

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

DYNAMIC CHONDRON FUNCTION

IN

ARTICULAR CARTILAGE

Wayne Anthony Hing

A thesis submitted in partial fulfilment of the requirements for the degree of Doctorate of Philosophy, The University of Auckland, 2003

ABSTRACT

This study examined the behaviour of articular cartilage chondrocytes and the role of the pericellular microenvironment in modifying cellular behaviour during dynamic loading events. While the structural composition and metabolic function of the chondron have been examined previously, little is known about its physiology. Consequently, it was hypothesised that 'the chondrocyte behaves dynamically within the chondron microenvironment, and that the microenvironment plays a critical role in minimising the volume regulatory activity required to maintain the health of the chondrocyte throughout the physicochemical changes associated with the loading cycle.'

Four research objectives addressed the hypothesis. The first was to develop an environmental perfusion chamber and experimental protocols for dynamic imaging of articular chondrocytes *in vitro* and *ex vivo* using time-lapse video microscopy. The system developed, which was composed of a chamber and unique complimentary heating system, enabled temperature control, media perfusion and variable delivery of environmental factors, over long imaging periods without fluctuations in focus or loss of cell viability.

Secondly was to examine short and long term behaviour of chondrocytes cultured in agarose gel, alginate beads and vibratome prepared explants. The results showed dynamic activity of cytoplasmic organelles, constant changes in position of the chondrocyte within the microenvironment and cellular secretory events that influenced its organisation. Unique information regarding these biological responses will be vital for future research.

Thirdly was to examine the role of the microenvironment and its territorial and interterritorial matrices in volume regulation of intact tissue. The microenvironment occupies a critical position between the bulk of the cartilage matrix involved in load bearing deformation and physical changes and the chondrocyte, which attempts to minimise its volume regulatory response while maintaining active metabolic management of the matrices.

Fourthly was to examine the role of the microenvironment in volume regulation isolated chondrocytes. Its robust structure appears responsible for physical and chemical protection of the chondrocyte. This study provided the first evidence that the microenvironment can influence the volume regulatory response of the chondrocyte. The composition and integrity of the microenvironment influence the ability of the chondrocyte to respond to osmotic challenge and the intact microenvironment functions efficiently *in vivo* to minimize the exposure of the chondrocyte to dynamic osmotic challenges that could compromise function.

ACKNOWLEDGEMENTS

There are a number of people who supported me through this project that need to be acknowledged for their unwavering support and encouragement.

Firstly, I wish to thank my Principal Supervisor, Dr Tony Poole, for his patience throughout the evolvement of this PhD. Tony's encouragement, stimulating ideas and mature guidance has been my inspiration. Also thanks must go to my secondary supervisor, Dr Cynthia Jensen, for her calm professionalism and reliably good advice throughout the writing of this thesis. Special thanks go to Alison Sherwin and Jacqueline Ross for their boundless enthusiasm, friendship and ongoing support.

The hard work of Terry Brady, Mohammad Yakub and Neel Pandey of the Biomedical Engineering Services was crucial to the successful development and construction of the chamber. I would also like to acknowledge the staff and postgraduate students of the Department of Anatomy & Radiology, University of Auckland who not only provided focus and encouragement throughout this project but also their friendship and generous support.

I would like to thank my colleagues at the School of Physiotherapy, Auckland University of Technology for their understanding and supportive role in this venture, especially my friend and work colleague, Duncan Reid, for his ever present listening ear and timely sense of humour.

Finally, last, but by no means least, to my wife Lisa and our family whom, over the past years, have remained patient and encouraging.

The research was funded by grants from the Arthritis Foundation of New Zealand, the Cancer Society of New Zealand, the Health Research Council of New Zealand and the Auckland University of Technology.

