, 3 that P-spline

VGAMs (fitps.bi1) and default VGAMs (fit.bi1) yield. Table 6.6 shows the EDF estimates

for each smooth term from the two models and the optimal smoothing parameters (λ̂(j)k) ob-

tained from P-spline VGAMs (fit.ps). The EDF estimates obtained using P-spline VGAMs

suggest that the f̂(j)k(xk) are nonlinear with the exception of f̂(3)3(x3). For f̂(3)3(x3), the

EDF estimate is approximately 1 suggesting linearity.
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Figure 6.14: Fitted functions f̂(1)2(age), f̂(2)2(age), f̂(3)2(age), f̂(1)3(weight), f̂(2)3(weight) and f̂(3)3(weight)

(see equation (6.5)) using P-spline VGAMs (fitps.bi1) fitted to the pregnancy and birth data.

We now interpret each plot. Each plot in Figs. 6.14 (a), (b), (d) and (e) can be described in

the same way as an ordinary logistic regression for GAMs. Plots (a) and (d) correspond to the

need of instruments during labour while (b) and (e) correspond to labour induction. The fitted

curve f̂(2)2(x2) (Fig. 6.14 (a)) suggests that a need of instruments during labour increases from

the age of early-20s to mid-20s, reaches a maximum at the age of about 26, and then starts to

decrease. Plot (b) indicates that the use of labour induction generally decreases with labour’s

age, reaches a minimum at an age of 28, and then starts to increase. Plots (d) and (e) indicate

that a need for the instruments during labour and induced labour increases when the baby’s

weight is greater than approximately 3500 grams. The down trend of low weights corresponds

to a region with very little data.
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To interpret the plot in Figs. 6.14 (c) and (f), we recall from (6.4) that

ψ(x) =
odds (Y1 = 1|Y2 = 1, x)

odds (Y1 = 1|Y2 = 0, x)
.

Here, ψ is the conditional odds ratio given x for the use of instruments (Y1 = 1) comparing

induced births to non-induced births (Y2). The fitted curve for the log-odds ratio versus age

in Fig. 6.14 (c) suggests that the odds of instrument use is higher for induced births than non-

induced births under the age of about 24 and over about 33, but lower for induced births than

non-induced births for ages of between 28 and 33. The fitted curve for the log-odds ratio versus

a baby’s weight in Fig. 6.14 (f) suggests that when the baby’s weight is above 3500 grams, the

odds of requiring the use of instrument for those who required induced birth is higher than the

odds of requiring the use of instrument for those who did not require induced birth. When the

baby’s weight is below 3500 grams, the odds of requiring the use of instruments is lower for

induced labours than non-induced labours. The trend is linear on a log-odds-ratio scale.

Fig. 6.15 shows the estimated functions for f(j)k(xk), j = 1, 2, 3, k = 2, 3 obtained using

VGAMs (fit.bi1). The differences are more pronounced for functions f(1)2(x2), f(2)2(x2),

f(3)2(x2), and f(3)3(x3) (Figs. 6.15 (a), (b), (c), and (f)) when employing default VGAMs.

These plots again indicate that a value of degree of smoothness given by the default VGAM

method leads to an excessive wiggliness of the estimated smooth functions (overfitting). The

P-spline VGAM approach appears to be correcting this automatically.
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Figure 6.15: Fitted functions f̂(1)2(age), f̂(2)2(age), f̂(3)2(age), f̂(1)3(weight), f̂(2)3(weight) and f̂(3)3(weight)

(see equation (6.5)) using default VGAMs (fit.bi1) fitted to the pregnancy and birth data.

Figs. 6.16 and 6.17 show the fitted curves and their 2-standard-error bands obtained re-

spectively using P-spline VGAMs and default VGAMs. The standard error bands for default

VGAMs, e.g., for f(3)2(x2), f(1)3(x3), f(2)3(x3) and f(3)3(x3) (Figs. 6.17 (c) – (f)) are generally

wider than those of using the P-spline VGAM method (Figs. 6.16 (c) – (f)) as might be expected

because the degrees of freedom obtained from P-spline VGAMs are lower.
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Figure 6.16: Fitted functions f̂(1)2(age), f̂(2)2(age), f̂(3)2(age), f̂(1)3(weight), f̂(2)3(weight) and f̂(3)3(weight)

(see equation (6.5)) and their 2-standard-error bands using P-spline VGAMs (fitps.bi1).
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Figure 6.17: Fitted functions f̂(1)2(age), f̂(2)2(age), f̂(3)2(age), f̂(1)3(weight), f̂(2)3(weight) and f̂(3)3(weight) (see

equation (6.5)) and their 2-standard-error bands using default VGAMs (fit.bi1).
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Table 6.7: The deviance and the residual “degrees of freedom” of the two fits to the birth data.

Model Dev df err ∆Dev ∆df err

(i) ps(Age,8)+ps(Weight,8) 1280.25 1844.07

(ii) s(Age)+s(Weight) 1268.20 1834.58 12.05 9.49

The point labeled A in Fig. 6.16 (f) for η3, which has value 0 and standard error zero,

occurs at the mean value of the variable Weight, which is where the component function has

been centered.

Table 6.7 summarizes the deviance and the residual “degrees of freedom” of the models ob-

tained using P-spline VGAMs (fitps.bi1) and default VGAMs (fit.bi1). The approximate

chi-square test statistic yields a p value of Pr
(
χ2
9.49 > 12.05

)
= 0.24, indicating that the non-

parametric bivariate logistic model obtained using the method proposed appears quite reasonable

as compared to the default VGAM.
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6.6 The LMS method fits to body mass index (BMI) data

In this section, we will compare P-spline VGAM and VGAM fits to the BMI data from xs.nz in

the VGAMdata package. These data were presented by Yee and Mackenzie (2002) and Yee (2002,

2004) as an application of quantile regression. The response of interest is BMI (BMI) and the

explanatory variable is age (age). We confine our analysis to a subset of 2600 European women

and missing values are removed. P-spline VGAMs are performed using the psvgam() function

and VGAMs are performed using the VGAM package.

