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ABSTRACT

We study two types of problems in this thesis, graph covering problems
including the Dominating Set and Edge Cover which are classic combi-
natorial problems and the Graph Isomorphism Problem with several of
its variations. For each of the problems, we provide efficient quadratic
unconstrained binary optimization (QUBO) formulations suitable for
adiabatic quantum computers, which are viewed as a real-world en-
hanced model of simulated annealing.

The number of qubits (dimension of QUBO matrices) required to solve
the graph covering problems are O(n + n lg n) and O(m + n lg n) re-
spectively, where n is the number of vertices and m is the number
of edges. We also extend our formulations for the Minimum Vertex-
Weighted Dominating Set problem and Minimum Edge-Weighted Edge
Cover problem.

For the Graph Isomorphism Problem, we provide two QUBO formula-
tion through two approaches both requiring O(n2) variables. We also
provide several different formulations for two extensions of the Graph
Isomorphism Problems each requiring a different number of variables
ranging from O(n1n2) to O((n1 + 1)n2).

We also provide some experimental results using a D-Wave 2X quantum
computer with 1098 active qubit-coupled processors on the problems
studied here for a selection of known common graphs.
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Chapter 1

Introduction

With development of Big Data and the resurgence of Deep Learning in recent years,
there is also a surge in related technologies and applications being developed and
deployed in practice [31, 42, 50]. From the well known four V’s of Big data (Volume,
Variety, Velocity and Veracity, see [16]) to the need of building Artificial Neural
Networks of increasing scales for more complex problems, one thing that naturally
comes with the emergence of such technologies in the industry is the demand for more
computational power.

The famous Moore’s Law states that the number of transistors in a integrated
circuit doubles in about every 18 months. The number of transistors in a chip is
often used as the measurement of computational power of modern computers. Even
tho Moore’s Law has successfully predicted the growth of the field for over 40 years
now [56], there are experts who are concerned about the growth of the industry in the
foreseeable future [54, 51, 8]. Even Gorden Moore himself has stated that he would
put the ‘life expectancy’ of his prediction at around the year 2020 to 2030 (see [19]).

In recent years, different institutes and organizations have proposed a variety of
specialized hardwares specifically designed for certain problems, or have been leverag-
ing existing product to comprehend the need. For example, the Xeon Phi processor
family from Intel is specifically designed to address some of the common issues of
Deep Learning algorithms with standard chipsets and researches have shown that the
this particular design indeed do outperform others on specific problems [32, 53].

Another approach to address these issues is to change the fundamental computation
model. The concept of Quantum Computing has been constantly evolving even since
its introduction back in the 1980s [23]. Many different models of Quantum Computing
exists, the most well-known one is probably the Quantum Circuit model which uses
interconnected quantum gates as building blocks for quantum circuits that can be
used to solve various problems [39]. Research conducted on this model shows much
promise. For instance, the famous Grover’s algorithm can search for a particular item
in a collection of randomly ordered items in time O(

√
n) which can not be done with

conventional computers [26]. And Shor’s integer factorization algorithm takes only
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polynomial time on a quantum circuit computer whereas the exact time complexity
of the problem remains unknown with classic algorithms [49]. Despite its successful
theoretical development in the last 30 years, there is one major obstacle preventing
this model from becoming relevant in practice, the difficulty in engineering one of
practical scale. Currently, the largest instance of integer factorization (in terms of
the integer being factorized) using Shor’s algorithm on actual quantum circuits is
only 21 (see [38]). Since the quantum circuit gate model is not the focus of this
thesis, we will not formally introduce it here.

Adiabatic Quantum Computing (AQC) takes on a different model of computation.
AQC is based on the process of evolving a ground state of a Hamiltonian represent-
ing a problem to a minimum-energy solution state [22, 21]. It has been shown to
be equivalent to the more traditional quantum circuit model (only in terms of com-
putability, not efficiency see [2]). Other introductory details about the application of
AQC may be found in [47, 9]. Even though AQC can only simulate quantum circuit
algorithms with polynomial overhead, it has attracted a lot of attention recently. The
advantage of AQC is that a particular type of physical device that can be used for
AQC known as quantum annealer is relatively easy to build.

D-Wave computers are produced by the Canadian company D-Wave Systems that
use quantum annealing as a computation method. D-Wave One (2011) operates on
a 128-qubit chipset; D-Wave Two (2013) works with 512 qubits. The latest and
most advanced machine is D-Wave 2XTM System [15]. The current family of D-Wave
computers can solve problems formulated in either Ising form or Quadratic Uncon-
strained Binary Optimization (QUBO) form, defined later. The paper by Lucas [37]
provides a good foundation of Ising/QUBO formulations of many hard combinatorial
problems. Some of these initial formulations have recently be improved by several
authors, motivated by the limitations on the number of actual available qubits in
existing hardwares. D-Wave qubits are loops of superconducting wire, the coupling
between qubits is magnetic wiring and the machine itself is supercooled. See more
in [39, 9]. The latest model, D-Wave 2XTM, has 1100 qubits chilled close to absolute
zero to get quantum effects [15].

The computer architecture consists of qubits arranged with a host configuration
known as Chimera graphs which consists of an M × N two-dimensional lattice of
blocks, with each block consisting of 2L vertices (a complete bipartite graph KL,L),
in total 2MNL vertices. A more formal definition of the family of Chimera graphs can
be found in [10, 12], the Python script in Appendix H can also be used to generate
standard adjacency list format of the Chimera graph for any M,N and L. The
current D-Wave API (Application Programming Interface) provides the function of
querying the quantum machine to solve problems formulated either in the Ising or
QUBO (logical) form [12]. A formal definition of QUBO and Ising will be given in
Chapter 2.

This thesis will not go into details of the physical nature of the actual computation.
We will try to present as less physics knowledge as possible and only provide a high
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level mathematical interpretation whenever we can, so that the premise of this thesis
remains simple: assuming we have this quantum oracle that can provide consistent
solutions to the QUBO problem, what practical purposes can we use it for? So the
goal here is to formulate or reduce hard graph theory problems in their QUBO form
so we can solve them using a quantum annealer.

The main chapters of this thesis are organized as follows:

• Chapter 2 provides the necessary mathematics background knowledge as well
as an overview on how the D-Wave system fits into the current framework.

• Chapter 3 provides efficient QUBO formulations of several graph covering prob-
lems including their proofs of correctness. This chapter is partially attained
from [18], a conference version of it has been submitted.

• Chapter 4 provides several QUBO formulations of the Graph Isomorphism Prob-
lem and also studies several variations of the problem. This chapter is partially
attained from [11].

Some relevant experimental results on a D-Wave 2X machine are also provided in
Chapter 3 and 4.



Chapter 2

Definitions and Background

This chapter provides the basic definitions and background knowledge for graph the-
ory and other mathematical notations necessary for the rest of this thesis. Please
note that due to the specialty of the problems studied here, some of the definitions
we provide here may differ slightly from a more standard source such as [28] or [29].

2.1 Mathematical prerequisite

Note that within the scope of this thesis, all logarithms denoted by lg or log are of
base 2 unless specified otherwise.

Definition 1. The cardinality of a set X, denoted by |X|, is the number of elements
in X.

Definition 2. Given a set X, the power set of X, denoted by 2X is the set containing
all subsets of X.

