

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Dedicated to

Natasha

The Relationship of Structure to Function of the Superantigen

Staphylococcal enterotoxin A

Keith R. Hudson

A thesis submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy

> Department of Molecular Medicine University of Auckland October 1993

Abstract

The relationship of structure to function in the superantigens of Staphylococcus aureus

1 Enterotoxins were isolated from expression in *E. coli* using the pGeX vector. Yields of up to 20 mg/litre of culture of purified toxin were achieved.

2 Recombinant SEA, SEB, SED and SEE produced by this system were identical to the wild type enterotoxins by several biological and biochemical criteria.

3 The unique T-cell receptor binding site of SEA and SEE was identified by the use of a panel of hybrids between these two toxins. Four different assays showed that the different V β specificity of these toxins was determined by G200, S206 and N207 in SEA and at P206 and D207 in SEE.

4 Residues on both SEA and HLA-DR were identified that directly interact upon binding, thus defining the MHC class II binding site of SEA. The requirement of zinc for SEA binding to HLA-DR allowed the identification of the MHC class II binding site on SEA. This requirement was shown to be due to zinc bridging between these proteins. The zinc binding residues in SEA were demonstrated to be H187, H225 and D227.

5 Histidine 81 in the β -chain of HLA-DR1 was shown to be the fourth residue in the tetravalent coordination of zinc.

6 This investigation in conjunction with the crystal structure of SEB and other mutational studies has collectively identified the T-cell receptor binding site of the enterotoxins. This study also located the MHC class II binding site of SEA and on the crystal structure of SEB the zinc coordinating residues cluster together, well separated from the T-cell receptor binding site. Thus proving that these superantigens cross link the T-cell receptor and MHC class II antigen.

7 The location of the zinc coordinating residues together with the crystal structures of SEB and HLA-DR1 allowed the construction of a structural model of how SEA binds to HLA-DR1. This model predicts that SEA binds across the end of the peptide groove and significantly that the orientation of the T-cell receptor in the recognition of the SEA-MHC class II complex is different to the orientation used to recognise peptide-MHC. This non conventional recognition of superantigen is compatible with the influence of polymorphism in both the T-cell receptor and MHC class II on superantigen recognition.

Acknowledgments

I would like to thank Professor James D. Watson and Dr. John Fraser for the opportunity to embark on this quest.

I am grateful to Dr. John Fraser for advice and assistance in the performance and writing of this thesis.

Science is a collaborative exercise and I would like to acknowledge and thank others who have contributed directly to this investigation, these are: Helen Robinson, Suzanne Lowe, Sandra Cooper, Matthew Adlam and Karen Purdie.

I am especially grateful to Mark Watson for his unselfish help and advice on numerous computing problems.

I thank Professor John Marbrook for his constructive comments during the writing of this thesis.

I appreciate the advice and assistance given to me by Dr. Phillip Crosier during the later part of this investigation.

I am grateful to the people in the Department of Molecular Medicine for creating a stimulating atmosphere and for their generous advice and help.

Finally, I would like to thank Natasha, my family and William all of whom have contributed to my ability to be a research scientist.

LIST OF PUBLICATIONS

Refereed Journals :

Irwin, M. J., Hudson, K. R., Fraser, J. D., Gascoigne, N. R. J. (1992). Enterotoxin residues determining T cell receptor V β binding specificity. Nature 359, 841-843.

Hudson, K. R., Robinson, H. and Fraser, J. D. (1993). Two C-terminal residues in Staphylococcal enterotoxin A and E determine T cell receptor V β specificity. J. Exp. Med. 177, 175-185.

Irwin, M. J., Hudson, K. R., Ames, K. T., Fraser, J. D., Gascoigne, N. R. J. (1993). T-cell receptor β -chain binding to enterotoxin superantigens. Immunological Reviews 131, 61-78.

Fraser, J. D. and Hudson K. R. (1993). Superantigens-remnants of a past process ? Res. Immunol. 144, 188-193.

Book Chapters :

Purdie, K., Hudson, K. R. and Fraser, J. D. (1991). Bacterial Superantigens. Antigen Processing and Presentation. Boca Raton, CRC press, Inc. 193-211.