III

TABLE OF CONTENTS

				Page		
ABS	TRAC	Г		п		
ACK	ACKNOWLEDGEMENTS					
TAB	LE OF	CONTE	NTS	IV		
LIST OF TABLES						
LIST OF FIGURES						
LIST	OF VI	DEO CL	IPS (viewed from CD)	XII		
CH	APTE	R 1: IN	TRODUCTION	1		
1.1	Artic	ular Car	tilage Morphology	2		
	1.1.1	Zonal (Drganisation	4		
		1.1.1.1	Zone 1 – Superficial or Tangential Layer	6		
		1.1.1.2	Zone 2 – Middle, Transitional or Intermediate Layer	6		
		1.1.1.3	Zone 3 – Deep or Radial Layer	7		
		1.1.1.4	Tidemark	8		
		1.1.1.5	Zone 4 – Calcified Cartilage Layer	8		
		1.1.1.6	Chondroosseous Junction	9		
	1.1.2	Chond	ron Organisation	9		
		1.1.2.1	The Chondron	9		
		1.1.2.2	The Chondrocyte	11		
		1.1.2.3	The Pericellular Microenvironment	11		
			1.1.2.3.1 The Pericellular Matrix	12		
			1.1.2.3.2 The Pericellular Capsule	12		
	1.1.3	Matrix	Organisation – Matrices External to the Chondron	14		
		1.1.3.1	Territorial Matrix	14		
		1.1.3.2	Interterritorial Matrix	15		
1.2	Artic	ular Car	tilage Composition	15		
	1.2.1	Collage	ns	17		
		1.2.1.1	Fibril-Forming Collagens	20		
		1.2.1.2	Fibril-Associated Collagen With Interrupted Triple F	Helices 21		

		1.2.1.3	Short Chain Collagens	22
	1.2.2	Glycosa	aminoglycans	23
	1.2.3	Hyalur	onan	24
	1.2.4	Proteog	lycans	24
		1.2.4.1	Aggregating Proteoglycans	24
		1.2.4.2	Non-Aggregating Proteoglycans and Others	27
		1.2.4.3	Cell Surface Proteoglycans	31
	1.2.5	Glycop	roteins	31
	1.2.6	Water		34
1.3	Mate	rial and	Functional Properties of Articular Cartilage	35
	1.3.1	Structu	ral and Physicochemical Interaction of Cartilage Components	35
	1.3.2	Biomec	hanical Behaviour of Articular Cartilage	42
	1.3.3	Materia	Il Properties of the Chondron	44
RES	EARCI	H THES	IS HYPOTHESIS AND OBJECTIVES	47
CHA	APTER	R 2: M	ATERIALS & METHODS	48
2.1	Mate	rials		48
2.2	Meth	ods		49
	2.2.1	Tissue S	Sample Selection	49
	2.2.2	Isolated	l Chondron and Chondrocyte Preparation	50
		2.2.2.1	Mechanical Extraction of Chondrons (MC) – Serial Homogenisation	50
		2.2.2.2	Enzymatic Extraction of Chondrons (EC) – Enzymatic Digestion	52
		2.2.2.3	Enzymatic Extraction of Chondrocytes (IC) – Enzymatic Digestion	53
	2.2.3	Agaros	e Gel and Alginate Preparations	54
		2.2.3.1	Agarose Gel Preparation	54
		2.2.3.2	Alginate Bead Preparation	55
	2.2.4	Intact T	issue Preparation	55

	2.2.4.2 Isolation and Preparation of Vibratome Slices	55
	2.2.5 Osmotics	56
	2.2.6 Tissue Viability	56
2.3	Computer-Enhanced Video Microscopy Imaging System	61
	2.3.1 Introduction	61
	2.3.2 CEVM Components	62
2.4	Statistical Analyses	64
CHA	APTER 3: CHARACTERISATION OF THE ENVIRONMENTAL	
	PERFUSION CHAMBER	66
3.1	Introduction	66
3.2	Design Parameters	68
3.3	The Chamber	69
3.4	Temperature Regulation	72
3.5	Perfusion Characteristics	76
3.6	Application of the Chamber	78
3.7	Summary and Conclusions	78
CHA	APTER 4: DYNAMIC CHONDROCYTE BEHAVIOUR IN THE ENVIRONMENTAL PERFUSION CHAMBER	80
4.1	Introduction	80
4.2	Materials and Methods	81
1.2	4.2.1 Materials	81
	4.2.2 Tissue Sample Collection	82
	4.2.3 Perfusion Chamber and Imaging System	83
	4.2.4 Perfusion Media and Protocols	83
	4.2.5 Analyses	83
4.3	Results	84
т.0		
	4.3.1 Intact Vibratome Sections – Deep Layer Cells <i>In situ</i>	84 87
	4.3.2 Enzymatically Isolated Chondron	87 89
1.1	4.3.3 Enzymatically Isolated Chondrocyte	
4.4	Discussion	94

VI

	4.4.1 Activity of Nucleus and Golgi Apparatus	94
	4.4.2 Activity of Golgi Vesicles	99
	4.4.3 Activity of Lipid Droplets	101
	4.4.4 Activity of the Pericellular Matrix	102
4.5	Conclusion	103