Of interest is how BMI is affected by age. To investigate this, we fit the LMS-normal method

to the data set. The model is formulated as

η (x) = (λ(x), µ(x), log (σ (x)))T . (6.6)

We fit the model above using P-spline VGAMs and VGAMs. The models and the corresponding

calls are as follows:

(i) default VGAMs with 4 degrees of freedom for λ(x), µ(x), and log(σ(x))

1 fit.lms0 <- vgam(BMI ~ s(age), family = lms.bcn(zero = NULL),

2 data = bmi.dat)

(ii) VGAMs with 2, 4, and 2 degrees of freedom for λ(x), µ(x), and log(σ(x)) (Yee and

Mackenzie, 2002)

1 fit.lms1 <- vgam(BMI ~ s(age , df = c(2, 4, 2)),

2 family = lms.bcn(zero = NULL),

3 data = bmi.dat)

(iii) P-spline VGAMs using penalized B-splines of degree 3, together with a second-order

penalty, and 10 equally-spaced B-spline knots with the smoothing parameters being se-

lected automatically through minimization of the UBRE score

1 fitps.lms <- psvgam(BMI ~ ps(age , 10), lms.bcn(zero = NULL),

2 data = bmi.dat)
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Table 6.8: EDF estimates for each function obtained from (i) default VGAMs (fit.lms0), (ii) VGAMs

(df(j) = (2, 4, 2)) (fit.lms1) and (iii) P-spline VGAMs (fitps.lms).

Model λ̂(x) µ̂(x) log(σ̂(x))

(i) s(age) 3.9 3.9 4.0

(ii) s(age,df=c(2,4,2)) 1.9 3.9 2.0

(iii) ps(age,10) (λ̂(j)2) 1.0 (1.5× 109) 2.8 (0.37) 2.0 (1.6× 102)

Figs. 6.18 (a) – (c) show the fitted functions η̂1 = λ̂(x), η̂2 = µ̂(x) and η̂3 = log(σ̂(x))

that each of the three models yield. Table 6.8 shows the EDF estimates for each function from

the three models and the optimal smoothing parameters (λ̂(j)2) obtained from P-spline VGAMs

(fitps.lms). The EDF estimates obtained using P-spline VGAMs suggest that λ̂(x) is linear,

while µ̂(x) and log(σ̂(x)) are nonlinear.
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(a) Fitted functions from VGAMs using the default settings

(b) Fitted functions from VGAMs using df = c(2, 4, 2)

(c) Fitted functions from P−spline VGAMs

Figure 6.18: Fitted functions η̂1 = λ̂(x), η̂2 = µ̂(x) and η̂3 = log(σ̂(x)) (see equation (6.6)) using (a) default VGAMs, (b) VGAMs (df(j) = (2, 4, 2))

and (c) P-spline VGAMs fitted to the BMI data.



6.6. The LMS method fits to body mass index (BMI) data 163

20 40 60 80

−1

0

1

2

(a)
age

ps
(a

ge
, 1

0)
:1

20 40 60 80

−2

−1

0

1

(b)
age

ps
(a

ge
, 1

0)
:2

20 40 60 80

−0.3

−0.2

−0.1

0.0

0.1

0.2

(c)
age

ps
(a

ge
, 1

0)
:3

Figure 6.19: (a) - - (c) Fitted functions η̂1 = λ̂(x), η̂2 = µ̂(x) and η̂3 = log(σ̂(x)). VGAMs (df(j) =

(2, 4, 2)) (fit.lms1) and P-spline VGAMs (fitps.lms) are overlaid and respectively given by the blue

and red lines.

Fig. 6.18 ((a): left and right panels) shows that the fitted functions λ̂(x) and log(σ̂(x))

obtained from default VGAMs are more wiggly than they should be. Yee and Mackenzie (2002))

reduced the degrees of freedom for these functions to obtain a better fit (VGAMs (df(j) = (2, 4, 2)

(fit.lms1) as shown in Fig. 6.18 (b). Overlaying plots of the fitted functions (Fig. 6.19) show

that the method proposed automatically yields a fit close to the hand-tuned fit. Plots of the

fitted functions and their 2-standard-error bands show that the confidence limits obtained from

the method proposed (Fig. 6.20 (c)) are narrower than those of default VGAMs (Fig. 6.20 (a)).
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(a) Fitted functions from VGAMs using the default settings

(b) Fitted functions from VGAMs using df = c(2, 4, 2)

(c) Fitted functions from P−spline VGAMs

Figure 6.20: Fitted functions η̂1 = λ̂(x), η̂2 = µ̂(x) and η̂3 = log(σ̂(x)) (see equation (6.6)) and their 2-standard-error bands using (a) default

VGAMs, (b) VGAMs (df(j) = (2, 4, 2)) and (c) P-spline VGAMs fitted to the BMI data.
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Figure 6.21: Quantile regression fits to dataset xs.nz in VGAMdata using the LMS method. The solid

lines represent the estimated smooth quantiles obtained using a P-spline VGAM.

Fig. 6.21 shows the fitted quantile-curve that the P-spline VGAM yields. For fixed ages, the

distribution of BMI in Fig. 6.21 is clearly negatively skewed. The plot shows that the median

BMI of European women generally increases with age until their mid-60s and then the BMI

decreases.

To find out whether the quantile curves for European men differ from European women, we

then fit P-spline VGAMs (fitps.lms) to both male and female data. The fitted quantile-curve

is given by Fig. 6.22. Not surprising, the plot indicates that the median BMI of European men

is greater than that of European women of the same age.
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Figure 6.22: The fitted quantile-curve for European men and women using P-spline VGAMs. The solid

line (blue) and squares are for men and the dashed line (pink) and circles are for women.

6.7 Conclusions

In this chapter, we have illustrated the new methods developed in this study and discussed

their major advantages through the application to data from a cross-sectional workforce study

combined with a health survey from New Zealand during the 1990s, and data from a survey

study of the pregnancy and birth process during 1990− 2004.

Our results show that P-spline VGAMs integrated with the automatic smoothness estimation

performed well in real dataset for many multivariate response types and models in which their

model structures involve constraints on the model terms and those that did not. The new method

yields a more reasonable fit-curve as compared with default VGAMs based on backfitting. Over-

all, the nonparametric models yielded by the new methods approximate nonparametric models

fitted using the VGAM approach with hand tuning. Our penalized likelihood framework together

with automated smoothness estimation has a major advantage over VGAMs in eliminating the

need for hand tuning.



C
h

a
p

t
e

r

7
Conclusions and future work

The main purpose of this research study was to develop an alternative estimation pro-

cedure for the VGAM class based on the penalized likelihood approach of Eilers and

Marx (1996), Marx and Eilers (1998) and Wood (2006b) for GAM modeling, and to integrate

an automatic procedure for determining the degrees of smoothing for smooth terms from the

data into the VGAM framework building on the GAM work of Wood (2006b). We discussed

theoretical and practical aspects of GAMs based on penalized regression splines and summarized

also VGLMs/VGAMs emphasizing elements relevant to this study. We then concentrated on

developing new efficient methods based on penalized regression splines for estimating param-

eter coefficients for the full range of VGAM models, implementing an efficient computational

method for automatic smoothing parameter selection into the VGAM framework, implementing

the methods in R, investigating and comparing the practical performance of the method pro-

posed to the default VGAMs method via simulations, and illustrating the new approach with

multivariate response types and models.

