Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library [Thesis Consent Form](http://researchspace.auckland.ac.nz/thesis-consent-form)
Geology, geochemistry, and genesis of the El Peñón epithermal Au-Ag deposit, northern Chile: Characteristics of a bonanza-grade deposit and techniques for exploration

Patrick Ian Warren
Geology Department
The University of Auckland

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geology, The University of Auckland, 2005
Abstract

The El Peñón gold-silver deposit comprises six epithermal veins, which contain a geologic resource (measured + indicated + inferred) of 3.8 million oz Au and 63 million oz Ag. The deposit is hosted in Paleocene and Eocene mafic to felsic volcanic rocks and is located in the central portion of the Paleocene metallogenic belt, 165 km southeast of Antofagasta. Older and younger igneous rocks occur in the district; Late Cretaceous and Eocene intermediate composition rocks record the effects of hydrothermal activity not related to precious metal mineralisation of the El Peñón deposit.

Rocks in the district display two distinct types of hydrothermal alteration: widespread alteration associated with near-neutral pH, reduced fluid and localised alteration associated with acidic pH, oxidised fluid. Near-neutral pH, reduced fluid produced widespread replacement of phenocrysts and groundmass by quartz, adularia, albite, illite, chlorite, smectite, calcite, and pyrite; quartz-adularia alteration (replacement of primary phases, vein fillings, and hydrothermal breccia matrices) intensifies in the vicinity of precious metal-bearing veins. Acidic pH, oxidised fluid produced lithocaps of massive quartz-alunite alteration, quartz-alunite cemented breccia, and, locally, weak Cu mineralisation above inferred Late Cretaceous and Eocene intrusions.

Adularia from the two largest veins is dated at 52 to 53 Ma (40Ar/39Ar), indicating formation 1 to 3 m.y. later than host rhyolite domes. Quartz-alunite alteration spatially associated with Late Cretaceous and Eocene intermediate composition intrusive rocks is dated at 70-69 Ma and 50-49 Ma, respectively. Dating of supergene alunite indicates that weathering within a semi-arid to arid climate occurred from 23-17 Ma, prior to the onset of hyperaridity.

The veins that comprise the El Peñón deposit range from <0.5 m to 22 m wide; the bonanza-grade Quebrada Colorada vein has a strike length of ~2 km, vertical extent of ~500 m (1377-1877 m asl), and varies in width from 0.5 m to 4.5 m. Pervasive supergene oxidation
extends to 400 m below surface. Limited drill intercepts at deeper levels consist of banded
and brecciated quartz, adularia, and massive, bladed, and acicular, Ca-, Fe-, Mn-, and Mg-
bearing carbonate minerals, with minor amounts of pyrite, chalcopyrite, sphalerite, and
galena. Veins exhibit a wide range of crustiform textures, including comb, colloform, and
lattice quartz, rhombic adularia, and abundant massive and bladed Fe- and Mn-oxide
minerals. Recrystallization textures suggest amorphous silica and chalcedony precursors for
some quartz. Coexisting liquid- and vapor-rich inclusions, lattice textures, and vein adularia
are evidence for boiling conditions that were likely responsible for Au-Ag deposition. Ore
minerals observed in oxidised veins consist of electrum (mostly 40-60 wt % Au), acanthite,
gold, silver, silver sulfosalts, silver halides, and rarely pyrite, chalcopyrite, and galena. High
ore grades are generally associated with massive bands of fine-grained quartz and adularia,
breccias composed of vein clasts in a matrix of fine-grained quartz and adularia, and, less
commonly, colloform quartz bands. Supergene processes resulted in local remobilisation of
Au and Ag, leaving nearly pure gold (up to 98 wt % Au) along fractures and associated with
oxide masses.

Fluid inclusion data from the El Peñón deposit indicate vein formation from low
salinity (<2 eq. wt % NaCl), boiling hydrothermal fluid at temperatures mostly from 230 to
260°C. δ18O values of quartz range from 5 to 8 per mil, which can be explained by boiling
and cooling of a single parent liquid of probable meteoric origin. Comparison of the amount
of Au and quartz contained in the Quebrada Colorada vein to mass fluxes in the Broadlands-
Ohaaki geothermal system indicates that the vein could have formed in as little as a few
thousand years.

