

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Isolation, characterisation and evolution of zebrafish (*Danio rerio*) *bmp9*, *bmp10*, and *gdf11*

Ross James Bland

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Molecular Medicine

University of Auckland

March 2001

Abstract

Three members of the TGF β superfamily, *bmp9*, *bmp10* and *gdf11* were isolated from zebrafish genomic and cDNA libraries to further elucidate the role of these genes during embryogenesis.

Zebrafish *bmp9* and *bmp10* belong to the BMP9/10 subfamily. The level of sequence similarity between the zebrafish and mammalian BMP9/10 subfamily members prompted an investigation into the evolutionary relationships of the zebrafish genes. The orthology of *bmp9* and *bmp10* were examined by phylogenetic and syntenic analysis. Phylogenetic analysis grouped *bmp9*, *DSL1*, *Bmp9* and *BMP9* into a single clade and *bmp10*, *Bmp10* and *BMP10* into another. Zebrafish *bmp9* and human *BMP9* were mapped to linkage group 12 and chromosome 17, respectively, and share syntenic relationships with a number of other genes mapped to linkage group 5 and chromosome 2, respectively, and share syntenic relationships with *mcm6/MCM6* and *pax8/PAX8*. The phylogenetic and syntenic analyses support the orthology of *bmp9* and *bmp10* to human *BMP9* and *BMP10*, respectively. The phylogenetic analysis also suggests that chick *DSL1* is not a unique member of the TGF β superfamily but is the chicken ortholog of *BMP9/Bmp9*.

The expression patterns of *bmp9* and *bmp10* were analysed by RT-PCR, Northern analysis, and by whole mount *in situ* hybridisation. No specific expression pattern was detected for either *bmp9* or *bmp10* by whole mount *in situ* hybridisation, indicating the low expression levels of these genes. The lower than expected sequence similarity to the mammalian orthologs and the low level of expression suggest a lack of evolutionary pressure between subfamily members.

Zebrafish Gdf11 shows a high level of amino acid identity over the length of the entire protein to mouse GDF11. Phylogenetic analysis grouped *gdf11*, *Gdf11* and *GDF11* into a single clade. Zebrafish *gdf11* and human *GDF11* were mapped to linkage group 11 and chromosome 12, respectively, and share syntenic relationships with *atp5b/ATP5b*, *dspg3/DSPG3*, *hoxcb/HOXC*, and *plasticin/PRPH* on LG11/Hsa12. The phylogenetic and syntenic analyses, therefore, support the orthology of *gdf11* to human *GDF11*.

The expression pattern of gdf11 was analysed by whole mount *in situ* hybridisation. Expression of gdf11 was detected in both the dorsal and vegetal tail bud progenitors and during segmentation stages, expression becomes restricted to the caudal-most chordamesoderm of the tail bud. During the pharyngula stage, dynamic expression of gdf11 was detected in neural structures including the ventral hindbrain, midbrain and the forebrain. Expression of gdf11 was absent in the tail bud of ntl^{b195} mutant embryos but present in neural structures, indicating that the expression of gdf11 is regulated by different factors in these tissues. The function of gdf11 was analysed by microinjection of synthetic gdf11 mRNA. Overexpression of gdf11, however, resulted in the severe dorsalisation of the embryo, probably due to activation of a Nodal specific pathway.

Acknowledgements

I wish to thank my supervisors Dr. Philip Crosier and Dr. Kathy Crosier for helping me to become a better scientist. I am grateful to other members of the Crosier lab, both past and present but especially Bill, Chris, Jeff (I'll miss the ice cream breaks!) and Maria V. for their support and valued friendships. I am also very grateful to Jeff, Maria F., and Helen for their proofreading of this work.

I would also like to thank John Postlethwait and Yi-Lin Yan for their involvement in the genetic mapping, Anne Bardsley and Anna Krassowska for their early contributions to this work, and Scott Baker for advice on phylogenetic analysis.

My long hours in the lab would not have been possible without musical inspiration from Pink Floyd, Radiohead, Beck, Ben Harper, and Rage Against the Machine (among others) and for the welcome distractions of films by the Waschowski brothers, the Coen brothers, Peter Jackson, and Adam Sandler. Thanks guys.

