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Abstract

Since about 2000, the Internet has become part of our daily lives. IPv4 has been the main

protocol used for the current Internet structure. However, the size of the address space

in IPv4, which limits the number of available addresses does not meet the growth needs

of the Internet. IPv6 is designed to support the accelerated growth of internet enabled

applications and devices. Moreover, this new protocol is expected to solve many prob-

lems in the existing IPv4 networks, and, most importantly, make the Internet more secure.

From the security perspective, IPv6 is similar to IPv4 with larger addresses that may stop

attackers from �nding a target host using only the traditional reconnaissance technolo-

gies. However, such defensive obscurity depends upon how network administrators assign

IPv6 addresses. In this study, we consider the trend of how di�erent address allocation

mechanisms are performed in last �ve years and how feasible it is to discover IPv6 hosts

from the public DNS servers, by launching two large-scale surveys. Our results show that

IPv6 assignment has become more secure compared to the results from the past �ve years.

However, we detected some potential issues in current DNS reverse zone deployment; we

provide some recommendations for planning and deploying IPv6 addresses. Furthermore,

We discussed what are the key architecture considerations for using open source Intrusion

Detection Systems (IDSs) in a high speed network, and how an open source IDS should be

designed to more readily facilitate new emerging IPv6 attacks. We designed and proposed

a new solution for detecting the IPv6 DNS reconnaissance attack. We demonstrated the

feasibility, or otherwise, of implementing this new mechanism in the three IDSs, and we

demonstrated strengths and weaknesses of implementing this new detection approach in

three IDSs. We suggest that IDS developers should release more IPv6 rules or policies to

handle emerging IPv6 threats. All the experimental environments and tools used in this

study are explained in the thesis.
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Chapter 1

Introduction

We live in an increasingly digital world; computer networks in a variety of forms have

become part of our everyday lives. The Internet has changed the lives of the majority of

people. It has given greater opportunities and more markets than people could dream of

before; moreover it has made life easier and accessing media and technology more conve-

nient. But any su�ciently advanced technology always has negative as well as positive

aspects. The positive side of computer networks is increased business opportunities. The

negative side is that signi�cant security issues have emerged.

In the past, only some industries, such as the �nance and manufacturing industries

experienced network security issues with their customers. See Figure 1.1 [4]

Figure 1.1: Cyber-attacks frequency by Industry in 2012 (Source from [4])

However, as network technologies continue to develop, more and more industries will

face security problems. Now, many network users believe that network security has be-

come the top priority of all organisations that want to keep their customer's information

safe and protect their system from serious threats. Figure 1.2 demonstrates the Dis-

tributed Denial of Service (DDoS) a�ect for di�erent industries in 2015.

1
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Figure 1.2: Cyber-attacks frequency by industry in 2012 (Source from [5])

Table 1.1: Some common threats and a few speci�c techniques used for each threat

Threat name Techniques
Reconnaissance Internet Protocol (IP) sweeps, port scanning

Fraud Trojans, Phishing [11] and IP address spoo�ng
Sabotage Viruses and Denial of Service (DoS) [12] attacks
Spying Man-In-The-Middle (MITM) [13] and pervasive monitoring [14]

The number of network security issues (See Table 1.1)has continuously risen since the

year 2000 (Figure 1.3). Nowadays, system integrity and availability are not the only target

of network attacks, instead more and more attacks aim to explore the user information

contained within the system. For instance, in 2013, Ninemsn sta� [15] reported that an

Australian online dating site had been hacked, the attacker harvested 42 million user

records including names, email addresses and unencrypted passwords.

Figure 1.3: Security incidents continue to increase (Source from [6])

In this study, the focus is on the security issues that are exposed by the malicious

launching of attacks via the network infrastructure. A timeline is used to demonstrate

2
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the evolution of attacks that indicate where IPv6 introduces new issues. Moreover the

research questions and thesis structure are presented later in this chapter.

The remainder of this chapter is organised as follows: Section 1.1 explains why the

security attacks are increasing dramatically, what causes the attacks, and how network

security can be improved. Section 1.2 describes the objective of this study, explains why

this is important. The following Section (1.3) shows the area of this study and the related

research question are discussed in Section 1.4. Section 1.5 highlights the contribution

from this study, and the overview of the thesis structure is covered in Section 1.6.

1.1 Where are we in terms of network security?

Figure 1.4: Timeline of the evolution of attacks

Based on annual security reports from McAfee [16] and Symantec [17] for past ten years,
we have identi�ed the following changes:

• Network threats are increasing dramatically: business [18] and government [19] users

have been plagued by a series of network attacks. Moreover, some small and medium

businesses and individuals have been targeted by compromising a system user who

has only limited access to network or administrative resources. A compromised user

can give attackers a beachhead into an organisation from which to mount additional
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attacks on the enterprise from the internal network. Even though multiple solutions

are used to defend against attacks, still attackers �nd new and di�erent methods to

evade them

• Network threats are more intricate: nowadays, the security attacks have become

bene�t-driven ( [11], [20]), the network threats changed from simple ones to dis-

tributed, cooperative and intricate attacks, such as DDoS, worm and DNS ampli�ed

attacks [21]. Figure 1.3 demonstrates the steps towards today's attack trends

• Standardized equipment makes network attacks easier: before the 1990s program-

mers designed speci�c system applications and the network environment for an in-

dividual company. Therefore each company had a di�erent network and operating

system, and if, for instance, you wanted to attack one network, you had to under-

stand its environment. Today most companies use the same hardware components,

with the same or similar operating systems: the only thing that attackers need to

know is the most common systems, such as UNIX, Microsoft, IOS, Android and

Cisco, then they can break into most systems around the world

• Some security tools are using an ine�ective approach: some security tools are not

e�cient for real-time attacks, because these tools are using a "threat-based security"

approach, which needs new worms or attacks to happen, and only then can they

detect or solve future instances of the problem by updating the security database or

policies. However, the damage is already done and the new solution cannot recover

a �le which has been modi�ed or deleted

To summarise the general trend of current network security, the protection task is becom-

ing harder and harder; users are facing an "arms race" scenario between attackers and

system administrators. The existing security tools cannot guarantee to detect and solve

every network attack, but these techniques can be used to reduce risk. Some common

security tools are:

A �rewall allows users to con�gure forwarding policies for dropping unmatched tra�c.

However, some previous studies [22, 23, 24] show that attackers can easily create malicious

tra�c to pass through the �rewall checking. For example, when a �rewall is con�gured

to only forward a packet that contains a particular Transmission Control Protocol (TCP)

port, when this �rewall is presented with a fragmented packet, the �rst fragment does not

contain the port information. In this case, the �rewall may fail to enforce its forwarding

policy; the �rewall allows the subsequent fragments to pass without any checking.

Antivirus programs that aim to detect and defend your computer against attack by

malicious programs. This solution uses signature based detection; each signature contains

special patterns or behaviours that have been learned from previous attacks. Antivirus

programs are useful to detect already known attacks or their slight variations, but not

the new ones or malicious variations that defeat the pattern recognition engine.

Encryption software that uses digital signatures or security certi�cates to protect data

con�dentiality and integrity, so that the encrypted data cannot be read or modi�ed with-
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Figure 1.5: The percentage of users that access Google over IPv6 (Source from [7])

out the correct keys or certi�cates.

Authentication is the process to con�rm identity or ownership. For instance, an online

bank can con�rm a person's ownership of the data by validating their username and

password.

Intrusion detection systems that analyze network activities to detect malicious actions

and behaviours that can compromise the security of a network host; they use default or

user de�ned rules that try to �nd malicious behaviours from incoming and outgoing

packets. If any packet matches a de�ned rule, the system either logs the incidents or

sends the alarm to the administrators based on the system con�guration.

1.2 Objective
Standardised in 1998, IPv6 is a new protocol for the future network. We observe that

IPv6 has been deployed more rapidly since 2009. Figure 1.5 shows that the number of

IPv6 users increases every year. Therefore, we believe that analyzing network behaviours

in IPv6 networks will yield signi�cant results, which will help us to better understand the

potential network security issues in IPv6 networks.

1.3 Areas of study
There are still some issues in IPv6 protocol deployment to examine and also some

areas in which to research new security issues in IPv6. First, a brief description of issues is

presented here. Some existing IPv4 security problems will extend to the IPv6 environment,

and some common attacks will still occur in the IPv6 network, such as XSS, SQL injection,

because these kind of attacks happen in the application layer, the issues will still be

present when change happens in the network layer only. Normally, the application layer

attacks will gather system information and exploit existing software bugs or crash the

system by attacking system vulnerabilities. This is usually done by scanning the system

information, searching the system vulnerability information, then sending special packets

to trigger system crashes or to access the system via some existing ports then installing
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back doors. Then they can easily access the system at some later date. For example, a

backdoor attack is a typical logical threat, which lets attackers control a user's computer

via the Internet without their permission. Attackers normally hide the backdoor Trojan

as legitimate software or a link in spam E-mail. When the user runs the Trojan, it will

automatically add itself to the computer startup register, so the attackers can monitor

and control the computer whenever the user is using the Internet.

Immature IPv6 products: some �rewalls still do not know how to handle IPv6 ex-

tension headers correctly [25]. That leaves two choices for network administrators: drop

all IPv6 packets that contain an unrecognised extension header type, or allow packets

containing unknown extension headers. The former choice is an undesirable compromise

in service terms, while the latter creates a security concern.

IPv6 vulnerabilities: IPv6 brings in some new features, such as the big address space

that reduces the address exhaustion issue, the address allocation becomes easier and sim-

pler through the stateless autocon�guration mechanism, but we need to deal with some

security concerns when we want use these features. For example, in IPv6 the stateless

auto-con�guration approach, the EUI-64 address allocation mechanism exposes user ac-

tivities by using the constant Interface Identi�er �eld when moving from one subnet to

other subnets. Moreover, the stateless auto-con�guration approach may introduce other

issues, for instance:

Address accountability: IPv6 is similar to IPv4 with larger addresses. From the se-

curity point of view, there is no signi�cant di�erence between IPv4 and IPv6. In some

scenarios, IPv6 is slightly more secure, technologies such as CGA can be used for reducing

the address spoo�ng attacks, the privacy IPv6 address allocation mechanism makes the

traditional address scanning attack less feasible. However, many studies [26, 27, 28] have

observed that there are numerous ways for attackers to reduce address scanning space by

using common patterns in the Interface Identi�er (IID) �eld. For example the EUI-64

allocation mechanism introduces two common patterns that cut down the search space in

the IID �eld. More detail is given in Section 3.2.1.1.

Duplicate Address Detection (DAD) �ooding attack: a new machine may send a DAD

request to check whether a address is already used or not. If attackers on the same link

respond to all the DAD checks by saying "I own this address", this will stop the new

machine from getting a globe IPv6 address and generate a new DoS attack in the IPv6

network. More detail can be found in Section 2.4.1.2.

Router advertisement spoo�ng attack: the attackers can spoof the router advertise-

ment messages to modify the routing table at a victim PC, which could redirect all tra�c

to pass to a host controlled by the intruder. More detail in the Section 2.4.1.3.

Leveraging DNS Reverse Zone: because traditional address probing had less success in

IPv6 networks, attackers started to search for new ways to gain host address information.

Chown et al. [28] believe the DNS server will become a new target for attackers wishing to

explore IPv6 addresses. For instance, Van Dijk [26] discovered that DNS reverse mappings
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can be used for discovering IPv6 nodes. He disclosed that the attacker only needs to walk

through the target `ip6.arpa' zone by issuing queries for Pointer Record (PTR) records

corresponding to the domain name. More detail can be found in section 3.1.3.

Neighbour Discovery (ND) cache exhaustion: In [29], Gashinsky et al. discussed a

potential denial of service condition against the router that performs address resolution

on a large number of destination addresses. In IPv6, the subnets are quite big, most

existing devices only save assigned addresses. The ND cache table can be prematurely

exhausted by sending a larger number of Internet Control Message Protocol version 6

(ICMPv6) NA responses. More detail of ND cache exhaustion can be found in Section

2.3.1.5.

Co-existence/transition mechanisms vulnerabilities: the transition solutions are cur-

rently part of the migration plans for using IPv4 and IPv6 environments in parallel, which

allows two IPv6 machines to communicate over an IPv4-only network. However, recently

some issues have been found in these proposed solutions [30, 31], such as how to pre-

vent a DoS attack on a stateful translation gateway, or how to reduce memory usage

by maintaining double routing tables for dual stack solutions. More detail of transition

mechanisms vulnerabilities can be found in 2.3.4.

As we mentioned above, many studies [32, 33] have researched what potential issues

will appear in the IPv6 network. However, most of these studies believe that the recon-

naissance attack will be less feasible in the IPv6 network because of the 128-bit address

space. For instance, they claim that it is infeasible to scan a /64 network in a short

period. In [24], Chown suggests that if an attack sends a probe per second, it will take

500,000 years to complete a search of a 264 address space. However, while we believe the

old address scanning techniques may be less successful in IPv6, that does not mean no

new techniques will be created. Nowadays, the amount of malicious tra�c is increasing

and new attacks are observed every year. Many new IPv6 attacks have been observed in

previous studies [29, 34, 35], so it is reasonable to do research that compares the similari-

ties and di�erences between IPv4 and IPv6 attacks, in order to assist in the identi�cation

of new security issues in IPv6 networks. Understanding these vulnerabilities will help in

planning and deploying an IPv6 network successfully. Furthermore, this research is in-

tended to identify which security tool could be chosen to most e�ectively detect malware

in its earliest phase. There are some existing solutions on the market, such as �rewalls

that can �lter inbound network tra�c, Antivirus software used to stop worms and similar

malware, authentication requirements that introduce an access control mechanism, and

VPNs that encrypt data�ow between headquarters and agencies over the Internet. How-

ever, some mechanisms have limitations in detecting attacks from the internal network,

while others cannot inspect the contents of data packets. It is important to put in a

second, but not secondary, line of defence: an IDS which helps network administrators

to detect unwanted tra�c passing through a network or being forwarded to a particular

device. The IDS can be applied at either software or hardware level. It monitors and
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detects intrusion activities or events, for instance illegal and malicious tra�c or tra�c

that violates a security policy.

1.4 Research questions

After the above brief explanation of our motivation, we raise the following questions:

Q1: What are the main di�erences between IPv4 and IPv6 attacks? What kinds of

new attacks may be seen?

Q2: How will reconnaissance attacks change in IPv6 networks?

Q3: What are the key architectural considerations for open source IDSs as network

operating speeds increase?

Q4: How should an open source IDS be designed to more readily facilitate the inter-

ception of newly emerging IPv6 attacks?

1.5 Contributions

From this study come several scienti�c contributions that have not been investigated

in the real IPv6 network environment before, but may help users to better understand the

potential security vulnerabilities of existing IPv6 deployments. In addition, the strengths

and weaknesses of using IDS solutions in a high speed network and IPv6 environments

are demonstrated. It is very important to understand these weaknesses, as that can help

in planning and deploying an IPv6 network successfully. This study:

1. Provides detailed analysis on whether network administrators were aware of the risk

of IPv6 reconnaissance attacks. There have been many studies that have mentioned

DNS reconnaissance attacks [26, 28], but this study demonstrated by launching a

survey crossing �ve regions and �fty countries that DNS reconnaissance is still ef-

fective in IPv6. Moreover, it presented the trend of address allocation mechanisms

usage during the last �ve years (2009-2014); the trend shows that IPv6 client ad-

dresses are increasingly being assigned by a randomized IID allocation mechanism,

as network administrators become aware of the need to use non-predictable pat-

terns for IPv6 clients. Furthermore, existing tools (Metasploit, Nmap or Nessus)

were tested in use to simulate new IPv6 attacks in an experimental environment;

most such tools (Nmap or Metasploit) were not able to launch new IPv6 attacks.

However, some new tools have been introduced, such as

• THC-IPv6: The toolkit provides many programs to access the IPv6 vulner-

abilities, such as fakerouter6 which can fake the RA response and announce

itself as a router on a network. Again the �oodroute6 will send random RAs to

�ood the target device. The parasite6 can launch a MITM by sending ICMPv6

neighbor solitication/advertisements

• SI6 Networks' IPv6 Toolkit: This package aims to help both IPv6 vendors im-

prove the security and resiliency of their products, for instance: frag6 provides
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accessing IPv6 fragmentation and reassembly function, it can be used for either

�ooding a target or accessing the fragment reassembly policy of a given node

• Linux Kali: this is a package that contains a large number of penetration

testing tools. This toolkit provides various test cases for IPv4 and IPv6

2. Snort, Bro and Suricata were shown to have good support for detecting the most

common attacks in IPv6 environment, such as port scanning, TCP SYN scanning,

etc. However, none of them detect the IPv6 DNS reconnaissance attack or new IPv6

attacks. In this thesis, a new solution is designed and proposed for detecting IPv6

DNS reconnaissance attacks. The feasibility of implementing this new mechanism

in the three IDSs was investigated and commented upon. Additional information is

provided on the limitations of implementing the new mechanism in Snort.

3. We have summarised similarities and di�erences between IPv4 and IPv6 attacks,

by comparing the existing attacks and new attacks, it was observed that most at-

tacks share some common strategies. In particular a reconnaissance attack is an

initial step toward �nding hosts or system vulnerabilities. Spoo�ng attacks have

been detected in both IPv4 and IPv6 as well as DoS attacks. Furthermore, IPv6

was found to be structurally similar to IPv4 but with larger addresses. From the

security point of view, there are no signi�cant di�erence between IPv4 and IPv6. In

some scenarios, IPv6 is slightly more secure, technologies such as Cryptographically

Generated Addresses (CGA) can be used to reduce the address spoo�ng attacks,

the privacy IPv6 address allocation mechanism makes the address reconnaissance

attack less feasible. However, in other cases IPv6 introduces new attacks, for in-

stance the extension header attack, the ND cache exhaustion attack and the ND

spoo�ng attack.

4. The current study provides a thorough investigation on the behaviour of launching

each IDS on a high speed network. This provides deep understanding on whether the

existing features are able to handle 10 Gb/s network tra�c, and how they behave

in various network circumstances. The investigation demonstrated the strengths

and weaknesses of di�erent con�gurations on a high speed network and provided

indicators of how future IDSs should be designed to be compatible with the high

speed network.

1.6 Structure of thesis
Chapter 1 provides brief background information on security issues. The basic security

concepts are explained with an introduction to existing security issues and a discussion of

some common solutions for preventing network attacks. In addition, the motivation for

and contribution by this study are discussed in this chapter.

Chapter 2 answers research question one by comparing the existing IPv4 attacks and

new IPv6 attacks, it is noted that IPv6 is similar to IPv4 with larger addresses. Some

common security issues in IPv4 networks are reviewed. Next, new security issues within

IPv6 are discussed followed by some new tools are used for launching new IPv6 attacks.
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Moreover, it is shown why a reconnaissance attack is the �rst phase of launching a success-

ful attack, and why the traditional reconnaissance attack becomes less feasible, if the IPv6

host uses a randomized address allocation mechanism. Finally, the alternative solutions

for launching an IPv6 reconnaissance attack are brie�y discussed.

Chapter 3 answers research question two, with a discussion of the possibilities of

launching an address scanning attack in a remote IPv6 network. It is brie�y explained

why traditional address scanning attacks are less feasible in an IPv6 network and some

new IPv6 address scanning techniques that have been proposed from the previous studies

are reviewed, such as reducing the address searching space by observing the predictable

patterns from the IID �eld and gathering IPv6 host addresses from the DNS reverse

zone. Two large scale surveys for demonstrating the feasibilities of doing the address

accountability and DNS reverse searching in the current IPv6 network were carried out.

Moreover, some existing reconnaissance tools (Nmap, Metasploit) used in IPv6 networks

for launching IPv6 reconnaissance attacks were tested, none of them are able to do "brute-

force" address-scanning attacks in an IPv6 network.

Chapter 4 presents an overview of the use NIDS of and HIDS in network security

solutions and outlines the similarities and di�erences between both solutions. Also ex-

plained are the signature based and anomaly based IDSs based on the design architectures

followed by the pros and cons of two IDS approaches.

Chapter 5 explores the overview of three IDSs (Snort, Bro and Suricata) as well as

architectures and algorithms to process the incoming packets. It also demonstrates the

similarities and di�erences of the packet capturing mechanisms that are used in the three

IDSs.

Chapter 6 answers research question 3 and 4 and an overview of three popular open-

source IDS is provided along with their comparative performance benchmarks. The fea-

sibility of using any of the three IDSs in a high speed network is then evaluated. The

limitation of using each of the three IDSs with the default con�guration in the high speed

network is demonstrated, and recommendations are made of how future IDSs should be

designed to be compatible with high speed networks. These include: multi-threading,

more e�cient packet capture methods and handling encrypted tra�c. Moreover, when

the existing detection mechanisms in the three IDSs are analysed and evaluated, it is

shown that none of them are able to detect the IPv6 DNS reconnaissance attack or new

IPv6 attacks. This strongly suggests that IDS developers need to put more emphasis on

IPv6 detection mechanisms in future releases.

Chapter 7 presents the results and conclusions of the study. Further research topics

are then discussed.
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Chapter 2

Literature Review

Network security did not �gure prominently during the early stages of network develop-

ment, but because information technology grows quite quickly, businesses, banks, schools,

and individuals have been especially frequent targets of network attacks. People who

use the Internet are forced to protect their property and information from continual at-

tacks by Trojan Horses [36], Password Cracking [37], Denial of Service (DoS) [38] attacks

and Address Resolution Protocol (ARP) poisoning [39] attacks, etc. When we reviewed

current security issues [19, 40, 41], we noticed that some existing attacks leverage de�-

ciencies in current protocols: that is to say, some security concerns were not considered

at the time of writing of the protocol RFCs and other security issues were introduced

during the period in which the network was developed and deployed. Fine nuances be-

tween speci�cations and particular implementations can be exploited by attackers. In

this chapter, we brie�y discuss the security issues that still appear in both IPv4 and IPv6

networks with their possible solutions, and then we highlight new security issues in IPv6

networks. Understanding these vulnerabilities will help us in planning and deploying an

IPv6 network successfully. The remainder of this chapter is organised as follows: Sec-

tion 2.1 explains the primary goals of launching attacks based on con�dentiality, integrity

and availability Section 2.2 discusses the security issues related to both upper layer and

network layer protocols, we explain that why those existing attacks still happen in IPv6

networks Section 2.3 demonstrates what new issues are observed in IPv6 networks, such as

ND cache exhaustion attacks, or extension header attacks Section 2.4 shows our �ndings

and conclusions

2.1 Common reasons for launching an attack
Today's attacks are launched primarily to obtain secret and restricted information

from users system [19, 40]. The disclosure of such information could expose customer

privacy information, disrupt business planning, and or threaten national security. By

reviewing some recent papers [36, 37, 38], we classi�ed well-known attacks into three

categories, based on the purposes of the attack.