167
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More particularly, Chapter 4 showed how P-spline VGAMs can be represented using penalized

regression splines and how they can be estimated, once a basis for the smooth functions has been

chosen together with associated measures of function wiggliness. Given a set of B-splines as a

basis, P-spline VGAMs are simply VGLMs, with an associated set of penalties. Model estimation

was then developed using a penalized version of IRLS. The very important feature of constraint

matrices, which allow the linear/additive predictors to share relationships with each other, etc.

was able to be catered for in a natural way. The effective degrees of freedom (EDF) used for

measuring the flexibility of the fitted model for P-spline VGAMs were defined and further tools

that are useful for applied modeling with the purposed method such as comparing models were

provided.

Chapter 5 developed automatic smoothing parameter selection for P-spline VGAMs. This

was done by adapting the unbiased risk estimator (UBRE) methods of Wood (2004) and Marra

and Radice (2011). Smoothing parameter estimation by the UBRE was included in the P-

IRLS scheme by applying automatic UBRE optimization to the weighted least squares problem

produced at each stage of the iterative least squares method. The degrees of freedom for each

smooth term in the model were chosen simultaneously as part of model fitting. A simulation study

showed that the automatic smoothness estimation performed well in terms of estimating smooth

components for model structures involving constraints on the model terms and those that did

not. Overall, the method proposed performs significantly better than the default VGAM method

in terms of predictive ability.

Chapter 6 applied the proposed method to two real data sets with several multivariate re-

sponse types and models and compared them to default VGAMs and VGAMs that were hand

tuned to improve fitting performance. In all cases the proposed method performed in the desired

way by automatically choosing smoothness that closely approximated the hand-tuned VGAMs

chosen by Yee and co-authors. This was true for model structures that involved constraints on

the model terms and those that did not.
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The proposed framework can be employed for all simple exponential family distributions and

most multivariate response types and models such as categorical response (multinomial logit

model, proportional and non-proportional odds model), quantile regression (LMS method, e.g.,

Box-Cox to normal, Yeo-Johnson to normal distributions), expectile regression (asymmetric least

squares, e.g., for normal, Poisson, binomial, exponential), Gumbel, bivariate binary responses

(bivariate logistic model and bivariate probit model), zero-inflated Poisson, and multivariate

regression, etc. However, numerical problems tend to occur for some models and distributions

such as LMS method - Box-Cox to gamma. As Yee (2015a) stated, some models are harder to

fit than others because of inherent numerical difficulties associated with them.

There are limitations in the method as presently implemented as following:

P-spline VGAMs proposed in this research may suffer occasionally from convergence problems

such as sample sizes smaller than about 500 for the bivariate probit model with fairly high

correlation between two responses. This is not surprising as Marra and Radice (2011) have

already reported these problems for their recursive semiparametric bivariate probit model. If

convergence problems occur, Yee (2015a) suggested assigning an initial value for the correlation

ρ and monitoring convergence (e.g., set the argument trace = TRUE).

In our experience, convergence failure may occur occasionally with high-dimensional settings

for the number of knots and/or the order of the penalty. In practice, choosing the number of knots

between 5 and 15, and the order of the penalty between 1 and 3, is usually adequate. As Yee

and Mackenzie (2002) stated, numerical problems are common, especially for M > 1 models,

and in the VGLM framework, IRLS computation may fail on very large data sets since its design

matrix requires too much memory. As explained in Section 4.2.2, both storage and time costs

for fitting P-spline VGAMs increase rapidly with respect to M, followed by p, Sk, and then

n. Storage can be reduced by reducing the number of parameters through imposing constraints

on the functions and reducing the dimensions of number of knots (Sk). However, further work is

required to reduce storage-use inefficiencies such as storing entire block diagonal matrices with

specialized algorithms and data structures that take advantage of the sparse structure of the
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matrix.

Convergence failure may also sometimes occur due to an infinite cycling between the two steps

of estimations, one for estimating β∗ given smoothing parameters and another for estimating

λ given β∗ (cf. Wood (2006b) and Marra and Radice (2013)).

We have highlighted some further work needed to remedy limitations of the method as cur-

rently implemented. There are other interesting areas for further research including the following:

A fitted P-spline VGAM object is returned by the psvgam function and of the class “psvgam”

inheriting from the classes “vglm” and “vgam”. Method functions such as summary, deviance,

residuals, fitted, predict and plotvgam therefore exist for the class “psvgam”. But the fitting

method for P-spline VGAMs is different to VGLMs and VGAMs, so that the elements relating

to specific features of penalized regression splines, e.g., the B-spline basis and wiggliness penalty,

and smoothing parameter estimation are not inherited and thus need to be written. Therefore,

the method functions should be written to extract elements such as the penalty matrix for

the models, the dimension of the B-spline basis used to represent the smooth, the order of

the penalty, the estimated smoothing parameters of the smooth components, the minimized

smoothing parameter selection score: UBRE, effective residual degrees of freedom of the model

and number of iterations performed for the smoothing parameter estimation (relating to the

magic part) of the fitting procedure. We note that the method functions for extracting the

estimated degrees of freedom for each smooth term in a P-spline VGAM fit (edfpsvlm()) and

the array of the elements from the leading diagonal of the influence matrix (hatvaluespsvlm())

have been written and are described in A.3.

In practice, when using penalized regression splines, users have to choose the number of

knots that will be used in the model building process. Chapter 6 showed an example where the

changing the number of knots gave a better fit. It would be advantageous to incorporate the

ability to have a numerical procedure, e.g. minimizing AIC, to choose the number of knots.

Another extension would be to consider the inference parts of P-spline VGAMs such as con-

fidence interval construction. It would be useful to be able to investigate how well the confidence
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intervals reliably represented the uncertainty of smooth terms for model parameters. Gu (2002),

Ruppert et al. (2003) and Wood (2006a) generalized the well-known Bayesian confidence inter-

vals originally introduced by Wahba (1983) or Silverman (1985) in the univariate spline model

context to Gaussian non-Gaussian settings and GAM components. Marra and Radice (2011)

used these results and constructed Bayesian confidence intervals for the components of their

recursive semiparametric bivariate probit model. Marra and Wood (2012) showed by simula-

tion and extension of Nychka’s 1988 method that the Wahba/Silverman type Bayesian intervals

for the smooth component functions of GAMs represented using any penalized regression spline

approach have generally close to nominal ‘across the function’ frequentist coverage probabili-

ties. The usual componentwise extension of Wahba/Silverman type intervals as discussed, for

instance, by Gu (2002), Ruppert et al. (2003), Wood (2006a), Marra and Wood (2012) could be

extended to find better confidence intervals for the P-spline VGAM family.