Book Chapters in press :

Fraser, J. D. and Hudson K. R. A structural model of bacterial superantigens binding to MHC class II and T cell receptor. T Cell Receptors.

Fraser, J. D., Lowe, S., Irwin, M. J., Gascoigne, N. and Hudson K. R. A structural model of staphylococcal enterotoxin A interaction with MHC class II antigens. Superantigens.

Publications submitted :

Hudson, K. R., Urban, R. G., Lowe, S. and Fraser, J. D. Location of the zinc bridge between Staphylococcal enterotoxin A and major histocompatibility class II antigen: a structural model for superantigen T-cell activation. Cell (submitted).

TABLE OF CONTENTS

Abstract	
Acknowledgments	IV
List of Publications	V
List of Figures	XIII
List of Tables	XV
Abbreviations	XVI

Chapter 1: Introduction

1.0 OVERVIEW	
1.1 DIVERSITY, PRIMARY STRUCTURE AND RELATIONSHIP OF THE	
BACTERIAL SUPERANTIGENS	
1.1.1 Superantigens of Staphylococcus aureus	k
1.1.2 Superantigens of Streptococcus pyogenes	
1.1.3 Superantigen of Mycoplasma arthritidis5	i
1.1.4 Other bacterial superantigens)
1.2 DIVERSITY AND PRIMARY STRUCTURE OF VIRAL SUPERANTIGENS 6)
1.2.1 Mls loci	Ì
1.2.2 A murine leukemia virus encoded superantigen?7	ľ
1.2.3 The rabies virus superantigen7	ĥ
1.3 DISEASE ASSOCIATION OF BACTERIAL SUPERANTIGENS))
1.3.1 Viral superantigen disease association8))
1.4. CHARACTERISATION OF IN VITRO T-CELL RESPONSES TO	
BACTERIAL SUPERANTIGENS9)
1.4.1 The influence of CD4 and CD8 on bacterial superantigen T-cell activation9)
1.4.2 Accessory molecules involved in bacterial superantigen T-cell activation 10)
1.4.3 T-cell signalling in response to bacterial superantigens	ļ

1.4.4 Bacterial superantigen induced cytokine release
1.4.5 Bacterial superantigen induced anergy <i>in vitro</i>
1.5 CHARACTERISATION OF IN VIVO RESPONSES TO BACTERIAL
SUPERANTIGENS
1.5.1 Pathogenesis of Toxic Shock Syndrome and shock-like conditions in
animals caused by bacterial superantigens
1.6 CHARACTERISATION OF T-CELL RESPONSES TO MIs PRODUCTS14
1.6.1 T-cell responses to Mls antigens in vitro
1.6.2 The influence of CD4 and CD8 on T-cell responses to Mls products
1.6.3 T-cell signalling in response to stimulation by Mls products14
1.6.4 Cytokine release in response to MIs superantigen stimulation15
1.6.5 Characterisation of the in vivo response to Mls superantigen stimulation15
1.7 INTERACTION OF BACTERIAL SUPERANTIGENS WITH MHC CLASS II 16
1.7.1 Binding of bacterial superantigens to MHC class II
1.7.2 Affinity of bacterial superantigens for MHC class II
1.7.3 The binding site of bacterial superantigen on MHC class II
1.7.4 Identification of MHC class II residues that influence bacterial superantigen
binding19
1.7.5 Other characteristics of the bacterial superantigens binding to MHC
class II20
1.7.6 The role of MHC class II in presentation of bacterial superantigens
1.7.7 Signalling through MHC class II by bacterial superantigens
1.8 INTERACTION OF VIRAL SUPERANTIGENS WITH MHC CLASS II
1.9 A MODEL OF THE T-CELL RECEPTOR
1.10 V β SPECIFIC ACTIVATION OF α/β T-CELLS BY BACTERIAL
SUPERANTIGENS
1.11 V β Specific activation of α/β T-cells by viral
SUPERANTIGENS
1.12 THE SAME REGION OF THE TCR Vβ ELEMENT IS RESPONSIBLE FOR
BOTH BACTERIAL AND MIS SUPERANTIGEN RECOGNITION
1.12.1 Regions other than the fourth hypervariable segment of the T-cell receptor
can influence reactivity to bacterial and viral superantigens
1.13 STRUCTURE-FUNCTION RELATION SHIP OF BACTERIAL
SUPERANTIGENS
1.14 AIM OF THIS INVESTIGATION
1.14 AIM OF THIS INVESTIGATION