Definition 3. The Cartesian product of two sets A and B, denoted by A× B is
the set {(a, b) | a ∈ A and b ∈ B}. The Cartesian product of a set A with it self is
denoted by A2.

Definition 4. The integer set Zn is the set of integers {0, 1, · · · , n− 1}.

Definition 5. A simple undirected graph G = (V,E) consists a finite non-empty
set V of vertices together with a set E of edges, which are unordered 2-element
subsets of V . The vertex set of a graph G is denoted by V (G) and similarly the edge
set is denoted by E(G).

The problems studied in this thesis focus on simple undirected graphs, and therefore
the term graph will always be referring to a simple undirected graph unless specified
otherwise.

4
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Definition 6. Let G = (V,E) be a graph, the number of vertices of G, |V | is called
the order of G. And the number of edges, |E| is called the size of G. The order and
size of G are typically denoted by n and m respectively.

For convention, we normally label the n vertices of a graph G by

V = {0, 1, 2, · · · , n− 1}

or V = {v0, v1, v2, · · · , vn−1}. An edge could be denoted by a 2-set as {i, j} or {vi, vj}
(or sometimes simply as ij or vivj for convenience). Please note that by Definition 5,
an edge is considered as a set hence we have {i, j} = {j, i} for all i, j ∈ V . Since it is
generally assumed that a set does not contain duplicated terms, at most one of the
two terms {i, j}, {j, i} can be in E for all i, j ∈ V . Another property about simple
undirected graphs is that for all v ∈ V , {v, v} /∈ E.

Definition 7. Consider a graph G = (V,E) and {u, v} an edge in E. We say in
this case that the two vertices u and v are adjacent to each other (or u and v are
neighbors of each other). And the edge {u, v} is said to incident to the vertices u
and v. Similarly, we say that u, v are non-adjacent if {u, v} /∈ E.

Definition 8. Let G = (V,E) be a graph and v be a vertex in V . The neighborhood
of v, denoted by N(v), is a subset of V consists of all vertices adjacent to v. The set
of edges incident to u is denoted by I(v).

Definition 9. In a graph G = (V,E), the degree of a vertex v ∈ V , denoted by
∆(v), is the number of vertices adjacent to v.

Definition 10. In a graph G = (V,E), a walk is a sequence of vertices v0v1 · · · vn
where vi ∈ V for all 0 ≤ i ≤ n and {vi, vi+1} ∈ E for all 0 ≤ i < n. A path is a
walk in which all the vertices in the sequence are distinct. Furthermore, a cycle is a
path consists at least 3 different vertices except that v0 = vn.

Definition 11. A graph G = (V,E) is connected if for all u, v ∈ V , there is a path
connecting u and v.

Definition 12. Two graphs G1 = (V1, E1) and G2 = (V2, E2). We say that G1 and
G2 are isomorphic if there exists an edge in-variant bijective function f : V1 → V2

such that {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2.

Definition 13. Let G = (V,E) be a graph and {u, v} an edge in E. The contraction
of {u, v} results in a new graph G′ = (V ′, E ′) such that V ′ = V \ {u, v} ∪ {w} and

E ′ = E\({{u, x} | x ∈ N(u)} ∪ {{v, x} | x ∈ N(v)})∪{{w, x} | x ∈ (N(u)∪N(v))\{u, v}}.

Definition 14. Let G = (V,E) be a graph. A graph minor of G is a graph obtained
by repeatedly deleting vertices and edges or contracting edges of G.
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Definition 15. Let G1 = (V1, E1) and G2 = (V2, E2). A minor embedding of G1

onto G2 is a function f : V1 → 2V2 such that:

1. For all v ∈ V1, the set of vertices v maps to under f are disjoint.

2. For all v ∈ V1, there is a subset of edges E ′ ∈ E2 such that G′ = (f(v), E ′) is
connected.

3. If {u, v} ∈ E1, then there exist u′, v′ ∈ V2 such that u′ ∈ f(u), v′ ∈ f(v) and
{u′, v′} is an edge in E2.

Within the scope of a minor embedding, the graphs G1 and G2 are referred to as the
guest and host graph respectively.

Definition 16. The family of complete graphs is defined as follows: A complete
graph with order n, denoted by Kn = (V,E) has V = {0, 1, · · · , n − 1}. And for all
pairs of vertices i and j, {i, j} ∈ E.

Definition 17. A complete bipartite graph with n1 + n2 vertices, denoted by
Kn1,n2, has V = V1 ∪ V2 where V1 ∩ V2 = ∅ and |V1| = n1, |V2| = n2. For every pair
of vertices {i, j} where i ∈ V1 and j ∈ V2, {i, j} ∈ E.

We will introduce other concepts and notations when we need them in later chapters
as well.

2.2 Quadratic Unconstrained Binary Optimization

Quadratic Unconstrained Binary Optimization, or QUBO for short, is an NP-hard [55]
mathematical optimization problem of minimizing a quadratic objective function F :
Zn

2 → R. The objective function is defined by an upper-triangular n × n matrix Q
and is of the form F (x) = xTQx, where x = (x0, x1, . . . , xn−1) is a n-vector of binary
(Boolean) variables. Formally, QUBO problems are of the form:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ Z2. (2.1)

In other words, the goal is to find a binary value assignment of variables x =
(x0, x1, · · · , xn−1) such that the value of F (x) is minimum. We typically use x∗ to
denote the minimum value of F (x) and x∗ = (x∗0, x

∗
1, · · · , x∗n−1) to denote the value

assignment of the n variables that yield x∗.

We also need to use the following vector operation:

Definition 18. Let x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , ym−1) be two vectors
in Rn and Rm respectively. The concatenation of x and y denoted by xy is a new
vector z ∈ Rn+m where z = (x0, x1, · · · , xn−1, y0, y1, · · · , ym−1).
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Although the focus of this thesis is based on the QUBO model, some concepts and
ideas from the Ising model and Integer Programming (IP) are also used, so we will
introduce them here as well. The Ising model is a physics problem in nature. As
mentioned in Chapter 1, we do not want to be overly concerned with the physical
nature of the hardware, so only an abstract mathematical formulation of the problem
will be given here. At a high level, the Ising Minimization Problem is an NP-hard
optimization problem [5]. It has been studied extensively in the past, a more detailed
study of the problem can be found in [41].

Let G = (V,E) be a graph where each vertex i ∈ V is associated with a value hi and
each edge {i, j} ∈ E is associated with a value J(i,j), we assume all hi and J(i,j) are
real numbers. An Ising Minimization Problem with n = |V | variables associated with
G has a variable vector x = (x0, x1, · · · , xn−1) and is of the following form:

x∗ = min
x

∑
{i,j}∈E

xiJ(i,j)xj +
∑
i∈V

hixi, where xi ∈ {−1, 1}. (2.2)

Similar to the QUBO problem, the goal is to find a variable assignment of the
vector x that has a minimum value in the objective function.

There is a strong similarity between objective functions 2.1 and 2.2. To be specific,
the objective function of the Ising problem contains quadratic terms as well as linear
terms while QUBO only has the former. Note that we can actually interchange linear
terms and square terms in a QUBO problem without changing the optimality of its
solutions since all variables in the objective function are binary, this is discussed in
more details in Section 2.4. This property can also be exploited to provide a simple
translation between the QUBO and Ising model. Let x∗ and x∗ be the optimal solution
of a QUBO instance with n variables, this QUBO instance can be transformed into
an equivalent Ising instance with optimal solution y∗ and y∗ such that yi = 2xi − 1
for all 0 ≤ i < n and y∗ = x∗ + c where c is a real constant offset. More details of
this transformation can be found in [12].