CHA	PTEF	R 5: C	HONDROCYTE VOLUME REGULATION IN INTACT		
		E	XPLANTS	105	
5.1	Intro	duction		105	
5.2	Materials and Methods				
	5.2.1	Materi	als	112	
	5.2.2	Isolatio	on and Preparation of Tissue	112	
		5.2.2.1	Tissue Sample Collection	112	
		5.2.2.2	Preparation of Vibratome Slices	112	
	5.2.3	Enviro	nmental Perfusion Chamber and Imaging System	113	
	5.2.4	Osmot	ic Perfusion Protocols	113	
		5.2.4.1	Preparation of Media	113	
		5.2.4.2	Perfusion Protocols and Imaging	113	
	5.2.5	Analyses			
		5.2.5.1	Cell Viability	114	
		5.2.5.2	Area Analyses	115	
		5.2.5.3	Statistical Analyses	116	
5.3	Resu	lts		116	
	5.3.1	Cell M	orphology and Tissue Viability	116	
	5.3.2	Cross-Sectional Area and Calculated Mean Volume Analyses Under Isotonic Conditions			
	5.3.3	Dynam	ic Changes in Cell Size in Response to Altered Osmolality	122	
		5.3.3.1	Cross-Sectional Area Analyses Under Hypertonic Conditions	123	
		5.3.3.2	Cross-Sectional Area Analyses Under Hypotonic Conditions	124	
5.4	Discu	ission		125	
	5.4.1	Cell Vo	olume and Zonal Variation	126	
	5.4.2	Respor	use to Osmotic Challenge	129	

5.4.2 Response to Osmotic Challenge

CHAPTER 6: ISOLATED CELL PREPARATION – VOLUME					
14.14				GULATION	138
6.1		Introduction			138
6.2				Aethods	146
	6.2.1	Mate	erials		146
	6.2.2	Isola	tion	and Preparation of Chondrons and Chondrocytes	146
		6.2.2	.1 7	Tissue Preparation	146
		6.2.2	.2 1	Mechanically Isolated Chondrons (MC)	146
		6.2.2	.3 I	Enzymatically Isolated Chondrons (EC)	147
		6.2.2	.4 I	solated Chondrocytes (IC)	147
		6.2.2	.5 I	Preparation of Agarose Gel Constructs	147
		6.2.2	.6 I	mmunohistochemistry	148
6.3	Envir	onme	ental	Perfusion Chamber and Imaging System	148
6.4	Osmo	otic Pe	erfus	ion Protocols	149
	6.4.1	Prep	arati	on of Media	149
	6.4.2	Perfu	usion	Protocol	149
6.5	Analy	yses			150
	6.5.1	Cell	Viab	ility	150
	6.5.2	Area	i Ana	lyses	150
	6.5.3	Statis	stical	Analyses	150
6.6	Resul	ts			151
	6.6.1	Struc	cture	and Composition	151
	6.6.2	Cros	s-Sec	tional Area Analyses Under Isotonic Conditions	153
	6.6.3	Chor	ndroo	cyte Response to Osmotic Challenge	156
	6.6.4	Cros	s-Sec	tional Area Analyses Under Hypertonic Conditions	158
	6.6.5	Cros	s-Sec	tional Area Analyses Under Hypotonic Conditions	160
6.7	Discu	ssion			160
CHAPTER 7: GENERAL CONCLUSION				170	
REFI	EREN	CES			180
APP	APPENDICES i				i

LIST OF TABLES

Table 1	Zonal variation of articular cartilage	5		
Table 2	Composition of articular cartilage			
Table 3	Genetically distinct collagen types	18		
Supplemer	ntary Table Ionic and osmotic environment of articular chondrocytes	38		
Table 4	Summary and comparison of cell isolation procedures	50		
Table 5	Review of studies of articular cartilage – intact tissue volume regulation	110		
Table 6	The mean values for the cross-sectional area of the chondrocyte, the pericellular microenvironment and chondron	120		
Table 7	Cross-sectional area and volume calculations of chondrocytes from the superficial and deep layers, under isotonic conditions	121		
Table 8	Relative mean change in cell volume of superficial and deep layer cells in response to osmotic challenge	123		
Table 9	Comparison of reported cell volumes from the literature	127		
Table 10	Cell volume variation with cartilage zones	128		
Table 11	Comparison of response to osmotic challenge from the literature	131		
Table 12	Review of studies of articular cartilage – isolated cell preparation volume regulation	143		
Table 13	The mean values for the cross-sectional area of the chondrocyte, the pericellular microenvironment and chondron	154		
Table 14	Relative mean change in cross-sectional area of chondrocytes and chondrons for all three preparations in response to osmotic challenge	158		