• Interruption: most online services need to be available 24/7 for authorized users
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to access when they need them. This availability can be a�ected by attackers who

launch attacks to make the system unusable: for example, Denial of Service (DoS)

and Distributed Denial of Service (DDoS) attacks are examples of interruption at-

tacks. This type of attack breaks the system availability

• Interception: some data should be hidden from unauthorized users, such as user-

names, passwords, or personal information. However, some attackers are able to

see and store that private data by monitoring tra�c between legitimate users: for

example, Man in the Middle (MITM) attack. This type of attack breaks the system

con�dentiality

• Modi�cation: some threats do not bring a system down, but access the system

through system vulnerabilities then modify or delete system resources, such as user

information or some important data. This type of attack breaks the system integrity

2.2 Common attacks against the existing networks
If we could have predicted the explosion of the Internet in the early 90s we would have

incorporated more security measures into its design. For the original design of the Internet

protocols, designers gave only minor consideration to security; in fact, some applications

do not follow recommended speci�cations of how the protocol should be implemented,

hence most existing attacks are against protocol vulnerabilities and application weak-

nesses. In this section, we discuss some common attacks that happen in IPv4, but also

appear in IPv6 networks. We start from the application layer vulnerabilities and move to

the network layer vulnerabilities.

2.2.1 Application vulnerabilities
Numerous application attacks focus on the violation of con�dentiality and integrity,

these include web application injection attacks [42], virus and worm propagation attacks

[43], and memory overloading attacks [44].

Hypertext Transport Protocol (HTTP) [45] is the core protocol for creating commu-

nication channels between users and online service providers. However, some existing

con�guration settings do not analyse the content of HTTP transmissions. Some previous

studies have demonstrated [46, 47, 48] that insecure settings lead to attackers breaking

websites by using some well-known strategies: the Cross-Site Scripting (XSS) attack and

the Structured Query Language (SQL) injection attack are examples.

The XSS attack [49] allows attackers to bypass the access policy from web sites al-

lowing them to gain permissions for modifying the resources on the system. For instance,

attackers can inject an innocent-looking Universal Resource Locator (URL) into a sub-

mission request that contains XSS vectors. If a victim clicks the link, it will trigger the

browser to execute the embedded malicious script inside that link. Another criterion oc-

curs when a website allows unauthorized users to post a HyperText Markup Language

(HTML) formatted message without proper security checking of the message contents.

For example, if an attacker uploads malicious codes that appear as 'normal data' to a
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server, the server will permanently display this data. If an unsuspecting user visits that

webpage, the user's browser will receive the malicious script and execute it automatically.

The XSS attack is a classic attack that injects malicious scripts into web servers and

launches attacks on the client side.

An SQL injection attack [50] targets an SQL server that allows unauthorized users to

inject SQL commands. Normally, attackers �nd websites that require usernames, pass-

words and email addresses to launch this attack. For example, if an attacker enters a

�ctitious email address with a single quotation mark as part of the data and the sys-

tem responds with an Email address unknown message, it indicates that the SQL server

has implemented �ltering mechanisms and the attacker can't inject malicious SQL com-

mands. But if the system shows a server failure message, it shows the attacker that an

SQL injection attack can be launched in this site. In general, the attacker sends the SQL

statements as user input and extracts the user information from the database, or modi�es

the existing data inside the database.

In last decade, XSS and SQL injection attacks have been widely used and pose a signif-

icant risk to web applications, such as Talk Talk [19] incident, where the personal records

of over 150,000 customers were compromised in an attack on British telecom company

TalkTalk. Many existing solutions, such as [51] and [52] have been proposed to detect

and prevent the vulnerabilities that are exploited by the XSS and SQL injection attacks.

For instance, [51] proposed a Cross-Site Scripting Secure Web Application Framework

(XSS-SAFE), Gupta et al. inspect the features of JavaScript, generate rules and insert

sanitization routines for detecting and mitigating XSS attacks. Singh et al. [52] suggest

creating a cryptographic hash function for generating a username and password �eld. The

client enters the username and password for the server side veri�cation, only valid users

can then access the database.

Virus propagation: Recently, more and more attacks are observed in which a Trojan

Horse program is injected into a user's PC. The name `Trojan Horse' comes from an old

Greek story, which tells of how Odysseus and his soldiers hid in a giant wooden horse and

conquered Troy when the defenders pushed it inside their own walls. Nowadays, `Trojan

Horse' means that attackers embed some malicious code in some existing application or

create a program that functions as a normal application, but contains some abnormal

behaviours. When victims download these programs from some unauthorized websites

and install one on their systems, the malicious codes run automatically. Again, a Trojan

Horse program behaves in the same way as the legitimate program, but it performs some

extra functions, such as tracking the user's activities, recording sensitive information,

opening a trap door or cracking passwords. We introduce two common Trojan Horse

attacks as follows:

Password cracking [37]: refers to some applications that decipher password �les. Pass-

word cracking programs use well-known dictionaries to generate a guessed password, and

compare the result to each record in the password �le. When a match is found, the
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password is found.

Backdoor attack [53]: describes a Trojan Horse program that opens illegal remote

access for an attacker, which will allow the attacker to access the computer bypassing

normal authentication processing. Also, the attacker can gain privileged access to view

system resources on the targeted computer. These types of attacks are hard to detect,

and their in�uence can be both serious and widespread.

Nowadays, password cracking and backdoor attack incidents are being detected almost

daily, such as in 2014, Hugh Son and Michael Riley [40] reported that a J.P. Morgan

Chase & Co. server had been cracked through an employee password, hackers exploited

and accessed information from 76 million households and 7 million small businesses. One

year later, Juniper discovered �unauthorized� code [54] in some �rewall products, which

would allow attackers to take complete control of Juniper NetScreen �rewalls running the

a�ected software. By reviewing the previous studies [55, 56], many solutions have been

proposed to detect and prevent these password or backdoor vulnerabilities. Gutierrez et al.

[55] used a physically unique function or a hardware security module at the authentication

server, the new solution stops the password cracking by checking the physical access to the

authentication server. Alminshid et al. [56] proposed a Stepping Stone Detection (SSD)

approach to detect backdoor attacks by checking the directionality and inter arrival time

of packets.

2.2.2 Network vulnerabilities

An attacker launches network layer attacks to exhaust network resources or break net-

work structures. They believe that destroying one network or server will cause hundreds

or thousands of devices to stop working, such as SANS et al. [41] reported that 222,000

users lost power for few hours after network attacks. By reviewing recent network attacks,

we classify those attacks into four categories: reconnaissance attacks [28], MITM attacks

[57], DoS attacks [58] and spoo�ng attacks [59].

2.2.2.1 Reconnaissance attack

The �rst phase of an attack lifecycle involves reconnaissance of a target, which allows

attackers to gather information about how many live hosts are in the target network, which

ports are open, what operating system vulnerabilities exist, and what types of services

and protocols are running on each host. This information can be leveraged by attackers to

determine the easiest way to penetrate the defences, and even to assess whether the attacks

may succeed. We introduce two well-known host scanning mechanisms that attackers have

used to �nd their targets.

Ping sweep [60] is a method to investigate the range of live IP addresses in a targeted

network. Attackers gain the network address of a target network and send Internet Control

Message Protocol (ICMP) messages to that network with an increasing sequence of host

IP addresses. The purpose of launching this attack is to �nd live machines in the target

network by counting the successful ICMP responses. Such information about live hosts
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will be used for future reference. For example, if the host network is 130.216.37.0/24, we

can type

for /l %i in(1,1,254) do ping -n 1 -w 100 130.216.37.%i

In a Microsoft command line; this command instructs the computer to ping the IP

range from 130.216.37.1 to 130.216.37.254. Figure 2.1 shows that the results after per-

forming a ping sweep command. If the host is not online, the response shows the request

timed out, otherwise, it shows the response from the destination node and the Time to

Live (TTL).

Figure 2.1: Ping Sweep results

A port scan �nds open ports on targeted hosts. Such information helps the attacker

to know which services are running on the target host. Knowing the open ports, attack-

ers can launch di�erent attacks against some speci�c vulnerable service. For example, a

security report from Veritas [61] discovered vulnerabilities on port 5634, the port is used

for communication between the Central Management Server (CMS) and Managed Host

(MH). If any host opens this particular port, it is possible for an attacker to access the

host through this vulnerability. In March, 2016, North American Electric Reliability Cor-

poration's Electricity Information Sharing Analysis Center and SANS Industrial Control

Systems [41] reported that an attacker had launched a series of reconnaissance attacks on

the Ukrainian electric utility's system for six months to understand the utility's super-

visory control and data acquisition networks, before starting a coordinated series of real

attacks on December 23 2015. These attacks caused 225,000 customers to lose power for

a few hours. Nmap, ipv6toolkit and thc-ipv6 are some example tools that can be used to

launch reconnaissance attacks either in IPv4 or IPv6 networks. Network administrators

wish to detect any port scan of a system because that knowledge gives them a hint about

attacks that might follow, and some time to prepare to prevent it. Open source IDSs o�er
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solutions for detecting reconnaissance attacks. For instance, [62] Al-Jarrah et al. intro-

duced two pre-processing plug-in modules (a host sweep pre-processor and a port scan

pre-processor) into the existing IDS solution that collects anomalous packets by analysing

the temporal attack behaviours from a Time Delay Neural Network (TDNN) structure.

Patel et al. [63] proposed a new rule-based IDS solution based on self-generated new Ef-

�cient Port Scan Detection Rules (EPSDR). In their solution, a Basic Analysis Security

Engine has been introduced into the existing Snort solution for reducing false positive

alarm and providing a graphic user interface.

2.2.2.2 Man in the Middle attack (MITM)

Figure 2.2: Illustration of man-in-the-middle attack

In some cases, attackers will establish independent connections with victims and redi-

rect packets between them (see Figure 2.2). The incoming and outgoing packets could

contain credit card numbers, passwords, and personal security information. In this pro-

cess, an attacker will make the victims believe that they are talking directly to each other

over a private and secure connection. Normally, this is called an MITM attack. The

MITM attack can succeed if clients initiate a communication without any authentication

checking. Previous studies have shown that MITM attacks can take many forms; Below

we introduce some common MITM attacks.

A `replay attack' [64] can be launched by intercepting and storing a legitimate trans-

mission between two hosts. This type of attack normally occurs when an authorized

client sends an encrypted login message to a server; that message is captured and saved

by an attacker. Even though the message is encrypted, it may still be su�cient for the

attacker to gain access to the network by retransmitting the valid logon message. Figure

2.3 demonstrates an example of the replay attack. In addition, the `replay attack' is a

possible accessway for spoo�ng attacks. If an o�-path attacker has observed and captured

a Local Area Network (LAN) packet; the attack falsi�es the datagrams intended for other

hosts.
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Figure 2.3: Illustration of replay attack

An Address Resolution Protocol (ARP) poisoning attack [39] exploits vulnerabilities

in the ARP [65] by sending spoofed ARP messages onto the LAN. The cached ARP

addresses are used for resolving the network layer addresses (IP addresses) into Media

Access Control (MAC) addresses. In general, the ARP sequence starts from a source

node, when the source node checks for a destination's IP address in its cached ARP table;

if a MAC address is found, it sends the IP packet on the link layer to a destination node

via the local network cabling. If the cache did not return a record for that IP address, it

broadcasts an ARP message to discover who owns that IP address. All nodes on the same

link are able to receive this request, but only one returns a unicast message to the source

node with its MAC address. However, the existing ARP protocol only accepts the �rst

response and ignores the rest. Therefore, an ARP response can come from a malicious

node rather than the one with the required MAC address. For instance, Bob meant to

send a message to Alice (10.0.0.7/bb-bb-bb-bb-bb-bb); however an attacker has sent a

spoofed ARP response to Bob, and Bob therefore thinks that Alice's MAC is [cc-cc-cc-cc-

cc-cc]. In this scenario, the attacker intercepts data frames between Bob and Alice and

modi�es the tra�c or stops the tra�c altogether. In another scenario, attackers could

just send ARP announcements for updating any cached entries in the ARP tables of other

hosts that receive the announcement message. For example, Bob has a mapping in his

ARP cache for Alice's MAC address and IP address. However, the attacker sends an

ARP announcement message to Bob, changing Alice's IP to MAC address mapping to

the attacker's IP and MAC address. Again, the attacker can easily redirect the tra�c

between Bob and Alice.

Many MITM attacks have been detected or reported by previous studies, such as in

2007 [66], when Indiana University detected an ARP spoo�ng attack at a shared hosting

site. In 2013 [67], a Belarusian tra�c diversion was reported by Dyn Research, they

detected a large amount of tra�c being redirected to Belarusian ISP GlobalOneBel, most

the tra�c was from �nancial institutions, governments and network service providers.

This a�ected countries across �ve regions.

By reviewing the previous studies, we �nd that many solutions have been proposed

to reduce or mitigate the MITM attacks. Ali et al. [68] suggested using a source port
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sequence as an authentication key for verifying the request from valid clients. In this ap-

proach, a server disables the Secure Shell (SSH) service, then sends a packet that includes

a pre-de�ned source port sequence, and the server accesses the source port sequence from

the received packet. Only the valid client knows which source port ranges are to be used.

For instance, a client sends a message to the server, the message includes a prede�ned

source port sequence 6600, 4500, 2000 and 6779 and the server's destination port. If

the message comes with a valid source port sequence, the server will start the SSH ser-

vice and establish the connection with the client; otherwise, it will drop the connection.

A similar solution has been mentioned in [69] McPherson et al. with the introduction

of a port-based address binding mechanism that assigns a given port a MAC address.

Again, Limmaneewichid et al. [70] proposed a P-ARP solution in 2011, they introduced

an authentication scheme for securing ARP. It updates the ARP cache table by adding

authentication data for verifying the received ARP packet.

2.2.2.3 Denial of Service (DoS) attack

The motivation for the DoS attack is to make a machine or network resources un-

available to its legitimate users. Malicious attackers can bring a target machine down by

sending high volumes of useless tra�c. As a result the machine starts to respond quite

slowly, and sometimes the machine is unable to accept any incoming or outgoing tra�c.

The DoS attack generally targets commercial sites or servers, such as banks, credit card

payment gateways, or root name servers. However, recent reports show that this tech-

nique has been extended; instead of launching the attack from a single host, attackers

will compromise multiple systems to �ood the network bandwidth and resources on the

targeted systems at the same time. That is known as a DDoS attack [71]. Compromising

the PCs is the �rst phase of the DDoS attack, then the attacker controls zombies (the

compromised hosts) to generate the volume of tra�c for �ooding the victim system's

resource. In the following paragraphs, we will introduce some well-known DoS attacks.

SYN �ood [72] is a transport layer attack; the standard TCP protocol involves 3-way

handshake processing between two computers. The TCP handshake mechanism requires

two PCs to exchange SYN, SYN-ACK and ACK messages before transmitting data. If

the PC at the receive side hasn't received an ACK message from the sender, it will save

the current SYN request into a SYN queue and delete it when the SYN timer expires.

The SYN �ood attack aims to overload the SYN queue by only sending the SYN packets.

For instance, an attacker sends a SYN packet to a target host; when the host responds

with the SYN acknowledgement, the attacker does not respond with an ACK packet for

the current handshake processing; instead it sends a new SYN packet to create a new

handshake session. The attacker continues to send new SYN packets until the SYN queue

of the target host is �lled and the host PC cannot accept any further new connections.

DNS ampli�cation attack: occurs when an attacker spoofs the IP address of the victim

host and sends a DNS name lookup requests to an open DNS server. The spoofed packet

requests all known information from the DNS server by con�guring the query type to
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`ANY'. The large volume of response tra�c may bring the victim host down by �lling the

pipe with a large number of DNS responses. This kind of attack takes advantage of the

fact that DNS response messages may be substantially larger than DNS query messages

and are legitimate data coming from valid DNS servers, therefore it is quite di�cult to

prevent this attack.

DDoS attacks using ampli�cation/�ooding techniques are still popular and allow cy-

bercriminals to break their targets in a short period. For instance, the report from Clode-

Flare [73] indicated a DNS ampli�cation attack that targeted the Spamhaus website. The

attackers used 30,956 open DNS resolvers to generate a 300 Gb/s DDoS for hitting their

network. Another DDoS attack has been mentioned by Matthew Dunn in 2016 [74], they

observed a TCP SYN �ood attack in their data centres. This a�ected some Zendesk

and Zopim customers, who lost network connection. Many security solutions have been

proposed to mitigate the damage caused by ampli�cation or �ooding attacks. Jose et al.

[75] introduced one-to-one mapping to distinguish a normal DNS request from a DNS

ampli�cation attack; they embedded a query ID in a DNS request and a DNS response,

if the request and response appear for the same query ID, then it is a normal DNS op-

eration, otherwise, it is an attack. Arshadi et al. [76] claim to use the entropy of SYN

packet inter-arrival times as a measure of randomness to detect SYN �ooding attacks.

The method reduces deviations by applying a sliding window on the SYN packet inter-

arrival time. Moreover, it introduces a threshold time T and uses T to indicate whether or

not tra�c behaviour is normal. Other methods use TCP SYN-FIN (RST) or SYN-ACK

pairs to detect SYN �ooding attacks.

2.2.2.4 Spoo�ng

In general terms spoo�ng attacks refer to an attacker falsifying someone's identity to

gain access to a system or network. There are many di�erent kinds of spoo�ng attacks

in the existing network, which include IP address spoo�ng, session hijacking, etc. IP

address spoo�ng: Bi et al. [77] explained an attack against the IP network protocol. The

attack will succeed if a destination node does not verify the authenticity of source IP

addresses. In the existing TCP/IP network, the IP address is a numerical label assigned

to each network device. Some network devices implement an address-�ltering mechanism,

which will allow registered remote IP addresses to access an internal network. If an

attacker sni�s an IP address that is permitted access through the targeted network, the

attacker can bypass the address �ltering mechanisms by faking a legitimate IP address.

The IP address spoo�ng attack can also evolve into a DoS attack. For example, if an

attacker sends a request to a victim by faking the trusted host's IP address. In this case,

the response messages will redirect to the trusted host. If the attacker sends a large

number of requests to the victim, the response messages may overload the resources on

the trusted host. Session hijacking: Wang et al. [78] explained that an attack breaks an

existing authorized TCP connection and redirects its legitimate packets to a malicious

node. In our current network, the TCP protocol uses a sequence number to determine
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lost packets or the order of packets. The initial sequence numbers are generated by the

prede�ned pseudo-random algorithm and increment for each transmission. However, the

drawback of having a predictable initial sequence number can be utilized by attackers to

launch session hijacking attacks. Figure 2.4 is a visual representation of a session hijacking

attack. There are three steps for launching a successful hijacking attack. To begin with,

an attacker monitors the exchange of initial sequence numbers on a network and predicts

the next set of sequence numbers, then the attacker fakes host A's address and send a

reset message to host B, dropping the current connection. After breaking the existing

connection, the attacker can start to inject malicious commands into host A by faking

host B's IP address.

Figure 2.4: Illustration of Session Hijacking

Spoofed IP addresses have been used for launching other attacks, such as on the

Network Time Protocol (NTP) [79], Simple Service Discovery Protocol (SSDP) [80] and

DNS servers [73]. In 2015 [81], Arbor reported a 334 Gb/s attack against a network

operator in Asia through a faked source IP address. A year earlier, Michael Mimoso [82]

reported that attackers leveraged the Heartbleed Openssl vulnerability to hijack a client's

SSL virtual private network connection. Our study shows that more than one solution

is used to mitigate the spoof attack. For instance, Ferguson et al. [83] introduced an

ingress �ltering mechanism that prohibits an attacker from using forged source addresses

by checking the addresses do not exist within the local network segment. In [84] Alabrah
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et al. claimed a new approach to reduce session hijacking attacks; they used the client's

machine to compute hash values for authentication tokens that are fetched as needed. In

their approach, sparse caching techniques are used at the client side; a weighted overhead

formula is introduced to obtain insight into the suitable cache size for di�erent classes of

mobile devices. They have tested sparse caching schemes with di�erent scenarios, such

as testing the sparse caching with uniform spacing, non-uniform spacing and geometric

spacing. Their results show that the sparse caching can signi�cantly reduce the overhead

of one-way hash chain authentication.

In the next section, we used some existing penetration testing tools (Nmap1, Metas-

ploit2, et) in IPv6 networks for simulating existing styles of attack. We observed some

attacks have less success in IPv6 networks, because some IPv4 functions are not used

in IPv6. For instance, ARP is being phased out in IPv6, therefore ARP attacks do not

appear in IPv6 networks. Instead, similar new styles of attack have been detected in

IPv6, such as the Neighbor Discovery spoo�ng attack. In addition, some older tools have

less ability to launch attacks in IPv6 networks: Metasploit, for example, does not au-

tomatically detect IPv6 addresses during a host discovery scan. To discover individual

IPv6 addresses, some new tools have been created for IPv6 address reconnaissance at-

tacks, such as an IPv6Toolkit-v2.03 package that provides an option to specify the target

address pre�x/range of the address scan, and a THC-IPv6 toolkit4 that supports multiple

methods to probe the IPv6 host addresses from remote networks. These tools will later be

examined more closely. Furthermore, we �nd that the security issues related to network

hardware and software will still pose a threat to IPv6 protocols. In addition, the attacks

against protocols that are above the network layer will still appear in IPv6 networks,

because the replacement of IPv4 with IPv6 only changes the network layer.

2.3 IPv6 Vulnerabilities

The IPv4 protocol dates from the 1980s. It has provided a robust, easily implemented

and interoperable environment for the Internet's rapid growth since then. However, the 32-

bit address space of the IPv4 protocol is quite small. The current rate of Internet growth

has exhausted the 4 billion unique IPv4 addresses. In order to solve this problem, in the

early 90s IETF designed a new protocol named IPv6. It introduced a larger address space,

a 128-bit address space that not only eliminates the shortcoming of IPv4's address system,

but also reduces the chance of falling victim to reconnaissance attacks. These types of

attacks are carried out by using the ping sweep and port scan mechanisms. The range of

IPv4 subnet addresses numbers hundreds or thousands. If we assume an address scanning

rate is one million addresses per second, it will take less than one second to �nd all the

addresses in an IPv4 subnet. However, IPv6 has 264 addresses for each subnet. If network

1https://nmap.org/
2https://www.metasploit.com/
3https://www.si6networks.com/tools/ipv6toolkit/
4https://github.com/vanhauser-thc/thc-ipv6
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administrators use unpredictable values to allocate IPv6 addresses, it will take more than

500,000 years to �nd all the hosts from one subnet [24]. The larger address space makes

a signi�cant contribution to reducing the success of reconnaissance attacks. In addition,

T. Aura [85] proposes a Cryptographically Generated Addresses (CGA) mechanism to

verify the address ownership. In this solution, an authentication channel is established

between senders and receivers, each receiver veri�es IPv6 address ownership by checking

the IPv6 address and CGA parameters. However, the CGA mechanism is not widely

deployed in IPv6 networks, because the implementation quite di�cult. By reviewing the

existing papers [86, 87, 34] and simulating existing attacks in IPv6 networks, we noticed

that some new attacks have been created for IPv6 networks. In the following sections we

brie�y discuss the security issues that are only detected in IPv6 networks.

2.3.1 Attacks against ICMPv6

In the existing IPv4 network, the ICMP protocol is not used for Neighbor discovery or

Router discovery, instead, it provides features for network engineers to test or troubleshoot

the IPv4 network, veri�es end-to-end IP connectivity and speci�es better routing paths

out of a network. However, attackers utilize those advantages to launch various types of

attack, such as to ping a speci�ed IP range to �nd live hosts, or forging ICMP redirect

packets to launch a MITM attack. In IPv6, the ICMPv6 protocol plays an important role

in �nding a destination node, or checking the duplicate address. Therefore, it is targeted

by attackers for launching MITM or DoS attacks in IPv6 networks. In the following

section, we introduce some attacks that leverage the ICMPv6 protocol.