Integer Programming (see [57]) is also an optimization problem that has many differ-
ent equivalent definitions, we will provide a formal definition for use within the scope
of this thesis.

Integer Programming Optimization Problem (canonical form):

Instance: A n×m-matrix A, a n-vector c and a m-vector b of integers.
Question: Find a n-vector x of integers such that the objective function cTx

is minimum subject to Ax ≤ b and x ≥ 0.

Most of the problems discussed in this thesis can be formulated in IP efficiently
(i.e. polynomial time reduction). Since IP is a well-known problem and many well
optimized libraries exist (e.g. [52]), we primarily use it to verify some of the QUBO
formulations we present here.
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2.3 General methodology

Now, we have introduced all the tools we need to describe the general approach we
take to solve practical problems using the D-Wave quantum computers. As mentioned
in Chapter 1, the current D-Wave computers can solve problems in either QUBO or
Ising form. As a computer scientist, it is more natural for us to think in terms of a
binary model, hence the we will only focus on the QUBO formulations here.

Given a problem P , the first thing we need to transform P to an instance of a QUBO
problem. The QUBO instance then has to be fitted onto the actual hardware of the
quantum machine. This is done by treating the QUBO matrix as an adjacency matrix
of a graph and find a minor embedding of the QUBO structure on the host Chimera
graph. And then, the D-Wave quantum computer will be queried to solve the QUBO
problem and the optimal solution x∗ as well as the variable assignment x∗ will be
returned. And finally, we need some mechanism to convert x∗ and x∗ back into a
solution for the original problem. Since solution of P is ‘encoded’ in x∗ and x∗, we
will call this mechanism a decoder function which maps x∗ (and/or x∗) to a solution
of P .

There are several difficulties we need to overcome when applying the process described
in the previous paragraph to an actual problem. Let P denote the problem we
wish to solve and sol(P ) denote its solution space. The problem P may not be
an optimization problem in nature (for instance, the Graph Isomorphism Problem
studied in Chapter 4), hence here lies the first obstacle; How do we convert a classical
combinatorial problem (the focus of this paper) into a specific type of optimization
problem? Not to mention we also need to consider the scale, that is, the number of
variables, of the QUBO instance and the density of the QUBO graph we obtain after
the transformation. As this is related to the next point.

To execute the QUBO instance on the quantum machine, a minor embedding of the
QUBO graph on the host architecture has to be found first. In other words, we have
to answer the following question:

Minor Containment Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
Question: Find the minor embedding of G1 onto G2 if one exists.

The Minor Containment Problem is an NP-complete problem [25], the inevitability
of solving the problem (based on the current hardware design) is one of the major
blocking stone in achieving any kind of speedup using the quantum computer.

Based on the definition of a graph minor, it is obvious that for a given G1, the problem
is easier to solve if G2 is sufficiently larger. That is, if the order and size of G2 are
much bigger than those of G1, it is typically easier to find a minor embedding of G1

on G2. Consider the following ideal scenario, if G2 is a complete graph Kn, then all
graphs G1 with order n′ ≤ n can be embedded efficiently. Since G1 will always be
a subgraph of Kn, by the definition of a graph minor, we can just remove unneeded
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vertices and edges. It may not be practical to build a complete hardware structure
from an engineering point of view but it is still the motivation for building hardwares
with larger scale (order) and higher connectivity (size).

For any generation of the hardware, the chipset is always a fixed architecture. Unlike
a classical computer that can store partial results of some computation and use them
again later, the D-Wave quantum computers can be seen as capable of executing only
one instruction, solving the QUBO problem to be specific, with no way of pausing
the computation and read or store any intermediate values. Therefore the scale of
the hardware itself limits the biggest QUBO instance it can solve. A trivial example
would be a guest graph with order bigger than the number of available qubits of the
host; such instance is guaranteed not to be a graph minor of the host. Recall that
P is the problem we wish to solve. The way we define the transformation from P
to a QUBO instance may lead to different QUBO graphs with different order and
size. Ideally, we want the order and size to be as small as possible, but since the
variable assignment x needs to be able to represent all potential candidate in sol(P ),
we need to have at least lg(|sol(P )|) binary variables. This theoretical lower bound
on the number of variables is often very difficult to achieve however, as will be seen
in Chapter 3 and 4. Nonetheless, the study on the Graph Isomorphism Problem in
Chapter 4 also shows the drastic difference on both the scale and density between
a specifically constructed QUBO instance for the problem and one obtained from a
more generic approach.

2.4 Non-quadratic functions

The definition of QUBO problem only allows the objective function F : 2n → R to
contain quadratic terms. However, based on the transformation we define from the
problem P to QUBO, the objective function F may contain non-quadratic terms. In
this section, we provide a general strategy for modifying such F that contains constant
and linear as well as quadratic terms in a way such that the optimal solutions of (2.1)
can be preserved.

Let F : 2n → R and F ′ : 2n → R denote the objective function before and after
this modification respectively. Two operations will be performed. First, any constant
term is ignored. Removing a constant does not change the optimality of x∗ as the
value of F (x) is reduced by a constant amount for all x ∈ Zn

2 . It does however change
the value of x∗, so to obtain the original minimum value of F , the constant has to be
added to F ′ as an offset, that is, F (x) = F ′(x) + c for some constant offset c ∈ R.
Second, all linear terms xi in F are replaced by x2

i . Since all variables xi ∈ {0, 1},
we have xi = x2

i and therefore this operation has no effect on the value of x∗ nor the
optimality of x. After these two steps, F ′ is a function that only contains quadratic
terms which we can obtain a valid matrix form of. The constant c can be computed
by summing up all the constant terms in F so we can easily transform the solutions
of F ′ to their corresponding values and variable assignments in F .
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More complicated scenarios do occur of course. For instance, F could be a polynomial
of degree 3 or higher. In general, the order of F can be reduced at the cost of adding
extra variables. Such scenarios are outside the scope of this thesis, so we will discuss
them here. A more detailed study can be found in [12].



Chapter 3

Graph Covering Problems

We study two main optimization problems in this chapter. One is NP-hard and the
other is polynomial-time solvable, but our QUBO formulations are very similar in
complexity (e.g. the two problems require O(n + n lg n) and O(m + n lg n) qubits
respectively for graphs of order n and size m). We will formally define dominating
set and edge cover below:

Definition 19. Given a graph G = (V,E), a dominating set D of G is a subset of
V , such that for every vertex v ∈ V , either v ∈ D or w ∈ D, where w is a neighbor
of v.

Definition 20. Given a graph G = (V,E), an edge cover C of G is a subset of E,
such that for every vertex v ∈ V , v is incident to at least one edge in C.

The two problems of interest involve finding the smallest such D and C, that is,
a dominating set with the minimum number of vertices and an edge cover with the
minimum number of edges. For convenience, we assume all graphs are connected and
have at least one edge.

Dominating Set Problem:

Instance: A graph G = (V,E).
Question: What is the smallest subset D of V such that D is a dominating set of G?