Chapter 2: Materials & Methods

Materials

2.1 MOLECULAR BIOLOGY REAGENTS	32
2.1.1 Bacterial strains	
2.1.2 Common buffers	32
2.1.3 Liquid media	
2.1.4 Plasmids	
2.1.5 Proteins and peptides	
2.1.6 Solid media	
2.1.7 Synthetic oligonucleotides	
2.2 CELL CULTURE REAGENTS	

Methods

2.3. MOLECULAR BIOLOGY TECHNIQUES	38
2.3.1 Agarose gel DNA purifications	38
2.3.2 DNA enzyme manipulations for cloning	38
2.3.2.1 Ligations	38
2.3.3 DNA purification	38
2.3.3.1 Minipreps by the rapid boil technique	38
2.3.3.2 Purification of DNA by centrifugation in Caesium chloride-	
ethidium bromide gradients	39
2.3.3.3 Plasmid purification by Magic Minipreps [™]	39
2.3.3.4 Purification of Staphylococcus aureus genomic DNA	39
2.3.4 DNA nucleotide sequencing	40
2.3.4.1 DNA nucleotide sequencing reactions	40
2.3.4.2 DNA nucleotide sequencing electrophoresis	41
2.3.5 Ethanol DNA precipitations	41
2.3.6 Exonuclease III unidirectional deletions	41
2.3.7 Polymerase Chain Reaction	42
2.3.7.1 PCR overlap and soPCR procedure	42
2.3.7.2 Cloning the PCR overlap product	43
2.3.7.3 Vβ enrichment analysis by anchored multiprimer amplificatio	n43
2.3.8 Transformation of competent cells	43

2.4. PROTEIN MODIFICATION AND ANALYSIS	44
2.4.1 Carboxymethylation of SEA	44
2.4.2 Iodination of SEA	44
2.4.3 Radioimmunoassay (RIA)	44
2.4.4 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS	
PAGE)	
2.4.4.1 Coomassie Blue staining of SDS Page gels	45
2.4.4.2 Silver staining of SDS PAGE gels	45
2.4.4.3 Protein quantification by scanning SDS PAGE gels	
2.4.5 Transfer of proteins to PVDF for N-terminal sequencing	46
2.4.6 Western Blot analysis	46
2.5 PROTEIN PURIFICATION	47
2.5.1 Purification of pKH-X35 derived SEA	
2.5.2 Purification and cleavage of GST fusion proteins	48
2.6 CELL CULTURE	
2.6.1 Enterotoxin stimulation of the Jurkat and SO-3.15 T-cell lines	49
2.6.2 HT-2 assay for IL-2	49
2.6.3 Human peripheral blood lymphocyte stimulations	
2.6.4 Paraformaldehyde cell fixation	
2.7 ENTEROTOXIN SPECIFIC ASSAYS	50
2.7.1 Determination of dissociation constant of SEA and mutants for MHC	
class II	
2.7.2 Cobalt replacement of zinc for SEA-MHC class II binding	
2.7.3 ⁶⁵ Zinc binding assays	50

Chapter 3: Expression and Isolation of SEA

3.0 INTRODUCTION	.53
3.1 ISOLATION & SEQUENCE ANALYSIS OF THE SEA GENE	
3.2 EXPRESSION OF SEA BY pKH-X35	
3.2.1 Purification of SEA from pKH-X35 expressed SEA.	
3.2.2 Characterisation of pKH-X35 expressed SEA	
3.3 EXPRESSION OF SEA AS A GLUTATHIONE S-TRANSFERASE FUSION	
PROTEIN	59
3.3.1 Cloning of the SEA gene into the pGeX plasmid	
3.3.2 Purification of pGeX-SEA expressed SEA	