2.3.1.1 Neighbor discovery spoo�ng attack

Neighbor Solicitation (NS) su�ers from the same lack of authentication as ARP on

IPv4 networks. In IPv6, if a source node wants to �nd a destination node in the same

network, the source node checks a neighbour cache to �nd an IP-MAC pairing. If the

MAC address is not in the neighbour cache, it sends an NS message asking which host has

this IP address; the message uses the IPv6 reserved link local multicast address. All the

hosts in the same link will receive the request, but only the host that has this IP address

will unicast a Neighbor Advertisement (NA) response. The source node will update its

neighbour cache once it receives the NA. However, this is an inherently insecure process,

because the IP-MAC pairing information can be accepted without any veri�cation. In

this scenario, a malicious node can send forged NS/NA messages to a target node to add

a falsi�ed IP-MAC pairing into the neighbour cache at the destination host. Therefore,

the spoofed IP-MAC pairing will a�ect the destination node, so that it will redirect all

the data link frames to the malicious node. The �gure below illustrates the steps involved

in launching a neighbour solicitation attack.
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Figure 2.5: Neighbour solicitation attack

Figure 2.5 shows that three hosts on an IPv6 network, a victim (IPv6: 2001:db8::2/64,

MAC: 00-00-00-00-00-0b), an attacker (IPv6:2001:db8::3/64, MAC: 00-00-00-00-00-0c)

and a normal user (IPv6:2001:db8::1/64, MAC: 00-00-00-00-00-0a). The victim node

sends an NS request to query about a MAC address corresponding to 2001:db8::1. In the

normal procedure, the user responds with a NA that contains the corresponding MAC

address. However, in this scenario the attacker also sends a spoofed NA to the victim

having IP (Normal user)-MAC (attacker) mapping, if the response from the attacker

arrives �rst, the victim will update the neighbour cache with a falsi�ed pair IP (Normal

user)-MAC (attacker). In other words, the �rst NA response will update the mapping

time, and the rest of the responses are ignored. Now all tra�c from the victim to the

normal user can go through the attacker.

Some solutions [88] and [89] have been proposed, for instance Nikander et al. [88]

suggested the network restricts access to the trusted nodes, or adding a trusted operator

in the network, then the operator certi�es the address bindings for other local nodes.

Again, the router can also play the role as a trust proxy for nodes in the local link. In an

ad hoc network, network administrators can use CGA [85] to authorize address bindings.

For instance, a receiver obtains the IPv6 source address from the received packet, then

checks the collision count in the CGA parameters data structure, if the collision count

is not equal to 0, 1 or 2, the veri�cation stops, Again, the subnet pre�x in the CGA

parameters must be equal to the subnet pre�x (the leftmost 64 bits) of the IPv6 address.

Comparing the Hash1 [85] with the interface identi�er (the rightmost 64 bits) of the

address, if the 64-bit values di�er, the CGA veri�cation fails. More information of CGA

can be found in [85].
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2.3.1.2 Duplicate Address Detection (DAD) DoS attack

The IPv6 network introduces a new mechanism for hosts to test the uniqueness of an

address. The DAD [90] process requires that a new host sends a neighbour solicitation

message to verify whether any hosts on the same link have claimed the address that this

new host is going to use. If any hosts respond with a message that states the address is

taken, the new host needs to claim another address and send a new NS message to check

availability. If no hosts send a message to state that the address is taken, then the new

host is able to use that address. However, one basic issue when sending the DAD request

is that no veri�cation mechanisms are speci�ed for this process. For instance, an attacker

may send a message with a claim that the address is taken; in this case, the attacker

prevents a new host from receiving a global IPv6 address. For example, a host A sends a

NS message asking who is using 2001:df0:0::a. A malicious host T sends an NA response

to state that the address is used, even though the address 2001:df0:0::a is an available

address. If host A claims another address 2001:df0:0::c and sends a new DAD request,

host T again sends a message to state that the address is used. Essentially, host T claims

every address that host A attempts to use is an unavailable IPv6 address. In this scenario,

the new host A cannot access other IPv6 networks, because no unique global IPv6 address

has been assigned to host A. Again, Nikander et al. [88] give suggestions to mitigate DAD

DoS attacks in IPv6, they introduce a trusted node that is able to verify whether the NA

response comes from an authorized node or not. Additionally, they propose the trusted

operator solution; the operator plays an authorizer role to assign addresses for each new

node. For an ad hoc network, no trusted operators can be used, nodes cannot trust

each other directly, and the traditional authenticating does not work in this environment.

Instead Nikander et al. [88] suggest using a self-authorization solution, for instance, each

node can use CGA to ensure that they are talking to the node that actually owns the IP

address, and not to a node that is spoo�ng someone else's address.

2.3.1.3 Router Advertisement (RA) Spoo�ng

IPv6 allows a host to discover routers on the same link via sending ICMPv6 router

solicitation messages. A legitimate router responds with an ICMPv6 RA to indicate

itself as an available router. However, some previous studies [91, 92] detected router

advertisement spoo�ng attacks against the IPv6 router discovery processing.

Figure 2.6 demonstrates the steps of launching a router discovery attack. In the target

subnet, host A sends an ICMPv6 RA message searching for available routers in its local

link. The intruder, shown as host T, attempts to insert itself as a default router in host

A's routing table. To do that, Host T sends a spoofed RA message to host A and indicates

itself as a default router for host A. After becoming the default router, Host T can view

all the tra�c from host A. However, Host T cannot see the returning tra�c from the

Internet, because it is not able to spoof the real default router on the same subnet.

Because of the lack of authorization and vulnerability in the router advertisement,

various mechanisms have been implemented to counter this e�ect. Some common mech-
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Figure 2.6: A router advertisement spoo�ng attack

anisms are building an authentication model to show the ownership of the node. For

instance Sarma [91] described an Address Based Keys (ABK) solution to identify the

ownership of nodes. That solution ensures that the owner of the Network Interface Card

(NIC) and its corresponding IP Address has sent the message. This provides message

authentication to the message's receiver. Eric et al. [93] proposed the RA guard solution,

which can be used in an environment where all messages between IPv6 end devices tra-

verse the controlled L2 networking devices. In their solution, the RA guard �lters Router

Advertisements based on a set of criteria, such as RA disallowed on a given interface or

RA allowed from authorized sources only.

2.3.1.4 Router Advertisement Flooding

In another scenario, attackers can leverage the SLAAC processes on all Microsoft Win-

dows computers to launch a DoS attack. To do this, attackers �ood many thousand RA

messages and force the operating system to create IPv6 addresses for each RA response.

This attack leads the PC CPU usage reaching 100%, so that it needs to power o� to be

revived. Although this type of attack has been previously detected as a known weakness,

it can still happen on Windows machines, such as: NasserElDeen [94] froze a Windows

7 PC by sending a larger number of RAs. The main problem of router advertisement

�ooding is no trust between the established channels. Attackers can easily send a huge

number of RAs. Most of the proposed solutions for detecting the RAs �ooding, such as,

Najjar et al. [95] propose a machine learning IDS solution; a �ooding behaviour is much

di�erent from normal behaviour, therefore datasets can be built to store the normal be-

haviour and compare the incoming tra�c with the datasets. Any violation can be treated

as an anomaly.
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2.3.1.5 ND cache exhaustion

In [29], Gashinsky et al. discussed a potential denial of service condition against the

router that performs address resolution on a large number of destination addresses. In

IPv6, the subnets are quite big, most existing devices only save assigned addresses. The

ND cache table can be prematurely exhausted by sending a large number of ICMPv6 NA

responses. Gashinsky mentioned a scenario of launching a DoS attack on a router, where,

for instance, a malicious host T starts scanning a ::/64 subnet by sending a packet to the

hosts one by one. The router on the same path will attempt to perform address resolution

on each received NA. As a result of this, the router exhausts available memory and stops

performing the address resolution. In this scenario, the router process of testing for the

(non) existence of neighbors induces a DoS condition. Gashinsky [29] has mentioned a

few solutions to mitigate the ND cache exhaustion attack. For instance, they suggested

�ltering unused address space by using Access Control Lists (ACLs) to �lter access to

addresses not in the ACLs, or they suggested reducing the subnet size.

2.3.2 Attacks against the multicast protocol
In the IPv6 network, it is considerably more di�cult than IPv4 to �nd valid host

addresses. However, the 128-bit address space does not mean that the �ooding attack is

eliminated by IPv6. Some features continue to be a source of problems, such as multicast

addresses [96]. Multicast addresses were designed to scale the network transmission by

improving point-to-multipoint data transmissions. The multicast protocol allows a source

node to send one copy of information to all the multicast nodes. For instance, a source

node (A) sends one copy of the information to a multicast destination address. The routers

on the path duplicate and forward the information to all members in this multicast group

(B,D,E) (Figure 2.7). Finally, Host B, D, E receive the information.

The advantages of using multicast are:

• Over unicast: multicast tra�c will not increase the load of the source and will not

signi�cantly add to the usage of network resources

• Over broadcast: multicast data is only sent to the users who need it. In addition,

the user can send multicast tra�c across di�erent subnets; furthermore multicast

uses less network bandwidth

2.3.2.1 Using a multicast address to launch reconnaissance attacks

Like the ICMP protocol in the existing IPv4 network, reconnaissance attacks can be

launched by sending the request to a multicast group. If members from the multicast

group respond to multicast requests, the received responses help an attacker to count

how many live hosts there are in this network. Such information can be used for further

attacks. In the IPv6 network, Hinden et al. [97] suggested a few reserved multicast

addresses, such as the link-local address (FF02::1)for all hosts, the site local address

(FF05::2) for all routers and the site local address ( FF05::1:3) for all Dynamic Host
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Figure 2.7: A multicast transmission example

Con�guration Protocol version 6 (DHCPv6) servers. If an attacker sends tra�c to these

multicast groups and all the members respond to the request, the attacker would have

information about all the routers, local hosts and DHCPv6 hosts within the IPv6 network.

2.3.2.2 Multicast DoS attack

A multicast address can also be used to amplify tra�c volumes when launching a

DoS attack inside an IPv6 network. For example, an attacker sends a multicast ICMPv6

request that contains a victim's source address; all the members from the multicast group

are sent responses to that victim node. Eventually, the large numbers of ICMPv6 re-

sponses will slow down the victim PC's processing speed and bring the host down. Naidu

et al. [98] address such potential attacks utilizing the IPv6 multicast features and give

a �rewall solution to help prevent these. They propose to block all variable scopes for

multicast addresses. In this way, the �rewall could reject all requests that try to ping all

the DHC servers that have multicast address FF05::1:3. Again, they also mention that

the IDS solution can be used to detect and reduce reconnaissance and DoS attacks in

IPv6.

2.3.3 Attacks against the extension Header

Extension headers are a new feature in IPv6 that add separate sub-headers between

the IPv6 header and the transport-layer header inside IPv6 packets. All the optional
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extension headers are chained together, and each header includes a distinct value for the

next header. The advantage of using extension headers is adding some speci�c matter that

cannot be described in the standard IPv6 header. An IPv6 packet may carry zero, one, or

more extension headers. The disadvantage of using one or more extension headers is that

the transport layer header is forced to shift from its usual packet location to a new position

after the extension headers that may cause problems for some existing security solutions,

for example, if a �rewall is con�gured to only forward the packet that is transferred to

a particular TCP port on a particular IPv6 address, an attacker spans the upper layer

header chain into multiple fragments. In this case, the �rewall may fail to process its

forwarding policy, because the �rst fragment does not contain enough information for the

�rewall to enforce its forwarding policy. In order to solve this problem, in [99], Bonica et

al. suggest that for each IPv6 datagram, the �rst fragment packet contains the entire IPv6

header chain that includes the IPv6 header, Extension Headers, and Upper-Layer Header.

In another scenario, if network devices are con�gured to parse all extension header �elds

until they reach the upper layer header, this may cause system resource exhaustion issues

if the network devices have to process a large number of extension headers. For example,

an attacker could forge an IPv6 packet with a large number of extension headers, which

would cause routers and a destination node along the transmission path to take more time

to process the legitimate packet. In addition, if the destination host does not implement

correct logic for checking the header, it could potentially cause a software failure when

processing the lengthy extension headers.

2.3.3.1 Atomic fragment DoS

In [34], Gont explained a DoS attack that leveraged a fragment header vulnerability.

He discussed atomic fragment packets, where the IPv6 packet contains a fragment header

without being actually fragmented into multiple pieces. When a host receives a `Packet

Too Big' message, it generates an atomic fragment, each packet contains IPv6 Source

Address, IPv6 Destination Address, Fragment Identi�cation. However, this process has

been leveraged to perform a DoS attack. For instance, in [100], Krishnan mentioned that

IPv6 nodes will discard the fragment packets if the atomic fragment comes with a set

IPv6 Source Address, IPv6 Destination Address, Fragment Identi�cation that is already

queued for reassembly. So, an attacker forges ICMPv6 `Packet Too Big' error messages,

which forces an original host into generating multiple atomic fragments. And then the all

the fragments will be dropped by IPv6 nodes because of overlapping fragments.

2.3.3.2 Bypass a �rewall with fragment header

Another attack scenario is an attacker reassembling the �rst packet that has many

extension headers and spreading the payload into following fragmented packets, with the

result that if the initial fragment passes a �rewall, the �rewall will not look at the second,

third, and following packets. This method allows attackers to send many small fragments

to bypass �ltering or detection rules. Moreover, attackers can exhaust the resource on the
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destination node by sending an incomplete set of fragments so as to force the destination

node to spend system resources waiting for the �nal fragment in the set. For reducing

attacks against the extension header, Bonica et al. [99] provided few countermeasures. For

instance, they suggested to black all unused extension headers, or use IDS to implement

rate limits for hop-by-hop options headers. Again they claimed that a �rewall should

reassemble the fragmented packets in order to investigate the upper layer information.

2.3.4 Attacks against the co-existence/transition mechanisms

Although IPv6 was slowly deployed in the last decade, and most operating systems

can support the IPv6 protocol, many major services still use the IPv4 network. In order

to exchange tra�c between the two separate protocols, network engineers designed some

transition technologies. In reviewing the existing literature, we noticed that the existing

transition mechanisms are based on two solutions. In the following sections we brie�y

discuss how they work and what security issues are addressed.

2.3.4.1 Translation

Due to the signi�cant di�erences in the protocol format, IPv4 and IPv6 networks

are not inter-operable. The IPv4-IPv6 translation solutions attempt to achieve direct

communication between IPv4 and IPv6 only nodes. The mechanism uses translating

nodes to translate the headers of IPv4 packets into IPv6 and the IPv6 headers into IPv4.

The most well-known translation mechanisms can be divided into two categories: stateless

translation and stateful translation. IVI is a stateless translation mechanism, an IVI IPv6

address contains a Network Speci�c Pre�x, IPv4 address + su�x. In [101], Bao et al.

claimed that a local DNS64 server is used to store the address mappings for both IPv6

and IPv4 hosts. The DNS64 turns the A records of IPv4 hosts into AAAA records based

on the address mapping rule. In addition, IPv6 hosts store their IPv4 addresses in the

DNS server as A records, this helps the DNS server to process requests from the IPv4

networks. The IVI solution improves a routing scalability problem and addressing issues

that happen in Stateless IP/ICMP Translation (SIIT) [102] algorithm. Unlike stateless

translation mechanisms that assign IPv4 addresses to IPv6 hosts, stateful translation

mechanisms introduce an IPv4 address pool and maintain it on the translator. The most

well-known stateful translation mechanism is NAT64 that speci�es the communication

initiated from the IPv6 side. There are two important components to be discussed in this

solution.

• The NAT64 server creates a NAT mapping between the IPv6 and the IPv4 address.

The NAT64 server has two network interfaces, one of these interfaces is connected

to an IPv4 network, and another is connected to an IPv6 network

• DNS64 inherits functions from the existing DNS structure that resolves a domain

name to its corresponding IP address. It translates the AAAA query from IPv6

hosts into A query, and then translates the A response for IPv6 hosts into AAAA
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response following the IPv4-mapped address. Figure 2.8 demonstrates an example

of using the NAT64 solution

Figure 2.8: An example of NAT 64 and DNS 64 usage

The main concern of using a stateless solution is IPv4 address consumption. To solve

this problem, Bao et al. [89] provided an address multiplexing solution that allows one

IPv4 address to be shared by multiple IPv6 hosts through port space division. Again the

big security issues for stateful translation mechanisms is a DoS attack For instance, if

an attacker sends many packets with di�erent faked source addresses, it will exhaust the

available IPv4 addresses or ports. The use of an ingress �ltering mechanism on the IPv6

side can reduce the problem; the network administrator can simply manually con�gure

the access control lists. Table 2.1 compares the weakness between IVI and NAT64.

Table 2.1: Comparison between IVI and NAT64, showing weaknesses
Mechanism

name
Mechanims

status
Type of
Address
mapping

IPv6 pre�x
usage

IPv4
address
usage

Weakness

IVI Replace SIIT Stateless Same
network
speci�c

network for
IPv6 hosts
and IPv4
hosts

One IPv4
address for
each IPv6

host

IPv4
address
consump-

tion
issue

NAT64 Replace
NAT-PT on
IPv6→IPv4
direction

Stateful Fixed IPv6
pre�x for
IPv4 hosts

Translator
maintains

the
address
pool

DoS
attack risk
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2.3.4.2 Dual-stack

The dual stack approach means the host supporting both IPv4 and IPv6 protocols.

In order to achieve this, the solution requires hosts or routers to implement both pro-

tocols. A dual stack host gets an IPv4 address from the Dynamic Host Con�guration

Protocol (DHCP), while a IPv6 address can be generated through the stateless address

auto con�guration. Using a dual stack solution leads to some unnecessary con�guration

and potential security risks. For example, a router has to maintain routing tables for

both protocols, the same process applies for Firewalls. In addition, there are some issues

related to having dual stack IPv6 on by default, such as those discussed by Roy et al.

[45]. It was shown that some operating systems enable IPv6 by default; if such systems

are installed and placed in an IPv4-only network, problems may occur with the neighbour

discovery processing. For instance, if a network that has no IPv6 con�gured router or no

IPv6 neighbours, if a host has been enabled the IPv6 by default, it will check the default

router list, if the list is empty, the host will assume that the destination is reachable, it

will attempt neighbour discovery link-layer address resolution for each destination. This

process leads to potential transport layer costs plus connection timeouts. Regardless, the

user actually expects that the application can quickly connect to the destination without a

waiting period. Furthermore, the dual stack solution opens the opportunity for attacking

both protocols, such as the ARP attack in IPv4 and the ND spoo�ng attack in IPv6.

2.4 Conclusion

As information technologies grow quite quickly, Internet protocols have become the

most pervasive and widely used communication protocols in existence. Finding out how

to build a secure and stable network has become a challenging task for network engineers

and administrators. They must be sure that all packets are safely and e�ciently delivered

without endangering system safety. Drawing upon the material presented in this chapter,

we �nd that IPv6 is similar to IPv4 with larger addresses. From the security point of view,

there is no signi�cant di�erence between IPv4 and IPv6. In some scenarios, IPv6 is slightly

more secure, technologies such as CGA can be used for reducing address spoo�ng attacks,

the privacy IPv6 address allocation mechanism makes the address reconnaissance attack

less feasible. However, in other cases IPv6 is less secure, for instance the extension header

attack, the ND cache exhaustion attack. Moreover, it is still possible for some existing

IPv4 attacks to be launched in an IPv6 network. Table 2.2 summarises the existing IPv4

attacks with the related incidents and the feasibility of launching these attacks in IPv6

networks.

By reviewing previous studies, some new attacks were found against the new methods

in IPv6. For instance, a method similar to the neighbour discovery spoof attack was

used to launch a MITM attack in IPv6. Again the DAD approach has been used for

launching a DoS attack in IPv6. Moreover, a few new threats attempt to attack the �rst

hop security, such as the ND cache exhaustion, the router advertisement spoo�ng and
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the router advertisement �ooding. We have tested existing tools to simulate new IPv6

attacks in our experimental environment; most such tools are not able to launch new IPv6

attacks, and instead some new tools have been created, such as:

• THC-IPv6: The toolkit provides many programs to access the IPv6 vulnerabili-

ties, such as fakerouter6 which can fake the RA response and announce itself as

a router on a network. Again the �oodroute6 will send random RAs to �ood the

target device. Parasite6 can launch a MITM by sending ICMPv6 neighbor solitica-

tion/advertisements

• SI6 Networks' IPv6 Toolkit: This package aims to help IPv6 vendors improve the

security and resiliency of their products, for instance: frag6 provides accessing IPv6

fragmentation and reassembly function, it can be used for either �ooding a target

or accessing the fragment reassembly policy of a given node

In addition, we brie�y covered some attacks that are possible against the transition meth-

ods from IPv4 to IPv6. The existing transition solutions come with some weaknesses, such

as the translation solutions that have scalability issues, the stateless translation solutions

that requires one IPv4 address for one IPv6 host. While stateful translation requires a

better state maintenance algorithm for the address binding. Neither solution is suitable

for larger scale networks. Moreover, the Dual Stack solution increases the operation cost,

such as the router needing more memory for maintaining both protocols. Again, the net-

work security requirements became more di�cult for protecting both protocols. To sum

up from the previous studies, the �rst phase of launching a successful attack is a recon-

naissance attack. In this type of attack, a malicious user attempts to collect as much

vulnerability information about a victim network as is needed for launching successful

attacks. For instance, running OS information can be leveraged to inject a Trojan Horse

program, or the identi�cation of a host with a low memory resource or low CPU speed can

be used for launching the DoS attacks. Again, most attackers will compromise a victim

host from the target network and use this host to launch the serious attacks.

As we mentioned earlier, the main di�erence between IPv4 and IPv6 is the address

space, IPv6 provides the huge address space that may stop attackers from �nding a target

host using only the traditional reconnaissance technologies. For instance, if a network

administrator uses the privacy address allocation mechanism to assign the IPv6 host

address, it will take 500,000 years to complete an address scan in a /64 subnet. However

many studies [26, 27] have observed that there are numerous ways for attackers to �nd

targets from IPv6 remote networks. Such as some address allocation mechanisms generate

common patterns in its IID �eld that can be leveraged by attackers to cut the address

search space or the DNS reverse zone can be leveraged to get IPv6 host information.