A trust region algorithm (see, e.g., Nocedal and Wright (1999, section 4.2), Marra et al.

(2013b), Radice et al. (2015)) might be applied to make the maximization of the P-spline like-

lihood function more reliable. At present the trust package by Geyer (2014) implements this

approach. This algorithm evaluates an eigen-decomposition of Fisher information matrix at each

iteration (see Marra et al., 2013b).

In this study, we reformulated VGAMs based on only one type of penalized regression splines

(P-spline smoothers). A variety of alternative smoothers based on splines are available. This

spline bases also have fairly convenient mathematical properties and good numerical stability.

The mgcv package by Wood offers several other types of smoothers: thin plate regression splines,

thin plate regression splines with shrinkage-to-zero, cubic regression splines, cubic regression

splines with shrinkage-to-zero, cyclic cubic regression splines, cyclic P-splines, additive smooths

of 1 or 2 variables, simple random effect terms, Markov random field smoothers for smoothing

over discrete districts and tensor product smooths. In his package, thin plate regression splines

are given as the default smooth for s terms within gam model formulas.

Thin plate regression splines are constructed by first constructing the basis and penalty for
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a full thin plate spline and then the space of the wiggly components of this basis is truncated

in an optimal manner, to obtain a low rank smoother (see Wood, 2003). The major advantages

of thin plate regression splines are that they avoid the knot-replacement problems that can

substantially influence modeling with penalized regression and they provide a sensible manner of

modeling interaction terms in GAMs. Another interesting smoother is cubic regression splines.

For the cubic regression splines, the values at adjacent knots are connected through sections of

cubic polynomial under the conditions that the spline must be continuous to the second derivative

at the knots. A smooth curve is obtained, which is a natural cubic spline combining through

the values at the knots. The extra conditions that the spline should have zero second derivative

at the two end knots are imposed. This prevents unstable end effects on the spline. Full details

about cubic regression splines are given in Wood (Sections 4.1.2 and 4.1.3, 2006b).

To illustrate the use of such smoothers for GAM modeling, we used the diabetic retinopathy

data from Bender and Grouven (1998). The response outcome of interest is the presence (1) or

the absence (0) of diabetic retinopathy. The available regressors are diabetes duration in years

(DIAB), glycosylated hemoglobin measured in percent (GH), and diastolic blood pressure in mm

Hg (BP). The data are available in the data frame retinopathy from catdata. There are 613

observations, resulting in 225 presences and 388 absences. We are interested in investigating the

relationship between diabetic retinopathy and the three predictor variables. A logistic additive

model is used to describe the conditional probability of diabetic retinopathy given the predictor

variables. We then fitted the additive logistic model to the three predictors using the function

gam() in the mgcv package. The models fitted used, respectively: thin plate regression splines,

cubic regression splines and P-splines. The partial contributions of each predictor to the condi-

tional probability of diabetic retinopathy with 95% Bayesian intervals obtained from the three

models are shown in Figs. 7.1 (a) – (c). The results are very similar except for the middle panel

of Fig. 7.1 (c), where the P-splines are displayed more extreme end behavior.

Other penalized regression splines can also be, in principle, used to construct smooth functions

of the explanatory variables of VGAMs. As with P-spline VGAMs, it is possible to set up a model
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(a) A thin plate regression spline fit using the mgcv package

(b) A cubic regression spline fit using the mgcv package

(c) A P−spline fit using the mgcv package

Figure 7.1: (a) - (c): The estimated smooth terms of a thin plate regression spline, a cubic regression

spline fit and a P-spline fit with partial residuals and 95% Bayesian intervals using the mgcv package.

matrix and wiggliness penalty matrix for each smooth function using these splines. The model

matrix for the whole model as well as the penalty for the model would be in the same basic

form as for Xvam and P∗λ (cf. equations (4.43) and (4.46)), and the parameter vector would be

given by β∗. Given the model matrix and penalties, the coefficients and smoothing parameters

of these penalized regression splines could be obtained as P-spline VGAM components using the

methods of Sections 4.2 and 5.3. However, it is more difficult to construct the basis and an

associated penalty. P-splines were used in our approach because they are easier to construct

being that low-rank smoothers using B-spline basis functions, their estimation uses a lower
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dimensional system of equations, which is less expensive computationally, they are easy to set

up and use, and provide great flexibility in that users can combine any order of B-spline basis

with any order of the penalty (see Section 2.3). However, P-splines allow only for equally-spaced

knots, so that the problems arise if uneven knot spacing is required, and their penalties are

difficult to interpret in terms of the properties of the fitted smooth as compared to the derivative

penalties, e.g.,
∫
{f ′k(xk)}2 dxk or

∫
{f ′′k (xk)}2 dxk. Wood (2007) stated that, in practice, splines

with derivative penalties (as used with thin plate regression or cubic regression splines) perform

slightly better than P-splines with discrete penalties. It would therefore be advantageous to

extend the work done here to other forms of smoother.

Recently, Donat and Marra (2015) proposed estimation methods for fitting a semi-parametric

bivariate polychotomous ordinal regression. They dealt with a bivariate polychotomous random

variable defined as Y = (Y1, Y2)
T , where Yj , j = 1, 2, is “ordinal” (measured on the ordinal

scale). They represented the additive non-parametric effects of the explanatory variables using

penalized regression splines. They obtained model formulation, which can be specified as an

instance of the class of a penalized GLM, and therefore estimation and inference can be done by

a natural extension of GLMs. It would be interesting to reformulate this problem in terms of

penalized regression-spline VGAMs.