IX

3.3.3 Characterisation of SEA expressed by pGeX-SEA	.62
3.4 SUMMARY	.62

Chapter 4: Mapping the T- cell receptor binding site of SEA and SEE

4.0 INTRODUCTION	64
4.1 DELETION MUTANTS OF SEA	64
4.1.1 Construction of C-terminal truncations of SEA	64
4.1.2 Construction of a N-terminal truncation of SEA	66
4.1.3 Analysis of SEA truncation mutants	67
4.2 CONSTRUCTION OF SEA-SEE HYBRIDS TO MAP THE V β	
DETERMINING REGION	67
4.2.1 The strategy of constructing hybrids between SEA and SEE to locate the	
T-Cell receptor binding site	67
4.2.2 Cloning, expression and characterisation of SEE	68
4.2.3 Construction of the initial SEA-SEE hybrids, AEE and EAA	69
4.2.4 Development of a V β specific T-cell clone assay and analysis of AEE and	
EAA hybrids in this system	.71
4.2.5 Anchored V β PCR to examine V β usage in activated human peripheral	
blood lymphocytes	.74
4.2.6 Analysis of AEE and EAA by anchor Vβ PCR	.77
4.2.7 Construction and analysis of AAE and EEA hybrids	.77
4.2.8 PCR overlap and extension to construct hybrid enterotoxins	.77
4.2.9 Analysis of AAE and EEA	.80
4.2.10 Localisation of the V β determining residues in SEA and SEE	.80
4.3 MUTATION OF THE V β DETERMINING REGION OF SEA	
4.3.1 Substitution of the 203-208 region of SEB into the V β determining region	
of SEA	.81
4.3.2 A single oligonucleotide overlap PCR technique for production of point	
mutations	.82
4.3.3 Construction and analysis of SEA S206A and SEA N207A	82
4.4 CORRELATION BETWEEN ENTEROTOXIC ACTIVITY AND T-CELL	
MITOGENICITY OF SEA	
4.5 SUMMARY	84

Х

Chapter 5: Mapping the MHC class II binding site of SEA

5.0 INTRODUCTION	86
5.0.1 Strategies to map the MHC class II binding site of SEA	
5.1 THE INFLUENCE OF THE N-TERMINUS OF SEA AND SEE ON MHC	
CLASS II AFFINITY	87
5.1.1 Creation of N-terminal variants of SEA and SEE	87
5.1.2 A SDS PAGE assay for accurate quantitation of mutant toxins	88
5.1.3 MHC class II binding affinity of N-terminal mutants of SEA and SEE	88
5.2 MHC CLASS II BINDING AFFINITY OF THE SEA-SEE HYBRIDS	. 88
5.3 THE ROLE OF ZINC IN SEA	.91
5.3.1 Determination of the first zinc binding residue in SEA	.91
5.3.2 Strategy to determine the other zinc binding residues of SEA	.92
5.3.3 Determination of the other zinc binding residues of SEA	.92
5.3.4 Mutants with reduced zinc binding have a similar conformation to SEA	.93
5.3.5 Zinc bridges between SEA and HLA-DR	.93
5.3.6 Zinc is coordinated by H81 of the HLA-DR β -chain in the SEA-DR	
complex	.96
5.3.7 Cobalt can replace zinc for SEA binding to HLA-DR	.97
5.4 SUMMARY	.98

Chapter 6: Discussion

6.0 THE T-CELL RECEPTOR BINDING SITE OF THE SEA AND SEE
6.01 The location of the T-cell receptor binding site in SEA and SEE
6.0.2 Residues that control V β specific activation also determine T-cell receptor
binding; location of these residues on the SEB crystal structure 100
6.0.3 Future characterisation of the T-cell receptor-SEA interaction
6.1 MHC CLASS II BINDING SITE OF SEA
6.1.1 Identification of the zinc binding residues of SEA and location on the
SEB structure
6.1.2 Zinc bridges between SEA and MHC class II
6.1.3 The MHC class II binding site for SEA identified from the zinc bridging
study corresponds with other data on the location of the MHC class
II binding site107
6.1.4 A structural model of SEA bound to MHC class II