In the next chapter, we will introduce a few new IPv6 reconnaissance threats in current

IPv6 networks. In addition, we will demonstrate the changes of IPv6 address allocation

mechanism usages in last �ve years and do two large scale network surveys to investigate

the feasibility of launching successful IPv6 reconnaissance attacks.
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Chapter 3

IPv6 Vulnerability

In the previous chapter, we compared existing attacks and new attacks; we discovered

that most attacks share some common strategies, in particular a reconnaissance attack is

an initial step toward �nding hosts or system vulnerabilities. Our existing IPv4 network

is susceptible to two types of address space scanning strategy. One strategy generates a

random number to probe new target addresses. Another chooses a target network and

sequentially increases the host ID to �nd active addresses in that network. IPv6 was

proposed as a solution in 1996; it extended the Internet address space to 128 bits. The

larger address space not only supports an increased number of connected devices, but

also makes some reconnaissance strategies less successful in IPv6 networks. However,

more and more studies [27, 28, 24, 26] have found that it is possible to �nd live hosts

in IPv6 networks from internal or external networks, for instance: the common patterns

in its IID �eld can cut the search space considerably, a multicast address can be used to

discover live hosts in the same subnet, or the DNS reverse zone can be leveraged to get

IPv6 host information. In this chapter, we focus on detecting reconnaissance attacks in

IPv6 remote networks; we launched passive and active large scale surveys of real IPv6

networks to demonstrate IPv6 Host address allocation mechanism usage trends during

past �ve years. How feasible it is to launch a DNS reconnaissance attack in real IPv6

networks? What are the security concerns of deploying the IPv6 DNS reverse zones? The

remainder of this chapter is organised as follows:

Section 3.1 reviews and explains some new address scanning strategies in IPv6 net-

works

Section 3.2 describes our IID allocation mechanisms survey, we used the passive mea-

surement method to capture incoming and outgoing IPv6 tra�c from a link connecting

a University of Auckland IPv6 network for three months. Our results demonstrated the

IPv6 address allocation changes in past �ve years

Section 3.3 discusses how to launch an IPv6 DNS reconnaissance survey in a real IPv6

networks We used an active measurement strategy to search the public DNS servers cross

�ve regions and �fty countries for two months. The results shown that DNS reconnaissance

attacks can be launched in real IPv6 networks
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Section 3.4 demonstrates our �ndings and conclusion.

3.1 IPv6 address scanning strategies
A larger address space in IPv6 makes traditional address scanning attacks less feasible.

In [28], Chown mentions that if an attacker launches a probe per second, it will take

500,000 years to complete an address scan in a /64 subnet. However, more and more

studies [27, 28, 24, 26] have discovered alternative ways that attackers can launch IPv6

reconnaissance attacks, such as If attackers and victims are located in the same subnet,

an attacker can �nd the active IPv6 addresses though the neighbour discovery protocol

[27] or DNS Zone Transfers. However, if attackers are in another IPv6 network, then they

have to consider a few problems, for instance, where to �nd the live IPv6 host address

information, how to enumerate active addresses in the target network and how to reduce

the address search space. We will answer these questions in the following subsections.

3.1.1 Searching addresses in transition solutions
IPv6 to IPv4 transition solutions give us more �exibility to pass packets between IPv6

and IPv4 networks. Some special patterns have been added in the IPv6 IID �eld that can

be used to indicate which transition mechanisms have been used, for instance if the host

is using 6to4 to allocate an IPv6 address in the Microsoft environment, then the IPv6

address will look like 2002:V4ADDR::VADDR. The network pre�x for 6to4 is 2002::/16.

Teredo generates the IID �eld by using the IPv4 address of a Teredo server and a UDP port

number. The network pre�x for Teredo is 2001:0000::/32. Intra-Site Automatic Tunnel

Addressing Protocol (ISATAP) sets the �rst 32 bits of the IID �eld to be 0000:5efe or

0200:5efe. However, In [24], Chown pointed out that some patterns have vulnerabilities

that can be leveraged to reduce the IID search space. For example, as discussed above,

if 6to4 is used to allocate IPv6 addresses in the Microsoft environment, an attacker can

reduce the 128-bit IPv6 address search space to a 32-bit IPv4 address space. Moreover,

Chown points out that if the host enables dual-stacking, attackers can �nd a host easily

through IPv4 connectivity instead of searching for its IPv6 address. Again, Chown [24]

explains the weakness of using Teredo, "the 64-bit node identi�er is generated from the

IPv4 address observed at a Teredo server along with a User Datagram Protocol (UDP)

port number. The Teredo speci�cation also allows for discovery of other Teredo clients

on the same IPv4 subnet via a well-known IPv4 multicast address."

3.1.2 Reducing the IID search space
Unlike the address scanning attacks in IPv4, it is impossible to scan the entire /128

bits, but it is possible to reduce the search space, for instance: the IPv6 routing pre�x

(48 bits) can easily be found from a Regional Internet Registry (RIR) website or from

some IPv6 research websites, e.g. IPv6 Deployment Status [103], many other pre�xes can

also be found in the BGP tables. Additionally, if the network administrators set all bytes

in the subnet ID �eld to be 0, attackers then can further reduce the search space to the
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64 bits of the IID. In [97], Hinden et al. specify that an IPv6 unicast address is built

by n bits of network pre�x and (128-n) bits of IID. The network pre�x is used to route

packets to a subnet and the IID refers to the ownership of a given interface that connects

to the subnet. Because the IPv6 routing pre�x can easily be found from the RIR or other

organisations, how to �ll the IPv6 IID �eld becomes a key factor to mitigate IPv6 address

scanning attacks. By reviewing the existing IID allocation mechanisms, we noticed a few

explanations for setting the IID's length to 64 bits long; for instance, Hinden et al. specify

the IID length is 64 bits for deriving the IID values from IEEE EUI-64 hardware addresses.

Carpenter et al. [104] point out two reasons for setting IID at /64. "One was the original

`8+8' proposal [105] that eventually led to the Identi�er Locator Network Protocol (ILNP)

[106], which required a �xed point for the split between local and wide-area parts of the

address. The other was the expectation that 64-bit Extended Unique Identi�er (EUI-64)

MAC addresses would become widespread in place of 48-bit addresses, coupled with the

plan at that time that auto-con�gured addresses would normally be based on interface

identi�ers derived from MAC addresses."[104]

Clearly, a limitation of IPv6 address scanning is that it is infeasible to search a ran-

domized /64 IPv6 IID �eld by using existing tools. However, as Chown et al. discuss in

[28], if an attacker �nds some common patterns from the IID allocation mechanism, the

attacker can then easily reduce the search space in the IID �eld. For instance, if a network

administrator uses an IEEE EUI-64 mechanism [97] to assign the IID �eld, an attacker

can e�ectively reduce the search space from 264 to 248, because the EUI-64 contains the

common pattern 0xFFFE. In addition, if the attacker knows the organisationally Unique

Identi�er (OUI) of the network interface card, the search space can be further reduced

from 48 bits to 24 bits. So if an attacker probes every second, it takes only 194 days

to complete the search in a /24 network. Chown et al. [28] describe several methods to

combat this (using common patterns to allocate the IPv6 IID �eld), such as not using

sequential addresses, not using simple patterns, and using random numbers to allocate

the IID �eld.

If network administrators applied these suggestions, that would make the classic net-

work address scans less feasible. But, some previous studies [28, 107, 108] show that

network administrators do not use the methods recommended in [28] to allocate their

Interface ID �elds, instead they use customized IID allocation mechanisms to satisfy dif-

ferent requirements, such as the small integer scheme, the embedded IPv4 scheme, etc

(more detail in Section 3.2.1). It is therefore possible to launch a network reconnaissance

attack in IPv6 networks by using appropriate heuristics. In order to search for a bet-

ter understanding of the existing IID allocation mechanisms and demonstrate the IID

allocation changes over last �ve years, we launched a survey of the IPv6 IID allocation

mechanism usages in from the University of Auckland campus network. More detail of

our survey can be found in section 3.2.
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3.1.3 Leveraging DNS Reverse Zone

Because traditional address probing had less success in IPv6 networks, attackers

started to search for new ways to gain host address information. Chown et al. [28]

believes that DNS servers will become a new target for attackers wishing to explore IPv6

addresses. In principle, DNS is designed to convert a domain name into an IP address; it

builds a tree structure to map IP addresses and domain names.

DNS has not been targeted as a resource for exploring addresses in the IPv4 network

because it is possible to search the entire 32-bit address space in a few hours. But it

is infeasible to do such a brute -force scan in IPv6. Van Dijk [26] discovered that DNS

reverse mappings can be used for discovering IPv6 nodes. A reverse lookup attempts to

map an IPv4 or IPv6 address to a corresponding domain name record; in [109] Thomson

et al. speci�ed that �An IPv6 address is represented as a name in the ip6.arpa domain

by a sequence of nibbles separated by dots with the su�x `ip6.arpa'. The sequence of

nibbles is encoded in reverse order, i.e., the low-order nibble is encoded �rst, followed

by the next-lowest-order nibble and so on. Each nibble is represented by a hexadeci-

mal digit. For example, the reverse lookup domain name corresponding to the address

4321:0:1:2:3:4:567:89ab would be b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.arpa.�

[109]

Basically, Van Dijk [26] disclosed that the attacker only needs to walk through the

target `ip6.arpa' zone by issuing queries for Pointer Record (PTR) records corresponding

to the domain name, he discusses a searching mechanism to gain IPv6 addresses from

the `ip6.arpa' zone. First, users need to give a network pre�x of the domain from the

reverse DNS zone that they want to search. When the program receives the network

pre�x, it adds a new nibble (all the new nibbles start with zero) and appends it to the

given domain name, the program then sends a reverse lookup with this new address block

to DNS servers. In principle, there are three possible responses from DNS servers:

• `NXERROR' (RCODE 0) means this '*.ip6.arpa' domain exists in the ip6.arpa

domain, but there are no PTR records for it. When the program receives this

message, it adds a new nibble and appends it to the previous reverse query. The

initial value of the new nibble is 0

• `NXDOMAIN' (RCODE 4) means there are no records for '*.ip6.arpa' in the domain

name space. The program will increase its value for the current nibble and send the

request again

• If the response is the hostname, the program will save that hostname into the

database
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Figure 3.1: The sequence of process 'NXDOMAIN' responses

For example, if an input address pre�x is 2001:620:0::/48, Figure 3.1 shows the se-

quence of process 'NXDOMAIN' responses. If the program receives 'NXDOMAIN' re-

sponses, the program will check the current nibble value. If the current nibble is equal to

value F, the program will be terminated; otherwise, it increases the current value by one.

In contrast, if the 'NXERROR' response comes back, it will create a new nibble to add

to the existing IPv6 address and this new nibble starts with zero.

Figure 3.2: The sequence of process 'NXERROR' responses

Figure 3.2 shows the process's sequence of 'NXERROR' responses. In order to search

for a better understanding of the existing IPv6 DNS deployment strategies and evaluate

the possibility of launching a DNS reconnaissance attack in our existing IPv6 network,

we launched a DNS reconnaissance attack survey crossing �ve regions and �fty countries.

More detail of the DNS reconnaissance attack survey can be found in section 3.3.
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3.2 How Interface ID allocation mechanisms are per-

formed in IPv6
This section discusses our survey of how IID allocation strategies apply to real IPv6

networks. We will demonstrate the trend of IID allocation mechanism usages in the past

�ve years. Before we consider our survey strategies and results in detail, we would like

to discuss some background information. Section 3.2.1 provides an essential description

of address con�guration mechanisms in IPv6 followed by some common IID allocation

mechanism descriptions. We also demonstrate the predictable patterns in IPv6 IID allo-

cation mechanisms that can be leveraged to reduce the IPv6 address search space when

performing IPv6 address scanning attacks. Section 3.2.2 explains our survey strategies

and compares results of how IID allocation mechanisms have worked over the past �ve

years.

3.2.1 Address Con�guration in IPv6

Comparing with the existing address con�guration mechanisms in IPv4 (DHCP or

manual con�guration), IPv6 introduces a new automatic address-con�guration mech-

anism: Stateless Address Autocon�guration (SLAAC) [90]. The following subsections

describe each of the possible con�guration mechanisms and IID allocation strategies in

detail.

3.2.1.1 Stateless Address Autocon�guration

SLAAC allows every new host to obtain an IPv6 address automatically when that host

appears on the local network. The node uses the pre-con�gured IID allocation mecha-

nism to generate a link-local address and sends a neighbour a solicitation message to verify

whether this is a unique address or not, this process is called DAD. If DAD ascertains

that the address is a unique address, then the node applies this address to the interface.

The new node then sends router solicitation messages to the routers to request network

pre�x information. Local routers provide the network pre�x, the new host then appends

the locally-generated IID to the corresponding IPv6 pre�x. Some SLAAC IID allocation

mechanisms are described in the following passages:

Embedding IEEE identi�er (EUI-64)

In [97], Hinden et al. describe an auto-con�guration approach called IEEE EUI-64.

This is a traditional SLAAC IID allocation mechanism that uses the link layer address

from the corresponding network interface card. Their approach eliminates the need for

manual con�guration or for DHCP6 to assign the IPv6 addresses for a new host. The

mechanism uses three �elds. The �rst 24 bits of the IID �eld will reuse a network device's

OUI bits, followed by the 16 bits 0xFFFE. The remaining 24 bits of the MAC address will

�ll the lower 24 bits in the IID �eld. Additionally, the Universal bit of the address is set

to 1. For instance, if a host has the MAC address 00:b3:40:90:45:3c and receives a router
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advertisement message from the 2001:df0:0::/48 network, after putting the IID value to the

corresponding IPv6 pre�x, the host gets the IPv6 address 2001:df0::02b3:40�:fe90:45:3c.

The main advantage of using this solution is that it needs no pre-con�guration. Any

node can get an IPv6 address when it is connected to the network. Although EUI-64 is

easy to use, there are some disadvantages to it, such as reduction of the search space,

because EUI-64 introduces two common patterns that cut down the search space in the

IID �eld. In addition, the �rst three MAC address bytes refer to the OUI; if attackers

know the interface card information, they can use the OUI bytes to further reduce the IID

search space. We can presume one scenario: if an organisation ordered all its NIC cards

from the same vendor and put them into the same subnet, in such a case, if attackers

observe a few host addresses in that subnet, they can easily reduce the IID search space

from 64 bits to 24 bits and then �nd all the active hosts. Again, the same scenarios can

happen in a virtualization environment. For example, VirtualBox can automatically gen-

erate MAC addresses for a new virtual machine; VirtualBox has a static OUI, 08:00:27,

for all virtual machines. As a result, if attackers recognize that the host is con�gured

through VirtualBox they need to search only the last 24 bits from the IID �eld. More-

over, if a VMWare ESX server uses EUI-64 to con�gure the IID �eld, the attacker can

reduce the search space from 64 bits to 8 bits, because the VMWare ESX server con�gures

the �rst three bytes of the MAC address to 00:05:59 and the following two bytes reuse

the last two bytes from the host's original IPv4 address. The last 8 bits of the MAC

address are generated from the name of the virtual machine's con�guration �le via the

hash mechanism.

Temporary and Privacy addresses

As we mentioned earlier, the IEEE EUI-64 mechanism introduces a few security and

privacy issues. For instance, attackers can easily predict the address that is derived from

the IEEE EUI-64 mechanism. Attackers can also track user activities by monitoring IPv6

addresses, because the IPv6 address structure is divided between a topological portion

and an interface identi�er portion; if the interface identi�er remains the same when a host

moves to di�erent networks, it is possible for attackers to track the movements of that

host. In order to address this problem, many solutions have been proposed to protect

address privacy. For instance, Narten and his colleagues [110] propose a temporary ad-

dresses solution for SLAAC in IPv6; they suggest generating a random IPv6 address by

putting random IID values and the auto-con�guration IPv6 pre�x together. The values

in the IID �eld have an expiry time; this solution reduces the exposure of user activity

to any third parties. But, Narten et al. [110] also mention that such tactics "do not

result in any changes to the basic behaviour of addresses generated via stateless address

autocon�guration. Create additional addresses based on a random interface identi�er for

the purpose of initiating outgoing sessions" [110]. This means that, assuming an attacker

and a victim are allocated to the same subnet, the attacker can still predict the traditional
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SLAAC address that is derived from the IEEE EUI-64 mechanism. In addition, regen-

erating the addresses over time raises network management issues, because the network

administrator has to recon�gure the DNS mapping for the static IPv6 servers. In order to

mitigate the network management issues, Microsoft extends the aforementioned algorithm

and generates randomized stable IIDs to minimise the possibility of an attacker leveraging

the predictability of traditional SLAAC addresses. The drawback to this solution is that

the host can easily be tracked across visited networks because the values in the IID �eld

remain the same. In order to address these predictability and privacy issues, Fernando

Gont proposed a new solution [111] to generate randomized stable interface identi�ers

in each subnet. When the host moves to other subnets, the interface identi�er values

must be re-generated, such that the new solution eliminates address predictability issues

without sacri�cing privacy protection.

3.2.1.2 Dynamic Host Con�guration Protocol Version 6 (DHCPv6)

Another automatic address-con�guration mechanism in IPv6 is called DHCPv6, There

are two con�guration mechanisms that can be used in DHCPv6: stateless [112] or stateful.

If an IPv6 node derives IPv6 addresses through some other allocation mechanisms (such

as stateless address autocon�guration or manual con�gurations), the host then obtains

con�guration information from a DHCPv6 server, such as the addresses of DNS recursive

name servers. This procedure is known as a DHCPv6 stateless con�guration. There is

a weakness in using a stateless DHCPv6 service; if hosts generate some predictable ad-

dresses, attackers can easy easily reduce the address searching space. In contrast, if the

node obtains both addresses and other con�guration settings from the DHCPv6 server,

this process is known as a stateful DHCPv6 service. If a DHCPv6 server is con�gured

to use the stateful address con�guration mechanism, network administrators can either

assign addresses sequentially from a speci�c range or generate addresses randomly. The

former can be leveraged by attackers to reduce the address searching space when perform-

ing IPv6 address-scanning attacks, whereas the latter generates stable addresses that do

not follow any speci�c pattern.

Table 3.1: Sample of sub �eld identi�ers IID allocation mechanism

IPv6 Address Host Name
2001:200:0:2::800:1 lo-0.hitach2.nara.wide.ad.jp
2001:200:0:2::800:3 lo-0.juniper4.nara.wide.ad.jp
2001:200:0:2::1800:1 hitachi1.otemachi.wide.ad.jp
2001:200:0:2::1800:5 lo-1.foundry6.otenachi.wide.ad.jp

3.2.1.3 Manually-con�gured addresses

Instead of using the mechanisms above, some studies [107, 108, 113] have discovered

that manually con�gured IID mechanisms are popularly used for allocating IPv6 addresses
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for routers or servers. For this, network administrators choose one of the following patterns

to assign an address to a new server.

Sequential increase host numbering The Interface ID �eld is sequentially in-

creased when generating a new IPv6 address. In addition, the IID �eld contains few non-

zero bytes, the remaining bytes are all set to 0. For example 2001:df0:0::1, 2001:df0:0::2.

In this scenario, the search space for this pattern can easily be reduced.

Use bit �elds as sub�eld identi�ers Some network administrators allocate four

non-zero bytes to the Interface ID �eld, so as to classify di�erent groups in the same

subnet. For example, table 3.1 shows that the �rst two bytes from the Interface ID �eld

indicate the group ID, and the low-order two bytes identify hosts in this group.

Embedded-IPv4 scheme Each �eld of an IID contains 16-bit values and is repre-

sented by four hexadecimal digits. However, some studies have shown that network ad-

ministrators often encode one byte of the IPv4 address into each 16-bit �eld of the IID, for

instance, if a host had an IPv4 address `194.109.20.106' in the current network, a network

administrator wants to move this host in to a IPv6 network (2001:888:0::/48) with the

subnet ID 0x24, the new IPv6 address for this host looks like 2001:888:0:24:194:109:20:106

or 2001:888:0:24:194.109.20.106.

Service-port Some network administrators put the service port into the lowest-order

16-bit �eld or the second lowest-order 16-bit �eld to indicate which service this port is

running on, for example, 2001:db8::1:80 or 2001:db8::80:1 refer to the server that opens

port 80. In addition, Chown et al. [28] mention that service ports are sometimes encoded

in hexadecimal notation, such as 2001:db8::1:50. As we mentioned before, if the IID �eld

contains some predictable patterns, it can be leveraged by attackers to reduce the IPv6

address search space. Table 3.2 summarises the existing IID allocation mechanisms by

comparing their visibility and security. The former implies the mechanism has predictable

patterns. The latter evaluates the di�culty of reducing the IPv6's address search space

for each mechanism.

3.2.2 Interface ID al location mechanisms Usage Survey

Building from the previous studies [28, 108, 107, 113], we have launched a passive

measurement survey from our UoA (University of Auckland) IPv6 network. We collected

our data from a link connecting a UoA IPv6 network with IPv6 networks outside UoA.

We observed 72,931 tra�c �ows per hour. The tra�c �ows were reasonably high between

9am-11pm, 105,269 tra�c �ows are found in this period and the tra�c rate drops to

30732 �ows during 0am-9am. We built a high-speed �ow monitoring system which is

able to process and record the �rst nine packets of each �ow into a pcap �le every hour.

We collected our samples from both �ow directions in the period from 2014-05-09 to

2014-08-09. Figure 3.3 shows the logical diagram of our data capture environment.
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Table 3.2: Summary of IID allocation mechanisms

IID allocation
mechanisms

Description Visibility Security

Small-Integer This scheme is easily identi�able; we
verify the Small-integer scheme sets
most bytes in the IID to be 0. It can
be easily recognized by checking the
number of zero bytes in the IID �eld,

for instance 2001:1318:100c:1::1.
Additionally, the values in the IID

�eld have been sequentially increased
when generating a new IPv6 address

High Low

EUI-64 This scheme is generated using the
EUI-64 algorithm based on each MAC

address. The address can be
recognized by observing the FF:FE

bytes in the IID �eld

High Low

Embedded
IPv4/ Port

encodes an IPv4 address or port
number in the lowest-64 bits of the

IPv6 address

High Low

Randomized This refers to the temporary [110] and
randomised stable [111] allocation

mechanisms

Low High

Figure 3.3: Logical network diagram for IPv6 data collection

In this survey, we used several methods to distinguish the servers and clients, the

regions, the IID allocation mechanisms and the randomized IPv6 IID values.

Distinguishing IPv6 clients and servers

Trace �les do not intuitively tell us whether an address in a packet is a `client' or

`server'. Therefore, we proposed some methods to classify IPv6 servers and clients. For

example, we used port numbers, SYN �ags and looked at the DNS reverse zones.
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Grouping IPv6 clients into regions

Unlike the IPv4 protocol, IPv6 has divided addresses into two parts: the upper 64-

bit network pre�x gives information as to a node's location; the lower 64-bit IID �eld

contains information about how an IPv6 node has been con�gured. Our `regions' are our

own university (UoA), and geographic regions covered by the Regional Internet Registries

(RIR): APNIC, ARIN and RIPE [103].

Identifying IID allocation schemes

Identifying IPv6 IID allocation scheme, we developed a python program to distinguish

the IID allocation schemes from results, for instance, if the IID �eld contains 0xFFFE,

we put this IPv6 address into the EUI-64 category. If the IPv6 address looks like the

Embedded IPv4 scheme, the program will convert the last 64 bits into the IPv4 format,

and try to ping this address, if the host responds to an ICMP echo request, we assume

that this address uses the Embedded IPv4 scheme. For the randomized scheme, we de-

signed two steps to verify our results, in the �rst step, the program checks the values in

the IID �eld, if the �eld is 64 bits long and no signi�cant patterns can be detected, we

counted addresses in the randomized category. In the second step, we use a frequency

distribution plot to examine the IIDs we counted as `randomised' and checked the con-

tinuous probability function among IID values. In Figure 3.4 the x axis represents the

range 0-264, while the y axis indicates the number of occurrences for groups of IID values,

each bar in the plot shows the frequency of occurrence of a given IID value. We observe

that such distributions spread more or less evenly across the 0-264 range, with no obvious

gaps or signi�cant spikes. However, there is a 1 in 216 chance of a randomized IID being

misclassi�ed as an EUI-64, because of the 16 bits `FF:FE', in addition, if the universal

bit has been con�gured, the probability of a pseudo-random IID being misclassi�ed as

EUI-64 is 1 in 217 and is ignored. Our EUI-64 misclassi�ed results are similar to results

from Plonka et al. [1] in 2015.