Finally, it would also be useful to explore a mixed model approach to estimation and inference

with P-spline VGAMs. In the penalized spline context, several authors such as Eilers (1999),

Wand (2003), Ruppert et al. (2003), Wand and Ormerod (2008) and Wood (2011), to name a few

recast the model formulation into a mixed model formulation. In this approach, the penalized

regression smoothers are written as components of a mixed model while treating their smoothing

parameters as variance component parameters to be estimated by Likelihood, REML or PQL

methods. These ideas should be able to be extended to VGAMs.
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Implementation details

This appendix covers the use of the P-spline VGAM functions and briefly discusses some

of the implementation details for fitting P-spline VGAMs. The functions for fitting

P-spline VGAMs have been coded in R. The main functions are mainly developed from P-

spline GAMs and VGLMs/VGAMs. The primary function psvgam() and the support functions

called psvglm.fit() and psvlm.wfit() were adapted from vgam(), vglm(), vglm.fit() and

vlm.wfit() in the VGAM package. The psvgam() function is very much like the vglm() func-

tion. The main differences are that the psvgam model formula can include smooth terms, ps(),

adapted from Marx and Eilers’s (1998) ps() function, and a numerical procedure for controlling

automatic smoothness selection of Wood (2004) has been incorporated into model fitting. New

functions, Pen.vps() and Xps2Xmagic(), were developed respectively to construct the penalty

matrix for P-spline VGAMs and the necessary quantities required for smoothing parameter esti-

mation of Wood (2004). The extractor functions for the “hat values” and the “effective degrees of

freedom” of a fitted P-spline VGAM were also developed. The functions presently implemented

for fitting P-spline VGAMs are too long to include in print form here. They are available from the

author and are also contained at https://www.stat.auckland.ac.nz/∼csom017/P-spline VGAMs.
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A.1 R Functions and objects for fitting P-spline VGAMs

We now discuss aspects of the use of the R functions developed for fitting and understanding

P-spline VGAMs. Readers familiar with VGLMs/VGAMs will soon discover that the tools are

much the same. In this research, the psvgam() function is used to fit P-spline VGAMs, where

the additive predictors of the models can be flexibly specified using parametric and regression

spline components. The underlying representation and estimation of the models are based on

the penalized regression spline approach. The degrees of smoothness of model terms is estimated

as part of model fitting.

A.1.1 Fitting the models

Here, we discuss the use of psvgam. Details of this function are given in A.2.1. A call to the

function psvgam() in its simplest form looks like

1 psvgam(formula , family , method = "psvglm.fit")

The argument formula provides a symbolic description of the model to be fitted while the

argument family specifies the distribution and link to use in fitting. The argument method

specifies the method to be used in fitting the model, where the default method psvglm.fit

uses penalized iteratively reweighted least squares (P-IRLS) with integrated automatic multiple

smoothing parameter selection.

Let us revisit the non-exchangeable bivariate logistic model from Section 6.4. We fitted the

model using 5 equally spaced B-spline knots as in the expression (cf. equation (6.4)):

1 fitps.cd1 <- psvgam(cbind(cat , dog) ~ ps(age , ps.interval = 5),

2 binom2.or(zero = NULL),

3 data = women.eth0.catdog)

In the expression above, the psvgam() function fits the coefficients of the nonparametric bi-

variate logistic model via the binom2.or family (a bivariate odds-ratio model) using penalized

maximum likelihood.
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The model formula in the call

1 cbind(cat , dog) ~ ps(age , ps.interval = 5)

specifies a single P-spline smooth term in age specified using ps(), where the number of knots

is given by ps.interval = 5. In the model formula, users can mix smooth terms with linear

terms or factors as in (cf. the bivariate logistic fits to pregnancy and birth data in Section 6.5)

1 cbind(Instrument , Induced) ~ ps(Age , ps.interval = 8) + Weight

or

1 cbind(Instrument , Induced) ~ ps(Age , ps.interval = 8) + poly(Weight , 5)

The implementation of psvgam() does not currently accommodate interaction between smooth

terms, although in principle this is possible. A term using ps() such as ps(Age, ps.interval

= 8) does not perform any smoothing itself. It exists to setup a model using P-spline based

smooths. Details about ps() are given in A.2.2.

Let us revisit the additive fit fitps.cd1. The summary of the fit shows that the convergence

is obtained in 11 iterations. We set trace = TRUE in order to produce the output for each

iteration. The results for first three iterations with the estimates of the smoothing parameters

are shown as following:
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1 > fitps.cd1 <- psvgam(cbind(cat , dog) ~ ps(age , 5),

2 + binom2.or(zero = NULL),

3 + data = women.eth0.catdog ,

4 + crit = "coef", trace = TRUE)

5 VGLM linear loop 1 : coefficients =

6 0.013234722 , -0.917866874 , 0.381471390 , 0.312677101 , 0.225757142 ,

7 -0.432622906 , 0.526406214 , 0.415658125 , -0.505238556 , 0.293005851 ,

8 0.249689839 , -0.175046401 , -0.380256752 , -0.259556686 , 0.652708805 ,

9 -1.316084793 , -0.953401040 , 1.887418832 , -2.372722142 , -1.733072365 ,

10 3.286363877

11 ps(age , 5)1 ps(age , 5)2 ps(age , 5)3

12 0.07325548 0.05077608 0.07791104

13 VGLM linear loop 2 : coefficients =

14 -0.0056273174 , -1.0625477262 , 0.3776413387 , 0.3324734601 ,

15 0.3365296603 , -0.1996268452 , 0.5588976001 , 0.6522986468 ,

16 -0.1599340898 , 0.3192457188 , 0.4278190220 , 0.0013913776 ,

17 -0.4045040311 , -0.3670054811 , 0.3422767453 , -1.4475013923 ,

18 -1.5327268984 , 0.8553482219 , -2.6440324184 , -2.8909273076 ,

19 1.4252250502

20 ps(age , 5)1 ps(age , 5)2 ps(age , 5)3

21 0.09346089 0.04510848 0.16136868

22 VGLM linear loop 3 : coefficients =

23 -0.0079569429 , -1.1001849949 , 0.3053019195 , 0.3357160526 ,

24 0.3703824671 , -0.1280641056 , 0.5664698670 , 0.7233779425 ,

25 -0.1364310970 , 0.3232899338 , 0.4799003814 , -0.0374558829 ,

26 -0.4071983949 , -0.4032012834 , 0.2005268489 , -1.4538418282 ,

27 -1.7065145834 , 0.5582655539 , -2.6519616299 , -3.2276686303 ,

28 0.9627038709

29 ps(age , 5)1 ps(age , 5)2 ps(age , 5)3

30 0.08480635 0.03402325 0.18100675

At each P-IRLS iteration a penalized weighted least squares problem is solved, and the smoothing

parameters of that problem are estimated by the UBRE using the magic() function. The

estimates of the smoothing parameters for f̂(j)2(x2), j = 1, 2, 3 (see equation (6.4)) at each

iteration are displayed in lines 12, 21 and 30. For example, ps(age, 5)1 in line 11 indicates

the estimates of smoothing parameters for f̂(1)2(x2), at the 1st iteration, which approximate

to 0.07325548.
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There are several generic functions in VGAM for extracting single components from the fitted

psvgam() object such as coef(), deviance(), residuals(), etc. and these work seamlessly

with psvgam output.

