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ABSTRACT

Neurotrophic factors are a family of polypeptides that promote the differentiation, growth and
suruival of numerous central nervous system neurons during development and adulthood. lt
has been proposed that alterations in neurotrophic factor protein or receptor expression may
be involved in the pathogenesis of human neurodegenerative disorders. Recent research
supports the therapeutic use of neurotrophic factors in neurodegenerative disorders. However,
while information has been obtained regarding the structure and function of neurotrophic
factors and their receptors (trk receptors) in the developing and mature rodent central nervous
system, little research has been performed examining the expression and functional role of
these factors in the normal and diseased human brain.

This thesis investigated the role neurotrophic factors and trk receptors play in the
pathogenesis of human neurodegenerative disorders. Using immunohistochemical and in situ
hybridisation techniques, the regional distribution and cellular localisation of neurotrophic
factors and trk receptors was examined throughout both the adult rat and normal human brain.
The expression of individual neurotrophic factors and trk receptors was also examined in
human post mortem normal, Alzheimer's and Huntington's disease brain tissue, as well as in
an animal model of apoptotic nerue cell death.

Individual neurotrophic factors exhibited a specific and heterogeneous regional pattern of
distribution throughout the adult human brain. Neurotrophic factor expression was detected in
several neuronal populations which exhibit selective vulnerability in various neurodegenerative
disorders. Alterations in the expression of neurotrophic factors within specific regions of the
human brain may result in neuronal atrophy, possibly via apoptotic mechanisms. A significant
reduction in the level of brain-derived neurotrophic factor (BDNF) was observed within the
hippocampus and temporal cortex of the Alzheimer's disease brain. A loss of neuroprotection
afforded by BDNF may contribute to the progressive atrophy of neurons in Alzheimer,s
disease. The high-affinity trk receptors, trkA and trkB (full-length and truncated) were also
altered within the Alzheimer's disease brain. TrkA receptor-immunoreactivity was observed in
astrocytes in the CAl region of the Atzheimer's disease hippocampus, some of which were
associated with p-amyloid plaques. Truncated trkB receptors were found in high levels in
senile plaques while the full-length trkB receptor was expressed in glial-like cells in the
Alzheimer's disease hippocampus. The appearance of trkA and trkB receptors in astrocytes



and plaques in the Alzheimer's disease brain might be related to p-amyloid deposition and

could be implicated in the development of Alzheimer's disease.

Alterations in insulin-like groMh factor-l (lGF-l) protein expression were also observed within
the Alzheimer's disease brain. IGF-l-immunoreactivity was expressed in a subpopulation of
reactive astrocytes in the Alzheimer's disease temporal cortex. These obseruations may
indicate that IGF-l is involved in the neuropathology of Alzheimer's disease. The induction of
fGF-l in response to neuronal injury may be an attempt to inhibit mechanisms that result in
delayed neuronal death.

ln addition, neurotrophic factor expression was examined in the Huntington's disease brain.
Glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor-cr (TGF-a)
were significantly reduced within both the Huntington's disease globus pallidus and substantia
nigra. Reduced GDNF and TGF-o levels within the Huntington's disease brain may produce a
loss of local or target-derived neurotrophic support within the basal ganglia and contribute to
the preferential degeneration of medium-sized spiny projection neurons within the Huntington's
disease striatum.

Moderate hypoxic-ischemic (Hl) injury was used as an animal model of apoptotic nerve cell
death. In agreement with the observations made in the Alzheimer's disease brain, moderate
Hl injury resulted in the loss of BDNF within the rat hippocampus. In contrast, an increase in
trkB (truncated) receptor expression was detected within glial cells in the rat brain. Alterations
in BDNF and trkB receptor levels may lead to a loss of neuroprotection and the initiation of
downstream mechanisms resulting in the induction of apoptotic processes. A cascade of
events similar to those observed within the rat Hl model may occur within human
neurodegenerative disorders.

This study demonstrated that, while the neuropathogenesis of both Alzheimer's and
Huntington's disease is complex, alterations in individual neurotrophic factor or trk receptor
expression within selectively vulnerable cortical or subcortical regions may play a role in their
pathophysiology. Furthermore, these results support the proposal that neurotrophic factors
may be considered for the treatment of neurodegenerative disorders by protecting against
neuronal cell loss and by increasing the function of surviving neuronal populations.
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Table 6.4 Summary of trkA and B-amyloid double labelling in the hippocampus and
codical grey matter of the Alzheimer's disease temporal lobe.