Figure 3.4: Histogram (Randomized IID schemes)

45



46

Figure 3.5: IPv6 Client IID Address Allocation Mechanisms Usage Timeline

Figure 3.5 compares IID allocation usages of IPv6 client address in past �ve years

(2009-2014). The horizontal axis indicates the numbers of di�erent IID allocation schemes

and the vertical axis shows the percentage for each allocation scheme. In 2008, Karpilovsky

et al. [107] examined the ratios of various IID allocation mechanisms. They found that

in April 2009 49.5% of IPv6 addresses were the existing IPv4 address embedded into

a new IPv6 address (the Embedded-IPv4 scheme); but �ve months later, the data had

been updated and only 6.1% of users were using addresses that were generated by the

Embedded-IPv4 scheme. In the same year, Malone [108] conducted a similar experiment

to study the IPv6 address usage on di�erent servers. For instance, he found that 70% of

routers used the small integer allocation mechanism, and 5% of routers used the Embed-

ded IPv4 scheme. One year later, Shen et al. [113] collected IPv6 tra�c from a major

ISP in China for one month. Compared with Karpilovsky's results, the ratio for random

IPv6 addresses was sharply increased: they observed 51.8% of addresses were using the

randomized scheme. They consider that the di�erence between the two results is caused

by the di�erent observation time-frames and the prevalence of Windows hosts in China.

The Embedded IPv4 scheme remained the same and the auto-con�gured mechanism was

not widely used in China. Again, in 2014, Gont and Chown [28] analyzed IPv6 addresses

obtained from web servers, nameservers, mailservers and clients in 2013. Some inter-

esting trends emerge in their results. At the client side, 69.7% of clients use random

addresses, however Gont and Chown still observed a signi�cant amount of exposure to

EUI-64 based addresses (14.31%). The client results from our survey are similar to those

in [28]. Although our data are taken from a di�erent time and location to the data in

[28], our results are quite consistent with those in that study. The largest proportion of

IPv6 addresses seen are generated by using a random IID allocation mechanism. In order
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to make sure our results were correct, we applied a frequency distribution plot to exam-

ine the IIDs we counted as `randomised' and checked the continuous probability function

among IID values. The results imply that most network administrators do care about

security and privacy and therefore use unpredictable values in the IID �eld. The next

most common technique seems to be the small-integer mechanism, 30% of these addresses

allocate only a few bytes to the IID �eld while setting unallocated bytes to zero. Some

EUI-64 addresses are observed: in particular, UoA contributes a large proportion of the

uses of the EUI-64 mechanism. After further investigation, we found that some faculties

at UoA use the EUI-64 auto-con�guration mechanism to generate a global IPv6 address

for a Lab computer to access other IPv6 networks, because this strategy can help them to

manage the network more easily. When we compare the results observed in 2009, there

is an absence of the use of Teredo, ISATAP and 6to4 allocation techniques in our results,

as well as a decrease in the use of embedded IPv4 address in the IID �eld, which suggests

that in some areas network administrators have changed their IID allocation strategies

from transition mechanisms to other solutions. In contrast, the manual IID allocation

mechanisms are still commonly used for allocating IIDs for IPv6 servers. We presume the

manual mechanism assists in the easy management of the network and identi�cation of

faulty servers.

3.3 How feasible it is to launch DNS reconnaissance

attacks against IPv6 networks?
We mentioned earlier that Van Dijk [26] discovered a new searching mechanism to

gain IPv6 addresses from the `ip.arpa' zone. In his approach, attackers need to specify

a network pre�x for the reverse DNS lookup queries to target and then to walk through

the ip.arpa zone searching for PTR records corresponding to the given domain name. In

order to understand the possibility of leveraging the IPv6 DNS reverse zone for gathering

the IPv6 addresses, we launched an active measurement survey across �ve regions and

�fty countries for two months. In the following subsection, we will explain our survey

strategy in detail.

3.3.1 DNS reconnaissance survey

Van Dijk's DNS reverse searching mechanism has been implemented in dnsrevenum6.c

from the THC-IPv6 package. We used and modi�ed the dnsrevenum6.c �le to gather

data for our study. We used a Poisson distribution with a mean time between queries of

1 second so as to minimize the load on DNS servers. Also, we embed information about

our survey into every reverse lookup request, in order to explain our survey to network

administrators. Figure 3.6 explains our survey strategy.

Figure 3.6: Flow diagram of detecting IPv6 reconnaissance attack
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In this survey, we use the Regional Internet Registries Statistics website [103] to select

the target network pre�x and DNS servers; this website updates the deployment status of

the IPv6 network regularly. We pass the network pre�x of the target domain and the DNS

server address to the program, the program analyzes the network pre�x and prepends a

new nibble (all the new nibbles start with value zero) to the given domain address. The

program then sends a reverse lookup with this new address block to the target DNS server.

For example, if an input address pre�x is `2001:620:0/48', the program creates a reverse

lookup query `0.0.0.0.0.0.2.6.0.1.0.0.2.ip6.arpa' and sends it to the DNS server. If the

DNS server response is `NXDOMAIN', the program will check the current nibble value.

If the current nibble is equal to value `F', the program will be terminated; otherwise it

increases the current (low-order) nibble value by one. In contrast, if the `NXERROR'

response comes back, it will create a new nibble to add to the existing IPv6 address and

this new nibble starts with zero. We limited our searching to a maximum of 20 records

for each IPv6 network pre�x.

Table 3.3: Columns show the number of IPv6 domains in early 2014 observed in top 20
countries

Country Assigned ::/48 network pre�xes The number of
surveyed network

pre�xes have more than
20 live IPv6 records

United States 832 74
Sweden 197 47
Germany 180 34

United Kingdom 107 28
Russian Federation 108 23

Australia 194 21
Netherlands 124 21

Czech Republic 73 19
France 64 19
Ukraine 65 16
Poland 94 15

Switzerland 69 15
Austria 85 15
Brazil 185 14

Indonesia 122 14
Argentina 52 14
Canada 115 12
Belgium 26 11
Norway 40 11
Slovenia 47 10

We launched our survey from January 2014 to March 2014 and collected results from

�fty countries that have a signi�cant IPv6 deployment. The survey results show that it
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is possible to discover IPv6 addresses from most surveyed DNS reverse zones. Table 3.3

shows the top 20 countries from our results that have a large number of deployed /48

address blocks and the number of surveyed network pre�xes have more than 20 live IPv6

records.

The reason for choosing /48 network blocks is that Hinden et al. [114] recommend

RIRs assign /48 address blocks to each registered organisation. Therefore, to have a

complete IPv6 address, network administrators need only allocate the Subnet (16 bits)

and Interface ID (64 bits) �elds. From our survey results, we have observed that some

DNS reverse zones can be leveraged for gathering the IPv6 hosts results. In addition,

some network administrators have used predictable patterns for allocating addresses for

IPv6 clients and servers. In principle, we thought that if a country has a large number

of assigned IPv6 address pre�xes, it should also have more DNS domains that map those

pre�xes. However, the results from the top �fty countries indicate that some countries

have many assigned address pre�xes with few IPv6 records in DNS reverse zones. For

example, India had 80 assigned IPv6 address pre�xes, but no DNS records have been

detected from the target DNS servers. There are several known possible explanations for

this, such as, some countries are still in the early stages of deploying IPv6, so they do

not yet have the IPv6 domains information in their DNS servers, or they haven't set up

reverse DNS domains in the IPv6 networks or they con�gured some security mechanisms

for preventing reverse zone searching, such as con�guring wildcard records for the entire

range of IPv6 clients (Section 2.2) in [115]. If the domain hasn't set up an 'IP6.arpa'

zone or used wildcard records, our DNS reverse search method will fail to gather IPv6

addresses from the DNS server.

3.4 Conclusion
In this section, we have discussed the possibilities of launching an address scanning

attack in a remote IPv6 network. We brie�y explained why traditional address scan-

ning attacks are less feasible in an IPv6 network and reviewed some new IPv6 address

scanning techniques that have been proposed from the previous studies, such as reducing

the address searching space by observing the predictable patterns from the IID �eld and

gathering IPv6 host addresses from the DNS reverse zone. We have tested some existing

reconnaissance tools in IPv6 network for launching IPv6 reconnaissance attacks, none of

them are able to do �brute-force� address-scanning attacks in an IPv6 network. Based

on our experiences, we listed two tools that can be used to launch IPv6 reconnaissance

attacks.

• THC ToolKits: Dnsrevenum6.c gains IPv6 addresses from the `IPv6.arpa' zone

• IPv6toolkit-v2.0: Scan6, this option speci�es the target address pre�x/range of the

address scan. The program sequentially increase the nibble and send the ICMPv6

message

The detailed discussion of IPv6 address con�guration and IID allocation mechanisms has
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been covered in Section 3.2. Our survey results in Section 3.3 demonstrated the allocation

usage changes in past �ve years, for instance we observed that, since 2013, IPv6 client

addresses are increasingly being assigned by a randomized IID allocation mechanism,

and we noticed that some network administrators are aware of the need to use some

non-predictable patterns for IPv6 clients. Our results clearly show that many network

administrators and operating system vendors have put increasing emphasis on security and

privacy concerns when they allocate an IPv6 client's IID �eld. In contrast, some network

administrators still allocate their Interface ID �elds with predictable values for clients

and servers. We remark that network administrators prefer to use meaningful values

in the Interface ID �eld perhaps to help them identify a host machine when something

goes wrong, for example, some network administrators use an existing IPv4 address in

their Interface ID �elds. It is important that network administrators should avoid having

predictable values in their IID �elds.

The DNS reconnaissance survey in Section 3.3 shows some potential issues in current

DNS reverse zone deployment. For example, some network administrators save the IPv6

client addresses in the DNS reverse zone without any protection. This leads to a security

issue in that attackers can probe the DNS reverse zone to obtain the IPv6 client informa-

tion. Second, if the IPv6 host addresses are using some predictable patterns, it will help

the attackers to reduce the time needed for �nding other hosts in the same network.

Table 3.4: Requirements for the applicability of network reconnaissance techniques

Reconnaissance techniques Requirement
Launching reverse lookup Search

• Network administrators create
an ip6.arpa zone
• Every IPv6 host has a record in
the ip6.arpa zone
• The �rewall does not block the
reverse lookup query

Reducing the subnet IID search space

• Network administrators use
sequential numbers to allocate
IPv6 addresses
• Network administrators use a
simple pattern to allocate IPv6
addresses
• Network administrators do not
use random numbers to allocate
IPv6 addresses

In this chapter, we demonstrated how feasible it is to launch an e�ective network
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scanning attack in the existing IPv6; we did this by doing two surveys. However, there

are some pre-conditions of launching those reconnaissance techniques in the existing IPv6

networks. We have listed few requirements in table 3.4.

Based on our �ndings, we have to �nd some secure solutions to detect the DNS re-

connaissance attack in IPv6 networks. Many security solutions have been deployed in

the existing networks. Di�erent solutions come with di�erent features for protecting the

existing network architectures. In our study, a security solution for detecting IPv6 recon-

naissance attack must ensure the following requirements:

• Must be able to inspect contents of high-speed streams of packets

• No changes for the existing protocols

• Can be deployed as a network-based or host-based solution

Based on our requirements, we analyzed the most common security solutions in the

existing network. We notice that some existing security mechanisms have limitations for

achieving our goals, such as some are host based only solutions, others cannot inspect

the contents of data packets or we have to change the existing protocols. In contrast,

an IDS can be used at either network or host based environment. It monitors and de-

tects intrusion activities and events from the packet payload. We will discuss di�erent

detection techniques in IDSs in the next chapter, the detection approach advantages and

disadvantages are also covered in Chapter 4.
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Chapter 4

Defences against network attacks

This section gives an introduction to IDSs, including how IDSs monitor and analyse user

and system activity, and how to perform a statistical analysis of activity patterns based on

matching them to known attacks. We begin with a discussion about di�erent types of IDS,

such as Network Intrusion Detection Systems (NIDS) that perform an analysis of passing

tra�c in an entire network or subnet: Host Intrusion Detection Systems (HIDS) which

monitor your existing system and match user activities to previously identi�ed malicious

behaviour. We then discuss di�erent intrusion detection approaches. Signature detection

identi�es attacks based on the incremental knowledge obtained from previous attacks. In

contrast, anomaly detection refers to `normal behaviour based' detection, it searches for

attacks by identifying all unusual actions (abnormally high CPU load, unauthorized login,

etc). The remainder of this chapter is organised as follows.

Section 4.1 gives an overview of IDSs, we brie�y explain the main features of IDSs.

Section 4.2 discusses IDS architectural variations, we describe the di�erences between

network based IDSs and host based IDSs. In addition, we consider the requirements for

con�guring both IDS solutions.

Section 4.3 explains IDS detection approaches and related works, we compare the

strength and weakness of using the signature based IDSs and the anomaly based IDSs.

Section 4.4 gives our �ndings and conclusion

Due to advances in Internet technologies, computer networks and other information

technology solutions bring convenience and e�ciency in our daily life, our society; economy

and industry have become highly reliant upon them. However, over the past decades,

Internet and computer systems have raised numerous security issues. The Symantec

report 2016 indicates that the number of zero-day vulnerabilities increased 125% from

the year before. Around 100 million fake technical support scams have been blocked by

Symantec. An average of one million web attacks was blocked each day in 2015, an increase

of 117 percent (more than double) compared with 2014 [116]. Therefore, it is important

to �nd an e�ective way to protect our networks. There are some existing solutions on the

market, such as �rewalls that can �lter inbound network tra�c, antivirus software used

to stop worms and similar malware, authentication requirements that introduce an access
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control mechanism and VPNs that encrypt data�ow between headquarters and agencies

over the Internet. However, some mechanisms have limitations in detecting attacks from

the internal network, while others cannot inspect the contents of data packets. It is

important to put in a second line of defence; an IDS helps network administrators to

detect unwanted tra�c passing through a network or being forwarded to a particular

device. The IDS can be applied at either software or hardware level. It monitors and

detects intrusion activities or events, for instance illegal and malicious tra�c or tra�c

that violates a security policy. In the following section, we start with an introduction

to IDS, then move to discuss two IDS architectures and how they di�er. Finally, we

discuss di�erent detection techniques in IDSs, the detection approach advantages and

disadvantages are covered in the conclusion.

4.1 Overview of Intrusion Detection System
In general, an IDS provides three essential security functions: it monitors, detects,

and responds to unauthorized activity by insiders and outsider intrusion. In the intrusion

detection procedure, IDS monitors the tra�c or events occurring in a computer system or

network, then scans packets for patterns that match a pre-de�ned detection mechanism

set (such as signatures, rules or scripts). Each detection mechanism contains information

of a known vulnerability, threat or pre-attack probe. If an IDS detects any threats then

it sends an alarm to the network administrator. Most IDS platforms allow users to create

a custom signature base that can add a new attack into the existing detection set. Below

we summarise some main features that are provided by IDS:

• Monitoring and analysis of network and system activity

• Assessing the integrity of packet contents

• Evaluating packet patterns based on matching them to known attacks

• Abnormal activity analysis

In current networks, IDS is broadly classi�ed into two categories based on where it is

located: A NIDS or a HIDS.

4.2 Architectural variations

4.2.1 Network Intrusion Detection System (NIDS) Component

Types
An NIDS is often used with a `tap' (port mirror) con�guration, it analyses network

tra�c that passes from a physical layer to an application layer. If any unwanted or

malicious events are detected in a particular layer, the system raises an alarm. Most

NIDS solutions are simple to deploy on a network and can monitor all tra�c that reaches

the network.

There are two types of NIDS solution; an NIDS appliance solution requires a vendor to

provide an operating system, software solutions and hardware whereas a software solution
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contains the NIDS software and the OS only. The chief advantage of using a software-only

NIDS is that it is less expensive than an appliance-based NIDS. However, if users choose

the software solution, they need to provide the hardware and to con�gure each piece of

hardware; the compatibility of hardware and software may become a problem, because

some software may not be supported by a particular hardware component.

The NIDS solution involves four physical components:

Sensors monitor network tra�c and make decisions based on whether a tra�c �ow

contains suspicious activities. Deciding where to locate the sensor is important when

deploying an NIDS solution. Normally, multiple sensors are deployed at speci�c points

around the network. For example, a sensor can be located near the �rewalls, switches or

routers.

A management server acts as an analyser; a management server collects all the

results from the di�erent sensors. The management server can make �nal decisions based

on what the sensors have reported.

Database servers save all the events from a sensor or a management server. The

database server provides information for network administrators to track network disasters

and identify attacks.

A console provides an NIDS user interface; a network administrator can con�gure or

access the NIDS via the console. The console can be installed as a local program on the

administrator's computer or on a secure web application portal.

4.2.2 Host Intrusion Detection System (HIDS) Component Types

Unlike the NIDS, a HIDS locates sensors in servers or workstations to detect attacks

on an end host. In this design, the HIDS not only monitors network tra�c on an end

host, but also detects system activities. The system makes decisions based on its default

settings. The HIDS inherits some existing NIDS components, but it adds some new

features. In this solution, a sensor is located on numerous host types, such as server

hosts, client hosts and application servers. A server is a computer that allows clients to

make a connection to send and receive data: for instance, Web, email or File Transfer

Protocol (FTP) servers. A client is a user's computer that establishes a connection to

the server. An application service is a program that runs on the server. Like the NIDS

solution, the sensor aims to detect malicious behaviours that are occurring on a particular

host or that try to access that host. An event log is generated if any malicious activities

are observed. Both NIDS and HIDS have their own strengths and weakness, Table 4.1

lists advantages and disadvantages separately.
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Table 4.1: HIDS features vs NIDS features
Host based Intrusion
Detection Systems

Network based Intrusion
Detection System

Advantages Monitors System Activities:
A host based IDS can detect all
system activities by analysing
the operating system logs or
events. It can monitor user logon
and logo� activity, when the user
connect to the network, etc.
Detects attacks that a
network based IDS fail to
detect: Host based systems can
be very useful in protecting
attacks from internal users, such
as If an unauthorized user makes
changes to system �les. The host
based IDS can detect it by
analysing the system logs
Does not require additional
hardware: Host based IDSs are
installed on the host, so there is
no additional hardware
requirement

Monitors Network
Activities: A network based
IDS is deployed at the edge of
the network, it will listen for any
attack on the target network
regardless of the type of
operating system the target host
is running. In addition, NIDS
can stop the attacks before they
can get to a host and so
compromise the system
Detects attacks that a host
based IDS fail to detect: A
network based IDS is normally
deployed outside the �rewall,
therefore, it can detect malicious
attacks that have been rejected
by the �rewall. This information
can be very useful for security
analysis
Does not require additional
changes: Network based IDSs
are deployed independently and
do not a�ect existing systems or
infrastructure. The
network-based IDS systems
monitor all tra�c at the edge of
the target network

Disadvantages

• High false alarm rates
• Consume host resources
• Host based IDSs do not see
rejected attacks that never
hit the host inside the
�rewall

• High false alarm rates
• Cannot detect attacks
within encrypted tra�cs
Packet loss under high
loads
• A network-based system
cannot give the detailed
information about system
activities
• The NIDS often used with
a `tap', so it require
additional hardware to be
con�gured as a port mirror
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Figure 4.1: Using Aho-Corasick algorithm to process the input strings (from [8])

4.3 IDS detection approaches and related works
Based on the detection approaches, the IDSs are divided into two categories: Signature

based solutions and Anomaly based solutions.

4.3.1 Signature-based intrusion detection
This solution requires users to con�gure a set of rules that includes a list of attack sig-

natures. Each signature contains some signi�cant patterns learned from previous attacks.

The IDS monitors packets on the network and compares them to a de�ned signature or

to attributes of previous malicious threats. If a match is detected, an alarm is raised. In

most IDS solutions, users are allowed to de�ne their own signatures; they can specify a

particular port to be monitored or a special pattern to be checked in the packet payload.

This information helps the IDS to identify suspicious tra�c �ows. The packet header rules

store 5-tuple information for each packet; a content inspection rule consists of a string or

regular expression pattern from previous attacks. Traditionally, an IDS inspects packets
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deeply by scanning every byte of the packet. Naturally, several improvements have been

proposed in the last two decades. Our study shows the two searching algorithms that

have been used most widely in the current IDS solutions.

Aho-Corasick algorithm

Aho et al. [117] proposed a simple and e�cient algorithm in 1975, some existing IDS

solutions (Snort and Suricata) still use it as the default pattern searching algorithm. In

this approach, they use a pattern-matching machine to represent a pre-de�ned language

as a set of strings; users can test whether an input string matches any set of the given

strings. The pattern state machine processes an input text string and is composed of

three functions: a [goto] function, a [failure] function and an [output] function:

• A [goto] function constructs a goto graph; the goto graph starts with a root node

that represents a state, 1. Each input keyword is entered into a subsequent node.

A search starts from state 1 and a path through the graph spells out a keyword. If

no failure is detected during the search, the matched keyword will be passed to an

output function

• A [failure] function is triggered when the [goto] function reports failure, for example,

if a current input character is not found in the current node or the subnodes on the

same path, the pattern-matching machine will call the [failure] function to search

alternative paths for processing the character

• An [output] function merges duplicated output states into a new output state

Figure 4.1 illustrates how to use the Aho-Corasick algorithm to build a goto graph for

an input string list {phone, telephone, test, elephant}. The goto function constructs four

paths to spell out these keywords; the solid lines are the normal path for each keyword,

while the dotted ones are failure transitions. For example if we use these graphs to

process an input text string `uelephonetest', the machine starts from a root status and

reads an input symbol `u', because the existing state does not have a record for the symbol

`u'; therefore, the machine repeats a cycle at its current state and reads the next input

symbol `e'. The record for that symbol is detected and the next state is state 18, because

g(0,e)=18. The state transition keeps moving on this path until reaching state 25. The

machine reads an input symbol `e' and makes two state transitions in this operating cycle.

Since g(25,e)=fail, the machine �nds an alternative at state 7 and processes the rest of the

string on this new path. The Aho-Corasick algorithm is the earliest solution and is widely

used for signature-based IDS. For example, Snort's detection engine uses an optimized

version of the Aho-Corasick algorithm. Snort uses a two-dimensional chain for pattern

matching. The horizontal axis stores some common attributes; once common information

is detected, it will start from the closest pattern strings. In addition, some solutions try

to enhance the searching speed of the Aho-Corasick algorithm. For example, in [118], Lo

et al. propose a solution to enhance the hardware string-matching performance speed and

to reduce memory usage by applying a bitmap and path compression to the Aho-Corasick

algorithm. A di�erent approach has been proposed by Qu et al. [119], they made a hybrid
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solution by combing the multithreading and paralleling IDS approaches together. In this

approach, each detection agent holds a small and unique rule set, the incoming packets

have been broadcast to all the agents. All agents access the same packet with its own

rule set; the alarm is raised if any match is detected. This new solution reduces the IDS

processing time and improves detection performance.