Lastly, and most importantly, I would like to thank my beautiful, intelligent, and fiscally responsible wife, Helen, for all your support, understanding and encouragement throughout my Ph.D. and my family, especially Mum, who were always enthusiastic and encouraging.

iv

Table of Contents

Title page	i
Abstract	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	xii
List of Tables	xiv
Abbreviations	xv
Nomenclature	XX
Company Abbreviations	xxi
Publications	xxvi

Chapter 1 Introduction

1.1	The transform	ning growth factor β superfamily	1
	1.1.1 Struct	ure and processing of TGFβ superfamily proteins	2
	1.1.1.1	The TGFβ superfamily pro-domain	3
	1.1.1.2	Processing of the TGFβ superfamily precursor protein	4
	1.1.1.3	Structure of the mature domain ligand	4
	1.1.2 TGFβ	superfamily signal transduction	5
	1.1.2.1	Activation of the TGF β serine/threonine kinase signalling	
		complex	7
	1.1.2.2	Intracellular transduction of the TGF β signal	8
	1.1.2.3	The receptor-associated Smads	8
		1.1.2.3.1 The common-Smads and DNA binding	9
		1.1.2.3.2 The antagonistic-Smads	10
	1.1.2.4	Targets of TGFβ superfamily signalling pathways	11
	1.1.3 Extrac	cellular antagonists of TGF ^β signalling	11
	1.1.3.1	TGF β superfamily members as antagonists	12
	1.1.3.2	Antagonistic receptors	13
	1.1.3.3	The extracellular antagonists Chordin, Noggin, Follistatin and	
		the DAN-family	13
	1.1.3.4	Antagonism of the antagonists	14
	1.1.4 The B	MP family	15
	1.1.4.1	The BMP9/10 subfamily	16
		1.1.4.1.1 Isolation and characterisation of rodent Bmp9	17
		1.1.4.1.2 Chick dorsalin1	19

		1.1.4.1.3	Isolation and expression of mouse Bmp10	20
	1.1.5 The T	GFβ/Activi	n /Nodal family	20
	1.1.5.1	The GDF	11/MSTN subfamily	21
		1.1.5.1.1	Isolation and expression of Drosophila myoglianin	21
		1.1.5.1.2	Isolation and function of vertebrate myostatin	22
		1.1.5.1.3	Isolation and function of mouse Gdf11	23
		1.1.5.1.4	Expression and function of chick GDF11 in the limb bu	ıd 26
1.2	The zebrafish	n, Danio re	rio, as a model organism	28
	1.2.1 Using	the zebrafi	sh to study embryogenesis	28
	1.2.2 Zebrat	fish develo	pment	30
	1.2.3 Using	the zebrafi	sh as a model organism for studying the TGF β	
	super	family		32
	1.2.3.1	Zebrafish	mutants in the TGF β superfamily signalling pathway	32
	1.2.3.2	The use o	f Nodal-related mutants to elucidate gene function in	
		the zebrat	ïsh	33
	1.2.4 The ze	ebrafish ger	nome	35
	1.2.4.1	Genome	duplications	35
	1.2.4.2	Determin	ing orthology	36
1.3	Research obj	ectives		38

Chapter 2 Materials and Methods

2.1	Materials	39
	2.1.1 Bacterial growth media	39
	2.1.1.1 Liquid media	39
	2.1.1.2 Solid media	39
	2.1.1.3 Antibiotics	39
	2.1.2 Bacterial Strains	40
	2.1.3 Buffers and solutions	40
	2.1.4 Chemicals and radioisotopes	42
	2.1.5 Enzymes	43
	2.1.5.1 Restriction endonucleases	43
	2.1.5.2 Other enzymes	43
	2.1.6 Genomic and cDNA libraries	44
	2.1.7 Nucleic acid molecular size standards	44
	2.1.8 Plasmids and expression vectors	45
	2.1.9 Oligonucleotides	45
	2.1.10 Digoxigenin-labelled riboprobes	47

vi

	2.1.11 Zebrafish stocks	48
	2.1.12 Computer Analysis	49
2.2	Methods	50
	2.2.1 Growth of bacteria	50
	2.2.1.1 Growth of bacterial strain DH5 α	50
	2.2.1.2 Growth of BB4, BB4-7, KW 251, C600 Hfl and XL1-Blue MRF'	50
	2.2.2 Preparation of glycerol stocks	51
	2.2.3 Preparation of competent DH5a cells	51
	2.2.4 Transformation of competent DH5α cells	51
	2.2.5 Isolation and purification of DNA	52
	2.2.5.1 Small scale preparation of plasmid DNA from bacteria	52
	2.2.5.2 Large scale preparation of plasmid DNA from bacteria	52
	2.2.5.3 Isolation of genomic DNA	53
	2.2.5.4 Purification of nucleic acids from PCR reactions and restriction	
	endonuclease reactions	54
	2.2.5.5 Purification of DNA from agarose gels	54
	2.2.6 Analysis of DNA	54
	2.2.6.1 Automated DNA sequencing	54
	2.2.6.2 Quantification of nucleic acid	55
	2.2.6.3 Separation of DNA by gel electrophoresis	55
	2.2.6.4 Southern blot analysis	55
	2.2.6.5 Quantification of radioactive nucleotide incorporation	57
	2.2.7 Manipulation of DNA	57
	2.2.7.1 Preparation of radiolabelled probes	57
	2.2.7.1.1 Synthesis of random-primed DNA	57
	2.2.7.1.2 End-labelling of oligonucleotides	57
	2.2.7.2 Restriction endonuclease digests	58
	2.2.7.3 Dephosphorylation of DNA	58
	2.2.7.4 Blunt-ending 5' overhangs	58
	2.2.7.5 Blunt-ending 3' overhangs	58
	2.2.7.6 Ligation reactions	59
	2.2.8 Polymerase Chain Reaction	59
	2.2.8.1 Amplification of DNA	59
	2.2.9 Genomic and cDNA library screening	60
	2.2.9.1 Isolation of bacteriophage lambda DNA	61
	2.2.9.2 <i>in vivo</i> excision of recombinant pBluescript SK- phagemids from	
	Uni-ZAP XR bacteriophage	62
	2.2.10 Analysis of RNA	62
	2.2.10.1 Isolation and purification of RNA	62