1 > coef(fitps.cd1 , matrix = TRUE)

2 logit(mu1) logit(mu2) log(oratio)

3 (Intercept) -0.008375495 -1.1049905 0.29645370

4 ps(age , 5)2 0.336810890 0.3752026 -0.12222140

5 ps(age , 5)3 0.572013304 0.7431335 -0.17106830

6 ps(age , 5)4 0.328046465 0.4976813 -0.08224011

7 ps(age , 5)5 -0.406477936 -0.4047798 0.16839995

8 ps(age , 5)6 -1.456850235 -1.7328450 0.54524015

9 ps(age , 5)7 -2.658805107 -3.2813490 0.97937050

Similarly, a deviance value can be obtained for the model:

1 > deviance(fitps.cd1)

2 [1] 6178.076

A.1.2 Plotting the fitted models

We can check the result by plotting the fitted model object. The component functions of a

psvgam() object can be plotted using plotvgam as follows.

1 mycol <- c("dodger blue", "orange red", "limegreen")

2 mymain <- c("(a)", "(b)", "(c)")

3 par(mfrow = c(1, 3), mar = c(5, 4, 1, 1) + 0.1, las = 1)

4 for (ii in 1:3) {

5 plotvgam(fitps.cd1 , which.cf = ii, se = TRUE , scale = 4,

6 lcol = mycol[ii], scol = mycol[ii], rcol = "dark orange",

7 sub = mymain[ii], cex.lab = 1.5,

8 cex.axis = 1.5, cex.sub = 1.5)}

The resulting plot is displayed in Fig A.1. The plots show the estimated effects as solid curves

with their 2-standard-error bands shown as dashed lines. The coincidence of the confidence limits

and the estimated solid line at the point where the line passes through zero on the y-axis, is a

result of applying the identifiability constraints to the smooth terms. The rug plots represented

at the bottom of each plot show the values of the covariates of each smooth. Full details of the

more useful arguments for plotvgam can be found in Yee (Section 8.4.4, 2015b).
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Figure A.1: Fitted functions f̂(j)2(x2), j = 1, 2, 3 (see equation (6.4)) using P-spline VGAMs fitted to a

subset of European women with household cat and dog pet ownership data.

A.1.3 Prediction

The predict() method function for vgam enables a psvgam fitted model object to be used for

prediction at new values of the model covariates. We revisit the fitps.cd1 to show this feature.

For the predictions on the scale of the linear predictor (η̂ij), we use:

1 > predict(fitps.cd1 , type = "link")[1:5,]

2 logit(mu1) logit(mu2) log(oratio)

3 5 0.1462018 -1.0016191 0.2099265

4 10 0.4202110 -0.5916896 0.1445043

5 13 0.3618802 -0.6430008 0.1679122

6 20 0.4257794 -0.5887917 0.1417692

7 24 0.2771795 -0.7320893 0.1993012

For the prediction on the response scale (µ̂ij), we use:

1 > predict(fitps.cd1 , type = "response")[1:5,]

2 00 01 10 11

3 5 0.3492079 0.1143066 0.3821689 0.1543166

4 10 0.2631173 0.1333490 0.3806354 0.2228983

5 13 0.2781841 0.1323204 0.3772474 0.2122481

6 20 0.2618460 0.1332886 0.3812419 0.2236235

7 24 0.3017915 0.1293538 0.3734720 0.1953826

Similarly, the fitted() method function extracts the fitted values. We note that the terms 00,

01, 10, 11 from the results above correspond to the joint probability p00, p10, p10 and p11

respectively (cf. Section 3.3.2).
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A.1.4 P-spline VGAMs with constraints

As with VGLMs/VGAMs, there are two ways of fitting P-spline VGAMs with constraints. The

first is to use family function-specific arguments such as parallel, exchangeable and zero.

For example, analogous to the non-exchangeable bivariate logistic model fitps.cd1, the ex-

changeable version of the bivariate logistic model with an intercept-only log odds-ratio can be

created by the call

1 fitps.cd2 <- psvgam(cbind(cat , dog) ~ ps(age , ps.interval = 5),

2 family = binom2.or(zero = 3, exchangeable = TRUE),

3 data = birth.b)

Here, the zero argument specifies which linear predictors are to be modeled with an intercept

term only (here is η3). The second way of fitting P-spline VGAMs with constraints is to use

the constraints argument. A list of constraint matrices per term of a psvgam() object can be

extracted using constraints() (cf. equation (4.42)):

1 > constraints(fitps.cd2 , type = "term")

2 $‘(Intercept)‘

3 [,1] [,2]

4 [1,] 1 0

5 [2,] 1 0

6 [3,] 0 1

7

8 $‘ps(age , 5)‘

9 [,1]

10 [1,] 1

11 [2,] 1

12 [3,] 0

The full detailed documentation of VGLMs/VGAMs with constraints can be found in Yee (Sec-

tion 3.3.1, 2015b).
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A.1.5 Degrees of freedom

In this research, we developed an extractor function for the hat values and the effective degrees

of freedom (EDF) of a fitted psvgam() object (cf. the EDF for P-spline VGAMs in Section 4.4).

The function edfpsvlm() extracts the EDF associated with each penalty in a P-spline VGAM

fit:

1 > edfpsvlm(fitps.cd1)

2 ps(age , 5):1 ps(age , 5):2 ps(age , 5):3

3 1.935848 2.047130 1.347955

The results above show the EDF estimates for each smooth term, e.g., the EDF estimates for

f(1)2(x2) ≈ 1.94, and the EDF estimates for f(2)(x2) ≈ 2.05 (cf. equation (6.4)).

A.2 Implementation details

Here, we provide a high-level overview of the functions and how they fit together. Standard

R help files are provided in pdf form at https://www.stat.auckland.ac.nz/∼csom017/P-spline

VGAMs.

The beginning of psvgam() is almost identical to that of vgam() or even vglm(). This

starts with the terms() function. The terms() function takes a formula and the “ps” marked

as special in the specials argument, and constructs a terms object. The terms object can then

be used to construct a model matrix (Xam, cf. equation (4.10)). As we have seen, the ps()

function exists to help to set up matrices and attributes of smooth basis using P-spline based

smooths. Any matrices evaluated by ps() become included in the model matrix Xam. A list

containing each item in the attributes of smooth basis is obtained.