Edge Cover Problem:

Instance: A graph G = (V,E).
Question: What is the smallest subset C of E such that C is an edge cover of G?

The decision version of the Dominating Set Problem was one of the original clas-
sic problems included by Garey and Johnson [25]. It is also one of the harder NP-
complete problems being classified as W[2]-hard when considering parameterized com-
plexity [3]. An extensive history on this problem may be found in [30]. Contrastly,

11



12

solving the Edge Cover Problem for graphs (without isolated vertices) is easily achiev-
able in polynomial time. This is done by observing that the smallest edge cover is
equal to the order of the graph minus its maximum matching size [36].

3.1 QUBO formulation

3.1.1 Dominating Set

We provide a simple QUBO formulation of the Dominating Set Problem. The best
known exact algorithm to solve the Dominating Set Problem has time complexity
O(20.610n) [24]. Given a graph G = (V,E) with n vertices, let V = {v0, v1, . . . , vn−1},
this formulation requires n +

∑
vi∈V (blg(∆(vi))c + 1) binary variables, that is, for

every vertex vi in G, we need one variable xi to represent vi as well as blg(∆(vi))c+ 1
redundant binary variables for each vertex. For the sake of readability, we will label
these redundant variables as yi,k, where 0 ≤ k ≤ blg(∆(vi))c. Thus we have a vector
x = (x0, x1, . . . , xn−1, y0,0, . . . , yn−1,blg(∆(vn))c) of named variables.

The objective function that is to be minimized is of the form:

F (x) =
∑
vi∈V

xi + A
∑
vi∈V

Pi

where

Pi =

1−
(
xi +

∑
vj∈N(vi)

xj

)
+

blg(∆(xi))c∑
k=0

2kyi,k

2

(3.1)

Assuming the optimal solution of the objective function is obtained. We now need
to obtain a solution of the Dominating Set Problem from x∗ and x∗, as described in
Section 2.3. For the Dominating Set Problem, the decoder function D(x) : Z|x|2 → 2V

where 2V is the power set of V is defined as follows:

D(x) = {vi | xi = 1}.

The function maps a binary vector x to a subset of V as the dominating set.

In the objective function, A > 1 is a real positive constant and the term
∑

vi∈V xi
represents a penalty for the size of the chosen set, and Pi serves as a penalty if a
non-dominating set is chosen. If the assignment of the variables is a dominating
set, then for each vertex vi in G, we have xi +

∑
vj∈N(vi)

xj ≥ 1. And therefore

1 − (xi +
∑

vj∈N(vi)
xj) ≤ 0. Finally, we use the term

∑blg(∆(xi))c
k=0 2kyi,k to counter

balance the penalty if more than one vertex in the set vi ∪ N(vi) is chosen as it
does not violate the definition of a dominating set and should not be penalized. In
the worst case, 1 − (xi +

∑
vj∈N(vi)

xj) = −∆(vi) where vi and all of its neighbors

are chosen, so a total number of (blg(∆(vi))c+ 1) redundant variables are needed to
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represent integers up to ∆(vi). Hence the total number of binary variables of this
formulation is O(n+ n lg n) in the worst case.

Theorem 1. The objective function (3.1) is correct.

Proof. First, we show that it is always possible to transform a non-dominating set
into a dominating set which will have a smaller value in the objective function.

Suppose we have x∗ = minx F (x) and D(x∗) is not a dominating set where x∗ corre-
sponds to the variable assignment yielding x∗. Then there must exist some vertices
such that these vertices themselves nor any of their neighbors are present in D(x∗).
Then the corresponding penalty Pi for each of these vertices will be at least 1 by the
definition of Pi. Therefore, if we set the corresponding xi of these vertices to 1, then
for each one of them, a penalty of size 1 will be added to the term

∑
vi∈V xi while the

corresponding Pi will be reduced to 0 by setting yi,0 to 1. So F (x∗) will be reduced
by at least A− 1. Hence the solution from D(x∗) will always be a dominating set.

The second part of the proof is to show that an assignment of x that produces a
smaller dominating set will have a smallest value in the objective function. This is
trivial as if D(x) is a dominating set, then each Pi will have to be 0, by the argument
from the previous paragraph. Therefore the value of the objective function solely
depends on the number of 1 entires in the term

∑
vi∈V xi. And from the definition of

the decoder function D, it is fairly easy to see that a less sum from
∑

vi∈V xi will be
mapped to a smaller dominating set by D.

3.1.2 Dominating Set Q3 example

In this subsection, we will provide an example of the QUBO formulation (3.1) on
Q3. Formally, The hypercube Q3 is defined as follows. The vertices of Q3 are V =
{0, 1, . . . , 7} and the edges are

E = {{0, 1}, {0, 2}, {0, 4}, {1, 3}, {1, 5}, {2, 3}, {2, 6}, {3, 7}, {4, 5}, {4, 6}, {5, 7}, {6, 7}}.

It can be visualized as a 3-dimensional cube where the each corner of the cube is a
vertex.
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Now, by expanding the bracket in objective function (3.1), we get

∑
vi∈V

xi + A
∑
vi∈V

1− xi −
∑

vj∈N(vi)

xj +

blg(∆(xi))c∑
k=0

2kyi,k − xi + x2
i + xi

∑
vj∈N(vi)

xj

−xi
blg(∆(xi))c∑

k=0

2kyi,k−
∑

vj∈N(vi)

xj+xi
∑

vj∈N(vi)

xj+

( ∑
vj∈N(vi)

xj

)2

−
∑

vj∈N(vi)

xj

blg(∆(xi))c∑
k=0

2kyi,k

+

blg(∆(xi))c∑
k=0

2kyi,k − xi
blg(∆(xi))c∑

k=0

2kyi,k −
∑

vj∈N(vi)

xj

blg(∆(xi))c∑
k=0

2kyi,k +

( blg(∆(xi))c∑
k=0

2kyi,k

)2


(3.2)

Note that the function (3.2) has some constant and linear terms, we take the steps
described in Section 2.4 and summing up similar terms to obtain

(1− A)
∑
vi∈V

x2
i + A

∑
vi∈V

−2
∑

vj∈N(vi)

x2
j + 2

blg(∆(xi))c∑
k=0

2ky2
i,k + 2xi

∑
vj∈N(vi)

xj

−2xi

blg(∆(xi))c∑
k=0

2kyi,k +

( ∑
vj∈N(vi)

xj

)2

− 2
∑

vj∈N(vi)

xj

blg(∆(xi))c∑
k=0

2kyi,k +

( blg(∆(xi))c∑
k=0

2kyi,k

)2


(3.3)

Now, we can finally obtain a valid matrix representation of the objective function.
Let A = 2, the matrix representation of the quadratic objective function (3.3) for Q3

is shown in Table 3.1. The entries Qi,j where i ≤ j in the matrix is computed by
extracting the coefficient of each quadratic term from the objective function.