vii

	2.2.10.1.1 Isolation of total cellular RNA	62
	2.2.10.1.2 Isolation of mRNA	63
2.2.	10.2 Reverse Transcriptase-polymerase chain reaction	63
2.2.	10.3 Northern analysis	64
2.2.11 \$	Synthesis of digoxigenin-labelled riboprobes	65
2.2.12	Whole mount in situ hybridisation	66
2.2.13 (Genetic mapping	68
2.2.14 (Cryosectioning	69
2.2.15 I	Determining orthology by phylogenetic analysis	69
2.2.16 (Care and breeding of zebrafish	70
2.2.17	Synthesis of synthetic mRNA for microinjection	71
2.2.18	Microinjection	71

Chapter 3 Isolation, characterisation and evolution of zebrafish *bmp9* and *bmp10*

3.1	Introduction		73
3.2	Results		75
	3.2.1 South	ern analysis of Bmp9- and Bmp10- related genes in the zebrafish	75
	3.2.2 Isolati	on, sequencing and analysis of zebrafish bmp9 and bmp10	76
	3.2.2.1	Isolation of <i>bmp9</i> and <i>bmp10</i> from a zebrafish genomic library	76
	3.2.2.2	Subcloning and sequencing of class I and II bmp9 genomic clones	77
	3.2.2.3	Sequence analysis of zebrafish bmp9	78
	3.2.2.4	Comparison of the BMP9-related proteins	79
	3.2.2.5	Subcloning and sequencing of class III genomic clones	80
	3.2.2.6	Sequence analysis of zebrafish bmp10	81
	3.2.2.7	Comparison of BMP10-related proteins	82
	3.2.2.8	Screening cDNA libraries for bmp9 and bmp10 clones	82
	3.2.2.9	Comparison of the BMP9/10-related proteins	84
	3.2.3 Determ	mining the orthology of zebrafish <i>bmp9</i> and <i>bmp10</i>	84
	3.2.3.1	Comparison of the percentage of amino acid conservation between	
		BMP9/10 subfamily members	85
	3.2.3.2	Phylogenetic analysis of the BMP9/10 subfamily	86
	3.2.3.3	Mapping the zebrafish and human BMP9/10 subfamily members	87
		3.2.3.3.1 Mapping and syntenic analysis of zebrafish bmp9 and	
		human BMP9	89
		3.2.3.3.2 Mapping and syntenic analysis of zebrafish bmp10 and	
		human BMP10	89
	3.2.4 Analy	sis of <i>bmp9</i> and <i>bmp10</i> expression	90

	3.2.4.1	Analysis	of <i>bmp9</i> and <i>bmp10</i> expression by reverse	
		transcrip	otase-polymerase chain reaction	90
		3.2.4.1.1	Optimisation of the conditions for reverse transcriptase-	
			polymerase chain reaction	90
		3.2.4.1.2	The temporal expression patterns of <i>bmp9</i> and <i>bmp10</i>	
			during embryogenesis	91
		3.2.4.1.3	Expression of bmp9 and bmp10 in adult zebrafish tissues	s 92
	3.2.4.2		of <i>bmp9</i> and <i>bmp10</i> expression by whole mount in situ	
		hybridisa		93
		3.2.4.2.1	Preparation of <i>bmp9</i> and <i>bmp10</i> riboprobes	93
		3.2.4.2.2	Whole mount in situ hybridisation analysis of bmp9 and	
			bmp10	95
		3.2.4.2.3	Optimisation of whole mount in situ hybridisation	
			conditions	95
	3.2.4.3	Northern	analysis of <i>bmp9</i> and <i>bmp10</i> expression	96
		3.2.4.3.1	Northern analysis of bmp9 and bmp10 expression using	
			³² P- labelled cDNA probes	96
		3.2.4.3.2	High sensitivity Northern analysis	96
		3.2.4.3.3	Sensitive Northern analysis of bmp9 and bmp10	
			expression	97
	3.2.5 Analy	sis of bmp	9 function	98
	3.2.5.1	Construc	tion of a BMP2-bmp9 fusion vector	99
	3.2.5.2	Construct	ion of microinjection control vectors	100
	3.2.5.3	Analysis	of bmp9 function by microinjection of synthetic RNAs	100
3.3	Summary			102

