

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Zaliwski, A., Lankes, S., & Sinnen, O. (2016). Evaluating DVFS Scheduling
Algorithms on Real Hardware. In Proceedings of the International Conference on
Parallel Processing Workshops (pp. 273-280). Philadelphia, USA.
doi:10.1109/ICPPW.2016.48

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

For more information, see General copyright, Publisher copyright.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1109/ICPPW.2016.48
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html

Evaluating DVFS scheduling algorithms on real
hardware

Andrew Zaliwski
Department of Electrical and

Computer Engineering
University of Auckland

Private Bag 92019
Auckland 1142
New Zealand

Email: a.zaliwskia@auckland.ac.nz

Stefan Lankes
Institute of Automation of Complex Power Systems

E.ON Energy Research Center,
RWTH Aachen University

Mathieustrasse 10
52074 Aachen

Germany
Email: slankes@eonerc.rwth-aachen.de

Oliver Sinnen
Department of Electrical and

Computer Engineering
University of Auckland

Private Bag 92019
Auckland 1142
New Zealand

Email: o.sinnen@auckland.ac.nz

Abstract—In modern processors, energy savings are achieved
using dynamic voltage and frequency scaling (DVFS). For task
scheduling, where a task graph representing a program is
allocated and ordered on multiple processors, DVFS has been
employed to reduce the energy consumption of the generated
schedules, hence running the processors at heterogeneous speeds.
A prominent class of energy-efficient scheduling algorithms is
slack reclamation algorithms, which try to use idle times (slack)
to slow down processor speed to save energy. Several algorithms
have been proposed and under the assumed system model they
can achieve considerable energy savings. However, the question
arises, how realistic and accurate these algorithms and models
are when implemented and executed on real hardware. Can one
achieve the promised energy savings? This paper proposes a
methodology to investigate these questions and performs a first
experimental evaluation of selected slack reclamation algorithms.
Using schedules created by three scheduling algorithms for a set
of task graphs, we generate code and execute it on a small parallel
system. We measure the power consumption and compare the
results between the algorithms and relate them to the expected
values.

Index Terms—task scheduling, energy savings, slack reclama-
tion, DVFS

I. INTRODUCTION

A large proportion of papers on task scheduling algorithms
contain the analysis of the algorithm’s effectiveness based
on simulation under a certain model [2], [8], [9], [6]. These
simulation models frequently assume idealized characteristics
of the target environment. This approach makes it possible to
compare the effectiveness of various algorithms among them,
but if these algorithms are implemented on a real hardware
system, the results may be dramatically different than those
obtained from the idealized model [15], [16]. The model’s
simplifying assumptions are often necessary to make the
design of and reasoning about scheduling algorithms possible.
However, if these simplifications are too strong, simulation
results might not be transferable to real hardware. [14].

In this paper, we intend to investigate how accurately the
energy models of scheduling algorithms using DVFS can pre-
dict the actual power efficiency. While simplified models will
almost always result in some discrepancy between prediction
and reality, the expectation is that prediction is qualitatively

correct, i.e. a superior algorithm in the simulation is also
a superior algorithm on a real system. We focus on slack
reclamation algorithms in this first study.

In modern CMOS processors, the major component decid-
ing on power consumption is proportional to V 2f where V is
voltage and f is frequency. Thus reducing the voltage reduces
energy consumption. Due to processor safety the frequency
must be adjusted with the voltage change. Available pairs of
safe frequency/voltage combinations for a given processor are
called as P-States. Many works have shown in simulations [3],
[7], [11], [19], [10] that energy consumption can be reduced
using slack time - empty spaces between the tasks on the same
processors appearing as a result of synchronization between
communicating tasks. Energy consumption may be reduced by
applying less energy requiring P-State to neighboring tasks,
hence executing tasks at heterogeneous speeds. Thus, these
tasks will be executed longer which means that slack time
will be filled up by these tasks without impacting an overall
schedule makespan.

This paper proposes an evaluation methodology and a
software testbed to examine the algorithm effectiveness on
real hardware. The methodology starts by using the selected
scheduling algorithms to create schedules for a set of task
graphs. From the schedules and task graphs, the code is then
generated to be executed on a multiprocessor system. For
the communication between processors, we use simple MPI
message passing [4]. In the actual evaluation, the code is
then executed on an Intel Sandy Bridge 16-core system. We
measure the execution time and the energy consumption for
the execution and compare with expected values.