6.1.5 Future chara	acterisation of SEA-MHC class II binding	
6.2 T-CELL RECEPTOR	R RECOGNITION OF THE SEA-MHC CLASS II	
COMPLEX		
	C class II required for superantigen activation ?	
6.3 COMMENTS ON T	HE STRATEGIES AND TECHNIQUES USED TO	
IDENTIFY R	RECEPTOR-LIGAND INTERACTION SITES	
6.4 THE POTENTIAL U	JSE OF SUPERANTIGENS AS THERAPEUTICS	

Appendices

1 Map of pGeX plasmid	115
2 Nucleotide sequence information of plasmid constructs	116
3 Construction of mutants by PCR overlap and soPCR	119
4 Cloning, expression and characterisation of SEB and SED	
5 Kinetics of SEA binding to HLA-DR1	
6 Sequences of the HV4 TCR V β region for V β reactive with SEA, SEE and SEC1	125
7 A general procedure for single oligonucleotide overlap PCR (soPCR)	
Bibliography	127

LIST OF FIGURES

Figure 1.1	Aligned sequences of staphylococcal and streptococcal superantigens	4
Figure 1.2	Ca backbone representation of HLA-DR1.	.19
Figure 1.3	Modelled structure of TCR β -chain showing CDRs and HV4 loop	.23
	Ribbon representation of the SEB structure.	
Figure 3.1	Expression of SEA by exonuclease generated clones	.54
Figure 3.2	Sequencing strategy for SEA gene using exonuclease III generated clones	.54
Figure 3.3	Promoter and translation features of the SEA gene in pKH-X35	.55
Figure 3.4	SDS PAGE gel showing purification of SEA expressed in DH5 c. coli	
	from pKH-X35.	.57
Figure 3.5	Comparison of rSEA and wtSEA stimulation of human peripheral blood	
	lymphocytes	.58
Figure 3.6	Construction of pGeX-SEA	.60
Figure 3.7	SDS PAGE gel showing purification of SEA from pGeX-SEA	.61
Figure 3.8	Stimulation of human peripheral blood lymphocytes by SEA derived from	
	pGeX-SEA	61
Figure 4.1	Construction of SEA mutants truncated at the C-terminus	65
Figure 4.2	Construction of N-terminal truncation mutant of SEA.	66
Figure 4.3	SDS PAGE gel showing C & N-terminal truncations of SEA expressed	
	as a fusion protein	67
Figure 4.4	Construction of pGeX-SEE	68
Figure 4.5	SDS PAGE gel showing purified SEE and SEA.	69
Figure 4.6	Construction of pGeX-AEE and pGeX-EAA	71
Figure 4.7	Aligned amino acid sequences of SEA and SEE showing junction points	
	of SEA-SEE hybrids	
	SDS PAGE gel showing hybrids AEE, AAE, EAA and EEA	
	Analysis of TCR Vβ enrichment by anchor Vβ PCR	
	Construction of pGeX-AAE and pGeX-EEA	
Figure 4.11	Construction of SEA-SEE hybrids by PCR overlap-extension	79
	Amino acid sequence of SEB inserted in SEA	82
Figure 4.13	Introduction of site directed mutations by single oligonucleotide overlap	
	PCR	83
Figure 5.1	Scatchard plot of SEA binding to HLA-DR1	89
Figure 5.2	⁵⁵ Zn blots of SEA zinc binding mutants and wild type toxins	91

XIV

LIST OF TABLES

Table 1.1 Amino acid identity of staphylococcal and streptococcal superantigens to	
SEA and SEB	5
Table 1.2 Published dissociation constants (Kd) of various toxins	.17
Table 1.3 V β reactivity of bacterial superantigens	.24
Table 1.4 Vβ reactivity of murine viral superantigens	.25
Table 2.1 Synthetic oligonucleotides	.34
Table 3.1 Comparison of lysis techniques to release SEA from DH5a E. coli	.56
Table 3.2 Purification of pKH-X35 expressed SEA from the periplasm of DH5 α	
E. coli	.57
Table 4.1 Potency of SEA and variants in human peripheral blood lymphocyte	
stimulation	.70
Table 4.2 IL-2 release by enterotoxin stimulated T-cell lines	.73
Table 4.3a VB enrichment of human PBL stimulated by SEE like hybrids	.75
Table 4.3b VB enrichment of human PBL stimulated by SEA like hybrids	.75
Table 4.3c V β enrichment of human PBL stimulated by SEA TCR binding site	
mutants	.76
Table 4.3d V β enrichment of human PBL stimulated by SEA H187A	
Table 5.1 N-terminal sequences of SEA and SEE variants	.87
Table 5.2 Binding affinity of SEA and variants for MHC class II	90
Table 6.1 Summary of T-cell receptor V β stimulation and T-cell receptor binding for	
hybrid toxins1	01
Table 6.2 Toxin residues corresponding to the amino acids of SEB that are predicted to	
define the TCR binding site	02