Abundant geochemical analyses (≥7000 surface samples and ≥4000 drill hole
samples) provide ample data with which to evaluate vectors to ore. Geochemical gradients in
altered rocks surrounding veins in the El Peñón district indicate that Au, Ag, As, and Sb
concentrations increase toward mineralised quartz veins. Geochemical analyses of altered
rocks from drill holes surrounding the Quebrada Colorada vein show enrichment of Au and Ag and depletion of Ca, Na, and Sr toward the vein; As and Sb increase with elevation. Mass changes calculated using whole-rock geochemical data also show gradients that are centred on mineralised veins; K is typically enriched toward veins, whereas Na and Ca are depleted. Whole-rock geochemical data are used to evaluate hydrothermal alteration mineralogy so that gradients of mass change can be related to associated zoning of hydrothermal minerals.
For Lucy
Acknowledgements

Meridian Gold Company is gratefully acknowledged for financial and logistical support for this project. Numerous current and past employees offered their expertise, knowledge, and support including Darcy Marud, Chuck Robbins, Butch Wulftange, José Zuluaga, Miguel Perez, Max Irribaren, Stabro Kasaneva, John Chulick, and numerous folks at the mine who I apologise to for not remembering to name here.

At The University of Auckland Stuart Simmons served as my supervisor and also arranged the relationship with Meridian Gold Company to support the project. He was incredibly tolerant of all the problems inherent in trying to complete a Ph.D. thesis and submit it from half a world away. Pat Browne was also instrumental in making things work despite my not being in New Zealand for the end of the project, as was Philip Beniston at the Graduate Centre. Jeff Mauk was always there to keep me on track and kept me thinking about geochemical data and all its potential. I could not have learned how to study an epithermal deposit without Mark Simpson to show me how to use the tools. Thanks Mark for never growing weary of my endless questions. Others in the Geology Department were similarly tolerant of my endless questions including Pat Browne, Kevin Brown, Ritchie Simms, and John Wilmhurst. Specific thanks go to Ritchie Simms and John Wilmhurst for microprobe analyses and X-ray fluorescence analyses, respectively.

I never would have started the project nor been able to complete it without the tireless support of my wife Roxanne. Thanks for all the love and support!
Table of Contents

Chapter 1. Introduction
1.1 Location, deposit discovery, and mining history.................................1
1.2 Classification of epithermal ore deposits...2
1.3 Epithermal mineralisation and hydrothermal alteration in the El Peñón district.....3
1.4 Aims of the study..5

Chapter 2. Geology and geochemistry of epithermal Au-Ag mineralisation in the El Peñón district, northern Chile
2.1 Introduction..9
2.2 Methodology..10
2.3 Regional setting..12
2.4 Geology of the El Peñón district..16
2.5 Alteration and mineralisation of the El Peñón district.............................22
2.6 Geology of the El Peñón deposit..24
2.7 Alteration and mineralised veins of the El Peñón deposit.........................29
 2.7.1 Hydrothermal mineral occurrences...29
 2.7.2 Fluid inclusions..37
2.8 Mineralised prospects in the El Peñón district..39
2.9 Geochemistry of alteration and mineralization.......................................41
 2.9.1 Mineralisation and geochemical trends..41
 2.9.2 El Peñón district geochemistry..48
2.10 Discussion..53
 2.10.1 Hydrothermal environments at El Peñón..53
 2.10.2 Geochemical associations and exploration implications....................57
 2.10.3 Preservation of epithermal environments.......................................58
2.11 Conclusions..59
Chapter 3. Geochronology of epithermal Au-Ag mineralisation, magmatic-hydrothermal alteration, and supergene weathering in the El Peñón district, northern Chile