The rest of the paper is organized as follows. Section II
describes three slack reclamation algorithms selected for com-
parison. Section III proposes the evaluation methodology. Sec-
tion IV describes the code generation process and Section V
contains the experimental evaluation. Finally, Section VI
closes the paper with conclusions.

II. SLACK RECLAMATION ALGORITHMS

A. Scheduling model

The scheduling objective is to minimize the schedule length
or makespan of a parallel application represented as a DAG
(Directed Acyclic Graph) G = (V ,E), where V is a set of
nodes (or tasks) and E is a set of edges. Tasks are mapped
onto processors for their execution, while the precedence
relationships between tasks are respected. A schedule S of the
task graph G on a finite set P of processors is the function pair
(ts, proc), where ts : V → Q+

0 is the start time function of
the nodes of G and proc : V → P is the processor allocation
function of the tasks.

We also take into account the time cost of computation and
communication expressed as weights of the tasks and edges,
respectively. The computation cost function w : V → Q+ of
the tasks assumes the processor is running at maximum speed
(i.e. highest frequency). The computation cost w(n) is the time
the task n occupies a processor P for its execution. Hence,
the task finish time is tf = ts +w(n). We write ts(n, P) and
tf (n, P) as short for proc(n) = P and ts(n) and tf (n). The
communication cost function c : E → Q+

0 of the edge e ∈ E
is the time c(e) the communication associated with edge e
takes from the origin processor until it completely arrives at a
different destination processor. Local communication between
tasks on the same processor is assumed to be negligible, with
the cost set to 0.

B. Slack reclamation

The input for all three examined slack reclamation algo-
rithms in this paper is obtained from a non-DVFS schedul-
ing algorithm. Any algorithm that creates a valid schedule
can be employed and in this paper we chose a simple list
scheduling algorithm [17]. As input, all the slack reclamation
algorithms thus receive a pre-schedule that was created by
this list scheduling algorithm. The further differences among
compared algorithms are related to the way how they deal with
the slack time (Figure 1).

Fig. 1. Differences in slack usage among compared algorithms.

Figure 1A shows a part of a sample schedule obtained
by the use of a pre-scheduling algorithm (later refereed to
as the baseline). The horizontal blue arrows mark the slack.
The angled blue arrows represent communication and time
necessary for the communication. Figure 1B shows how the
initial pre-schedule is changed by the first examined algorithm
(here called Mori) [12]. Slack belonging to the task n under
consideration (blue shadowed) is joined with the slack of the
task following task n. Slack extended that way is used next
to prolong task n to fill up a whole gap by slowing down
task n’s execution (lowering the frequency - applying DVFS).
The Mori algorithm is trying to make slack chains as long
as possible by compensating slacks (wherever possible) be-
longing to the following tasks running on the same processor.
Next, DVFS is applied (detailed in the following) to the slack
compensated in that way.

The other two algorithms considered in this paper, called
WangA and WangB [18], do not compensate slack. Instead the
algorithms use both left and right slack belonging to a given
task n. Usually, task n is moved left as much as possible to
make bigger slack on the right side of the task n. Next, DVFS
is applied to task n according to the rules presented below.
Algorithm WangB works the same way as WangA, but injects
additional slack time assuming that it is acceptable to extend
the schedule length by an agreed ratio.

1) Mori- Joining slack time of several tasks on same
processor: Algorithm Mori first creates a candidate list for
DVFS applications on the basis of their slack time [12]. All
tasks with positive slack are added to the candidate list for
each processor, in ascending start time order. The slack time
of task n may be joined with slack time of its successor
(Figure 1B). Next, a task is selected from the list to which
the lowest frequency P-state can be applied. That means the
task which gives the biggest power reduction. The selected
task is removed from the list. Next, start time, slack time,
and assumed pre-calculated power consumption are updated
for each task in the list as the application of DVFS possibly
changed these parameters. The selection is repeated until the
list is empty or when there are no more tasks to apply DVFS
to.