Chapter 4 The isolation, characterisation, and function of zebrafish gdf11

4.1	Introduction		104
4.2	Results		108
	4.2.1 Isolati	on of zebrafish gdf11	108
	4.2.2 Analys	sis of the gdf11 sequence	108
	4.2.2.1	Comparison of GDF11-related proteins	109
	4.2.2.2	Comparison of GDF11/MSTN subfamily members	109
	4.2.3 Orthol	ogy of the GDF11/MSTN family	110
	4.2.3.1	Comparison of the percentage amino acid conservation between	110
		GDF11/MSTN subfamily members	110
	4.2.3.2	Phylogenetic analysis of the GDF11/MSTN subfamily	110

ix

	4.2.3.3	Mapping and syntenic analysis of zebrafish gdfl1	112
	4.2.4 Analy	sis of gdf11 expression by whole mount in situ	114
	hybrid	disation	114
	4.2.4.1	Zebrafish tail development	114
	4.2.4.2	Analysis of the developmental expression of gdf11 by	
		whole mount in situ hybridisation	115
	4.2.4.3	Expression of gdf11 during segmentation period	116
	4.2.4.4	Expression of gdf11 in the central nervous system	117
	4.2.4.5	Comparison of gdf11 and ntl expression in wild-type embryos	117
	4.2.4.6	Analysis of $gdfll$ expression in ntl^{b195} mutant embryos	118
	4.2.5 Analy	sis of gdf11 function	119
	4.2.5.1	Construction of a gdf11 microinjection construct	119
	4.2.5.2	Overexpression of gdf11 during embryogenesis	120
	4.2.5.3	Analysis of gdf11 expression by reverse transcriptase-	
		polymerase chain reaction	121
4.3	Summary		123

Chapter 5 Discussion

5.1	The BMP9/10 subfamily – stories of evolution	125
	5.1.1 Are zebrafish <i>bmp9</i> and <i>bmp10</i> divergent members of the BMP9/10	
	family?	125
	5.1.2 Is chick DSL1 novel?	126
	5.1.3 A duplication event within the BMP9/10 subfamily.	127
	5.1.4 Analysis of <i>bmp9</i> and <i>bmp10</i> expression	128
	5.1.5 A maternal role for <i>bmp9</i> in patterning the embryo	129
	5.1.6 Conserved liver expression of <i>bmp9</i>	130
	5.1.7 Expression of zebrafish bmp10	131
	5.1.8 A role for mouse BMP9 as a cholinergic differentiation factor	132
	5.1.9 Identification of a novel pro-domain motif in the BMP9/10 subfamily	133
	5.1.10 Unique properties of the BMP9/10 subfamily	134
	5.1.11 Future analysis of bmp9 and bmp10	135
	5.1.11.1 Determining the function of BMP9 and BMP10	135
	5.1.11.2 Determining the function of the LLFNI/VSIP motif	136
	5.1.11.3 Evolution of the BMP9/10 subfamily	137
5.2	Tales of mice and fish development – the function of gdf11	139
	5.2.1 Isolation and characterisation of gdf11	139
	5.2.2 The orthology of gdf11	139

x

5.2.3 Phylogenetic analysis of mstn	140
5.2.4 Evolution of function	142
5.2.5 Expression of gdf11 in the tail bud and central nervous system	143
5.2.6 Anterior/posterior patterning of the axial skeleton	145
5.2.6.1 The Hox genes pattern anterior/posterior identity	146
5.2.6.2 The patterning of Hox gene expression by Gdf11	147
5.2.6.3 Interaction of GDF11 with the Hox genes	149
5.2.7 Identification of genes that may interact with GDF11	150
5.2.8 Ntl acts upstream of gdf11	152
5.2.9 Analysis of gdf11 function	153
5.2.10 Signalling of Gdf11 via a Nodal/Activin pathway	153
5.2.11 Myostatin signalling by the Activin/Nodal pathway	155
5.2.12 Nodal and Gdf11 function to pattern anterior/posterior identity	155
5.2.13 Future analysis of gdf11 in the zebrafish	157
5.2.13.1 Determining the orthology of zebrafish mstn	157
5.2.13.2 Determining the function of Gdf11	157
5.2.13.2.1 Interaction of Gdf11/gdf11 with other genes	158
5.2.13.2.2 Transgenic studies	159
5.2.13.2.3 Genetic studies	161

Appendices

...