3.1 Introduction...61
3.2 Geologic setting of the El Peñón deposit...62
 3.2.1 Regional geology..62
 3.2.2 District geology..64
 3.2.3 Mineralisation and alteration associated with the El Peñón deposit..............66
3.3 \(^{40}\text{Ar}/^{39}\text{Ar}\) Sample selection and preparation..67
 3.3.1 Adularia from epithermal Au-Ag veins...68
 3.3.2 Magmatic-hydrothermal alunite..70
 3.3.3 Supergene alunite...70
3.4 \(^{40}\text{Ar}/^{39}\text{Ar}\) Geochronology..71
3.5 \(^{40}\text{Ar}/^{39}\text{Ar}\) Analytical techniques...74
3.6 Analytical results..76
 3.6.1 Adularia from epithermal Au-Ag veins...76
 3.6.2 Magmatic-hydrothermal alunite..80
 3.6.3 Supergene alunite...83
3.7 Discussion...83
 3.7.1 Cretaceous magmatic-hydrothermal systems...87
 3.7.2 Mineralisation of the El Peñón deposit..87
 3.7.3 Eocene magmatic-hydrothermal systems..89
 3.7.4 Supergene weathering in the El Peñón District...89
3.8 Conclusions...93

Chapter 4. The Quebrada Colorada vein: geology, geochemistry, and genesis of bonanza-grade mineralisation at the El Peñón epithermal Au-Ag deposit, northern Chile

4.1 Introduction...95
4.2 Geologic setting...96
4.3 The El Peñón deposit..100
4.4 Methodology..104
4.5 Geology of the Quebrada Colorada vein..............................105
4.6 Vein structure and relationship to the distribution of Au and Ag...108
4.7 Gangue mineralogy and textures..124
 4.7.1 Quartz...127
 4.7.2 Potassium feldspar...144
 4.7.3 Carbonate minerals..146
4.8 Ore minerals and related sulfides..146
4.9 Mineralogy and textures of gangue minerals associated with Au-Ag
 mineralisation..152
4.10 Supergene minerals and modification of hypogene minerals.....156
4.11 Geochemistry of the Quebrada Colorada vein....................159
 4.11.1 Whole-rock geochemistry and reconstructed mineralogy.....165
 4.11.2 Comparison of Au contents to trace element concentrations and
 reconstructed mineralogy..167
4.12 Fluid inclusions..167
4.13 Oxygen isotopes..183
4.14 Estimated time to form the Quebrada Colorada vein............188
4.15 Environment of ore formation..193
4.16 Conclusions...197

Chapter 5. Whole-rock geochemical techniques for evaluating hydrothermal alteration, mass
changes, and compositional gradients associated with epithermal Au-Ag mineralisation

 5.1 Introduction..202
 5.2 Mass transfer and hydrothermal alteration in epithermal environments........204
5.3 Evaluation of mass transfer in hydrothermally altered rocks 211
 5.3.1 Quantification of mass transfer associated with hydrothermal alteration ... 211
 5.3.2 Molar element ratios: mass transfer and associated alteration mineralogy ... 215

5.4 El Peñón epithermal Au-Ag deposit .. 220
 5.4.1 Geologic setting ... 220
 5.4.2 Sampling and analytical techniques ... 222
 5.4.3 Quantified mass changes in hydrothermally altered rocks at El Peñón ... 229
 5.4.4 Molar element ratios: graphical assessment of K-metasomatism affecting rocks at El Peñón ... 238

5.5 Kawerau, Waiotapu and Broadlands-Ohaaki geothermal systems, Taupo Volcanic Zone, New Zealand ... 242
 5.5.1 Geology and hydrothermal alteration .. 242
 5.5.2 Whole-rock geochemistry and mass transfer ... 246
 5.5.3 Molar element ratios: graphical assessment of K-metasomatism 259

5.6 Graphical assessment of K-metasomatism affecting rocks surrounding other epithermal Au-Ag deposits ... 263
 5.6.1 Gosowong, Indonesia ... 264
 5.6.2 Mt. Muro, Indonesia ... 268
 5.6.3 Cerro Vanguardia, Argentina ... 269
 5.6.4 Golden Cross, New Zealand .. 281
 5.6.5 Hishikari, Japan .. 285
 5.6.6 Bodie, California, USA ... 291
 5.6.7 Sleeper, Nevada, USA ... 292
5.7 Discussion ..293