In case of Mori, slack-time is counted as follows: slack
time between the tasks n and ns1 assigned to different
processors p and ps1, respectively, is defined as (Figure 2A):

slack(n, ns1) = ts(ns1, ps1)− tf (n, p)− c(n, ns1) (1)

If both, task n and its successive task ns0 are allocated to the
same processor p, slack-time is defined as (Figure 2B):

slack(n, ns0) = ts(ns0, p)− tf (n, p) + slack(ns0) (2)

From (1) and (2) slack-time of task n is calculated as follows:

slack(n) = minns∈succ(n)slack(n, ns) (3)

Mori adds to the slack-time of task n slack time (if it exists)
of its successor ns0 (Figure 2C), slack(n) calculation requires

Fig. 2. Slack-time definition and usage in Mori.

the knowledge of slack-time of the task’s successor (when
both are on the same processor), slack-time is calculated in
ascending task start time order of the tasks on the list of each
processor. For a detailed description of Mori please refer to
[12].

2) Wang algorithms - Energy performance trade-off
scheduling: Wang et. al. [18] propose two algorithms. WangA:
Best Effort Scheduling with objective of minimizing energy
consumption without damaging the performance of a schedule,
and WangB: energy performance trade-off scheduling with the
objective of (more aggressively) reducing energy consumption
with the tolerable loss of performance.

Wang et. al. interpret the result produced by the pre-
scheduling algorithm as a Gantt Chart with time slots (arbitrary
size unit of processor time). Each task or communication may
use one or more slots. The algorithm analyzes the content
of each time slot on each processor if the time slot is idle or
contains communication, the algorithm scales down frequency
to the lowest possible. If one or more time slots contain a non-
critical task, the slack time is calculated using equation (4).
The necessary frequency to apply to the task to fill up the slack
is computed using equation (5). Frequencies for critical tasks
are not changed. Slack time for both algorithms is calculated
in the following way:

slack(n) = tlf (n)− tes(n) (4)

This is the difference between task’s “latest finish time” and
“earliest start time” where task n’s earliest start time is the
earliest possible time when n may start without affecting
the schedule: tes(n) = maxm∈pred(n){tlf (m) + c(m,n)}

and task n’s latest finish time is the latest possible time
when n can finish without affecting the schedule: tlf (n) =
minl∈succ(n){tes(l)− c(l, n)}.

When the non-critical task n is executed on processor pk
then n’s execution time can be extended to slack(n) without
affecting the schedule. This is done by scaling pk’s frequency:

fpk
op = fmax ∗ t0(n)

to(n) + slack(n)
(5)

where t0(n) is n’s execution time when pk is running with
the maximum frequency fmax and fpk

op is operating frequency
of pk.

Both WangA and WangB can use slack time from the left and
right side of a task (Figure 1C), because the way of counting
slack-time is the same for both cases. For more details on both
algorithms please refer to [18].

III. EVALUATION METHODOLOGY

The general schema of our methodology is presented in
Figure 3 and a software testbed has been created. The testbed
employs as a pre-schedule algorithm a greedy list scheduling
algorithm using bottom levels (including computation and
communication costs) of the tasks for ordering [17]. The
obtained final schedule, after slack reclamation, is used to
generate target source code, which was compiled and run
along with power measurement on our target system, a Sandy
Bridge[1] 16-core Intel system consisting of two Xeon E5-
2680 8c 2.7GHz 8-cores processors, with Linux RHEL 6.3
(kernel 2.6). For the communication among processors, as de-
tailed in the next section, we employ MPI directives and used
the MPICH2 1.9a2 implementation. To change the frequency
of the cores the userspace governor from the operating system
was used. Power measurement was done using LIKWID
tools [5]. We selected the approach of generating code from
graphs as this allows us to test many different graph types
and structures. The opposite approach, i.e. selecting sample
programs and generating corresponding graphs, does not allow
us to cover such a wide spectrum of scenarios and to test
the algorithms systematically. Furthermore, by generating code
corresponding to a graph, we can fully control the execution
times of the tasks and the communication volumes for each
edge, removing the typical uncertainty related to execution
time estimates.

Fig. 3. Steps of research methodology.

There are three possible outcomes that can be obtained from
the experiments:

• Simulation results more or less accurately reflect results
on real hardware, or

• Implementation of the evaluated algorithms will give
worse results than simulation, however, simulation based
ranking of the algorithms will be preserved on a real
hardware, i.e. is qualitatively correct, or

• Evaluated algorithms will have different results to sim-
ulations, both quantitatively and qualitatively. In other
words comparing simulation results obtained by authors
of algorithms will not give us insights into how these
algorithms will behave on real hardware. Simulation-
based ranking of algorithms will not be preserved on real
hardware.