Regular expression signatures

A regular-expression mechanism is another signature-matching algorithm; it uses char-

acter classes, unions, optional elements, and closures to enhance a signature-based NIDS's

�exibility. In addition, it improves searching e�ciency by adding e�ective schemes to per-

form pattern matching. A normal regular expression can be represented by a �nite state

automaton. In [120], Hopcroft et al. introduce two �nite state automata: a Deterministic

Finite Automaton (DFA) and a Non-deterministic Finite Automaton (NFA). The DFA

takes input symbols into a transition function and gains a single next state from the func-

tion. Instead of returning a single next state, the NFA solution returns a set of states.

Most studies show that NFAs are compact but slow; DFAs are fast but may require more

memory while processing. In the past ten years, most studies focus on making DFA more

e�cient, such as [121], where Gong et al. reduced the construction time, memory and

matching time by using a multi-dimensional �nite automaton in the original DFA model.

4.3.2 Anomaly detection techniques
Signature based solutions address and stop some common attacks in the current net-

work. However they are not capable of detecting novel attacks. In contrast, an anomaly

intrusion detection system uses the normal behaviour patterns to identify an intrusion.

In general there are two steps for starting an anomaly detection system. The �rst step

builds the normal behaviour patterns from statistical measures of the system features; in

the second step the anomaly IDS compares the normal behaviour patterns to detect any

abnormal tra�c pattern and determine the presence of intrusive activities. A number of

anomaly detection mechanisms have been proposed for detecting deviating activities. Ex-

isting solutions are categorized into statistical methods, machine learning-based methods

and data-mining methods. A brief description of each method is given in the following

paragraphs.

Statistical anomaly detection

In a statistical method, users specify a target server as a subject and create two

pro�les for it: a current pro�le and a stored pro�le. The stored pro�le is generated by

network administrators before the deployment, it contains an activity intensity measure,

an audit record distribution measure, categorical measures and ordinal measures. The

system periodically compares the current pro�les with the stored pro�les and looks for

a di�erence. The statistical approach can be categorized as model based or non-model

based. The model based statistical IDS generates the normal behaviour modes for speci�c

aspects of the network, any deviation from the de�ned modes are deemed as anomaly

activities. In contrast, if network behaviours cannot be characterized by a model, the
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non-model based approach is applied. One of the widely used model based approaches

is Principal Component Analysis (PCA) [122], In [123], Mechtri et al. proposed a PCA

based IDS to improve the operational e�ciency and lower use of system resources by

transforming a relatively large number of network connections into a smaller number

of input data vectors. The results demonstrated signi�cant improvements of processing

speed with a lower CPU usage.

Machine-learning-based anomaly detection

A machine-learning solution allows a system to learn normal behaviours from system-

to-system or user-to-system interactions. Existing machine-learning approaches can be

divided into two categories. Arti�cial Intelligence techniques introduce statistical mod-

elling to handle symbolic knowledge for determining discrepancies between normal and

anomalous activities. Computational Intelligence methods refer to nature-inspired meth-

ods; they are used to solve complex problems where no previous information can be

referred to. Some previous studies have explored how to use the machine-learning algo-

rithmic method to generate more accurate alarm results. Beaver et al. [124] used in-situ

learning and semi-supervised learning strategies to build an intrusion detection model,

the system learned both normal and attack tra�c, to make a decision on whether an

event is malicious or not based on this information. Tian et al. [125] proposed another

method based on a neural network and the Particle Swarm Optimization (PSO) algorithm

along with Rough Set. The rough set helps an arti�cial neural network to select and in-

put attribute subsets and the PSO optimized these selected parameters for ANN. Both

proposed methods demonstrated higher detecting and recognition accuracy. Data-mining-

based anomaly detection Some researchers have focussed on data-mining algorithms that

are used to reduce the false alarm rate. This approach creates bounds for accessing valid

network activities and sets the security levels for monitoring attack activities in daily

tra�c. A variety of classi�cation techniques have been introduced in the data-mining

approach, but there are some common steps that need to be applied:

• Data collection phase: captures all network �ows and saves the information to the

relevant database. This information includes source and destination IP address,

source/destination port, protocol, number of bytes, service type and TCP �ags

• Data �ltering and pre-processing: allows users to de�ne the data �ltering rules or

con�gure the pre-processing level. The user can con�gure the system to check only

relevant information, such as the information in the TCP or UDP headers

• Mining phase: In this step the system uses the pre-de�ned rules or learned model

to classify the unknown data samples

In [126], Chawla et al. use the Synthetic Minority Over-Sampling Technique (SMOTE)

to classify misuse detection and apply Nearest Neighbour (NN), Density-Based Local

Outliers for anomaly detection. The results show that using more than one detection

scheme can improve prediction accuracy. In this section, we discussed three anomaly

detection techniques: In the statistical based IDS, the behaviours of the normal system
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are learned before the deployment. In contrast, the data mining based IDS captures the

claimed behaviour from available system data. Finally, the machine learning techniques on

explicit or implicit models enable the patterns analysed to be categorized. The comparison

of all the three techniques is shown in Table 4.2.

Table 4.2: Comparison of All the three anomaly techniques
Technique Advantages Disadvantages

Statistical based Generate new pro�les by
accumulating the observed
behaviours during a short
period

Parameters and metrics are
very di�cult to set. Easily
in�uenced, could be trained
by attackers

Machine learning based Reducing false alarm rate
and maintaining detection
accuracy

High operation cost of
learning the normal
behaviours; high resource
consumption

Data mining based Detect intrusions without
prior knowledge

Di�cult and
time-consuming availability
for high-quality
knowledge/data

4.4 Conclusion

Security issues are growing every year, therefore deploying an e�ective and secure

solution becomes increasingly important. In this chapter, we presented an overview of

the use NIDS of and HIDS in network security solutions. These systems are able to

generate alarms, if any anomalous behaviours are observed. The host based intrusion

detection monitors or analyses system log �les and detects malicious or intrusive activities

in a single machine. The network based IDS monitors tra�c between di�erent network

components on the same wire. It can connect using a network tap or a switch port that

mirrors tra�c. We also explained the signature based and anomaly based IDSs based

on the design architectures, the pros and cons of two IDS approaches are shown in table

4.3. IDSs introduce several features to detect internal and external attackers, provide

a real-time report, trace user activity and diagnose the impact and assist the security

management of your system. However, there are still some challenges to using IDSs.

Most IDS are still signature based solutions and work on attack signatures. The

signature database needs to be updated whenever a di�erent kind of attack is observed.

Furthermore, in order to reduce the false alarm rate, once an attack is detected and

reported, human intervention must be involved to determine how it occurred, correct the

problem and take necessary action to prevent the occurrence of the same attack in future

IDSs are not a solution to all security concerns, they act as one element of an existing

security architecture that monitors and reports all intruder attempts

While deploying an IDS solution to monitor HTTPS or HTTP 2.0 tra�c, it is impor-

tant to keep in mind that the current IDS solution cannot monitor and access encrypted
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Table 4.3: Comparison of the two IDS approaches
Signature-based IDS Anomaly-based IDS

Advantages

• Simplest and easiest
solution to deploy for
detecting known attacks
• The system generates a
detailed contextual
analysis report that makes
it easier for network
administrators to identify
and detect the attack
• Low false-alarm rate

• E�ective to detect new
attacks
• Network administrators
can update the new pro�les
in the real time
• Network administrators
generate the customized
pro�les that avoid
attackers to test what will
trigger an alarm

Disadvantages

• Easy to bypass the
detection by using new
ways to launch attacks
• High operation cost to
analyse each signature
• No novel attacks can be
detected as IDS can only
analyse the known attacks

• High false alarm rate
• Di�cultly of de�ning
pro�les
• Additional cost of adding
new hardware

tra�c. We learned some alternative solutions from the previous studies [127, 119], for in-

stance, 1) Decrypting tra�c before passing it to an IDS. 2) Using HIDS solutions instead

of NIDSs.

With di�erent vendors working on eliminating the shortcomings of Intrusion Detection

Systems in the last decade, more and more e�cient IDS tools have been introduced.

These systems will have a certain degree of success in detecting most existing security

attacks. However, di�erent vendors have di�erent design ideas and use di�erent detection

algorithms for identifying malicious behaviours. In the next section, we will explain

the similarities and di�erences among three IDSs based on the followed factors: design

architectures, detection procedures and the rule format.
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Chapter 5

Overview of Snort, Bro and Suricata

In the previous section, we described an intrusion detection system. Network adminis-

trators use this system to monitor network or system activities so as to detect malicious

behaviours or policy violations. We discussed the strengths and weakness of using sig-

nature based and anomaly based solutions. The former relies on spotting a duplication

of attacks that have been detected before, in contrast, anomaly solutions can be used to

detect a new attack, but their false alarm rate maybe high. In this chapter, we start

with three popular open-source IDS tools: Snort1, Bro2 and Suricata3. All three tools

are widely deployed in the existing IPv4 networks; many organisations use one of them

to protect their networks. The use of an open-source tool o�ers two signi�cant bene�ts.

First, the �exibility of the open-source tool is a major advantage; we can easily modify

the source code to detect new attacks. Second, the open-source tool is available free of

cost. The remainder of this chapter is organised as follows:

Section 5.1 gives an introduction of the design goals for three IDSs

Section 5.2 compares design architectures for three IDSs

Section 5.3 compares data capture algorithms for three IDSs

Section 5.4 compares packet detection algorithms for three IDSs

Section 5.5 compares rule formats for three IDSs

Section 5.6 gives conclusion

5.1 Introduction of Snort, Bro and Suricata
This section gives an overview of three popular IDSs, we introduce the general infor-

mation for each tool followed by some primary design goals.

5.1.1 What is Snort?
Snort is a signature based detection open-source tool that provides both network

intrusion detection and network intrusion mitigation; it comes with a set of relevant rules

and features that help users to detect attacks and probes. For instance, based on the

1https://www.snort.org
2https://www.bro.org
3http://suricata-ids.org
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user's speci�cation, Snort can detect bu�er over�ows, port scans and web application

attacks, etc. In addition, users can specify new rules to detect a new attack and con�gure

rule actions to either drop or log malicious packets.

5.1.2 What is Bro?

Bro is an open-source IDS that passively monitors network tra�c and looks for sus-

picious activity. Bro uses a specialized policy language that help users to monitor and

analyse attacks: for instance, Bro provides default policies for detecting SSH brute-forcing

and validating Secure Sockets Layer (SSL) certi�cate chains. Again, it allows users to cre-

ate a new policy for identifying a new attack. Unlike the current signature based IDSs, Bro

provides more features for detection of semantic misuse, anomaly detection and behaviour

analysis.

5.1.3 What is Suricata?

Suricata is another open-source network intrusion detection system. While it shares

some similarities with Snort and Bro, for instance it inherits both pattern matching

and script solutions to withstand attacks against it, it introduces a multi-thread packet

processing structure to accelerate its operation speed in high-volume networks. Each of

the three IDSs come with di�erent primary design goals, some of which are listed here:

5.1.4 Snort design goals

• Has an open source structure. Unlike some commercial network-based intrusion

detection tools (Cisco secure intrusion detection system, CyberSafe centrax and

Network ice blackice defender), Snort allows users to add their own signatures into

the existing rule base. Once a new signature is created and enabled on a system,

Snort will immediately apply the new signature in its intrusion detection process

• Supports passive traps. In general, network administrators are aware which services

are available on their network. Therefore, they can specify Snort rules to watch

for tra�c that tries to interact with non-existent services. If any incoming packets

attempt to call non-used ports or services, a log or alert will be generated. For

instance, if a network is not using File Transfer Protocol (FTP) service, users can

con�gure a Snort rule to raise an `FTP Probe' alert if they detect that the packet

intends to connect to port 21. The key word `any' is used to specify any IP addresses

or ports. A Snort rule to detect the FTP probe attack is shown below

Alert tcp any any -> any 21 (msg: `FTP probe!'; sid:2002; rev:1;)

5.1.5 Bro design goals

• Enhancing the speed of operation for high-speed and larger volume monitoring.

These days network throughput has increased from Mb/s to Gb/s. Any IDS needs to

capture packets as quickly as possible. If any packets are dropped on the monitored
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link, that may defeat the purpose of monitoring by missing some important infor-

mation that identi�es network intruders. Bro accommodates such high-performance

settings by supporting scalable load-balancing. Large sites typically run `Bro Clus-

ters' in which a high-speed frontend load-balancer distributes the tra�c across an

appropriate number of backend PCs, all running dedicated Bro instances on their

individual tra�c slices

• Real-time noti�cation. Some attacks happen very quickly. Bro allows users to detect

the attack in real time; it helps administrators to trace back the attacker much more

easily. Because of this, it can minimise the damage and prevent further break-ins

• Flexibility and extensibility. In order to process a high volume of tra�c more

e�ciently, Bro separates the detection mechanism from the policy for rules. It

uses di�erent mechanisms to apply di�erent policies for �ltering, monitoring and

responding to di�erent types of tra�c. Again, Bro allows users to add a new policy

to detect a new attack. Furthermore, its event handle is treated as a link between

its event engine layer and policy script layers. For instance, if a user adds a new

protocol analyser in the event engine, the user also needs to write an event handle

to process the event generated by this new analyser

5.1.6 Suricata design goals

• Improved performance. Suricata is designed to use multi-threaded processing and

aims to balance tra�c loads by distributing the tra�c over every processor in a

Suricata host

• Protocol identi�cation. Unlike some IDS systems, Suricata allows users to de�ne

either the protocol type or the particular port in the rule �le. In addition, Suricata

provides a larger number of keywords that match on protocol �elds

• Pattern-based and script-based detection. Similarly to Snort, Suricata uses a pattern-

matching mechanism in the default setting; it compares packet information with

pre-de�ned rules. If any matches are detected, an alert is generated. However, the

pattern-matching only tests the relevant rules for each incoming packet; there is not

an obvious deliberate way to check for pattern relationships among the packets in the

same �ow. In order to detect this attack, users need to compare the previous infor-

mation with the current content, which is not possible using the pattern-matching

mechanism. Instead of using pattern matching approaches, Suricata introduces

script-based detection and well-designed data structures for parsing and saving �ow

information.

5.2 Comparison of design architectures

In the previous section, we discussed IDSs with di�erent design goals. Therefore,

di�erent packet processing �ows are used in di�erent IDSs. In this section, we will compare

the similarities and di�erences among three IDSs based on the design architectures.
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5.2.1 Snort design architecture

Figure 5.1 demonstrates the main components and the packet processing steps in the

Snort system; each component plays a di�erent role and associates with the next com-

ponent in the Snort architecture. In the initial step, the packet decoder captures a data

packet from the network card, which then passes through the pre-processor component,

the pre-processor modules normalize protocol headers, detect anomalies, reassemble pack-

ets and track the TCP or UDP session. If any anomalies are detected, the pre-processor

raises the alerts before the detection engine processing. The detection engine is a core

component in Snort; it is designed to access the packet content and identify any malicious

behaviour that matches the detection mechanisms. For each detection mechanism, the

user has speci�ed rules for either raising an alert or dropping the packet. All the alerts

are saved by the output modules.

Figure 5.1: Snort architecture and components

5.2.2 Bro design architecture

Snort uses a one direction searching mechanism; it does not allow the component to

return the information back to the previous component. In contrast, Bro's design is based

on layered structures, as shown in Figure 5.2. It creates bi-directional communication

between the event engine layer and policy script interpreter layer. The event engine

passes the packet to the policy script interpreter for the detection of any anomalies,

and the policy script interpreter returns the results so the event engine can take the

right action. The packet processing �ows are described as follows: the lowest layer is

called the packet capture layer, it uses the libpcap library as a default to get packets
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from the monitored wire. The captured packets are passed to the event engine layer,

which manages the session states and classi�es di�erent protocols. The event engine layer

produces an event to describe the relevant network activity and indicate �ow information

of the network packets. Each event is linked to a corresponding policy script interpreter;

as a result, a stream of events is passed to the policy layer. The interpreter accesses the

packet behaviours with user-supplied scripts and returns a decision: normal or abnormal

network activities. The event engine raises the alert if the malicious behaviours are

detected.

Figure 5.2: Bro architecture and components

5.2.3 Suricata design architecture
Suricata design architecture brings new ideas and technologies to the IDS solutions:

it o�ers a multi-threading solution to improve the �ow processing speed. Figure 5.3

gives an example of how Suricata processes incoming tra�c with multi-thread detection

processors. Suricata collects packets via a packet acquisition module (libpcap) which uses

the speci�ed network card to gather the packets and pass them to Suricata. Based on the

hardware speci�cation, Suricata then generates a number of threads and runs the di�erent

threads on di�erent CPUs. Each thread acts as an instance of packet processing �ow for

processing multiple packets in parallel, the number of generated threads determines how

many packets can be processed in the same time. Each packet is processed by the decoder

and stream layer to connect its content to a Suricata support format. The detection

67



68

module accesses the packet by loading all signatures and initializing all the detection

plugins. After packet analysis is performed, Suricata provides multiple ways to save the

alerts.

Figure 5.3: Suricata architecture and components

When the packet processing �ows for three IDSs are compared based on their design

architecture, it is clear that di�erent IDSs employ di�erent methods to achieve their

design goals. Snort is a single-threaded system, it processes the packets through all

enabled components and no information can be passed back to the previous components.

Suricata inherits the basic Snort architecture, such as the packet decoding and the packet

detection, but it extends it and provides more �exible solutions and features, with the

addition of multi-threading as well as �le extraction. Suricata is also compatible with

script-based detection. In comparison, Bro o�ers a full script-based analysis engine for

detecting malicious activities via scripts. Suricata is also compatible with the script-based

detection. In addition, Bro tracks the �ow information by exchanging the information

between di�erent layers. In this section, we brie�y explained IDSs working �ow based

on their design architecture. All tools rely on the di�erent components working together

to detect particular attacks and to generate output in a con�gured output channel. In

the following sections, we investigate the mechanisms or strategies that are supported by

each component.
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5.3 Packet capturing mechanism

5.3.1 Libpcap

Figure 5.4: Structure of libpcap packet capture (Source from [9])

Libpcap4 is a hardware-independent open-source library that allows users to sni� the

packets from a monitored network. Figure 5.4 demonstrates the packet capture process.

In principle, a network card is used to send and receive network packets. The card driver

grabs the packets and sends them to the protocol stack. The OS protocol stack analyses

the packet and allocates packets to the relevant application. Libpcap is located at the

boundary of the kernel space where it can monitor both incoming and outgoing packets

from the network interface card. The packet capturing procedure includes three steps:

• Device Initialization. Libpcap allows users to call its pcaplookupdev() function to

list all network devices, it then uses getifaddrs() to get their IP addresses and related

information. All such network devices are saved in the pcapif list

• Berkeley Packet Filter (BPF) [128]. This provides a �lter function for the sni�er,

so that it forwards only speci�c packets. The BPF is called after the driver receives

the packets from the network interface

• Packet processing loop. Snort uses a while loop to call the pcapdispatch() function

from the libpcap library. pcapdispatch() reads speci�ed packets and passes them

to Snort. Snort then uses a PcapProcessPacket() function to process each captured

packet based on di�erent protocol types. The packet decoder passes all decoded

packets to the pre-processor module for further investigation.

4http://www.tcpdump.org/

69



70

5.3.2 AFPACKET

AFPACKET is the Linux native network socket. It functions similarly to the memory

mapped PCAP, but no external libraries are required. Similar to libpcap, AFPACKET

enables the user to con�gure a memory bu�er for captured packets. This means that

the memory allocated for the bu�er is shared with the capture process, so instead of the

kernel sending packets to the capture process, the process can just read the packets from

their original memory address. This method saves time and is less consuming in terms of

CPU resources.

5.3.3 PFRING

PFRING [129] is another high-throughput Linux kernel module that optimizes load

balancing through the ring cluster design. In the packet capturing process, the application

copies packets from the NIC to the PFRING circular bu�er. Then the applications reads

the packets from this circular bu�er. The advantage of using PFRING is that it can

distribute incoming packets to multiple rings; it allows multiple applications to process

packets simultaneously.

To conclude the summary of existing packet capturing mechanisms, we noticed that

Bro did not support the AFPACKET capturing mode. While other the two mechanisms

are supported by three IDSs, Libpcap is con�gured as a default mode for three IDSs to

sni� the incoming packets. PFRing only works in the `Bro Clusters' mode and Bro does

not support AFPACKET. In contrast, Suricata and Snort can use the PFRing mechanism

with the PFRing supported hardware. There are no additional requirements to use the

AFPACKET in Snort and Suricata; users can enable the AFPACKET mode through the

con�guration �le or the command line.

5.4 Packet detection mechanism
The detection process is the core of IDS solutions; di�erent tools introduce di�erent

mechanisms and perform di�erently when it comes to their performance, resource con-

sumption and accuracy. In this section, we start with an overview of detection engine

processing for the three IDSs followed by the di�erent detection strategies.

5.4.1 Snort Detection Mechanism

Snort introduces two components to assist the packet detection: pre-processors and

the detection engine.

The pre-processor. This is a �rst step of the packet detection process, without the

use of the pre-processor component it is quite di�cult to match patterns from any packets

that are not well formatted. For instance, attackers can fragment a large packet into

small packets and split their malicious scripts into fragmented packets; each fragmented

message will not contain a signi�cant enough signature to match the relevant rules, but

when these fragmented packets are assembled together at the receiver end, attack scripts
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can be triggered. The Frag3 pre-processor module, used by Snort, is designed to assemble

all fragmented packets back into the original packet. The module then passes the original

packet to the detection engine. Again, the detection engine simply searches the packet

content to match the user speci�ed signature rules. However, even without restructuring

the packet content, an attacker can easily bypass this check. For example, if a user creates

a rule to detect an http packet that contains `scripts/iisadmin', attackers can modify the

string to `scripts/./iisadmin' to escape that check. Attackers can also make this situation

even worse by inserting web Uniform Resource Identi�ers (URI) in hexadecimal characters

or Unicode characters. To solve this potential issue, Snort provides the `Httpinspect'

module for restructuring some HTTP URLs into well-formatted HTTP URLs. All the pre-

processors have been compiled during the installation. Users can enable or disable di�erent

pre-processors through the `snort.conf' �le. Additionally, users can use the customized

pre-processors to detect new attacks.

Figure 5.5: Structure of the two-dimensional chain

The detection engine. A core component in Snort is the detection engine; it is

designed to access the packet content and �nd information that matches the relevant

rules. Snort implements its pattern-searching mechanism in the detection engine, which

reads rules from the user speci�ed rule set and uses the rules to test each incoming

packet. If a packet contains information that matches any rule, pre-determined action

is taken, such as dropping the packet or triggering alerts. Performance time is a major

71



72

concern when implementing the pattern-matching mechanism in a detection engine; low

engine performance can cause packet dropping and a�ect the detection result. Snort

introduced a two-dimensional linked list for reading the rule into internal data structures

or chains. Figure 5.5 demonstrates a two-dimensional chain example. The horizontal axis

is called a Chain Header, it records packet header information, such as IP addresses, port

numbers and protocols. The vertical axis is called a Rule Option, it represents a group of

rules sharing some common attributes, such as port numbers or IP addresses. Each rule

option speci�es how to analyse di�erent intrusion behaviours that have been observed

from previous attacks.