5.7.1 Potassium metasomatism and associated alteration ...293
5.7.2 Metal and pathfinder elements ...302
5.7.3 Exploration implications ...304

5.8 Conclusions ..307

Chapter 6. Conclusions ...309

References ..316

Appendix I Thin section petrography of hydrothermally altered rocks ..331

Appendix II. 40Ar/39Ar geochronology of adularia, hypogene alunite, and supergene alunite: Complete results of step-heating experiments ..352

Appendix III Descriptions of field stations in underground workings accessing the Quebrada Colorada vein ..375

Appendix IV Depositional sequences (successively banded crustiform deposits) preserved in the Quebrada Colorada vein ..394

Appendix V Description of polished thin sections from the Quebrada Colorada vein400

Appendix VI Microprobe analyses of electrum, carbonate, and sphalerite from the Quebrada Colorada vein ..419

Appendix VII Supplemental geochemical analyses for samples from the Quebrada Colorada vein ..425

List of Tables

Table 2-1 Characteristics of mineral deposits in the Paleocene belt of northern Chile 15
Table 2-2 Whole-rock geochemistry of fresh rocks representative of the stratigraphy hosting the El Peñón deposit ... 19
Table 2-3a Hydrothermal mineral occurrences in altered rocks surrounding the El Peñón deposit - Replacement minerals .. 30
Table 2-3b Hydrothermal mineral occurrences in altered rocks surrounding the El Peñón deposit - Directly deposited minerals...31
Table 2-4 Fluid inclusion data from selected veins in the El Peñón district.................................38
Table 2-5 El Peñón district geochemical data - elements, techniques of measurement, limits of detection, and average and range of values for selected veins, dikes, rhyolite flows and domes, and all rock samples collectively..42
Table 2-6 Trace-metal concentrations of selected veins and surrounding rocks in the El Peñón district..44
Table 2-7 Lateral distribution of trace metals in rocks surrounding the Quebrada Colorada vein..46
Table 2-8 Vertical distribution of trace metals in rocks surrounding the Quebrada Colorada vein..49
Table 3-1 Geochronology sample locations and details...69
Table 3-2 Summary of 40Ar/39Ar geochronologic data for vein adularia, hypogene alunite, and supergene alunite from El Peñón..77
Table 4-1 Composition of carbonate minerals from the Quebrada Colorada vein...............148
Table 4-2 Composition of electrum in the Quebrada Colorada vein..151
Table 4-3 Composition of sphalerite from the Quebrada Colorada vein................................153
Table 4-4 Relationship of vein textures to electrum occurrence and gold and silver grades...155
Table 4-5 Whole-rock geochemical analyses of samples from the Quebrada Colorada Vein...160
Table 4-6 Calculated mineral and metal contents of Quebrada Colorada vein samples.......162
Table 4-7 Trace element composition of the Quebrada Colorada vein....................................164
Table 4-8 Calculated hypogene mineralogy of vein samples..168
Table 4-9 Correlation matrix of metal concentration and calculated gangue composition of vein samples...170

Table 4-10 Fluid inclusion data for the El Peñón deposit..172

Table 4-11 δ18O composition of quartz from the Quebrada Colorada vein......................185

Table 4-12 δ18O composition of water in equilibrium with quartz..................................186

Table 4-13 Temperature and solubilities of SiO2 phases..190

Table 4-14 Saturation of SiO2 phases after boiling from 270° down to 150°C.....................191

Table 4-15 Minimum number of years to deposit SiO2 and Au in the Quebrada Colorada Vein...192

Table 5-1 Whole-rock geochemistry of rocks surrounding the El Peñón deposit..............225

Table 5-2 Trace metal and pathfinder element geochemistry of rocks surrounding the El Peñón deposit..227

Table 5-3 Elemental mass changes for altered rocks surrounding the El Peñón deposit......231

Table 5-4 Correlation matrix showing the relationship between mass changes of major oxides and selected trace elements in rocks surrounding the El Peñón deposit.........................234