IV. CODE GENERATION

The code generator (Figure 4) is a Java based software
which receives a weighted DAG graph (Figure 4A) to generate
from it simple code with MPI directives for communication
(Figure 4D) ready to compile and run on a given hardware
system (Figure 4E). The general principle and in particular
the communication generation is similar to the one proposed
in [13], [15]. MPI was used as it is closer to the task
graph model with the explicit communication edges. If shared
memory programming were used instead of message passing,
communication would not be as explicit. Hence the results
could be more difficult to interpret and reproduce. Firstly,
the input graph is pre-scheduled (Figure 4B) by the non-
DVFS list scheduling algorithm considering communication
cost, however without energy usage optimization.

Fig. 4. Code generation. The functions: exec(n) compute task n, send(e)
and recv(e) implements communication for edge e, setFreq(n) and setVolt(n)
implements voltage/frequency change according to selected P-state.

Inside the code generator a pre-schedule is represented as a
set of tasks assigned to cores of pk ∈ P of the target system,
containing starting ts(n) and finishing times tf (n) for each
task n (Figure 5A).

Secondly, the pre-schedule obtained from the previous step
is processed by the evaluated slack reclamation scheduling
algorithm (either Mori, WangA or WangB) (Figure 4C). The
evaluated algorithms can be seen as a mapping of an initial
set of pairs ∀n∈V (ts(n), tf (n)) obtained from pre-scheduling
into a new set of pairs ∀n∈V (tes(n), tlf (n)) defining new
schedule. The new position of tes(n) on time axis for a given
processor’s pk depends on the method of slack utilization
defined by the evaluated algorithm, while the position of tlf (n)
additionally may depend on voltage and frequency applied

to processor pk when running task n according to how the
algorithm implements DVFS.

Fig. 5. Pre-schedule (A), schedule with slack relocation (B), DVFS-schedule
(C), and hardware schedule (D).

For example, the pre-schedule of Figure 5A is transformed
by the evaluated slack reclamation algorithm into final DVFS-
schedule in the following way: Task ns0 was moved to
the right (its coordinates of (ts(ns0), tf (ns0)) from the pre-
schedule (Figure 5A) were transformed into the new coordi-
nates (tes(ns0), tlf (ns0)) (so, in fact, task ns0 was moved to
the right) without changing the task size w(ns0) (Figure 5B).
With task n it is different: Start time of task n does not change,
tes(n) remains at the same position as ts(n), but there is also
a selected P-State which should be applied to the task n to
use the entire slack-time gap (Figure 5C) without challenging
the makespan.

The DVFS-schedule (Figure 5C) at this point is an “ideal”
schedule as it does not consider the discrete frequencies
and P-States of the target platform. All tasks coordinates
are calculated by the examined algorithms and they fit into
the place on the schedule where exactly (according to the
examined algorithm) they should be.

When the “ideal” DVFS-schedule is running on the target
hardware in a form of compiled MPI program, the results
may be different than assumed in the schedule from Figure
5C. The produced MPI code contain start position of the
task n, operating frequency, which according to the evaluated
algorithm should be the lowest that still guarantees that task n
will fit into the slack gap, and the computation code for task
n corresponding to its weight (Figure 4D). The finish time of
task tlf depends on the time of execution on hardware, which

is directly related to the task weight and determined operating
frequency and some other hardware and software factors
usually beyond our control. The real finish time of the task n
may be different to the assumed by the examined algorithm,
e.g. task n on hardware may finish earlier not using a whole
slack or may finish later (margin of “error” in the Figure
5D) causing disturbances for other tasks. These disturbances
can be propagated further by communication between tasks
worsening the overall hardware results of evaluated algorithm.

A. Generating communication code

All examined algorithms consider communication cost. The
module “Creating Communication Model” (Figure 4) creates
a linked list representing all outgoing (send) and all incoming
(receive) communications from a given task n. When target
executable code is created, instructions responsible for com-
munication are inserted into the code. If a task (e.g. task B)
requires data from other tasks to perform its computation, all
data receiving instructions are placed before that task (Figure
6top). Similarly, all data sending instructions are located at the
end of the task B. Sending instruction send(n) is implemented
by the non-blocking function MPI_Isend() and receiving in-
struction recv(n) is implemented by the non-blocking function
MPI_Irecv(). However, MPI_Irecv() is non-blocking but uses
MPI_wait() to enforce that the task B will not run until it
receives all required data. A single communication unit was
setup to use the same time as a single computation unit. To
give the program execution flow the highest possible flexibility,
the receive functions are initiated at the beginning of the
generated code on each processor (Figure 6 bottom), so that
the message sending can progress as soon as possible. The
wait calls before tasks enforce the correct precedences.