XVI

Abbreviations and definitions

⁰ C	dagraa Calaina
2ME	degree Celsius
AIDS	2-mercaptoethanol
	acquired immunodeficiency syndrome
anchor $V\beta$ PCR	PCR technique to assess mRNA Vβ enrichment
APC	
	antigen presenting cell
bp BSA	base pair
	bovine serum albumin
bSag	bacterial superantigen
bt C-terminus	bovine thrombin
	carboxy-terminus
Сβ	TCR β -chain constant region
cDNA	complementary DNA
CDR	complementarity determining region
СМ	carboxymethyl
cpm	counts per minute
dATP	deoxyadenosine triphosphate
dCTP	deoxycytidine triphosphate
ddATP	dideoxyadenosine triphosphate
ddCTP	dideoxycytidine triphosphate
ddGTP	dideoxyguanosine triphosphate
ddTTP	dideoxythymidine triphosphate
dGTP	deoxyguanosine triphosphate
DMSO	dimethylsulphoxide
DNA	deoxyribonucleic acid
dNTP	deoxynucleotide triphosphates
DTT	dithiothreitol
dTTP	deoxythymidine triphosphate
EBV	Epstein barr virus
EDTA	ethylenediaminetetra-cetic acid
ELISA	enzyme linked immunosorbent assay
FCS	foetal calf serum
FPLC	fast protein liquid chromatography
g	gram

glutathione	3 amino acid peptide (sequence-ESG)
GST	glutathione-s- transferase
h	human
Hepes	N-2-hydroxyethylpiperazine-N'-2-
	ethanesulphonic acid
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigen
HLA-DR	Human leukocyte antigen-DR
HPLC	High performance liquid chromatography
HV4	4th hypervariable loop of the TCR β -chain
IFN-γ	interferon gamma
Ii	Invariant chain
IL	interleukin
IPTG	isopropylthio-β-galactosidase
kb	kilobases
K _d	dissociation constant
kD	kilodalton
1	litre
LTR	long terminal repeat
М	molar
m	murine
μg	microgram
MHC	Major histocompatibility complex
ml	millilitre
μ1	microlitre
mM	millimolar
mRNA	message RNA
MW	molecular weight
N-terminus	amino-terminus
ng	nanogram
orf	open reading frame
pМ	picomole
PBL	peripheral blood lymphocytes
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PHA	phytohaemagglutinin

pI	isolectric point
PMA	Phorbol 12-Myristate 13-Acetate
PMSF	phenylmethylsulphonylfluoride
PVDF	polyvinylidenedifluoride
r	recombinant
RIA	radioimmunoassay
RNA	ribonucleic acid
rpm	revolutions per minute
Sag	superantigen
SDS	sodium dodecyl sulphate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
SE	staphylococcal enterotoxins
SEA	Staphylococcal enterotoxin A
SEB	Staphylococcal enterotoxin B
SEC	Staphylococcal enterotoxin C
SED	Staphylococcal enterotoxin D
SEE	Staphylococcal enterotoxin E
soPCR	single oligonucleotide PCR
t	trypsin
TBE	Tris borate EDTA
TCA	trichloroacetic acid
TCR	T-cell receptor
Temed	N, N, N', N'-teramethylethylenediamine
TNF	tumour necrosis factor
toxin	superantigens secreted by S. aureus or
	S. pyogenes
Tris	2-amino-2 (hydroxymethyl) propane-1,3-diol
TSS	Toxic shock syndrome
TSST	Toxic shock syndrome toxin
V	volt
Vβ	TCR β -chain variable region
vSag	viral superantigen
W	watt
wtSEA	SEA derived from S. aureus