Table 5-5 Whole-rock geochemical analyses of altered rocks from the Kawerau geothermal system, Taupo Volcanic Zone, New Zealand...247

Table 5-6 Whole-rock geochemical analyses of altered rocks from the Waiotapu geothermal system, Taupo Volcanic Zone, New Zealand...249

Table 5-7 Whole-rock geochemical analyses of altered rocks from the Broadlands-Ohaaki geothermal system, Taupo Volcanic Zone, New Zealand...250

Table 5-8 Elemental mass changes in altered rocks from the Kawerau geothermal System...253

Table 5-9 Elemental mass changes in altered rocks from the Waiotapu geothermal System...254
Table 5-10 Elemental mass changes in altered rocks from the Broadlands-Ohaaki geothermal system

Table 5-11 Whole-rock geochemical analyses of altered rocks from the Gosowong epithermal Au-Ag deposit, Indonesia

Table 5-12 Whole-rock geochemical analyses of altered rocks from the Mt. Muro epithermal Au-Ag deposit, Indonesia

Table 5-13 Whole-rock geochemical analyses of altered rocks from the Cerro Vanguardia epithermal Au-Ag deposit, Argentina

Table 5-14 Whole-rock geochemical analyses of altered rocks from the Golden Cross epithermal Au-Ag deposit, New Zealand

Table 5-15 Whole-rock geochemical analyses of altered rocks from the Hishikari epithermal Au-Ag deposit, Japan

Table 5-16 Whole-rock geochemical analyses of rocks from the Bodie epithermal Au-Ag deposit, California, USA

Table 5-17 Whole-rock geochemical analyses of altered rocks from the Sleeper epithermal Au-Ag deposit, Nevada, USA

Table I-I Summary of X-ray diffraction analyses of hydrothermally altered rocks at El Peñón

Table V-I Macroscopic textures and mineral identified in hand samples from the Quebrada Colorada vein

Table V-II Microscopic textures and adularia occurrence in samples from the Quebrada Colorada vein

Table VI-I Electrum composition determined by EPMA

Table VI-II Carbonate composition determined by EPMA

Table VI-III Sphalerite composition determined by EPMA
Table VI-IV Estimated sulfosalt compositions determined by EPMA ..424

Table VII Supplemental geochemical analyses for samples from the Quebrada Colorada Vein ..426
List of Figures

Figure 1-1 Location of the Paleocene belt and El Peñón deposit, northern Chile.................1
Figure 2-1a Location of the Paleocene belt and the El Peñón district, northern Chile...........13
Figure 2-1b Location of epithermal and porphyry Cu deposits in the Paleocene belt of northern Chile and the boundary of Minera Meridian’s El Peñón property.........................13
Figure 2-2 Geologic map of the El Peñón district ...17
Figure 2-3 AFM diagram for fresh rocks representative of the stratigraphy hosting the El Peñón deposit..20
Figure 2-4 Total alkali-silica diagram for fresh rocks representative of the stratigraphy hosting the El Peñón deposit...20
Figure 2-5 Distribution of alteration and mineralisation in the El Peñón district..................23
Figure 2-6 Location of El Peñón ore bodies and mine area geology.................................26
Figure 2-7 Average trace-metal concentrations in rhyolite flows and domes, andesite dikes, quartz veins, quartz-barite veins, and calcite-siderite veins from the El Peñón district...43
Figure 2-8 Lateral geochemical gradients in rocks surrounding veins in the El Peñón district..45
Figure 2-9 Lateral geochemical gradients in rocks surrounding the Quebrada Colorada Vein...47
Figure 2-10 Vertical geochemical gradients in rocks surrounding the Quebrada Colorada Vein...50
Figure 2-11 Distribution of trace metals in rocks of the El Peñón district.............................51
Figure 3-1a Location of the Paleocene belt and the El Peñón district, northern Chile.........63
Figure 3-1b Location of epithermal and porphyry Cu deposits in the Paleocene belt of northern Chile and the boundary of Minera Meridian’s El Peñón property.......................63
Figure 3-2 Geologic map of the El Peñón district...65
Figure 3-3 Geochronological results of $^{40}\text{Ar}/^{39}\text{Ar}$ step-heating experiments on adularia from the Quebrada Colorada, Quebrada Orito, and Cerro Martillo veins of the El Peñón deposit ...78