Appendix 1 N	lucleotide sequence of the 5' end (SpeI end) of subclone 18.1S/N	163
Appendix 2 N	lucleotide sequence of 5' and 3' ends of subclone 18.3P	164
Appendix 3 B	MP9/10 subfamily mature domain nucleotide infile	166
Appendix 4 Th	he GDF11/MSTN subfamily mature domain nucleotide infile	169
Appendix 5 Th	he GDF11/MSTN subfamily full-length nucleotide infile	
	(vertebrate members only)	175

Bibliography

184

List of Figures

Chapter 1

- 1.1. The phylogenetic relationship of the mouse members of the TGF β superfamily.
- 1.2. Structure of the TGF β superfamily ligands.
- 1.3 The TGF β superfamily signalling pathway.
- 1.4 Formation of a BMP activity gradient
- 1.5. Schematic drawing of the axial skeleton in wild-type and Gdf11^{-/-} knockout mice.
- 1.6. Selected stages of zebrafish development.
- 1.7. Schematic drawing of the zebrafish blastula stage fate map.

Chapter 2

2.1. Flow diagram of the steps taken to construct distance, maximum-likelihood, and maximum-parsimony trees.

Chapter 3

- 3.1. Southern analysis.
- 3.2. Partial restriction maps of a representative clone from each of the three classes of clones identified.
- 3.3. Contribution of clones 18.1S/N and 5.2S/N to the bmp9 sequence.
- 3.4. Nucleotide sequence and conceptual translation of *bmp9*.
- 3.5. Alignment of BMP9-related proteins.
- 3.6. Contribution of genomic clones 18.3, 3.2 and 10.1 to the *bmp10* sequence.
- 3.7. Nucleotide sequence and conceptual translation of *bmp10*.
- 3.8. Alignment of BMP10-related proteins.
- 3.9. Alignment of the BMP9/10-related proteins.
- 3.10. Comparison of the percentage amino acid identity of the BMP9/10 subfamily.
- 3.11. Phylogenetic comparison of the BMP9/10 subfamily.
- 3.12. Genetic map of zebrafish linkage group 12.
- 3.13. Genetic map of zebrafish linkage group 5.
- 3.14. Determination of the linear RT-PCR range for *bmp9*, *bmp10* and *ef1* α .
- 3.15. Analysis of the temporal expression patterns of *bmp9* and *bmp10* by RT-PCR.
- 3.16. Analysis of bmp9 and bmp10 expression in adult zebrafish tissues by RT-PCR.

- 3.17. Riboprobe templates used for whole mount *in situ* analysis of *bmp9* and *bmp10* expression
- 3.18. Northern analysis of *bmp9* and *bmp10* expression.
- 3.19. Subcloning of the BMP2/bmp9 microinjection construct.
- 3.20. Overexpression of bmp9.

Chapter 4

- 4.1. Analysis of gdf11 cDNA clones
- 4.2. Nucleotide sequence and conceptual translation of gdf11.
- 4.3. Amino acid alignment of the GDF11 subfamily
- 4.4. Amino acid alignment of the GDF11/MSTN subfamily.
- 1.1 Comparison of the percentage amino acid identity over the mature domain region of the GDF11/MSTN subfamily.
- 4.6. Phylogenetic comparison of the GDF11/MSTN subfamily.
- 4.7. Genetic map of linkage group 12.
- 4.8. Expression pattern of *gdf11* in the tail and neural tissues during the segmentation period.
- 4.9. Expression of gdf11 during the pharyngula period.
- 4.10. Comparison of *gdf11* and *ntl* expression in wild-type embryos, and expression of *gdf11* in *ntl*^{b19} mutant embryos by whole mount *in situ* hybridisation.
- 4.11. Subcloning of the gdf11 overexpression construct.
- 4.12. Microinjection of gdf11 mRNA.
- 4.13. Analysis of *gdf11* expression during early development by reverse transcriptase-polymerase chain reaction (RT-PCR).

Chapter 5

- 5.1. Evolutionary relationships of *Bmp10*-related genes in the vertebrates.
- 5.2. The conserved genomic organisation and colinear expression of the arthropod and vertebrate *Hox* genes.
- 5.3. Mouse Hox gene expression along the anterior/posterior (AP) axis.
- 5.4. The conservation of *Hox* gene expression domains with sites of morphological transition along the anterior/posterior axial skeleton in diverse vertebrates.
- 5.5. Schematic diagram of the action of Gdf11 in patterning the axial skeleton.