Fig. 6. Example for implementing communication, showing schedule on 3
processors; (top) theoretical schedule, (bottom) actual implementation with
recv initiated at start

V. EXPERIMENTAL EVALUATION

In this evaluation we execute the code generated in the
proposed testbed for many input graphs according to the con-
sidered slack reclamation scheduling algorithms and compare
their power consumption.

A. Setup

The evaluation process uses 710 graphs generated randomly
with different characteristics and properties. We use the graph
structures serial-parallel, stencil, pipeline, random, fork-join
and tree with sizes varying from 40 to 110 tasks. The
weights for the tasks and edges are created randomly with
a uniform distribution. Furthermore to evaluate the impact of
communication on energy consumption, three values of the
communication-to-computation ratio (CCR) were considered:
0.1 (low), 1 (medium) and 5 (high communication). CCR is
defined as the total communication cost over the total com-
putation costs CCR(G) =

∑
e∈E

c(e)∑
n∈V

w(n)
. To achieve different

CCR values, the weights of the tasks and edges are scaled
correspondingly.

Every generated graph was scheduled by each of the four
algorithms (described in Section II) on 16 processors: a)
baseline - algorithm using only list based pre-scheduling;
b) Mori; c) WangA and d) WangB. This gives a total of
2840 (4 algorithms x 710 graphs) generated programs and
17040 (4x710x6) executions of the generated programs on the
dedicated target system. The same program was run six times
to compensate fluctuations caused by background operating
system activities. For each program implementing a scheduled
graph the average power usage (in Watts) for the whole
application was measured.

B. Results

Figure 7 shows box plots of average power consumption
over the different graph structures. Hence each box plot is
for all sizes and CCR values of graphs of that structure. The
shown values are normalised to the baseline (list scheduling
algorithm without any DVFS), which is given the value 100.
As can be observed immediately, the three slack reclamation
algorithms consume more power for the large majority of the
cases, sometimes significantly.

It was expected that the results would significantly differ
from the theoretical results, given that the used scheduling
model is very idealizing. However, it is still very surprising
that the best results (the lowest energy usage) were obtained
for pre-schedule algorithm with no DVFS. Energy aware
algorithms (like Mori, and WangA) have worse results. The
most aggressive algorithm in terms of energy savings WangB,
which even increases the schedule length, has the worst results.
The more advanced algorithms have bigger energy usage
independently on processed graph type.

To investigate the results further, we looked at the number of
cases a certain algorithms was better than baseline, categorized
by graph structure. Figure 8 shows the percentage of cases
when a given algorithm had lower energy usage than baseline
algorithm. For example, for ca. 14% of the Series-Parallel
graphs Mori’s power usage was lower than that of the baseline
algorithm. It can be observed that the performance seems to
be strong graph structure dependent. The slack reclamation
algorithms achieve the best results for random graphs and
in/out-trees.

Fig. 7. Distribution of Power measurements in relationship to algorithm and structure of graphs. Values above 100% mean higher power usage than baseline
algorithm. Below 100 means lower power usage than baseline algorithm. All values were normalized in relationship to baseline algorithm (100% energy
usage).

Fig. 8. Percentage of graphs for which given algorithm had less power usage
than baseline algorithm (data normalized).

C. Discussion

While many might have expected that scheduling algorithms
behave in practice differently than in theory, the clear negative
result is astonishing. The slack reclamation algorithms did
not only have no positive effect (on average) on the power
consumption; it was clearly negative. Reasons for this result

can come from our proposed methodology and the approach
of the slack reclamation algorithms.

a) Non-continuous frequency spectrum: Many algo-
rithms assume that slack time gaps will be completely filled
up. However, in general there will remain a small gap be-
tween tasks because the algorithms assume an ideal hardware
environment with a continuous spectrum of the voltage and
frequency changes. In practice we usually have some discrete
frequency steps. The closest frequency to desired theoretical
frequency will leave a gap. In the case of certain processor
types, some voltage/frequency combinations are not allowed
as they may damage the processor. This could explain less
than ideal performance, however it should not have a negative
impact.