Figure 3-4 Geochronological results of $^{40}\text{Ar}/^{39}\text{Ar}$ step-heating experiments on hypogene alunite from Cerro Pan de Azúcar and Lagarto ..81

Figure 3-5 Geochronological results of $^{40}\text{Ar}/^{39}\text{Ar}$ step-heating experiments on supergene alunite from Encantada, Melinda, Pan de Azúcar Sudeste, and Quebrada Colorada84

Figure 3-6 Summary and comparison of ages for vein adularia, hypogene alunite, and supergene alunite in the El Peñón district ..86

Figure 4-1a Location of the Paleocene belt and the El Peñón district97

Figure 4-1b Location of epithermal and porphyry Cu deposits in the Paleocene belt of northern Chile and the boundary of Minera Meridian’s El Peñón property..........................97

Figure 4-2 Geologic map of the El Peñón district ..99

Figure 4-3 Mine area geology and location of the El Peñón ore bodies101

Figure 4-4 Longitudinal projection of the Quebrada Colorada 5 g/t Au equivalent gradeshell, host rock geology, and location of samples of this study ...106

Figure 4-5 Distribution of Au and Ag in the Quebrada Colorada vein109

Figure 4-6 Plan view maps of mining levels from the Magenta segment of the Quebrada Colorada vein ..112

Figure 4-7 Plan view maps of mining levels from the Escarlata segment of the Quebrada Colorada vein ..114

Figure 4-8 Plan view maps of mining levels from the Carmin segment of the Quebrada Colorada vein ..116

Figure 4-9 Mining levels 1680-1682 m asl in the Quebrada Colorada vein showing common relationships among the Magenta, Escarlata, Carmin, and Carmin Sur segments118
Figure 4-10 Plots comparing dip, width, dip direction (strike), and Au grade-thickness (Au GxT) in the Magenta, Escarlata, and Carmin segments of the Quebrada Colorada vein..120

Figure 4-11 Lower hemisphere projection of fault planes and slickenside measured in the Quebrada Colorada mine workings..123

Figure 4-12 Map of part of the 1652 mine level in the Magenta segment of the Quebrada Colorada vein..126

Figure 4-13 Composite picture of the active mining face in the Magenta segment showing the location of samples collected for detailed study and description of vein minerals and textures across the width of the vein..129

Figure 4-14 Composite picture of the back in the Escarlata segment showing the location of samples collected for detailed study...131

Figure 4-15a,b Composite pictures of the back at two locations in the Carmin segment showing the location of samples collected for detailed study..133

Figure 4-16 Composite picture of the active mining face in the Carmin Sur segment showing the location of samples collected for detailed study..135

Figure 4-17 Quartz vein sample from the Carmin segment, mine level 1696..137

Figure 4-18 Quartz vein sample from the Escarlata segment, mine level 1663.................................139

Figure 4-19 Map of vein textures and relative timing of vein filling minerals for a sample from the Magenta segment, mine level 1762..140

Figure 4-20 Well preserved crustiform banded vein from the Carmin Sur segment, mine level 1682...141

Figure 4-21 Longitudinal section of the Quebrada Colorada vein showing the distribution of vein minerals and textures..142