List of Tables

Chapter 1

1.1	Mutations in human TGFB superfamily ligands, extracellular antagonists, and	
	in downstream components of the signalling pathway	2
1.2.	The mammalian type I serine/threonine kinase receptors.	6
1.3.	The mammalian type II serine/threonine kinase receptors.	6
1.4.	TGFβ signalling pathway mutants isolated in chemical mutagenesis screens	32

Chapter 2

2.1.	Bacterial strains.	40
2.2.	Buffers and solutions.	41
2.3.	Enzymes.	43
2.4.	Genomic and cDNA libraries.	44
2.5.	Molecular size markers.	44
2.6.	Plasmids and vectors.	45
2.7.	Oligonucleotides.	45
2.8.	DIG-labelled riboprobes.	47
2.9.	Proteinase K treatment incubation times.	67

Chapter 3

3.1.	Non-conservative polymorphisms within the bmp9 pro-domain region	79
3.2.	Zebrafish cDNA libraries.	83
3.3	Comparison of the percentage amino acid identity over the mature	
	domain of zebrafish and human BMP family members.	86
3.4.	Primers used to map zebrafish bmp9, bmp10 and human BMP9, BMP10.	89
3.5.	Restriction enzymes used to subclone <i>bmp9</i> and <i>bmp10</i> riboprobe templates.	94

÷

Abbreviations

International System of Units (SI) were used for abbreviations of units and standard notations for chemical elements and formulae. Other abbreviations used in this work are listed below.

AP		
	anterior/posterior	
ATP	adenosine 5'-triphosphate	
BCIP	5-bromo-4-chloro-3-indolyl-phosphate	
BLAST	basic local alignment search tool	
BMP	bone morphogenetic protein	
bp	base pair	
BSA	bovine serum albumin	
Bt	Bos taurus	
cDNA	complementary deoxyribonucleic acid	
CIP	calf intestinal alkaline phosphatase	
cpm	counts per minute	
CTP	cytidine 5'-triphosphate	
dATP	deoxyadenosine 5'-triphosphate	
dCTP	deoxycytidine 5'-triphosphate	
DEPC	diethyl pyrocarbonate	
dGTP	deoxyguanidine 5'-triphosphate	
DIG	digoxigenin	
Dm	Drosophila melanogaster	
DMSO	dimethylsulphoxide	
DNA	deoxyribonucleic acid	
DNP	dinitrophenyl	
Dr	Danio rerio	
DTT	dithiothreitol	
DV	dorsal/ventral	
EDTA	ethylenediaminetetra-acetic acid (disodium salt)	
ENU	ethylnitrosurea	
EST	expressed sequence tag	
EVL	enveloping layer	

F ₁	first filial generation	
FCS	fetal calf serum	
GDF	growth/differentiation factor	
Gg	Gallus gallus	
GTP	guanidine 5'-triphosphate	
hpf	hours post fertilisation	
HS	heat shock	
Hs	Homo sapiens	
Hsa	human chromosome	
Hyb	hybridisation	
kb	kilobase	
kDa	kilodalton	
LB	Luria-Bertani	
LN54	Loeb/NIH/5000/4000	
MAB	maleic acid buffer	
Mg	Meleagris gallopavo	
Mm	Mus musculus	
NBT	4-nitroblue tetrazolium chloride	
NCBI	National Centre for Biotechnology Information	
Oa	Ovis aries	
OMIM	Online Mendelian Inheritance in Man	
ORF	open reading frame	
PBS	phosphate buffered saline	
PBT	phosphate buffered saline with tween-20	
PCR	polymerase chain reaction	
PFU	plaque forming units	
pН	concentration of [H ⁺], defined as -log ₁₀ [H ⁺]	
Ph	Papio hamadryas	
RACE	rapid amplification of cDNA ends	
RH	radiation hybrid	
Rn	Rattus norvegicus	
RNA	ribonucleic acid	
rpm	revolutions per minute	
RT	reverse transcriptase	
SDS	sodium dodecyl sulphate	
Ss	Sus scorfa	
SSCP	single-stranded conformational polymorphism	
SSLP	simple sequence length polymorphism	

TAE	tris-acetate-EDTA	
TE	tris-EDTA	
TGFβ	transforming growth factor β	
T _m	melting temperature	
Tris	2-amino-2-(hydroxymethyl)-1,3-propanediol	
Tris-HCl	tris buffered with hydrochloric acid	
tRNA	transfer RNA	
TSA	tyramide signal amplification	
TTP	thymidine 5'-triphosphate	
U	units	
UTP	uridine 5'-triphosphate	
UTR	untranslated region	
UV	ultraviolet	
v/v	volume per volume	
w/v	weight per volume	

The following one-letter and three letter amino acid abbreviations were used in the text and figures.

A	ala	alanine
С	cys	cysteine
D	asp	aspartic acid
E	glu	glutamic acid
F	phe	phenylalanine
G	gly	glycine
Н	his	histidine
I	ile	isoleucine
K	lys	lysine
L	leu	leucine
М	met	methionine
N	asn	asparagine
Р	pro	proline
Q	glu	glutamine
R	arg	arginine
S	ser	serine
Т	thr	threonine
V	val	valine
W	trp	tryptophan
Х	XXX	any amino acid
Y	tyr	tyrosine

The following one letter abbreviations for nucleic acids were used in the text and figures according to (Cornish-Bowden, 1985).