After solving for x∗ = minx F (x), we obtain four optimal solutions.

x1 = [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

x2 = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

x3 = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and
x4 = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

And we have D(x1) = {0, 7}, D(x2) = {1, 6}, D(x3) = {2, 5} and D(x4) = {3, 4}. It
can be verified quite easily that these four solutions (pairs of vertices of distance 3)
are all minimum dominating sets of Q3 with the same size.
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Table 3.1: Dominating Set QUBO matrix for Q3

variables x0 x1 x2 x3 x4 x5 x6 x7 y0,0 y0,1 y1,0 y1,1 y2,0 y2,1 y3,0 y3,1 y4,0 y4,1 y5,0 y5,1 y6,0 y6,1 y7,0 y7,1
x0 -7 8 8 8 8 8 8 0 -4 -8 -4 -8 -4 -8 0 0 -4 -8 0 0 0 0 0 0
x1 -7 8 8 8 8 0 8 -4 -8 -4 -8 0 0 -4 -8 0 0 -4 -8 0 0 0 0
x2 -7 8 8 0 8 8 -4 -8 0 0 -4 -8 -4 -8 0 0 0 0 -4 -8 0 0
x3 -7 0 8 8 8 0 0 -4 -8 -4 -8 -4 -8 0 0 0 0 0 0 -4 -8
x4 -7 8 8 8 -4 -8 0 0 0 0 0 0 -4 -8 -4 -8 -4 -8 0 0
x5 -7 8 8 0 0 -4 -8 0 0 0 0 -4 -8 -4 -8 0 0 -4 -8
x6 -7 8 0 0 0 0 -4 -8 0 0 -4 -8 0 0 -4 -8 -4 -8
x7 -7 0 0 0 0 0 0 -4 -8 0 0 -4 -8 -4 -8 -4 -8

y0,0 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y0,1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y1,0 6 8 0 0 0 0 0 0 0 0 0 0 0 0
y1,1 16 0 0 0 0 0 0 0 0 0 0 0 0
y2,0 6 8 0 0 0 0 0 0 0 0 0 0
y2,1 16 0 0 0 0 0 0 0 0 0 0
y3,0 6 8 0 0 0 0 0 0 0 0
y3,1 16 0 0 0 0 0 0 0 0
y4,0 6 8 0 0 0 0 0 0
y4,1 16 0 0 0 0 0 0
y5,0 6 8 0 0 0 0
y5,1 16 0 0 0 0
y6,0 6 8 0 0
y6,1 16 0 0
y7,0 6 8
y7,1 16

3.1.3 Edge Cover

The QUBO formulation of the Edge Cover Problem here is quite similar to the Domi-
nating Set Problem given in the previous subsection. The Edge Cover Problem can be
solved in polynomial time by exploiting the fact that the order of a graph G is equal
to the size of its maximum matching plus the size of its minimum edge cover [20, 43].

Given a graph G = (V,E) with n vertices and m edges, let V = {v0, v1, . . . , vn−1} and
E = {{i, j} | vj ∈ N(vi)}. This formulation requires one binary variable xi,j for each
{i, j} ∈ E, as well as blg(∆(vi)− 1)c+ 1 redundant binary variables for each vi ∈ V .

The objective function that is to be minimized is of the form:

F (x) =
∑
ij∈E

xi,j + A
∑
vi∈V

Pi

where

Pi =

1−
∑

ij∈I(vi)

xi,j +

blg(∆(xi)−1)c∑
k=0

2kyi,k

2

(3.4)

The decoder function we use this time is C(x) : Z|x|2 → 2E where 2E is the power set
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of E and we take C(x) = {{i, j} | xi,j = 1} as the edge cover of G. Again, choosing
A > 1 is sufficient for this formulation to be correct.

The structure and purpose of each term in the objective function is almost identical
to the Dominating Set Problem. One thing to note is that the number of redundant
variable required for each vertex is slightly smaller in some cases. As 1−

∑
ij∈I(i) xi,j ≤

−(∆(vi)−1), only blg(∆(vi)−1)c+1 redundant variables are needed to counter balance
in case more than one edge incident to a vertex vi is chosen as the edge cover when
∆(vi) > 1. If ∆(vi) = 1, then no redundant variables are needed at all as the only
edge incident to vi must be chosen in the edge cover set. In all cases, 1−

∑
ij∈I(i) xi,j

has to be 0. The argument that will be used here to show the correctness of this
formulation is quite similar to the proof in the previous subsection.

Theorem 2. The objective function (3.4) is correct.

Proof. First, we show that a solution from x∗ = minx F (x) will always be an edge
cover. Suppose we have x∗ = minx F (x) with corresponding binary vector x∗ and
C(x∗) is not an edge cover. Then there must exist a set of vertices {u1, u2, . . . , ul}
such that I(ui) ∩ C(x∗) = ∅ for all 1 ≤ i ≤ l. That is, for each ui, none of the edges
incident to ui is in C(x∗). Hence, for each ui, 1 ≤ i ≤ l, the corresponding Pi is 1. If
we change the variable xi,j corresponding to one of these edges to 1, then again, we
reduce F (x) by at least A− 1.

Now since C(x∗) where x∗ = minx F (x) has to be an edge cover as shown in the
previous paragraph, it also has to be the smallest edge cover. When C(x) is an edge
cover, each Pi in F (x) has to be 0 and therefore the value of F (x) is the size of C(x).
Hence by minimizing F (x), we also minimize the size of the edge cover set C(x).

3.1.4 Edge Cover S15 example

Similar to the Dominating Set Problem, we will provide an example of the actual
encoding of the objective function (3.4) on a star graph to a QUBO matrix here. The
family of star graphs is formally defined below:

Definition 21. The family of star graphs is defined as follows: A star graph with
order n+ 1, denoted by Sn = (V,E) has V = {0, 1, · · · , n} and E = {{0, i} | 1 ≤ i ≤
n}.

Once again, the objective function (3.4) can not be encoded straight away into QUBO,
constant and linear terms have to be replaced just like in the Dominating Set Problem.
Doing so would give us
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∑
ij∈E

x2
i,j + A

∑
vi∈V

−2
∑

ij∈I(vi)

x2
i,j + 2

blg(∆(xi)−1)c∑
k=0

2ky2
i,k +

∑
ij∈I(vi)

xi,j
∑

ij∈I(vi)

xi,j

−2
∑

ij∈I(vi)

xi,j

blg(∆(xi)−1)c∑
k=0

2kyi,k +

( blg(∆(xi)−1)c∑
k=0

2kyi,k

)2
 (3.5)

The encoded QUBO matrix corresponds to objective function (3.5) is shown in Ta-
ble 3.2. The solution to the minimum Edge Cover Problem is trivial for the family
of star graphs, since all vertices labeled from 1 to n are all of degree 1 and is only
connected to vertex 0, any edge cover in star graphs would have to consists of all the
edges in the graph. And by solving x∗ = minx

∑
i≤j xiQ(i,j)xj, we obtain an unique

solution in this case where

x = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1] and C(x) = E

which can be verified quite easily the only minimum edge cover for S15. Note that
the only zero value in x correspondes to the variable y0,0, which allows for P0 =
(1− 15 + 2 + 4 + 8)2 = 0.