Figure 4-22 Diverse quartz textures from the Quebrada Colorada vein..143

Figure 4-23 Colloform texture with distinctive tubular forms..146
Figure 4-24a Bladed and acicular carbonate minerals deposited on coarse adularia..............148
Figure 4-24b Bands of carbonate minerals with bladed to fan-shaped texture......................148
Figure 4-25 Ternary diagrams showing the composition of carbonate minerals analysed by EPMA...150
Figure 4-26 Longitudinal section of the Quebrada Colorada vein showing the distribution of visible gold (electrum) and sulfide minerals..151
Figure 4-27 Location of fluid inclusion samples and temperatures of homogenisation from the Quebrada Orito, Quebrada Colorada, and Cerro Martillo ore bodies.................................175
Figure 4-28 Fluid inclusion T_h versus T_m diagrams for quartz from the Quebrada Colorada vein..177
Figure 4-29 Fluid inclusion T_h versus T_m diagram for quartz from the Cerro Martillo Vein...179
Figure 4-30 Fluid inclusion T_h data from the Quebrada Colorada vein sorted by elevation and compared to hydostatic, hydrodynamic, and lithostatic boiling point for depth curves........181
Figure 4-31 Fluid inclusion T_h data from the Quebrada Orito vein sorted by elevation and compared to hydostatic, hydrodynamic, and lithostatic boiling point for depth curves........182
Figure 4-32 Fluid inclusion T_h data from the Cerro Martillo vein sorted by elevation and compared to hydostatic, hydrodynamic, and lithostatic boiling point for depth curves........183
Figure 5-1 Schematic cross section through a hydrothermal system of the Taupo Volcanic Zone, New Zealand...205
Figure 5-2a Variation with temperature and salinity of the concentration of solute species in a hydrothermal solution in equilibrium with rock comprised of albite, K-feldspar, K-mica, clinohlore, and Ca-zeolite..208
Figure 5-2b Effects of boiling, cooling, mixing, and heating on the stability of hydrothermal minerals..208
Figure 5-2c Relative proportion of alkali ions produced or consumed (-) during isothermal equilibration of a solution with a given Na\(^+\)/K\(^+\)-activity ratio with respect to the full equilibrium assemblage containing albite and K-feldspar.................................208
Figure 5-3 Molar element ratio plot: (2Ca+Na+K)/Al versus K/Al..216
Figure 5-4a Location of the Paleocene belt and the El Peñón district, northern Chile...........221
Figure 5-4b Location of epithermal and porphyry Cu deposits in the Paleocene belt of northern Chile and the boundary of Minera Meridian’s El Peñón property..221
Figure 5-5 Geologic cross sections and sample locations and their spatial relationship to vein ore bodies of the El Peñón deposit, northern Chile...223
Figure 5-6 Zr/TiO\(_2\) ratios from altered and average fresh rocks surrounding the El Peñón deposit ..228
Figure 5-7 Molar ternary diagrams comparing the composition of rocks surrounding the El Peñón deposit to the stable hydrothermal minerals characteristic of the neutral pH epithermal environment...230
Figure 5-8 Silicon, potassium, sodium, and calcium mass changes in altered rocks surrounding mineralised veins at El Peñón...233
Figure 5-9 Trace metal and epithermal pathfinder element mass changes in altered rocks surrounding mineralised veins at El Peñón...237
Figure 5-10 Base metal mass changes in altered rocks surrounding mineralised veins at El Peñón...239
Figure 5-11a Molar (2Ca+Na+K)/Al versus K/Al plot for rocks surrounding the El Peñón deposit...240
Figure 5-11b Molar K/(2Ca+Na+K) versus metals and pathfinder elements for rocks surrounding the El Peñón deposit...240
Figure 5-12 Geothermal systems of the Taupo Volcanic Zone, New Zealand...............243
Figure 5-13 Molar ternary diagrams comparing the composition of rocks from the Broadlands-Ohaaki geothermal system to the stable hydrothermal minerals characteristic of the neutral pH epithermal environment...252

Figure 5-14 Silicon and potassium mass changes in altered rocks from the Kawerau, Waiotapu, and Broadlands-Ohaaki geothermal systems...257

Figure 5-15 Sodium and calcium mass changes in altered rocks from the Kawerau, Waiotapu, and Broadlands-Ohaaki geothermal systems...258

Figure 5-16 Base metal and epithermal pathfinder element mass changes in altered rocks from the Broadlands-Ohaaki geothermal system...260

Figure 5-17a Molar 2Ca+Na+K/Al versus K/Al plots for rocks from the Kawerau geothermal system...261

Figure 5-17b Molar 2Ca+Na+K/Al versus K/Al plots for rocks from the Waiotapu geothermal system...261