Table 8.1 Neuropathological progression of the neostriatum in HD.
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LIST OF ABBREVIATIONS

Acd

Ach

AchE

AD

ad

ALS

am

PAP

ApoE

AP-1

APP

av

BDHC

BDNF

BFCNs

bFGF

BSA

CERAD

cDNA

ChAT

cNs

CNTF

cRNA

DAB

DG or dg

DNA

nucleus accumbens

acetylcholine

acetylcholinesterase

Alzheimer's disease

anterodorsal thalamic nucleus

amyotrophic lateral sclerosis

anteromedial thalamic nucleus

p-amyloid protein

apolipoprotein E

activator protein-1

amyloid precursor protein

anteroventral thalamic nucleus

benzidine dihydrochloride

brain-derived neurotrophic factor

basal forebrain cholinergic neurons

basic fibroblast growth factor

bovine serum albumin

consortium to establish a registry for Alzheimefs disease

complementary deoryribonucleic acid

choline acetyltransferase

central nervous system

ciliary neurotrophic factor

complementary ribonucleic acid

3,3'diaminobenzidine.4 hydrochloric acid

dentate gyrus

deoxyribonucleic acid

xvill



DS Downs syndrome

DTT dithiothreitol

EC entorhinal cortex

ECL electrochemiluminescence

EEG electroencephalograph

EGF epidermal growth factor

ENK enkephalin

GABA y-amino-butyric-acid

GAD glutamic acid decarboxylase

GAP ras GTPase activating protein

GDNF glial cell-line derived neurotrophic factor

GDNF-a GP|-linked protein

GFAP glialfibrillary acidic positive

Gl granule cell layer of the cerebellar cortex

Gl glomerular cell layer of the olfactory bulb

GPe external segment of the globus pallidus

GPi internal segment of the globus pallidus

GPI glycosyl-phosphatidylinositol

gPll0p-to't* glycoprotein (1 10kDa) for proto-oncogene for trkA
receptor

gp140p'oto't't glycoprotein (140kDa) for proto-oncogene for trkA
receptor

gp95'*" glycoprotein (95kDa) for proto-oncogene for trkB receptor

gp145ffiB glycoprotein (145kDa) for proto-oncogene for trkB
receptor

gp145rc glycoprotein (145kDa) for proto-oncogene for trkC
receptor

H neurologically-normal human post mortem brain

HD Huntington's disease
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HI

hl

Hn

hp

HRP

ici

lEGs

IGF

IGFBP

lL-1

io

tPl

kDa

I LTP

hypoxia-ischaemia

hilar region of dentate gyrus

hypoglossal nucleus

hippocampus

horseradish peroxidase

lslands of Calleja

immediate early genes

insulin-like growth factor

insulin-like growth factor binding protein

interleukin-1

inferior olive

internal plexiform layer of olfactory bulb

kilodalton

long-term potentiation

mitogen-activated protein kinase

mitogen-sensitive MAP kinase kinases

mitral cell layer of olfactory bulb

myocardial infarction

1 -methyl-4-phenylpyridinium

messenger ribonucleic acid

NADPH-diaphorase

nerve growth factor

normal goat serum

N-methyl-D-aspartate

neuropeptide-Y

neurotrophic factor-3

oxygen

MAP kinase

MEK

mi

MI

MPTP

mRNA

NADPH.d

NGF

NGS

NMDA

NPY

NT-3

O2

)o(



GOHDA

PBS

PD

PHF

Pls-kinase

Pi

PLC.Y

PMSF

Pn

pt

PTPase

ThBDNF

ThGDNF

rhNGF

Rn

rt

sDs

SHz

SNc

SNr

SP

ssc

TBST

tc

TdT

TEMED

TGF-a

6-hydroxydopamine

phosphate buffered saline

Parkinson's disease

paired helical filaments

phosphatidyli nositol-3 kinase

Purkinje cell layer of cerebellar cortex

phospholipase C-1

phenyl methylsulfonyl f luoride

pontine nucleus

paratenial thalamic nucleus

protein tyrosine phosphatase

recombinant human BDNF

recombinant human GDNF

recombinant human NGF

red nucleus

reticular thalamic nucleus

sodium dodecylsulfate

src homology domains

substantia nigra pars compacta

substantia nigra pars reticulata

substance P

standard saline citrate

Tris buffered saline containing Tween-20

temporalcortex

terminal deorynucleotidyl transferase

tetramethylethyl enediamine

transform ing growth factor-a
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rGF-p

trk receptor

TUNEL

vlv

wlv

transforming growth factor-p

tyrosine kinase-linked ne urotrophic receptor

TdT-mediated dUTP-biotin nick end labelling

volumelvolume

weighVvolume
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