A	adenine
С	cytosine
G	guanine
Т	thymine
U	uracil
R	purine (A or G)
Y	pyrimidine (C or T/U)
K	keto (G or T/U)
М	amino (A or C)
S	strong (G or C)
W	weak (A or T)
В	not A (C or G or T/U)
D	not C (A or G or T/U)
Н	not G (A or C or T/U)
V	not T/U (A or C or G)
N	any (A or C or G or T/U)

Nomenclature

Gene names and protein names were written according to the nomenclature in Wood (1998). The nomenclature for *Bos taurus*, *Sus scorfa*, *Papio hamadryas*, *Ovis aries* and *Meleagris gallopavo* was based on that of *Homo sapiens* and *Gallus gallus*. The nomenclature for *Xenopus laevis* was based on that of *Danio rerio*. A summary of gene and protein nomenclature is tabled below.

ORGANISM	GENE -FULL	GENE-SYMBOL	PROTEIN
Drosophila melanogaster	lower case, italic eg. <i>decapentaplegic</i> (recessive mutation, dominant mutation has	abbreviation, maintaining style eg. <i>dpp</i>	upper case, no italics eg. DPP
Danio rerio	capital for first letter) lower case, italic eg. bone morphogenetic protein 9	abbreviation, maintaining style eg. <i>bmp9</i>	initial letter capitalised, no italics eg. Bmp9
Mus musculus, Rattus norvegicus	lower case, no italics eg. bone morphogenetic protein 9	abbreviation, first letter capitalised, italics eg. <i>Bmp9</i>	upper case, no italics eg. BMP9
Homo sapiens, Gallus gallus	lower case, no italics eg. bone morphogenetic protein 9	upper case, italics eg. <i>BMP9</i>	upper case, no italics eg. BMP9
Caenorhabditis elegans	lower case, italics, numerals hyphenated eg. bone morphogenetic protein-9	abbreviation, maintaining style eg. <i>bmp-9</i>	upper case, no italics eg. BMP-9

Company Abbreviations

COMPANY	ADDRESS	
Ambion	Ambion, Inc.,	
	2130 Woodward Street,	
2	Suite 200,	
	Austin, TX 78744, USA	
Amersham Pharmacia Biotech	Amersham Pharmacia Biotech New	
	Zealand,	
	P.O. Box 56 634,	
	Auckland, New Zealand	
Aquarium Pharmaceuticals	Aquarium Pharmaceuticals, Inc.,	
	P.O. Box 218,	
	Chalfont, PA 18914, USA	
Aquarium Systems	Aquarium Systems, Inc.,	
	8141 Tyler Boulevard,	
	Mentor, OH 44060-4889, USA	
ASI	Applied Scientific Instrumentation, Inc.,	
	3770 West 1 st Ave,	
	Eugene, OR 97402, USA	
BDH	British Drug Houses Chemicals NZ Ltd,	
	680 Tremaine Avenue,	
	Palmerston North, New Zealand	
Bellco	Bellco Glass, Inc.,	
	340 Edrudo Road,	
	P.O. Box B,	
	Vineland, NJ 08360-0017, USA	
Bio 101	Bio 101, Inc.,	
	P.O. Box 2284,	
	La Jolla, CA 92038-2284, USA	
Biolab Scientific	Biolab Scientific Limited,	
	Private Bag 102922,	
	North Shore Mail Centre,	
	Auckland, New Zealand	
Bio-Rad	Bio-Rad Laboratories,	
	2000 Alfred Nobel Drive,	
	Hercules, CA 94647, USA	

Centre for Gene Technology	Centre for Gene Technology,
	School of Biological Sciences,
	University of Auckland,
	Private Bag 92019,
	Auckland, New Zealand
Clontech	Clontech Laboratories, Inc.,
	4030 Fabain Way,
	Palo Alta, CA 94303-4607, USA
CLP	Continental Laboratory Products Inc.,
	9240 Mira Este Court,
	San Diego, CA 92126, USA
Corning	Corning Scientific, Inc.,
	45 Nagog Park,
	Acton, MA 1720, USA
Difco	Difco Laboratories,
	P.O. Box 331058,
	Detroit, MI 48232-7058, USA
Eppendorf	Eppendorf-Netheler-Hinz GmbH,
	D-22331 Hamburg, Germany
Falcon	Trademark of:
	Becton Dickinson Labware,
	Becton Dickinson Co.,
	2 Bridgewater Lane,
	Lincoln Park, NJ 07035, USA
Genetics Institute	Genetics Institute,
	87 Cambridge Park Drive,
	Cambridge, MA 02140, USA
GibcoBRL	Bethesda Research Laboratories,
	Life Technologies Inc.,
	87/7 Grovemont Circle,
	Gaithersburg, MD 20887, USA
Hoefer	Hoefer Pharmacia Biotech Inc.,
	654 Minnesota Street,
	San Francisco, CA 94107-0387, USA
Hollywood Fish Farm	Hollywood Fish Farm Aquarium Specialist,
	36 Frost Rd,Mt Roskill,
	Auckland, New Zealand