Figure 5-17c Molar 2Ca+Na+K/Al versus K/Al plots for rocks from the Broadlands-Ohaaki geothermal system...261

Figure 5-17d Molar K/(2Ca+Na+K) versus metals and pathfinder elements for rocks from the Broadlands-Ohaaki geothermal system...261

Figure 5-18a Geology, alteration zoning, and spatial relationship between vein ore bodies and molar K/(2Ca+Na+K) at the Gosowong epithermal Au-Ag deposit, Indonesia.................267

Figure 5-18b Molar (2Ca+Na+K)/Al versus K/Al plot and molar (2(Ca-CO\textsubscript{2})+Na+K)/Al versus K/A plot for rocks surrounding the Gosowong epithermal Au-Ag deposit, Indonesia...267

Figure 5-18c Molar K/(2Ca+Na+K) versus metals and pathfinder elements for rocks surrounding the Gosowong epithermal Au-Ag deposit, Indonesia.........................267

Figure 5-19a Geology, alteration zoning, and spatial relationship between vein ore bodies and molar K/(2Ca+Na+K) at the Mt. Muro epithermal Au-Ag deposit, Indonesia.........................272
Figure 5-19b Molar 2Ca+Na+K/Al versus K/Al plot and molar (2(Ca-CO_{2})+Na+K)/Al versus K/A plot for rocks surrounding the Mt. Muro epithermal Au-Ag deposit, Indonesia.
Figure 5-19c Molar K/(2Ca+Na+K) versus metals and pathfinder elements for rocks surrounding the Mt. Muro epithermal Au-Ag deposit, Indonesia.

Figure 5-20a Geology, alteration zoning, and spatial relationship between vein ore bodies and molar K/(2Ca+Na+K) at the Cerro Vanguardia epithermal Au-Ag deposit, Patagonia, Argentina.

Figure 5-20b Molar 2Ca+Na+K/Al versus K/Al plot for rocks surrounding the Cerro Vanguardia epithermal Au-Ag deposit, Patagonia, Argentina.

Figure 5-20c Molar K/(2Ca+Na+K) versus metals and pathfinder elements for rocks surrounding the Cerro Vanguardia epithermal Au-Ag deposit, Patagonia, Argentina.

Figure 5-21a Geology, alteration zoning, and spatial relationship between vein ore bodies and molar K/(2Ca+Na+K) at the Golden Cross epithermal Au-Ag deposit, Coromandel Peninsula, New Zealand.

Figure 5-21b Molar 2Ca+Na+K/Al versus K/Al plot for rocks surrounding the Golden Cross epithermal Au-Ag deposit, Coromandel Peninsula, New Zealand.

Figure 5-21c Molar K/(2Ca+Na+K) versus distance to vein for rocks surrounding the Golden Cross epithermal Au-Ag deposit, Coromandel Peninsula, New Zealand.

Figure 5-22a Geology and alteration zoning at the Hishikari epithermal Au-Ag deposit, Japan.

Figure 5-22b Molar (2Ca+Na+K)/Al versus K/Al plot for rocks surrounding the Hishikari epithermal Au-Ag deposit, Japan.

Figure 5-22c Molar K/(2Ca+Na+K) versus distance to vein for rocks surrounding the Hishikari epithermal Au-Ag deposit, Japan.
Figure 5-23a Geology and alteration zoning at the Bodie mining district, Mono County, California, USA...294

Figure 5-23b Molar 2Ca+Na+K/Al versus K/Al plot for rocks from the Bodie mining district, Mono County, California, USA...294

Figure 5-24a Alteration zoning and spatial relationship between vein ore bodies and molar K/(2Ca+Na+K) at the Sleeper epithermal Au-Ag deposit, Humboldt County, Nevada, USA...300

Figure 5-24b Molar 2Ca+Na+K/Al versus K/Al plot for rocks surrounding the Sleeper epithermal Au-Ag deposit, Humboldt County, Nevada, USA...300

Figure 5-24c Molar K/(2Ca+Na+K) versus metals and pathfinder elements for rocks surrounding the Sleeper epithermal Au-Ag deposit, Humboldt County, Nevada, USA......300