b) Slack time: By their nature, slack reclamation algo-
rithms can only perform well if there is a significant amount
of slack. Hence, we analysed the available slack time across
all scheduled graphs and it is usually a small percentage of the
whole schedule. Average slack time for used set of graphs was
5.13%, with a standard deviation of 5.91%, and with median
3.24% (expressed as a percentage in relation of computational
time). In other words, the slack reclamation algorithms had
little to work on and the overhead of DVFS negated any
benefit. This observation is in correspondence with the results
in Figure 8. The slack reclamation algorithms performed better
(but still not good) for graph structures where the likelihood
of slack is high, namely random graphs and trees. The more
structured graphs like pipeline and SP-graphs have little or no
slack in their initial pre-schedules.

c) Idle time: Slack time is the time between tasks that
can be used to stretch the execution of tasks. But even if all

slack time has been reclaimed, there is still idle time in a
schedule, namely before the execution of the first task on a
processor (the task is waiting for communication from another
processor) and after the completion of the last task (which has
sent a communication to another processor). We analysed this
idle time across all scheduled graphs and it is an order of
magnitude more significant than slack time with average idle
time 51.3%, standard deviation 116%, and with median idle
equal to 25.2%. This is related to the fact that for some graphs
not all cores were used by the scheduling algorithm. In theory,
a core may be turned off or switched to the lowest frequency
during these idle times. However, this is independent of slack
reclamation algorithms and can be applied to start and end idle
periods in any schedule. An additional problem is knowing
when the first task should start if it is waiting for results
of other tasks running earlier on another core. A processor
waiting for communication needs to be awake. It must issue
a data receiving instruction waiting for data from other tasks
(required by the MPI non-blocking communication), what in
fact enforces each core to work from the beginning of the
schedule without leading idle time (Figure 6bottom). The same
holds at the end, when a core can only go to sleep after all MPI
communications it is involved in have been fully completed
(i.e. received by the last tasks).

d) Processor utilisation : Under the classic communica-
tion delay model, scheduling algorithms put many more tasks
on the first processors when communication is significant,
leaving more distant processors idle. Also slack in that case
is not evenly distributed among the cores. We analysed the
average number of unused processors in all created schedules
and found that it is equal to 3. However, some types of graphs
have a high number of unused processors, which causes large
idle time. For example, In-Tree - all 16 cores were used, Out-
Tree - almost all cores were used (only an average 0.54 core
were not used), pipeline graphs - an average of 10 cores were
not used, random graphs - all cores were fully used, series-
parallel - average of 4.54 cores were not used. Again, this
observation aligns very well with the performance observed
in Figure 8, where graphs with more idle time perform worse.
Naturally, the utilisation of processors depends on the CCR.
In-Tree and Random graphs used all processors independently
of CCR, but SP graphs did not use 10-12 processors for
CCR=5, but only 2-4 were unused for CCR 0.1.

e) High Communication-Computation Ratio (CCR): Us-
ing communication time comparable with a time of computa-
tion to achieve high CCR values requires the transfer of large
volumes of data. This consumes memory for buffers, and it
is limited technically by accessible memory. This enforced
us in our framework to use short computational units which
makes reliable energy measurement more difficult. The cost
of frequency switching (and especially voltage switching) has
a more significant impact in this scenario.

In summary, it seems that avoiding or reducing idle times
in schedules, i.e. before the first task and after the last
on each processor, or having completely idle processors,
is significantly more important than to use slack time to

decrease energy consumption. Slack reclamation algorithms
by their nature do not change the processor allocation nor
the order of the tasks. The presented results here are early
results and require confirmation, but they indicate that energy
efficient algorithms might be more successful when reducing
the number of used processors at the same time they try to
reduce the schedule length.

VI. CONCLUSIONS

This paper proposed a methodology to investigate the ques-
tion whether energy-efficient scheduling algorithms really save
energy. A software testbed was proposed that generates code
from input DAGs for a specific hardware platform. Then the
code generated by the testbed was compiled and run with
energy measurement on a hardware platform to perform a
first evaluation of the question stated above. The obtained re-
sults were surprising as slack reclamation algorithms actually
consumed more energy than pre-schedule algorithm without
DVFS. Future work will be focused on further investigating the
reasons for obtaining results like presented above and it will
be necessary to perform more experiments for confirmation.
Current results suggest that reducing the number of processors
and reducing idle time (that cannot be reclaimed) is more
important than slack reclamation.