Snort condenses all the common information into a single chain header and divides

detection signatures into di�erent chain option structures to improve the speed of detec-

tion processing. For the packet detection process, the detection engine component parses

the packet header and matches the information with the chain header; if a packet header

match is found, the detection engine starts to compare the payload information with the

chain options that belong to the same chain header. The chain options contain attack

patterns from previous attacks, if any matching is detected, an alert is raised.

5.4.2 Bro Detection Mechanism
Bro introduces the packet decoding process in the event engine layer, it contains sev-

eral analysers that check information in a packet header, verify its IP header checksum,

sort the incoming packets into the right order based on the connection status, reassem-

ble fragmented packets by using the fragment ID, and classify packets based on di�erent

protocols. Bro raises the event based on the packet's behaviours and the generated event

triggers the relevant event handle from the policy layer. In the event engine layer, there

are two important entities: the Event management and the Protocol analyser. Event

Management. Bro uses di�erent events to keep tracking TCP connection status; for in-

stance, by using the TCP �ags for each new TCP connection. If the �rst packet contains a

SYN �ag, the event engine will set an expiry time for this new �ow; a `connectionattempt'

event is generated if the �ow has not received the SYN-ACK packets from the destination

node but `tcpattemptdelay' seconds have elapsed. However, if the TCP session is estab-

lished before that time, the event engine issues a `connectionestablished' event and deletes

the expiry time. In another scenario, if the destination host sends an RST packet to reject

the current connection, a `connectionrejected' event is raised. The `connection�nished'

event is generated when the event engine receives a FIN packet. There is no connection

event for the UDP protocol; Bro uses two events to indicate a UDP sender and a receiver

instead. A `udprequest' event is generated; if the UDP request is detected, a `udpreply'

event is generated for the packets that are sent by a UDP responder. More information on

how to use events can be found in the Bro 2.3.1 script reference [130]. Protocol Analyser.

The protocol analyser is another core component for accessing di�erent protocols. Figure

5.6 demonstrates the protocol analyser tree structure in Bro. In [10], Larsen explains

how to �nd the right analyser through the Bro data structure. For instance, if a new
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Figure 5.6: Bro analyser tree structure (Source from [10])

connection is detected, Bro creates an instance of this analysing tree to associate this

new connection with the correct analyser. He also claimed that �an analyser can support

one of two input methods (or both) packet wise or stream-wise. An analyser can accept

input via one method (e.g., packet-wise) and pass it on to its children via the other (e.g.

stream-wise). The TCP-Analyzer for example reassembles packets into a byte-stream and

thus all TCPApplicationAnalyzers only see stream-wise input� [10].

Bro's Policy Layer. The policy script interpreter is located above the event engine

layer, di�erent scripts are triggered by di�erent events. Once the event engine generates an

event, the top layer of Bro starts to process the event based on the speci�ed policy scripts.

A policy script contains server handles, with each handle referencing one relevant event.

In other words, any event that has been raised will trigger the calling of a corresponding

event handle. Users enable the policy scripts based on their particular requirements.

Bro loads all enabled scripts during its initialization processing. If a policy script needs

assistance from a disabled analyser, the event engine will automatically enable it. This

design allows Bro to only allocate resources that are actually being used. The policy layer

only raises an alert if a security breach is found.

5.4.3 Suricata Detection Mechanism
As we mentioned before, Suricata utilises some of the same ideas as Snort, such as the

pre-processors or the detection engine processing. However, it modi�es the Snort detection

mechanism to �t into its multi-threading solution. There are two main di�erences between

Suricata and Snort.

Packet decoding. In Suricata, the decoding pipeline reads packets from a raw socket

for the de�ned capture device in real time; it then decodes the packet based on the Open

Systems Interconnection (OSI) model. Its layer 2 is decoded, after which the higher

layer' sprotocols are decoded. The decoded data is saved into a Suricata-readable packet
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format and passed to the detection module. The detection module accesses the packet

with user-de�ned rules or scripts. Suricata's rule matching is similar to Snort's. Suricata

introduces some new keywords to simplify the detection process, such as the keyword

`iprep' for matching IP reputation data, and the `dnsquery' keyword for analysing DNS

responses.

Detection engine. Snort runs on a single thread. If users want to run a multi-

threaded solution, they need to run multiple instances of Snort and assign tra�c to

di�erent instances based on the �ow type. Suricata can run multiple detection modules

in parallel and one �ow can be processed in multiple detection modules at the same time.

There is a risk in running the �ow in a multi-threading program; for instance, if any

malicious packets get split into di�erent threads, the detection engine may be unable

to match the complete signature. To solve this problem, Suricata allows the detection

engines to share coordination information, but doing so also increases the computation

load on the system. Furthermore, network tra�c is directed to the relevant �ow. The

keyword `memcp' can be used to specify the maximum number of bytes the �owengine

will use. This parameter can mitigate the engine overload problem, caused by attackers

creating a lot of �ows to �ood the system.

Both Bro and Snort use a single thread to access the incoming packets, Bro maintains

the �ow information and allocates di�erent events for packets. Bro's packet detection

mechanism will not check all the policy script, the policy script is only triggered when

the packet matches a speci�ed event.

Unlike Bro, Snort is a traditional signature based IDS, no �ow caching functions are

introduced in Snort; it loads the default rules when the Snort instance is launched. The

detection engine then analyses the packet and decides the rule set, the packet goes through

all the rule sets until the matching is detected. The weakness of using a single-thread IDS

is that only one packet can be processed in a detection �ow. In contrast, Suricata makes

it possible to launch multiple packet detection processors simultaneously, and examine

several di�erent packets in parallel.

5.5 Detection rule format

Di�erent IDSs come in a variety of rule formats for detecting suspicious tra�c in

di�erent ways, in this section, we explain the basic rule formats among three IDSs.

5.5.1 Snort language

Snort rules are expressed in a simple language which can be used across di�erent

platforms. It is comprised of three parts: the rule action, the rule header and the rule

options. For example, Table 5.1 shows a Snort rule example for detecting the Portable

Hypertext Format (PHF) probe attack [131].
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alert tcp 192.168.1.2 50051-> 192.168.1.6 80 (content: "/cgi-bin/phf"; msg: "PHF

probe!"; sid: 20023; rev:1;)

Table 5.1: Snort Rule Structure

Rule Actions Protocols Source
addresses

Source
port

Destination
addresses

Destination
port

Alert TCP 192.168.1.2 50051 192.168.1.6 80

Table 5.2: Snort header �elds and features

Rule protocol TCP Snort identi�es TCP, UDP, ICMP, IP,
ICMPv6 and IPv6 protocols

IP address 192.168.1.6 The addresses are formed by IPv4 dotted
decimal or IPv6 16-bit hex groups and a
CIDR [132] block. Users can specify that
Snort should look at any address on the
monitoring wired link or monitor speci�c
host addresses. In the current version, Snort
does not allow users to put the host name
in the address �eld. The key word �any�
indicates all valid addresses

Port numbers 80 Snort allows users to specify the port
number in various ways, such as any ports,
static port de�nitions (e.g: 23 for telnet, 80
for http), ranges, and by negation (e.g: if
we want to log every port except the port
range between 5000 to 5100, we could de�ne
a rule which looks like log tcp any any ->
192.168.1.0/24 !5000:5100)

Direction operator ->
<>

The direction operator re�ects the packet's
path; the left side is a source node, and the
right side is a destination node. <> is a
bidirectional operator that tells Snort to
analyse in both directions
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Table 5.3: Snort rule option

Content "/cgi-bin/phf" The value in the content �eld helps
Snort to do string pattern checking, if
the packet has the same information,
the de�ned rule action is taken

Msg "PHF probe!" The plaintext string gives more
information about the anomalous
activities

Sid 20023 A unique ID for identifying the rule.
Every rule has a unique sid.
User-de�ned rules should have a
higher sid than 10,000

rev 1 Revision number ID

The rule action tells Snort what to do when malicious behaviours are observed. For

instance, the alert action allows Snort to raise an alert and store the packet information in

the default log path. The rule header helps Snort to decide where a packet comes from and

which protocol a packet is using. Table 5.2 gives the name and the function description

for each �eld in the Snort rule header. A rule option is comprised of two parts: a keyword

and an argument. The keyword tells Snort where to search. For instance, the keyword

`content' tells Snort to look at the packet payload and call a pattern match function. The

`nocase' keyword allows Snort to ignore upper or lower case in the packet payload. The

argument is an input parameter that is passed to the pattern-matching function. Users

can de�ne one or more options and use a semicolon to separate each option. Table 5.3

gives the name and the function description for each �eld in the Snort rule option.

5.5.2 Bro language

The original goal in designing Bro's language was to avoid simple mistakes. Its design-

ers proposed various features to achieve this goal. For example, unlike some existing NIDS

solutions that use interpreted languages, Bro detects inconsistent types at compile-time

and makes sure that all variables reference a valid type at run-time. Bro creates a way

to express IP addresses, port numbers and time directly. Furthermore, Bro avoids the

drawback inherent in using the null termination symbol. This problem is that the real

content of the string could be subverted by extracting only the content before the null

terminating symbol and the content following the null terminator might be ignored. For

instance, if a user sends a FTP request "USER user\0 USER root", an IDS that uses the

NULL termination mechanism to extract a string will �nd only `USER user' and miss the

string after `\0'. The result of missing that information might be to subvert the target

host or the network. Bro does not use the null termination symbol as a string terminator.

Some traditional variable types have been re-used in Bro, such as int, count, double, bool

and string, but Bro also introduces some new types. Table 5.4 shows some new data types

introduced by the Bro language. More detailed information can be found in [130].
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Figure 5.7: an example of Suricata script language (Lua)

5.5.3 Suricata language

Suricata introduces two detection formats: rule based and script based solutions.

Suricata's rules are expressed in a simple and readable structure, which can be used across

platforms. Suricata and Snort share some common language features, so Suricata's rules

have been made similar to those of Snort. As a result, a Snort de�ned rule can be reused in

Suricata. However, as we mentioned before, a rule based matching mechanism is suitable

for attacks in which the pattern does not change very often. If more information is needed

about the �ow in order to compare the current information with previous information

(as happens in some cases), the pattern-matching mechanism will generate a high false

rate. In order to solve this problem, Suricata introduced Lua. Lua is a light-weight but

very powerful programming language. Lua is similar to Pascal, but with powerful data

description constructs. It is frequently used for con�guration and scripting. To enable Lua

in Suricata, we have to add a new keyword, luajit, in the existing Suricata rule structure.

The script name is used as an input argument for this keyword. The following example

shows how to launch the lua script from the Suricata rule:

alert HTTP 192.168.2.1 any -> 192.168.2.10 80

(msg: `LUAJIT HTTP test'; luajit:test.lua; sid:20002;rev 1;)

If any incoming packets match this rule, the script is then loaded from the rules directory

and run against a packet. Figure 5.7 presents a Lua script that detects an HTTP �ow,

the Lua script is comprised of two parts: the init function and the customized function:

The `init' function allows the user to indicate what bu�ers the script needs to inspect.
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If the bu�er is unavailable, the script will not be invoked. The keyword `needs' refers

to a table structure that is initialized through an init: function. In the current Suricata

version, the keyword `packet' refers to the complete raw packet, including protocol head-

ers. `http.url', `http.headers' and so on. The `match' function is used to check whether

the incoming packet contains a HTTP request or not. For instance, if the input argu-

ment is a packet it then checks the protocol type, if the HTTP protocol is used in the

packet the `pkt' is set to 1, or if the input argument refers to payload it then checks

whether the HTTP keyword has been used in the payload or not. The match function

will return either 1 if the HTTP request is found, or 0 if not. As stated previously, Snort

uses pattern-based rules, which include �ngerprints and identi�ers existing from previous

attacks, Snort's detection engine loads those rules to match known malicious patterns.

Bro's language introduces an analysis driven model, it provides a well-designed frame-

work for analysing the incoming packets based on the �ow information, saving the packet

payload information and updating the �ow state information. In this design, Bro is able

to support anomaly detection as well as misuse detection. Suricata takes the advantage

of Snort and Bro languages, it allows users to use the signature based and script based

solution together. It puts the well-known patterns in the rules to reduce false alarms, in

addition, Suricata allows users to de�ne customized scripts for detecting new attacks.

5.6 Conclusion
This chapter explored the overview of three IDSs as well as architectures and algo-

rithms to process the incoming packets. Snort is an earlier open source intrusion detection

solution and is the most widely deployed IDS worldwide. Suricata is a new IDS solution

that brings some ideas from Snort, it introduces a multi-threading solution to accelerate

detection speed. Bro is slightly di�erent to Suricata and Snort, focusing instead on net-

work security monitoring, network tra�c analysis and high-level sematic analysis at the

application layer. After discussing its main design goals, we describe the general design

architecture. Like most IDSs, these three IDSs are based on a packet monitor that listens

to network tra�c at some central point of the network. By closely sni�ng incoming pack-

ets, Bro can reconstruct the semantics of the connections. For each of them, Bro keeps

�ow state information. Unlike Bro, Suricata and Snort inspect individual packets. From

some of our own experiences while deploying the three IDSs, we found that Bro needed

more time to understand and deploy than a system like Snort or Suricata. Furthermore,

we demonstrated the similarities and di�erences of the packet capturing mechanisms, the

packet detection processing and the rule formats among three IDSs. Tables 5.5, 5.6 and

5.6 provide an overall comparison between these three IDSs.
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Chapter 6

How e�ective are IDSs at detecting

IPv6 attacks?

In the previous chapter, we have described the features of three IDSs independently, we

also compared their data capturing mechanisms, detection processing, and rule formats

side by side. It is now time to examine the real world performance of these IDSs, under

varying conditions of tra�c �ow, with varying con�gurations. The main objective of this

is to assess the feasibility of using the popular IDS solutions in high speed and IPv6

networks, both with and without our proposed DNS reconnaissance detection solution.

We evaluate the three IDSs using a number of tests. The initial tests were designed

to explore the following question: What are the performance rami�cations of the three

systems when IDS con�guration and the amount of network tra�c are considered? We

also wanted to know how well the IDSs were able to identify a DNS reconnaissance attack.

All tests were designed to answer the following questions:

1. What are the key architectural considerations for open source IDSs as network

speeds increase?

• Evaluating di�erent pattern matcher algorithms

• Evaluating di�erent network packet capture methods

2. How should an open source IDS be designed to more readily facilitate new emerging

IPv6 attacks?

• Detecting IPv6 reconnaissance attacks using default rules

• Implementing a new detection mechanism in IDSs

In most cases, careful con�guration resulted in signi�cant performance improvements.

However, none of the IDSs were able to identify a DNS reconnaissance attack using their

default rules. We propose and implement a solution in Bro and Suricata. The remainder

of this chapter is organised as follows.

Section 6.1 compares the performance of IDS when IDS con�guration and the amount

network tra�c are changed

Section 6.2 provides a proposal for a new DNS reconnaissance detection solution
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Figure 6.1: Logical network diagram for 10 Gb/s testing environment

Section 6.3 determines the feasibility of implementing the proposed solution in IDSs

Section 6.4 evaluates the DNS reconnaissance detection solution in both experimental

and real IPv6 networks

Section 6.5 gives conclusion

6.1 Compare the performance of IDSs

6.1.1 Environment

In this section the testing environment and procedure is described. Test results will

be discussed later. We decided to evaluate our tests in two environments: an experiment-

testing network and the campus network link. Figure 6.1 shows the logical network

diagram for this 10 Gb/s experiment testing environment. In this test network, the

infrastructure consisted of two servers and one switch. More detailed information about

the test environment can be found in Table 1 (Hardware Speci�cation).

Table 6.1: Hardware speci�cation
Role Model CPU Memory NIC OS IP
Sender Dell R320 Intel Xeon

E5-2407
2.20GHz

16GB Broadcom
BCM57810
10 Gigabit

Ubuntu
12.04

192.168.6.2

Receiver Dell R320 Intel Xeon
E5-2407
2.20GHz

16GB Broadcom
BCM57810
10 Gigabit

Ubuntu
12.04

192.168.6.1

Switch Pronto P-3290 MPC8541 2GB Firebolt-
3ASIC

XorPlus
1.3

84
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Figure 6.2: Logical network diagram for UoA campus 10G/s link

In the campus network, we set up a port mirror in our campus boundary network, to

monitor all the IPv4 and IPv6 tra�c. Our campus network setup is shown in Figure 6.2,

it has a 10 Gb/s link and the mirror host is a Dell R320 with 32 GB memory.

6.1.2 Methodologies

We have used two methodologies here: in our experiment environment we used the

active measurement strategy, we aim to deliver a large volume of data quickly and ef-

�ciently through high capacity links (10 Gb/s). However, the standard TCP or UDP

implementation cannot be used for these links. Yu et al [133] mentioned some modi�ed

implementations which allow GridFTP, Fast Data Transfer (FDT) and UDP-based Data

Transfer (UDT) to deliver a high volume of data through high-capacity links, and do a

better job than the generic implementations do. The results of their experiment indicate

that UDT had some utilization problems when delivering large quantities of data through

a 10 Gb/s network. The performance results for GridFTP and FDT are similar to each

other, but when they used GridFTP with jumbo frames, it gave better performance for

transferring high volumes of data in both congested and uncongested links. Based on

the FTP protocol, GridFTP uses parallel data transfer, and improves the performance of

high-speed data transfers between hosts over a long fat pipe network. In our experiment

environment, we didn't launch any background tra�c, instead the Sender (192.168.6.2)

uses GridFTP to transfer big data volumes at 10 Gb/s to the Receiver (192.168.6.1). Yu

et al's experiments demonstrated that GridFTP was able to handle about twenty �ows

running in parallel, but the number of dropped packets increased signi�cantly beyond this

limit. Therefore, in our experiments, we have evaluated a single �ow test case, as well

as the twenty �ows scenario. In contrast, we used the passive measurement strategy to

evaluate the IDS's performance in the UoA campus network link. There are two reasons

for choosing the UoA network: we have full view of incoming and outgoing packets, and
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the UoA network link provides a typical mix of �ow types.

6.1.3 Experiment scenarios

In Chapter 5, we compared the similarities and di�erences among three IDSs, we found

the performance of intrusion detection systems can be a�ected by the following factors:

1. Software architecture and implementation:

(a) Detection algorithm optimization

2. Data acquisition (DAQ) methods:

(a) PCAP

(b) AFPACKET

(c) PFRING

3. Detection rules:

(a) Amount of rules loaded

In this section, all three IDSs were tested in both our experimental and real network

environments based on the following scenarios:

• Default IDS con�guration

• Optimize each IDS con�guration by modifying the detection algorithm: By default,

the IDSs come with di�erent pattern matcher algorithms. According to the user

manual for Snort and Suricata, di�erent methods o�er di�erent performance e�ects

on memory consumption, queue size and CPU usage. We will describe some of the

possibilities for improving IDS performance by modifying or con�guring the pattern

matcher algorithm

• Modify network socket packet capture mechanisms to improve capturing perfor-

mance. Three popular packet capture methods have been introduced in Chapter 5.

Di�erent methods use di�erent architectures to reduce the amount of dropped pack-

ets in di�erent network environments. In this section, we try to understand which

method is more suitable for our network environment based on the performance

results

• Optimize the number of rules loaded. The IDSs come with a general con�gura-

tion that enables all the rules or scripts. Based on the user's environment, some

rules will not be used. Therefore, disabling the unnecessary rules may improve the

performance results.

For each scenario, we have measured the following information:

• Number of packets received

• Number of packet dropped

• Average CPU usage

• Memory usage
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We have not considered the hard disk read or write usage because, in our tests, we were

only writing log information to the hard disk. We veri�ed that the operation cost was

very low and that our HDD con�guration was fast enough to handle these operations.

Therefore, we decided that analysis of the HDD usage was unnecessary.

6.1.4 Experiment results

This section describes the test results. For each test, we considered four performance

factors (CPU usage, memory usage, received and dropped packets). A performance base-

line is generated from the �rst experiment scenario. For the following test cases, changes

made to the systems will be discussed and we will demonstrate the similarities and dif-

ferences to the previous measurements. For each scenario, we launched an IDS instance

individual for one hour and tested each scenario more than 10 times to get the average

results.

• Experiment 1 - Default OS & IDS Con�guration: In �rst test case, all three intrusion

detection systems were set up using the default con�guration.

Figure 6.3: Percentage of performance with default IDS con�guration with a single �ow

Figure 6.3 shows the results of three IDSs in their default con�guration, we tested

the three IDSs separately to monitor the tra�c on a high speed experiment network (10

Gb/s) with a single �ow. The three tools generated di�erent performance results. When

it came to packet drop rate, Snort dropped 13.8% packets during the one hour testing.

Suricata dropped 5.9% and Bro achieved the best drop rate (0.1%). For the CPU usage,

Snort used more than 57% of CPU resources, Suricata launched seven threads in two

di�erent cores, the average CPU usage was 11.5%. Again, Bro used less CPU than Snort,

it utilized 24% of CPU resources.

Figure 6.4 below shows the results of three IDSs in their default con�guration mon-

itoring the tra�c on a high speed experiment network (10 Gb/s) with twenty �ows. In
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this test case, the CPU usage for Snort and Bro were increased, in particular, Snort used

93% of CPU resources. For the drop rate, all three IDSs show the default con�guration

is less e�cient for monitoring tra�c on a high speed network with multiple �ows running

in parallel. In this test case, we note that the number of �ows can a�ect the IDS's per-

formance. However, our test environment only generated TCP �ows, so in an attempt to

better understand how the performance can be a�ected by the mix of �ows, we launched

three IDSs in our campus network link with the default con�guration.

Figure 6.4: Percentage of performance with default IDS con�guration with twenty �ows

Figure 6.5: Percentage of performance with default IDS con�guration with a mix of �ows

Figure 6.5 clearly demonstrates that single threaded IDSs created a CPU overload. As

the transmission �ow increases, the CPU load is also increased, Snort and Bro generate

nearly 100% CPU usage. Compared to the other two IDSs, Suricata launched 37 threads

across a quad core system, the average CPU usage is 14.5%. When we tested the three
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IDSs in our campus network link with mix of �ows, the results show that the default

con�guration is less e�cient if used in the high speed network environment with multiple

�ows running in parallel.

• Experiment 2 - Optimize each IDS con�guration by modifying the detection algo-

rithm

In the �rst test case, we demonstrated the default con�guration for IDSs solution is not

suitable for monitoring high speed network tra�c on the 10 Gb/s campus network link.

The CPU usage and drop rate were very high. In this test, we focus on a simple change

to the IDS detection algorithm to achieve better results. We derived this knowledge from

the IDS's user manual for understanding how to improve performance.

Detection engine pattern matcher algorithm We compared all available detec-

tion engine pattern matcher mechanisms in Snort, the results show that `ac-nq' o�ers high

performance with a low memory consumption in all the test cases. We also evaluated other

pattern matcher algorithms that are mentioned in the Snort.conf �le.

Figure 6.6: Percentage of performance after optimizations

Figure 6.6 demonstrates the performance results of using the `ac-nq' pattern matcher

algorithm in Snort and the `ac-gfbs' pattern matcher algorithm in Suricata. We tested

both algorithms in the following test cases: 1 �ow, 20 �ows and the UoA campus link.