Table 3.2: Edge Cover QUBO matrix for S15

variables x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7 x0,8 x0,9 x0,10 x0,11 x0,12 x0,13 x0,14 x0,15 y0,0 y0,1 y0,2 y0,3
x0,1 -3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,2 -3 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,3 -3 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,4 -3 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,5 -3 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,6 -3 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,7 -3 2 2 2 2 2 2 2 2 0 0 0 0
x0,8 -3 2 2 2 2 2 2 2 0 0 0 0
x0,9 -3 2 2 2 2 2 2 0 0 0 0
x0,10 -3 2 2 2 2 2 0 0 0 0
x0,11 -3 2 2 2 2 0 0 0 0
x0,12 -3 2 2 2 0 0 0 0
x0,13 -3 2 2 0 0 0 0
x0,14 -3 2 0 0 0 0
x0,15 -3 0 0 0 0
y0,0 6 4 8 16
y0,1 16 16 32
y0,2 48 64
y0,3 160



18

3.2 Weighted problems

The formulations provided in the previous section can be modified quite easily to
adapt to weighted graphs. The definitions of the input and output of the Dominating
Set and Edge Cover Problems are slightly different in weighted graphs. For the
Weighted Dominating Set Problem, each vertex vi in the graph is assigned a real
positive weight wi by a weight function W : V → R+ and the goal is to find a
dominating set that has a minimum sum of the weights. The weighted sum function
S : 2V → R+ is defined as S(A) =

∑
v∈AW (v).

Likewise, in the Weighted Edge Cover problem, each edge {i, j} in G is associated
with a real positive weight wi,j defined W : E → R+ by and the goal is to find an
edge cover that has a minimum value in the weighted sum function S : 2E → R+

defined as S(A) =
∑

ij∈AW (ij) . Formally, we have the following definitions.

Weighted Dominating Set Problem:

Instance: A graph G = (V,E) and a weight function W : V → R+.
Question: Find the dominating set D such that S(D) is minimum over all possible

dominating sets.

Weighted Edge Cover Problem:

Instance: A graph G = (V,E) and a weight function W : E → R+.
Question: Find the edge cover C such that S(C) is minimum over all possible

edge covers.

In both problems above we restrict to positive weights since otherwise those non-
positive vertices (edges) would always be added to a minimum solution and we could
reduce to a strictly positive subproblem.

3.2.1 Weighted Dominating Set

For the Weighted Dominating Set Problem, the objective function is almost identical
to the unweighted version. Let wi = W (vi), we have

F (x) =
∑
vi∈V

wixi + A
∑
vi∈V

Pi

where

Pi =

1−
(
xi +

∑
vj∈N(vi)

xj

)
+

blg(∆(xi))c∑
k=0

2kyi,k

2

(3.6)

Every term serves the same purpose here except that A has to be picked with the
property that A > max{wi | vi ∈ V }. And once again, we take D(x) = {vi | xi = 1}
as the solution at the end. The following proof of correctness of the above formulation
is very similar to the proof of the unweighted version as well.
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Theorem 3. The QUBO formulation in (3.6) is correct.

Proof. First, we show that it is always possible to transform a non-dominating set
into a dominating set which will have a smaller value in the objective function. Sup-
pose we have x∗ = minx F (x) with corresponding binary vector x∗ and D(x∗) is not
a dominating set. If this is case, then there must exist some vertices such that these
vertices themselves nor any of their neighbors are present in D(x∗). Then the cor-
responding penalty Pi for each of these vertices will be 1. Therefore, if we set the
corresponding xi of these vertices to 1, then for each one of them, a penalty of size wi

will be added to the term
∑

vi∈V xi while the corresponding Pi will be reduced to 0
and so F (x∗) will be reduced by A−wi > 0 by choice of A. Hence the solution from
x∗ = minx F (x) will always be a dominating set.

The second part of the proof is to show that an assignment of x that produces
a smaller dominating set will have a smaller value in the objective function. It is
trivial as if D(x) is a dominating set, then each Pi will have to be 0, so the value of
the objective function solely depend on the weights of vertices chosen to be in the
dominating set.

3.2.2 Weighted S5 example

Let us use the star graph again to demonstrate the difference for Weighted Dominating
Set Problem. The weight function W is defined as follows:

W (v) =

{
5, if v = 0

1, otherwise

Table 3.3: Dominating Set QUBO matrix for weighted S5

variables x0 x1 x2 x3 x4 x5 y0,0 y0,1 y0,2 y1,0 y2,0 y3,0 y4,0 y5,0
x0 -115 80 80 80 80 80 -40 -80 -160 -40 -40 -40 -40 -40
x1 -39 40 40 40 40 -40 -80 -160 -40 0 0 0 0
x2 -39 40 40 40 -40 -80 -160 0 -40 0 0 0
x3 -39 40 40 -40 -80 -160 0 0 -40 0 0
x4 -39 40 -40 -80 -160 0 0 0 -40 0
x5 -39 -40 -80 -160 0 0 0 0 -40

y0,0 60 80 160 0 0 0 0 0
y0,1 160 320 0 0 0 0 0
y0,2 480 0 0 0 0 0
y1,0 60 0 0 0 0
y2,0 60 0 0 0
y3,0 60 0 0
y4,0 60 0
y5,0 60
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The encoded QUBO matrix is shown in Table 3.3. Solving x∗ = minx

∑
i≤j xiQ(i,j)xj

this time gives two different solutions with identical value objective function (3.6).
The two solutions are

x1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and
x2 = [0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0]

The number of vertices in these two dominating sets is different, D(x1) has only one
vertex while D(x2) has five vertices.

The solution to the Dominating Set Problem is trivial for the family of star graphs Sn

in the unweighted case, since all vertices labeled from 1 to n are all only connected to
vertex 0, choosing just vertex 0 as the dominating set is sufficient to cover all vertices
in the graph. In the weighted case however, if the sum of weights of vertices 1 to n is
smaller than the weight of vertex 0, then the minimum dominating set would actually
consists of all vertices labeled 1 to n. In our case provided above, the weight function
W is constructed in a way such that the two cases would have the same weighted
sum, and as a result, both are accepted as the optimal solution.

3.2.3 Weighted Edge Cover

Similar to the Edge Cover Problem, the Weighted Edge Cover Problem can be reduced
to Weighted Perfect Matching problem which is solvable in time O(n3) [48, 34]1.
Similar to the weighted dominating set formulation in the previous subsection, we
only need to do some small modification to the Edge Cover Problem to obtain a
QUBO formulation for the weighted version. Let wi,j = W (ij), we have

F (x) =
∑
ij∈E

wi,jxi,j + A
∑
vi∈V

Pi

where

Pi =

1−
∑

ij∈I(vi)

xi,j +

blg(∆(xi)−1)c∑
k=0

2kyi,k

2

(3.7)

Once again, we need to have A > max{wi,j | {i, j} ∈ E} and the function C : Z|x|2 →
2E from Section 3.1.3 will be used again to obtain the subset of edges. Although
the argument may seem almost identical to the unweighted version, for the sake of
completeness, we will present the theorem and proof formally below.

1We want to clarify that the justification of the reduction given in the references only applies to
minimal edge covers (not any edge cover).
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Theorem 4. The QUBO formulation in (3.7) is correct.

Proof. First, we show that a solution from x∗ = minx F (x) will always be an edge
cover. Suppose we have x∗ = minx F (x) and C(x∗) is not an edge cover where x∗ is
the corresponding binary variable vector yielding x∗. Then there must exist a set of
vertices {u1, u2, . . . , ul} such that I(ui) ∩ C(x∗) = ∅ for 1 ≤ i ≤ l. That is, for each
ui, none of the edges incident to ui is in C(x∗). Hence, for each ui, 1 ≤ i ≤ l, the
corresponding Pi is 1. If we change the variable xi,j corresponding to one of these
edges to 1, then again, we reduce the value of the objective function F (x) by at least
A − wi,j > 0 since A is larger than all wi,j. Therefore the optimal solution to the
minimization problem of F (x) will always be an edge cover set.