This information is passed to the psvglm.fit() function to perform penalized iteratively

reweighted least squares (P-IRLS). The constraint matrices H1, . . . ,Hp are obtained and Xvam

(cf. equation (4.43)) is then constructed from Xam and H1, . . . ,Hp. A list containing compo-

nents corresponding to the penalty, e.g., P∗λk and P∗λ (cf. equation (4.46)) is then obtained using

the Pen.vps() function. The working weighted W, a Cholesky decomposition of W and the
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adjusted dependent variable z are evaluated. This information is passed to the psvlm.wfit()

function to perform the two steps of estimation. An internal function of psvlm.wfit(), called

Xps2Xmagic() then constructs the necessary quantities required for the computational procedure

of Wood (2004) (using the magic() function from the mgcv package). The P-IRLS algorithm

consisting of the two steps cycles around: (i) given λ, the estimates of β∗ is obtained by solv-

ing a generalized least squares problem using the data augmentation on the adjusted dependent

variable (z′), regressors (X
′
vam), and weights (W

′
) (using the lm.fit() function), and (ii)

given β∗, λ is estimated by minimizing the UBRE score using the magic() function. The two

steps are repeated until the relative change in parameter estimates sufficiently small. The entire

procedure for fitting P-spline VGAMs is summarized in the Flowchart Fig. A.2. We give more

details of each function used in A.2.1 – A.2.6.
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psvgam(formula, family,
method = "psvglm.fit")

ps(x, ps.interval) sets up a) matrices and
b) attributes of smooth basis for a single vari-
able. A terms object is constructed and then
used to construct a) Xam and b) ps.list con-
taining each item in the attributes of smooth
basis.

The model is fitted using psvglm.fit()

psvglm.fit(x ,y, family, crite-
rion="coefficients", ps.list)

a) H1, . . . ,Hp are constructed.
b) Xvam is constructed from Xam and
H1, . . . ,Hp,

c) A list called pen.vlm containing com-
ponents corresponding to the penalty,
e.g., P∗λk and P∗λ is constructed using
Pen.vps(constraints, ps.list).
d) W, U, z are evaluated.

psvlm.wfit(xmat, z, u,
pen.vlm, constraints)

a) The augmented X
′

vam, z
′
and W

′
are con-

structed.
b) U′z and U′X

′

vam are evaluated.
c) The necessary quantities correspond-
ing to magic() are constructed using
Xps2Xmagic(xmat, pen.vlm).

Given λ, β∗ is estimated using
lm.fit(X.vlm, y)

Given β∗,λ is estimated by min-
imizing the UBRE score using

magic(y, X, sp, S, off, GCV = FALSE)

The two steps of estimation are repeated un-
til ∆

(
β∗(t+1), β∗(t)

)
is sufficiently small.

The fitted psvgam() object is obtained.

a) The fitted psvgam object can be manip-
ulated or displayed using generic functions
such as summary(), coef(), deviance(), pre-
dict(), fitted() and plotvgam().
b) New extractor functions, hatvaluespsvlm()
and edfpsvlm(), extract the hat values and
the effective degrees of freedom (EDF).

Figure A.2: The procedure for fitting P-spline VGAMs
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A.2.1 The psvgam() function

The psvgam() is used to fit a P-spline VGAM. The additive predictors of the models can be

specified using parametric terms and regression spline components (P-spline smoothers by the

ps() function). The numerical routines used for fitting are an adaptation of IRLS algorithm

from the VGAM package in combination with an adaptation of the smoothness estimation fitting

procedure from the mgcv package.

In general, the psvgam() function works by first calling the terms() function. The terms()

function takes a formula and the “ps” marked as special in the specials argument. The ps()

function is called to set up a set of B-splines and its associated ‘discrete’ penalty for each smooth

term in the model formula. The model matrix Xam and a set of penalty matrices for the smooth

terms are then obtained by psvgam. This information is passed to the psvglm.fit() function.

The function then solves the penalized maximum likelihood with integrated automatic multiple

smoothing parameter estimation. The call sequence of the psvgam() function is of the form of

1 psvgam <- function(formula , family , data , weights , subset , na.action ,

2 etastart , mustart , coefstart ,

3 control = vglm.control(maxit = 50 ,...),

4 offset , method = "psvglm.fit", ...)

The psvgam() function has the same arguments as Yee (2015a)’s vgam() function, except

that, (i) in place of vgam formulae, we used ps() in the definition of (vector) smooth terms,

and (ii) we employed the method psvglm.fit for the default method in place of vglm.fit.

As with the vglm() function, psvgam() is accompanied by vglm.control() which provides

default values for algorithmic variables used to control the numerical options for fitting P-spline

VGAMs, e.g. maxit, the maximum number of IRLS iterations and epsilon, the tolerance in

the convergence criterion between two successive iteration (see vglm.control() for full details).

The new arguments are defined as follows:
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Arguments

formula a symbolic description of the model to be fit. The RHS of the formula is

applied to each linear/additive predictor, and usually includes at least one ps

term. Different variables in each additive predictor can be chosen by specifying

constraint matrices.

method the method to be used in fitting the model. The default method psvglm.fit

uses P-IRLS with smoothing parameters associated with each penalty chosen

by minimizing the UBRE score using the magic() function.

The function returns an object of the class “psvgam”, which has the same slots as the “vglm”

class (see vglm-class for further information).

A.2.2 The ps() function

The ps() function is used in definition of (vector) smooth terms within psvgam model formulae.

This function is a modification of Marx and Eilers’s (1998) ps() function. The major modifi-

cation is to include an argument to specify smoothing parameters, which can be either scalar or

vector. The call sequence of this function is of the form of

1 ps <- function(x, ps.intervals = NULL , lambda = 0, degree = 2,

2 order = 2, ridge.adj = 1e-005, ridge.inv = 1e-004)

Following Marx and Eilers (1998), the ps() function has arguments as follows:
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Arguments

ps.interval the number of equally-spaced B-spline intervals (the number of knots).

lambda a (vector) smoothing parameter.

degree the degree of B-splines.

order order of the penalty.

ridge.adj small positive numbers to stabilize linear dependencies among B-spline bases.

ridge.inv same as for ridge.adj.

The function returns a matrix with attributes of the number of knots, the degree of the

B-splines, order of the penalty, a set of penalty matrices for the smooth terms, and (vector)

smoothing parameters, that are used by psvgam.

A.2.3 The psvglm.fit() function

The psvglm.fit() function is an internal function of the psvgam() function. It is a modification

of the vglm.fit() function. The major modification is that instead of solving a weighted least

squares problem at each IRLS step, a weighted, penalized least squares problem is solved at

each IRLS step with smoothing parameters associated with each penalty selected by the UBRE

score using the magic() function from the mgcv package (see the magic() function for further

information of stable multiple-smoothing-parameter estimation by GCV or UBRE).