We evaluated all the pattern matcher algorithms in Snort and Suricata. Some al-

gorithms, although they generated similar performance results, required more CPU re-

sources. A case in point is that both `ac-bnfa' and `ac-nq' in Snort captured 99.9% packets,

however, the former generated 92% CPU load while the latter only used 65% CPU to pro-

cess the 20 �ows. The memory usage for Snort seems very constant for all test scenarios,

we didn't observe signi�cant changes when we con�gured the di�erent algorithms. The

average memory consumption is 3% of the total memory size.
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Similar results were observed for Suricata, the default algorithm (`ac') dropped 5%

packets when monitoring a single �ow. In contrast, the `ac-gfbs' o�ers good performance

with moderate CPU usage and low memory; the number of dropped packets reduced to

4.9% for the same test case. Considering that other detection algorithms o�ered a similar

drop rate with much higher memory consumption (3-5GiB), it was reasonable for us to

choose a low memory usage algorithm.

As we can see above, our di�erent network environments yield di�erent performance

results. Con�guration choices directly a�ected the packet drop rate; users can con�gure

di�erent algorithms based on their network environment requirements (hardware, band-

width and mix of �ows).

It is important to note that unlike Snort and Suricata, Bro does not allow the user to

modify the pattern matcher algorithm. In addition, when we used the optimized pattern

matcher algorithm in the UoA campus network link, Snort reduced its drop rate by 30%

and Suricata increased its receive rate by 57% compared to that with the default pattern

matcher algorithm. However, the drop rate was still higher than the receive rate, that

will a�ect the detection result. In the next experiment, we tried to evaluate the di�erent

DAQ methods with the di�erent pattern matcher algorithms.

• Experiment 3 - Modify DAQ mechanisms to improve capturing performance

AFPACKET is the Linux native network socket. It functions similarly to the memory

mapped libpcap, but no external libraries are required. Based on our hardware require-

ments, we have con�gured the DAQ bu�er memory to 1GiB in order to compare the

similarities and di�erences with libpcap. For improving the processing time and reducing

the CPU usage, Suricata introduced the Zero Copy mode for sharing the bu�er's memory

address with the capture process, so the process can read the packets from their original

memory address instead of receiving the packets from the kernel.

Figure 6.7: Percentage of performance utilized by Snort and Suricata after optimizations
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Bro does not support AFPACKET capturing mode, so we only built test cases for Snort

and Suricata for comparing the results to a previous libpacp results. In this experiment,

we changed the data capture method to AFPACKRT, and evaluated all pattern matcher

algorithms provided by Snort and Suricata. Figure 6.7 illustrates the performance results

for Snort and Suricata when used on our 10 Gb/s campus network link.

Both IDSs have signi�cantly improved results compared to the default DAQ (libpcap

socket). With AFPACKET, most pattern matching algorithms were dropping less than

0.3% packets overall, however, the `gfbs' and `b3g' algorithms in Suricata did not manage

to achieve the best results using AFPACKET, the former dropped 34% packets and the

latter dropped 9%. The CPU usage remained similar to the previous results; Snort's CPU

usage is a�ected by the number of mix �ows. The average CPU usage for Suricata is 20%

except the `gfbs' algorithm (64%), we performed the `gfbs' algorithm in UoA campus

network link more than 10 times, but the results remained the same.

For a single �ow or twenty �ows, the results remained similar to the UoA testing

results. Thus, there was no need to report those results here.

We also evaluated the PFRING capture method for Snort, Bro and Suricata. As

already mentioned in the previous chapter, PFRING provides a circular (ring) bu�er and

the applications read packets from this bu�er. It accelerates the packet capture operation

by distributing packets to multiple application processes simultaneously. More detailed

explanations can be found from the PFRING project homepage [134]. Suricata was able

to use PFRING and generate similar performance results to AFPACKET. Unfortunately,

we were not able to get PFRING working as a DAQ for Snort and Bro. For some reason

DAQ would not load the PFRING capture library. We have sent the question to the Snort

and Bro development team, we haven't got any response yet. But, based on the previous

studies [135, 136], Using PFRING resulted in best performance from both IDSs based on

the CPU usage and the packet drop rate.

• Experiment 4 - Optimize each IDS con�guration by modifying the detection algo-

rithms

Based on our experience, deploying a suitable IDS con�guration for any network requires a

lot of research and repeated evaluations. We have disabled some IDS detection algorithms

based on the observed �ow type. The results show a slight improvement after disabling

the unused pre-processors or signatures, for example the drop rate for Bro decreased 30%

after we disabled some irrelevant event handlers and polices. The memory usage remained

low (28%), it was just the opposite for CPU usage (99%). Furthermore, it is important

to mention that a miscon�gured IDS could lead to disastrous security issues.

6.1.5 Discussion of experiment results

We summarise and analysis the results from all experiments in this section. All the

test cases were performed more than 10 times in order to get an average result.
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• Dropped Packets. In terms of dropped packets, Suricata and Snort achieved the

desired result after optimizing the con�guration and the capture method, 0.3%

dropped packets were detected for our campus network link. Unfortunately some of

Suricata's pattern matcher algorithms still dropped packets in UoA campus network

link. For instance, the `gfbs' pattern matcher algorithm in Suricata dropped 34%

incoming tra�c.

• CPU Usage. When we discuss the CPU usage, lower results are better. It seems

that in the mixed �ow environment, the single thread IDS generated a high CPU

load on a single core processor, while Suricata reduced the load on a single CPU by

utilizing all the processor cores. The average CPU usage for Suricata is 23%.

• Memory Usage. IDSs seem to use only a small amount of memory resources. Note

that our di�erent network environments did not have any signi�cant e�ect on mem-

ory consumption. The memory for three IDSs is a�ected by the di�erent searching

algorithms, the DAQ method and the number of detection mechanisms loaded.

6.2 A new DNS reconnaissance detection solution

Figure 6.8: Logical network diagram for simulating DNS reconnaissance attack

In this section, we aim to understand whether is possible to use the existing solutions to

detect the IPv6 DNS reconnaissance attack (see Section 3). We set up two environments to

test the feasibility of this: a small experiment network (Figure 6.8) and the UoA network

link (Figure 6.2). The results show that no IDS is able to capture the DNS reconnaissance

attack using its default rules. In order to detect this new type of reconnaissance attack in

IPv6 network, we propose a possible security solution. Figure 6.9 demonstrates the �ow

diagram of this new solution. Our detection algorithm focuses on the packet payload.

When the tra�c arrives at the host which has installed the IDS, the IDS picks up the

tra�c and matches it against the packet's payload in previous packets. If the �ow hits

the pre-con�gured condition, the alarm is generated. In our detection algorithm, each

IDS checks the incoming packet content. If the packet contains a reverse lookup request,

the IDS inserts the packet into a global data structure `Flowtable' it then compares the

request with the previous records for the same �ow. If the IDS �nds that the �rst nibble
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of the current request is sequentially increased from previous requests, it increases the

global value `count' by one; when the count value for each single �ow equals 15, the IDS

generates an alert. On the other hand, if the incoming packet is not a reverse lookup

request, this new mechanism won't be triggered and the packet will processed by other

scripts. It is important to note that the pre-con�gured `count' value can be modi�ed by

the users.

Figure 6.9: the �ow diagram of detecting DNS reconnaissance attack

6.3 How feasible is it to implement the proposed solu-

tion in IDSs?
In the previous chapter we discussed the distinct di�erences between Snort and other

two IDSs. Snort is a traditional signature-based IDS, it allows users to add a new rule

for accessing each packet. However, there is a design limitation which prevents users

from adding a data structure for saving the �ow information or comparing the packet

payload information with previous records that belong to the same �ow. In contrast, Bro

and Suricata both support script detection, their design allows users to examine network

content and record the content from previous tra�c. Therefore, we implemented our new

mechanism in Bro and Suricata. Unfortunately, Snort does not have the functionality to

save the payload information, so we were unable to implement this mechanism in Snort.

All in all, we �nd that there are only slight di�erences when implementing this new
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mechanism in both IDSs. In the earlier version of Suricata, some API calls are not

available, such as the �ow information extracting function `SCFlowTuple'; this was not

introduced until Suricata 2.1. We also found only a few examples that show how to create

a Suricata script and few documents that discuss the API calls at the earlier stage. In

contrast, Bro gives more sample scripts and libraries for extracting packet information.

Generally, its online documentation is well organized and maintained.

6.4 Evaluation of the proposed solution
We tested Bro and Suricata in both our test environment and in the real IPv6 campus

network. When we launched the DNS reverse reconnaissance attack, both scripts detected

the attack and generated the correct alarms. Here, there is a small challenge to use the

same output format for both IDSs. In Suricata, users do not need to mention the output

variable type; but Bro requires users to declare the output variable type. Figure 10 shows

some alarm examples that were generated by Bro and Suricata, both IDSs were deployed

on our campus network link. We have observed the attack from our test PC, but we

have not yet observed this attack from outside to our campus DNS server. We assume

that attackers may pay less attention to New Zealand IPv6 networks, because IPv6 is not

widely deployed here, only 7% IPv6 adoption has been observed.1

Figure 6.10: Example of DNS reconnaissance attack logs for both Bro and Suricata

6.5 Conclusion
In this chapter, an overview of three popular open-source IDS was provided along with

their comparative performance benchmarks. We evaluated the feasibility of using each of

three IDSs in a high speed network.

1http://www.ipv6matrix.org/
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First, we demonstrated the challenges of using IDSs in high speed networks, we pro-

posed possible performance improvement by tuning the following factors: the pattern

matcher algorithms, the packet capture methods and the network environment. In our

network environment, Suricata with its multi-threaded architecture works better than

Snort and Bro. However, it is important to note that di�erent con�gurations can be

applied for di�erent environments. Our experiments show di�erent performance results

when the environment is changed. In order to reuse the existing Snort or Bro solutions,

we found some alternative con�gurations for improving the performance of Snort and Bro.

Abaid et al. [137], for example, introduced the use of an SDN splitting incoming �ows

and distributing tra�c load across a range of Bro instances. In such system, each Bro in-

stance only processes a small amount of tra�c. We evaluated the di�erent algorithms and

methods for Snort, and observed a signi�cant performance improvement after optimizing

Snort's con�guration in the high speed network.

Second, we found that the three IDSs cannot detect the DNS reconnaissance attack

using their default con�gurations. By carefully investigating the detection mechanisms

in the default rules, we �nd that all the detection mechanisms have good support for

detecting the most common attacks, but there is no support for new IPv6 attacks. We

proposed a new solution for detecting the DNS reconnaissance attack, we implemented

this new solution in Bro and Suricata. As a result, we are able to detect the DNS

reconnaissance attack from both inside and outside of our campus network. However,

Snort does not allow us to implement this new mechanism. After analysing the Snort

design structure, we found that Snort doesn's provide a global data structure for storing

the �ow information and cannot be modi�ed.

All in all, we suggest that future IDSs should be designed to achieve the following

requirements:

• Multi-threaded architecture: the single thread IDS used a larger amount of CPU

resources, while a multi-threaded IDS distributes the operations to each core and

uses less CPU capacity from each processor

• High speed packet capture method: Three packet methods have been evaluated

in this chapter, it clearly shown that the AFPACK or PFRing is better than the

default `libpcap' based on the performance results from the high speed network.

However, there is a pre-condition for using PFRing and AFPACK, the former needs

the PFRing driver for the packet capture cards, while the latter only works in Linux

environment. We need more general and fast packet capture methods in the high

speed network environment

• IPv6 detection mechanism: we �nd little support for detecting new IPv6 attacks

from the three IDSs, we suggest that IDS developers should put more IPv6 detection

mechanisms in future releases

• Flow caching: A �ow caching feature is important for analyzing malicious behaviors,

future IDSs should include a good data structure for caching �ow information
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In the next chapter, we highlight our main contribution of this study, and answer our four

research questions from Chapter 1. First we identify that network reconnaissance is one

of the important indicators of an impending network attack, and explain the IPv6 DNS

reconnaissance attack. Second, we discuss the technical challenges of using IDSs in high

speed networks and IPv6 attack detections. Finally, we mention several avenues of future

work.
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Conclusion

This chapter summarises the main �ndings of this thesis, including the changing asso-

ciation between IPv4 and IPv6 attacks, new attacks in IPv6, the con�guration settings

for using IDSs in high speed networks and the challenges of using existing IDSs to detect

IPv6 attacks. In addition, we list some suggestions for further research following on from

our project. The remainder of this chapter is organised as follows. Section 7.1 summarises

the �ndings from the experiments and answers to our research questions. In addition, it

discusses the main contribution of this study Section 7.2 discusses future work.

7.1 Research Conclusion
Q1. What kind of new attacks may be seen in IPv6?

In this study, we reviewed and analysed the existing IPv4 and new IPv6 security issues.

We evaluated the feasibilities of launching existing IPv4 attacks in IPv6. We highlighted

that the IPv6 protocol reduces some existing network layer issues and eliminates others,

because some IPv4 features do not apply in IPv6. In addition, based on the experimental

results, we observed that some current IPv4 penetration testing tools do not support IPv6

penetration testing while others only provide some basic features. In addition, we dis-

cussed some new attacks in IPv6, for instance attacks against new protocols: Neighbour

Discovery (ND) spoo�ng attack and Duplicate Address Detection (DAD) DoS attack or

attacks against the routers: Router Advertisement spoo�ng attack, RH0 (Type 0 Routing

Headers) attack and ND cache exhaustion; we recommended that some IPv6 penetration

testing tools should test this. By comparing the existing attacks and new attacks, we

notice that most attacks share some common strategies, in particular a reconnaissance

attack is an initial step toward �nding hosts or system vulnerabilities. Spoo�ng attacks

have been detected in both IPv4 and IPv6 as well as DoS attacks. However, the main

di�erence is the way of bringing down a victim, for example, in IPv6, Neighbour discov-

ery spoo�ng has been used to inject a malicious neighbor advertisement instead of ARP

spoo�ng. Again, network reconnaissance is one of the important indicators of an impend-

ing network attack, many studies [24, 28] mentioned that the traditional reconnaissance

attack is less feasible in IPv6 networks. Therefore, in our second research question, we
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try to understand how will reconnaissance attacks change in IPv6 networks?

Q2. How will reconnaissance attacks change in IPv6 networks?

Because of IPv6's greatly increased address space, it was at �rst thought that it was

infeasible to launch traditional address scanning attacks in IPv6, but some alternative

methods have been proposed in the current IPv6 network. Such methods are based on

using publicly available data to �nd IPv6 host addresses. We designed two surveys to

investigate the feasibility of launching reconnaissance attacks in IPv6. In the �rst survey,

we modi�ed the DNS reconnaissance tool from the THC-IPv6 package to achieve our

survey requirement. We launched our survey in �ve regions and �fty countries. The

results show some potential issues in current DNS reverse zone deployment. For example,

some network administrators save the IPv6 client addresses in the DNS reverse zone

without any protection. This will lead to a security issue in that attackers can probe the

DNS reverse zone to obtain the IPv6 client information. Again, if the IPv6 host addresses

are using some predictable patterns, it will help the attackers to reduce the time needed for

�nding other hosts in the same network. Based on our �ndings, we described a few possible

guides for users against IPv6 DNS reconnaissance attacks. For instance, In general the

DNS reverse zone saves records for each individual IPv6 addresses. However, Durand et al.

[138] discussed how to deploy wildcard reverse DNS records, for example �by con�guring

one name for a subnet (/64) or a site (/48). As a concrete example, a site (or the site's

ISP) could con�gure the reverses of the pre�x 2001:db8:f00::/48 to point to one name

using a wildcard record like *.0.0.f.0.8.b.d.0.1.0.0.2.ip6.arpa. IN PTR site.example.com.�

[138], therefore the DNS reconnaissance searching will fail to gather the IPv6 address for

each individual host in this pre�x. We also introduced a new detection mechanism for

use in Bro and Suricata; to help users detect DNS reconnaissance attacks.

In our second survey, we monitored IPv6 tra�c from the UoA campus network for

three months; the results demonstrate the trend of address allocation mechanisms usage

around the world during the last �ve years (2009-2014). We found that some network

administrators still do not allocate non-predictable values to IPv6 interface ID �elds,

but are using predictable patterns in their IIDs. Many previous studies already claimed

that common patterns can be leveraged by attackers to cut down the search space for

the IID �eld. Our results show that a high percentage of server addresses do not use a

random IID allocation mechanism; we presume that this is because network administrators

want to identify the servers as soon as possible if any security issues occur. In contrast,

large numbers of IPv6 client addresses are generated by using a random IID allocation

mechanism, which indicates that network administrators have started to consider privacy

and security when they allocate an IID �eld for IPv6 clients. Again, we described a few

techniques to use against IPv6 address scanning, such as the replacement of EUI-64 IID

with privacy-based or randomized IID allocation mechanisms. Furthermore, we suggested

that network administrators should avoid having predictable values in their IID �elds.

Q3 What are the key architectural considerations for open source IDSs as
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the network speeds the operate on increase?

In Chapter 6, we discussed factors that can a�ect an IDS's performance results, such

as its pattern matcher algorithms, packet capture methods and the mix of background

�ows. We brie�y discussed three popular open-source intrusion detection systems (IDS)

along with their performance results in both experimental and our campus network link

environments. We performed the evaluation on a 10 Gbit/s network with a number of

test cases. The experiment results demonstrated that the default con�gurations were able

to handle 10 Gb/s high network tra�c with a small mix of �ows, however the number of

dropped packets increased signi�cantly when we launched the same test in our campus

network link. We applied various optimization techniques and tested di�erent searching

and DAQ methods. As a result, all the IDSs showed a signi�cant improvement. Suricata

with its multi-thread architecture achieved the best performance results in most test cases.

Suricata only dropped 0.1% packets at our campus network when using the AFPACKET

or the PFRING DAQ method paired with the `ac' pattern matcher algorithm. From the

information gathered from the previous chapters, we made suggestions of how future IDSs

should be designed to compatible with high speed networks. These are:

• Multi-threading. As a multi-threaded design, IDSs can certainly o�er increased

speed and e�ciency of CPU usage. The multi-threaded engine distributes the in-

creased processing power to multi-core CPU chip sets and optimizes the CPU usage

for each core.

• Packet capture method. For generic packet capture methods, we demonstrated the

limitation of using AFPACKET and PFRING, the former only used in the Linux

environment, the latter requires a network interface card that PFRING supports.

New IDSs releasing should consider a new packet capture method that can handle

the increased network speed, while being compatible with existing hardware and OS

environments.

• Access encrypted tra�c. HTTP 2.0 encrypts all the tra�c by default to safeguard

the integrity and con�dentiality of data. However, encryption hides the majority of

tra�c content from any intrusion detection system monitoring tra�c in the network.

The network or system has become less secure due to the lack of IDS monitoring. In

future releases, we hope that IDS developers add more features to handle encrypted

tra�c without changing existing network architectures. (such as the changes we

mentioned in Chapter 4)

• User-friendly design. Tuning the IDS can be a long and arduous undertaking that

requires both time and expertise, we want to make IDS as easy as possible for people

to learn, con�gure and run. Developers need to put more documentation and ex-

amples in the con�guration �les, as well as using a GUI for the initial con�guration.

Q4 How should an open source IDS be designed to more readily facilitate new

emerging IPv6 attacks?

99



100

We evaluated and analysed the existing detection mechanisms in three popular open

source IDSs (Snort, Bro and Suricata). The results show that the three IDSs have good

support for detecting the most common attacks in IPv6 environment, such as port scan-

ning, TCP SYN scanning, etc. However, none of them detect the IPv6 DNS reconnais-

sance attack or new IPv6 attacks. We designed and proposed a new solution for detecting

the IPv6 DNS reconnaissance attack. We demonstrated the feasibility, or otherwise, of

implementing this new mechanism in the three IDSs. Bro provides sample codes and

references showing how to write a Bro script. In addition, Bro provides a well-designed

data structure for saving and maintaining the �ow information. Similar to Bro, Suricata

also supports the �ow information caching feature. However, scripting is initially more

di�cult for Suricata because of its lack of available documentation. Snort is not suitable

for implementing this new mechanism because it does not provide a data structure for

storing the �ow information. We suggest Snort developers should create more �exible

data structure and detection procedures for comparing the current packet with previous

records. Again, there is only minimal IPv6 detection in the current IDSs, we suggest

IDS developers should release more IPv6 rules or policies should handle emerging IPv6

threats.

7.2 Future Research
There are a number of areas for future research related to our study. We propose

possible future work in this section.

• How feasible is it to launch other IPv6 attacks in real IPv6 environments?

We have mentioned a few new IPv6 attacks in Chapter 2. Since IPv6 introduced some

new features, these changes may impact on the existing network security solutions. We

have demonstrated some di�erences that a�ect both attacking and defending in Chapter

2, such as that some existing penetration tools do not support IPv6, and some IDSs do not

detect the new IPv6 attacks. We have presented a possible IPv6 reconnaissance attack in

the real IPv6 networks from both o�ense and defence perspectives. However, there are

still more attacks that can be used to cause serious security issues in IPv6 networks. We

plan to evaluate these new IPv6 vulnerabilities in the real IPv6 network and demonstrate

the feasibility of various responses.

• How best to allocate IPv6 addresses in an IPv6 mobile devices?

In Chapter 3, we have discussed the issues pointed out by earlier studies [28, 24], for

example some IID allocation mechanisms can generate security and privacy issues. For

instance, EUI-64 exposes the user's activities. Therefore, we proposed some possible sug-

gestion to minimise these issues. For instance, an IPv6 host should receive a randomized

IPv6 address from a DHCPv6 server. However, using DHCPv6 seems less feasible for

some mobile devices. Some earlier works [139, 140, 141] claim that the Android operating
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system does not support DHCPv6, instead mobile devices can either obtain the IPv6

addresses through the Stateless Autocon�guration (SLAAC) or DHCP-Pre�x delegation

(PD). If the mobile device is con�gured to use the former one that will certainly generate

privacy issues. Through a comprehensive study of IPv6 address allocation mechanisms

for the IPv6 mobile devices based on the privacy and security, we could contribute more

to the knowledge base of IPv6 deployment.

• How to take advantage of signature and anomaly IDS approaches as a hybrid solu-

tion?

In Chapter 4, we have discussed the strengths and weaknesses of using both signature

and anomaly detection. A signature detection solution requires searching for a series of

bytes or packet payloads for network tra�c. The main advantage of using this solution

is that it is easy to install and con�gure, because it comes with a set of pre-de�ned rules

and scripts. In addition, it shows a high level of accuracy in the alarms it generates, if

the user knows the malicious behaviour being monitored. The signature based solution

also has a few disadvantages, for instance it can't detect novel attacks, and users have to

create a signature for each attack. Therefore, there is an arms race between attackers and

IDS signature developers. In contrast, for the anomaly solution, a network administrator

de�nes a description of accepted network behaviour instead of creating a signature for

each attack. One bene�t of doing this is that once a behaviour has been de�ned, the

detection engine can scale more quickly and easily than the signature based mode, because

there is little additional operation cost for creating a new signature for every attack and

potential variant. However, the weakness of using anomaly detection solutions is their

high false alarm rates. We see how the strengths of one detection method counterbalance

the weaknesses of another. It would be very useful if we can build a hybrid solution to

make both solutions complement each another.
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