IntelliGenetics	IntelliGenetics Inc.,
	700 East El Camino Real,
	Mountain View, CA 94040, USA
Kodak	Eastman Kodak Company,
	2400 Mount Read Boulevard,
	Rochester, NY 14650, USA
Kyowa	Kyowa Hakko Kogyo Co., Ltd
	1-6-1 Ohtemachi, Chiyoda-ku,
	Tokyo, Japan
Lagan Pharmaceuticals	Lagan Pharmaceuticals,
	10 Main Street, Upper Hutt, New Zealand
Marine Biotech	Marine Biotech, Inc.,
	54 West Dane Street,
	Unit A, Beverly, MA 01915, USA
Miles	Miles Inc.,
	Elkart, IN 46515, USA
Millipore	Millipore Corporation,
-	Bedford, MA 01730, USA
Narishige	Narishige Biosciences Inc.,
	404 Glen Cove Avenue,
	Sea Cliff, NY 11579, USA
NCBI	National Center for Biotechnology
	Information,
	8600 Rockville Pike,
	Bethesda, MD 20894-0001, USA
NEB	New England Biolabs Inc.,
	32 Tozer Road,
	Beverly, MA 01915-5599, USA
Nunc	Nalge Nunc International,
	2000 North Aurora Road,
	Naperville, IL 60563-1796, USA
Oligos Etc.	Oligos Etc. Inc.,
	29970 SW Town Loop West,
	Suite B-419, Wilsonville, USA
Oxford Molecular Group	Oxford Molecular Group,
	Medawar Centre,
	Oxford Science Park,
	Oxford, OX4 4GA, England

Perkin Elmer	Perkin Elmer Cetus,
	761 Main Avenue,
	Norwalk, CT 06859, USA
Pharmacia	Pharmacia LKB Biotechnology,
	Björkgatan 30,
	S-751 Uppsala, Sweden
Polaroid	Polaroid Corporation,
	549 Technology Square,
	Cambridge, MA 02139, USA
Promega	Promega Corporation,
	2800 Woods Hollow Road,
	Madison, WI 53711-5399, USA
QIAGEN	QIAGEN GmbH,
	Max-Volmer-StraBe 4,
	40724 Hilden, Germany
Research Genetics	Research Genetics,
	2130 Memorial Parkway,
	Huntsville, AL, 35801, USA
Riedel-de Haën	Riedel-de Haën,
	Aktiengesellschaft,
	Wunstorfer StaBe 40,
	P.O. Box D-3016 Seeze 1,
	Hanover, Germany
Roche Molecular Biochemicals	Roche Molecular Biochemicals,
	D-68298 Mannheim, Germany
Schott-Geräte	Schott-Geräte GmbH,
	Im Langgewann 5,
	P.O. Box 1130,
	D-6238 Hofheim, Germany
SDR Clinical Technology	SDR Clinical Technology,
	213 Easter Valley Way,
	Middle Cove, N.S.W. 2068, Australia
Sigma	Sigma Chemicals Co.,
	St. Louis, MO 63178, USA
Stephens Scientific	Stephens Scientific,
	Division of Cornwell Corporation,
	Riverdale, NJ 07457-1710, USA

Stratagene	Stratagene Cloning Systems,
	11011 North Torrey Pines Road,
	La Jolla, CA 92037, USA
Summit Aquaculture	Summit Aquaculture Technologies, L.C.,
	2331 North 1350 West,
	Ogden, UT 84404, USA
Sutter Instrument Co.	Sutter Instrument Co.,
	40 Leveroni Court,
	Novato, CA 94949, USA
Terumo	Terumo Medical Corporation,
	Elkton, MD 21921, USA
Wallac	Wallac Oy,
	P.O. Box 10,
	FIN-20101 Turku, Finland
Whatman	Whatman Laboratory Products Inc.,
	9 Bridewell Place,
	Clifton, NJ 07014, USA
Zeiss	Carl Zeiss, Inc.,
	One Zeiss Drive,
	Thornwood, NY 10594, USA

Manuscripts in Preparation

Bland, R. J., Postlethwait, J. H., Yan, Y. L., Crosier, K. E., and Crosier, P. S. (2001) Isolation of zebrafish *bmp9* and *bmp10* and evolutionary analysis of the BMP9/10 subfamily. *Manuscript in preparation*.

Bland, R. J., Postlethwait, J. H., Yan, Y. L., Crosier, K. E., and Crosier, P. S. (2001) Isolation of zebrafish *gdf11* and expression in wild-type and *no tail* mutant embryos. *Manuscript in preparation*.