Page

LIST OF FIGURES

	P	age
Figure 1	Zonal organisation of articular cartilage	4
Figure 2	Schematic drawing of chondron and horizontal view of circumferential organisation of a chondron and its external matrices	10
Figure 3	Diagrammatic representation of interaction between type VI and pericellular capsule collagens and the chondrocyte membrane	22
Figure 4	The structure and organisation of aggrecan	26
Figure 5	Overview of the proteoglycans present in cartilage	29
Figure 6	Schematic representation of aggrecan aggregates in solution	35
Figure 7	Dense collagen network interacting with the macromolecular aggregates of aggrecan	39
Supplementa	ry Figure Schematic diagram illustrating the membrane transport processes identified in chondrocytes.	42
Figure 8	Constant stress applied to articular cartilage	43
Figure 9	Diagrammatic representation of a chondron at rest and under compression	45
Figure 10	Cell viability – vibratome sections labelled with LIVE/DEAD assay	59
Figure 11	Cell viability – isolated cells labelled with ethidium homodimer-1	60
Figure 12	Schematic diagram of CEVM system	63
Figure 13	The CEVM system	65
Figure 14	Environmental perfusion chamber – exploded view	70
Figure 15	Chamber and 'stage blanket' heating on microscope	74
Figure 16	Temperature regulation profile – setting for 34 °C	75
Figure 17	Equipment, chamber perfusion and perfusion profile	77
Figure 18	Dynamic behaviour - in situ - deep layer chondron	86

Figure 19	Dynamic behaviour – enzymatically isolated chondron	88
Figure 20	Enzymatically isolated chondrocyte cultured in agarose	89
Figure 21	Dynamic behaviour – enzymatically isolated chondrocyte A	92
Figure 22	Dynamic behaviour – enzymatically isolated chondrocyte B	93
Figure 23	Schematic representation of proteoglycan and hyaluronan synthesis	100
Figure 24	Vibratome sections of superficial and deep layer cells stained with ALIVE/DEAD viability assay	118
Figure 25	Digital DIC micrograph of vibratome sections from the superficial and deep layer	119
Figure 26	Graph showing mean cross-sectional areas of the chondrocyte, pericellular microenvironment and chondron at day 1 under isotonic conditions for both superficial and deep layer cells	121
Figure 27	Boxplot of mean chondrocyte volumes of superficial and deep layer cells	122
Figure 28	Digital DIC micrographs of vibratome sections showing the response of superficial and deep layer cells to osmotic challenge at day 1	124
Figure 29	Graph of relative percentage change in cross-sectional area of the chondrocyte and chondron under osmotic challenge	125
Figure 30	Graph comparing relative percentage change in cell volume in response to osmotic challenge to results from previous studies	130
Figure 31	Digital DIC micrographs of three cell preparations	151
Figure 32	Single optical sections showing distribution of type VI collagen and keratan sulphate	152
Figure 33	Mean cross-sectional areas of the chondrocyte, pericellular microenvironment and chondron under isotonic conditions	155
Figure 34	Digital DIC micrographs showing the effect of osmotic challenge at day 1, in the three different cell preparations	157
Figure 35	Relative percentage changes in cross-sectional areas of the chondrocyte and chondron in response to osmotic challenge	159

LIST OF VIDEO CLIPS (viewed from CD)

		Video	
Chapter 3	Perfusion characteristics	V1	
Chapter 4	Dynamic behaviour		
Intact tiss	ue - Deep layer chondron	V2	
Enzymati	cally isolated chondron	V3	
Enzymati	cally isolated chondrocyte - Cell A	V4	
Enzymati	cally isolated chondrocyte - Cell B	V5	
Chapter 5	Volume regulation - Intact tissue		
Superficia	ıl layer chondron	V6	
Deep layer chondrons A – sectioned parallel to articular surface			
Deep layer chondrons B – sectioned perpendicular to articular surface			
Chapter 6	Volume regulation – Isolated tissue		
Mechanic	al chondron – Cell A	V9	
Mechanic	al chondron – Cell B	V10	
Enzymati	cally isolated chondron – Alginate	V11	
Enzymati	cally isolated chondrons – Cell A & B	V12	
Enzymati	cally isolated chondrocyte – Cell A	V13	
Enzymati	cally isolated chondrocyte – Cell B	V14	