The psvglm.fit() function works by first constructing a list of constraint matrices, H1, . . . ,Hp,

and then the “vector additive model” model matrix Xvam is constructed. The penalty matrix for

the P-spline VGAM model is obtained using an internal function of the psvglm.fit() function,

namely the Pen.vps() function. This information is passed to the psvlm.wfit() function to

perform the two steps of estimation, one for estimating β∗ given smoothing parameters and

another for estimating λ given β∗. The call sequence of the psvglm.fit() function is of the
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form

1 psvglm.fit <- function (x, y, w, X.vlm.arg , Xm2 , Ym2 , family ,

2 control = vglm.control (),

3 criterion = "coefficients",

4 qr.arg , constraints , extra , Terms ,

5 smooth.labels , ps.list = ps.list , ...)

The arguments for psvglm.fit() are defined in the same way as those of vglm.fit() and

we have added the argument called ps.list, which contains the components corresponding to

P-spline smoothers such as the number of knots to be used for basis construction, a vector of

smoothing parameters, a set of penalty matrices for the smooth terms.

Arguments

ps.list a list containing the components corresponding to P-spline smoothers such as

a vector of the number of knots, the degree of B-splines, order of the penalty,

non-negative regularization parameters and small positive numbers to stabilize

linear dependencies among B-spline bases, and a set of penalty matrices for

the smooth terms.

The function returns a list of fit information.

A.2.4 The psvlm.wfit() function

The psvlm.wfit() is an internal function of the psvglm.fit() function. This is a modification

of the vlm.wfit() function. The function works by constructing the augmented adjusted depen-

dent variable (z′), regressors (X
′
vam) and weights (W

′
) (cf. equation (4.31)). Then, the necessary

quantities required for the magic() function such as the model matrix, the array of smoothing

parameters, a list of penalty matrices in the form of S[[k]], where k indicates the kth penalty

matrix and an array indicating the element 1,1 of S[[k]], are obtained using the Xps2Xmagic()

function. The P-IRLS algorithm consisting of iterating the two steps to convergence: (i) given

λ, the estimates of β∗ is obtained by solving a generalized least squares problem using the data
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augmentation on the adjusted dependent variable, regressors, and weights (using the lm.fit()

function), and (ii) given β∗, λ is estimated by minimizing the UBRE score using the magic()

function. The call sequence of the psvlm.wfit() function is of the form

1 psvlm.wfit <- function (xmat , zmat , Blist , wz, U, pen.vlm ,

2 B.list , ps.list , ...)

The arguments for psvlm.wfit() are defined in the same way as those of vlm.wfit(). We

have added new arguments, namely, pen.vlm, B.list and ps.list which are defined as the

following:

Arguments

pen.vlm a list containing contains the components corresponding to the penalty of

P-spline VGAMs such as the diagonal blocks, P∗λ1, . . . ,P
∗
λp, and P∗λ.

B.list a list containing the vector 0ϑ and the ϑ × ϑ identity matrix Iϑ used for

the data augmentation (cf. equation (4.31)).

ps.list same as for psvglm.fit.

The function returns a list of fit information.

A.2.5 The Pen.vps() function

This is an internal function of psvglm.fit(). This function is used to construct the penalty

matrix P∗λ for P-spline VGAMs. The Pen.vps() function works by first obtaining the compo-

nents such as constraint matrices and the components corresponding to the P-spline smoothers.

The diagonal blocks, P∗λ1, . . . ,P
∗
λp, of P∗λ is constructed (cf. equation (4.46)). A vector con-

taining a set of the smoothing parameters for each smooth component function in fk(xk) =(
f(1)k(xk), . . . , f(Rk)k(xk)

)T is constructed. The smoothing parameter vector is then given to

an associated diagonal block. The penalty matrix P∗λ is constructed. The diagonal blocks

P∗λ1, . . . ,P
∗
λp are constructed in the order that the smooth terms appear in the model formula.
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If a parametric term such as linear terms or factors is included as the kth term in the model

formula, then the P∗λk term for a strictly parametric term is set to a zero matrix as such terms

are not penalized. The call sequence of the Pen.vps() function is of the form

1 Pen.vps <- function(constraints , ps.list)

Arguments

constraints same as for psvglm.fit.

ps.list same as for psvglm.fit.

The function returns a penalty matrix for P-spline VGAMs with attributes that are used by

psvglm.fit.

A.2.6 The Xps2Xmagic() function

This is an internal function of psvlm.wfit(). This function is used to construct the necessary

quantities required for the magic() function in mgcv. The Xps2Xmagic() function works by

obtaining the components such as constraint matrices, the model matrix Xvam, the diagonal

blocks, P∗λ1, . . . ,P
∗
λp, of P∗λ and a list containing the components corresponding to the P-spline

smoothers. The major inputs required for the magic() function such as the array of smoothing

parameters, a list of penalty matrices in the form of S[[k]], where k indicates the kth penalty

matrix and an array indicating the element 1,1 of S[[k]], are then constructed. The call

sequence of the Xps2Xmagic() function is of the form

1 Xps2Xmagic <- function(xmat , constraints , ps.list , pen.vlm)
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Arguments

xmat the model matrix for P-spline VGAMs.

constraints same as for psvglm.fit.

ps.list same as for psvglm.fit.

pen.vlm same as for psvlm.wfit.

The function returns a list of the major components required for the magic() function.

A.3 Extractor functions

We have provided extractor functions for the “hat values” and the “effective degrees of freedom”,

of a fitted P-spline VGAM object. These extractor functions are called hatvaluespsvlm() and

edfpsvlm() respectively.

hatvaluespsvlm() function

hatvaluespsvlm() is a modification of hatvaluesvlm(). This suite of functions can be

used to compute some of the regression (leave-one-out deletion) diagnostics for the P-spline

VGAM class. The invocation hatvaluespsvlm(psvgamObject) returns a n ×M matrix

of the diagonal elements of the hat (projection) matrix of a psvgam object, computed from,

a weighted, penalized least squares problem instead of a weighted least squares problem.

Following Yee (2015a), the QR decomposition of the object is reconstructed, and then

straightforward calculations are performed.

edfpsvlm() function

edfpsvlm extracts the effective degrees of freedom (EDF) associated with each penalty in a

P-spline VGAM fit. This function returns a vector of EDFs, named with labels identifying

which penalty each EDF relates to.
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