Thus since C(x∗) corresponding to x∗ = minx F (x) has to be an edge cover as
shown in the previous paragraph. It also has to be the smallest edge cover since each
Pi in F (x) has to be 0 and therefore the value of F (x) is completely dependent on
the weights of the edges chosen to be in C(x).

3.2.4 Weighted W5 example

A wheel graph Wn with order n+1 is defined similar to a star graph. To be precise, a
star graph Sn with n+1 vertices is always a subgraph of Wn, with extra edges joining
the outer pendent vertices into a cycle of length n. Taking n = 5, we have V =
{0, 1, 2, 3, 4, 5} and E = {{0, i} | 1 ≤ i ≤ n} ∪ {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.
For the following example, the weight function W : E → R+ which assigns a weight
to each edge is defined as follows:

W (e) =


6, if e = {0, i} where 1 ≤ i ≤ n

12, if e = {1, 2}
15, otherwise

Let A = 20, the QUBO matrix encoded from objective function (3.7) is shown in
Table 3.4. Once again, we get two optimal solutions which both have the same value
in objective function (3.7) in this case.

x1 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
x2 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The number of edges we obtain in the edge cover are four and five respectively.
Although choosing the edge {1, 2} to cover vertex 1 and 2 may seem better initially,
since it covers two vertices with only one edge. Choosing {0, 1} and {0, 2} instead
makes no difference in this case as W ({1, 2}) = W ({0, 1})+W ({0, 2}), so the weighted
sum is identical.
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Table 3.4: Edge Cover QUBO matrix for weighted W5

vars x0,1 x0,2 x0,3 x0,4 x0,5 x1,2 x1,5 x2,3 x3,4 x4,5 y0,0 y0,1 y0,2 y1,0 y1,1 y2,0 y2,1 y3,0 y3,1 y4,0 y4,1 y5,0 y5,1
x0,1 -34 20 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,2 -34 20 20 20 20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,3 -34 20 20 0 0 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,4 -34 20 0 0 0 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,5 -34 0 20 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x1,2 -28 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1,5 -25 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x2,3 -25 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3,4 -25 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x4,5 -25 0 0 0 0 0 0 0 0 0 0 0 0 0
y0,0 60 40 80 0 0 0 0 0 0 0 0 0 0
y0,1 160 160 0 0 0 0 0 0 0 0 0 0
y0,2 480 0 0 0 0 0 0 0 0 0 0
y1,0 60 40 0 0 0 0 0 0 0 0
y1,1 160 0 0 0 0 0 0 0 0
y2,0 60 40 0 0 0 0 0 0
y2,1 160 0 0 0 0 0 0
y3,0 60 40 0 0 0 0
y3,1 160 0 0 0 0
y4,0 60 40 0 0
y4,1 160 0 0
y5,0 60 40
y5,1 160

3.3 Experimental results and discussion

Experiments were conducted on the D-Wave 2X quantum computer. The chipset is a
12×12×4 Chimera graph with 1152 vertices. Some physical qubits are inactive, leav-
ing us 1098 available physical qubits to work with. Python scripts which generates
the QUBO instances of the objective functions for Dominating Set and Edge Cover
are available in Appendices A and B. We used the NetworkX graph package [27] in
both scripts in addition to the D-Wave library [13]. We did do software simulations
(e.g. conventional evolutionary search) on our QUBO matrices to verify optimal so-
lutions were possible. The conventional evolutionary search algorithm we used was
also provided by the D-Wave software package [13].

3.3.1 Results

For both the Dominating Set and the Edge Cover Problem, we did 2500 trials on
each of the graphs listed in Tables 3.5 and 3.6. The first three columns of Tables 3.5
and 3.6 contain standard information about the graphs; the order and size are with
respect to the input graphs rather than the QUBO formulations. We used the same
graph specifications as in [10]. The next three columns contains information on the
embeddings. Logical qubits is the number of variables of the formulation and physical
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qubits is the number of hardware qubits required after embedding the QUBO instance
into the hardware. As can be seen from the table, the difference between the number
of variables and the actual number of hardware qubits needed varies quite a lot. The
high scaling factor is mostly due to the high density of the QUBO matrices. High
density means the size (number of non-zero QUBO entries) of the guest graph which
the QUBO matrix represents is high, and since the hardware has a fixed architecture,
it is harder to embed such guest graphs with few edge contractions. Hence more
active physical qubits are needed. The embedding max chain column contains the
maximum number of physical qubits a single logical qubit is mapped to.

Note that, minor containment is not the focus of study here, so we did not im-
plement our own minor embedding algorithm. The algorithm used in the study is
provided by the D-Wave software package; more details about this particular embed-
ding algorithm can be found in [12] and [7]. Another thing to note here is that we
did not try to minimize the number of variables nor the density of the QUBO matrix
when developing the objective functions given in Section 3.1. It is quite possible that
better formulations exist for these problems, that is, formulations with less number
of logical qubits and lower density that will make the minor containment problem on
them easier to solve.

The best answer column is the best (smallest) solution, in terms of the size of the
covering set of vertices or edges respectively for each of the problems, the D-Wave
machine was able to find. The optimal answer column is the true optimal solution
of the particular graph. The optimal solutions for the Dominating Set Problem was
computed by first computing an Integer Programming formulation of the problem
and then Sage Maths [52] software was used to compute the solution. A script used
for computing the optimal solution is given in Appendix C. The optimal solution to
the Edge Cover problem was computed by first realizing that the order of a graph G
is equal to the sum of the number of edges in its maximum matching and minimum
edge cover[43]. The maximum matching for each test graphs was computed using the
built-in function provided by the NetworkX package.

As mentioned before, each QUBO instance was executed 2500 times. The average
valid answer column is the average size of valid covering set found by the machine
out of the the 2500 times and the probability of valid answer column indicates the
probability of the machine finding a valid answer. The last column indicates the
proportion in which the best answer (given by the D-Wave machine), not necessarily
optimal, was found out of the 2500 times.

3.3.2 Scaling the Ising

The Python program in Appendix D accesses the quantum machine when solving
x∗ = minx f(x). Note that we explicitly converted the QUBO formulation of each
test cases to its corresponding Ising form as the D-Wave software package API gives
more direct control for more fine-tuned test with respect to the Ising model. The
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QUBO to Ising transformation function is also provided by the D-Wave API. We
then used two extra parameters s and s2 to scale the Ising model.

The parameter s2 is used before the embedding is applied. All entries in the Ising
model is scaled linearly by f(x) : R → R where f(x) = s2x/maxV and maxV is
the maximum value over all entries. This scaling is applied because of the current
D-Wave hardware coupling restrictions need to be in the range [−1, 1], these entires
corresponds to the J(i,j) values in the Ising problem. After the embedding is computed,
0 < s ≤ 1 is used as a factor to scale all entries corresponding to the same logical
qubits. Lower values of s emphasizes that it is more important for physical qubits
corresponding to the same logical qubit to be in a consistent state (spin). The lowering
the value of s was recommended in [13] if the unscaled case s = 1 does not provide
expected results.