VII. ACKNOWLEDGMENTS

The author(s) wish to acknowledge the contribution of NeSI
high-performance computing facilities to the results of this
research. NZ’s national facilities are provided by the NZ
eScience Infrastructure and funded jointly by NeSI’s collabo-
rator institutions and through the Ministry of Business, Inno-
vation & Employment’s Research Infrastructure programme.
URL https://www.nesi.org.nz.

REFERENCES

[1] J. Crop A. Varma, B. Bowhill. Power management in the intel xeon
e5 v3. Low Power Electronics and Design (ISPLED), 2015 IEEE/ACM
International Symposium on, pages 371–376, 2015.

[2] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau. Profile-based dynamic voltage scheduling using
program checkpoints. In Proc. Design, Automation and Test in Europe
Conf. and Exhibition, pages 168–175, 2002.

[3] Beena and C. S. R. Prashanth. Power cognizant algorithms using
slack reclamation method. In Contemporary Computing and Informatics
(IC3I), 2014 International Conference on, pages 1101–1106, 2014.

[4] W. Gropp, E. Lusk, and A. Skjellum. MPI resources online. In
Using MPI:Portable Parallel Programming with the Message-Passing
Interface. MIT Press, 2014.

[5] G. Hager and G. Wellein. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on, pages
207–216, 2010.

[6] Stoimenov S. Thiele L. Chen J. Feasibility analysis of on-line dvs
algorithms for scheduling arbitrary event streams. volume RTSS 2009
of Real-Time Systems Symposium, 30th IEEE, pages 261–270, 2009.

[7] Nat. Taiwan Univ. Jian-Jia Che, Chuan-Yue Yang, and Tei-Wei Kuo.
Slack reclamation for real-time task scheduling over dynamic voltage
scaling multiprocessors. In Sensor Networks, Ubiquitous, and Trust-
worthy Computing, 2006. IEEE International Conference on, volume 1,
2006.

[8] Jaeyeon Kang and S. Ranka. Dynamic algorithms for energy mini-
mization on parallel machines. In Proc. 16th Euromicro Conf. Parallel,
Distributed and Network-Based Processing PDP 2008, pages 399–406,
2008.

[9] Jaeyeon Kang and S. Ranka. Assignment algorithm for energy mini-
mization on parallel machines. In Proc. Int. Conf. Parallel Processing
Workshops ICPPW ’09, pages 484–491, 2009.

[10] Young Choon Lee. and Y. Zomaya. Energy conscious scheduling
for distributed computing systems under different operating conditions.
Parallel and Distributed Systems, IEEE Transactions on, 22(8):1374–
1381, Aug. 2011.

[11] A. Manzak and C. Chakrabarti. Variable voltage task scheduling
algorithms for minimizing energy. In Proc. Low Power Electronics and
Design, Int. Symp, pages 279–282, 2001.

[12] Y. Mori, K. Asakura, and T. Watanabe. A task selection based power-
aware scheduling algorithm for applying dvs. In Proc. Int Parallel and
Distributed Computing, Applications and Technologies Conf, pages 518–
523, 2009.

[13] O. Sinnen and L. Sousa. Comparison of contention aware list scheduling
heuristics for cluster computing. In Proc. Int Parallel Processing
Workshops Conf, pages 382–387, 2001.

[14] O. Sinnen and L. Sousa. Task scheduling: considering the processor
involvement in communication. In Proc. Third Int Parallel and Dis-
tributed Computing Third Int. Symp. /Algorithms, Models and Tools for
Parallel Computing Heterogeneous Networks Workshop, pages 328–335,
2004.

[15] O. Sinnen and L. A. Sousa. Communication contention in task
scheduling. 16(6):503–515, 2005.

[16] O. Sinnen, L. A. Sousa, and F. E. Sandnes. Toward a realistic task
scheduling model. 17(3):263–275, 2006.

[17] Oliver Sinnen. Task Scheduling for parallel systems. Willey Series on
Parallel and Distributed Computing., 2007.

[18] Lizhe Wang, Gregor von Laszewski, Jay Dayal, and Fugang Wang.
Towards energy aware scheduling for precedence constrained parallel
tasks in a cluster with dvfs. In Proc. 10th IEEE/ACM Int Cluster, Cloud
and Grid Computing (CCGrid) Conf, pages 368–377, 2010.

[19] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiprocessor real-
time systems. 14(7):686–700, 2003.