The scaling is essentially the same as multiplying the QUBO objective function by
a constant and it should have no affect on the variable assignment of the optimal
solution of the original and modified functions.

3.3.3 Embedding with long chains

The entries highlighted in red in Table 3.5 and 3.6 are the test cases where the optimal
solution was never found out of the 2500 trials. An interesting observation we can
make here is that in Table 3.5, all such entries have a max chain length of bigger
than or equal to 10. It coincides with our expectation that longer chain lengths
are more likely to lead to less accurate solutions. The embedding of the problem
can be seen as a transformation to a different problem which has equivalent optimal
solutions[13, 12]. Since one logical qubit could be mapped to several different physical
qubits, new constraints have to be introduced to enforce all the physical qubits to be
in the same consistent states. This is achieved by adding extra penalties if the set
of physical qubits, representing the same logical qubits, are in inconsistent (different)
states [12]. Therefore, doing such transformation will make the annealing process
harder and lead to a lower probability of finding the optimal solution [12, 46].

For Table 3.6 some of the highlighted entries have a max chain length of less than
10. However, the best answer for such entries are at most 1 bigger than the true
optimal solution. So in some sense, it does not contradict what we stated in the
previous paragraph, the shorter the chains are, the more accurate (closer to optimal)
the solutions become.

3.3.4 The family of Star Graphs

The three rows with dashes in Table 3.6 corresponds to the test cases where no valid
solution was found out of all 2500 trials.
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Recall the definition of the family of Star graphs from Section 3.1.4. For all n ∈ Z,
the only edge cover of Sn = (V,E) is E. Since all vertices V \{0} are of degree 1, and
all edges are incident to vertex 0, the only way to cover vertex 1 ≤ i ≤ n is to pick
the edge (0, i). Hence all edges have to be picked to have a correct covering set. We
suspect that this uniqueness about the solution is what leads to its none-discovery
in these three cases. The physical nature of the computation could make the desired
unique configuration of qubits impossible to reach for the quantum machine. That
is why we can see that from Table 3.6, despite the fact that the Star graphs we used
in the experiments being relatively small, in terms of both the order and size, the
probability of finding a valid edge cover for Sn decreases dramatically as n increases
when compared with other families of graphs we had.

The case of finding a valid dominating set for Sn is slightly different. Since all
other vertices are connected with vertex 0, the optimal solution is obviously just the
set {0}. For the dominating set experiment, the optimal solution was found for all Sn

we tested. However, a valid dominating set for Sn could also include any number of
other vertices. Hence it leads to what we see in Table 3.5, the probability of finding
a valid dominating set is relatively high for all Sn, but the probability for finding the
optimal solution once again reduces dramatically as the order increases.

3.3.5 Difference between empirical and theoretical result

As can be seen in the result, the overall outcome was positive to some extent. In most
of the cases, the D-Wave quantum computer did find the true optimal solutions and
the probability of finding a valid solution per trial was relatively high. We note that
for the two problems with drastic classical complexities (Dominating Set being NP-
complete vs Edge Cover being in P), it seems that the quantum annealing solutions
are equivalent in terms of “solvability”.

Google has recently published some experimental results on the new D-Wave 2X [17],
the same hardware model we have used. The way that the D-Wave quantum annealer
was used in the Google study is very similar to ours. To be specific, when benchmark-
ing the (time-wise) performance of the quantum annealer, the probability of obtaining
the optimal solution by a single query to the D-Wave hardware was estimated. This
probability was then used to calculate the expected number of queries required to
be able to obtain the optimal, within na certain degree of confidence, at least once.
The Google study also had several design choices which differ from ours. First of all,
the test cases Google used in their benchmarking paper were hand crafted instances
fitting directly on the actual hardware. In other words, the underlying graphs they
used are subgraphs of the Chimera graph, so the minor containment problem did
not need to be considered. As we have mentioned in Subsection 3.3.3, longer chains
apparently lead to less accurate solutions. Secondly, the lack of minor embedding
also means that the solutions returned by D-Wave does not need to be mapped to the
variable assignments of the logical qubits, which is then post-processed or decoded to



26

be able to finally obtain a solution to the original problem. Even though these steps
can be done in polynomial time, they still contribute to the overall time required to
obtain a solution. Since our goal here is not to benchmark the performance of the
machine, we did not take these factors into account.
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Table 3.5: Results for some small graphs for Dominating Set.
Logical Physical Embedding Best Optimal Average Probability of Probability of

Graph Order Size Qubits Qubits Max Chain Answer Answer Valid Answer Valid Answer Best Answer

BidiakisCube 12 18 36 180 13 4 4 5.77 87.08 2.20

Bull 5 5 13 35 5 2 2 2.70 74.68 23.56

Butterfly 5 6 16 66 11 1 1 2.81 97.64 2.92

C10 10 10 30 92 7 4 4 5.52 78.28 7.36

C11 11 11 33 103 5 4 4 5.52 71.24 7.12

C12 12 12 36 118 7 4 4 6.57 80.04 0.28

C4 4 4 12 30 4 2 2 2.24 85.48 67.08

C5 5 5 15 49 5 2 2 2.58 82.76 37.92

C6 6 6 18 60 6 2 2 3.05 84.84 17.60

C7 7 7 21 67 6 3 3 3.52 77.80 41.80

C8 8 8 24 81 6 3 3 4.25 86.92 13.44

C9 9 9 27 101 8 3 3 4.77 80.28 3.40

Chvatal 12 24 48 353 19 4 4 7.31 97.60 0.12

Clebsch 16 40 64 745 42 5 4 8.22 89.92 0.28

Diamond 4 5 12 30 4 1 1 1.91 94.48 17.76

Dinneen 9 21 36 244 13 2 2 4.75 96.48 0.32

Dodecahedral 20 30 60 409 20 7 6 10.11 63.20 0.36

Durer 12 18 36 210 11 4 4 5.79 73.08 3.92

Errera 17 45 68 809 30 5 3 8.43 95.88 0.52

Frucht 12 18 36 177 10 4 3 5.61 89.64 7.52

GoldnerHarary 11 27 41 350 20 2 2 5.63 84.72 0.04

Grid2x3 6 7 18 58 6 2 2 3.17 85.04 9.64

Grid3x3 9 12 28 145 12 3 3 4.91 74.48 1.72

Grid3x4 12 17 38 175 10 4 4 6.64 82.08 0.56

Grid4x4 16 24 52 274 17 6 4 9.01 69.64 0.36

Grid4x5 20 31 66 453 17 7 6 10.70 63.64 0.08

Grotzsch 11 20 39 251 14 3 3 5.88 80.96 0.08

Heawood 14 21 42 255 13 4 4 6.36 70.24 0.96

Herschel 11 18 36 197 15 3 3 5.66 79.60 0.40

Hexahedral 8 12 24 98 8 2 2 4.63 66.36 1.84

Hoffman 16 32 64 578 29 5 4 8.74 85.80 0.16

House 5 6 15 57 9 2 2 2.55 89.96 46.16

Icosahedral 12 30 48 391 27 3 2 5.50 96.36 1.08

K10 10 45 50 581 35 1 1 4.92 100.0 0.04

K2,3 5 6 15 53 6 2 2 2.55 80.24 42.80

K2 2 1 4 5 2 1 1 1.01 99.92 98.76

K2x1 3 2 7 13 2 1 1 1.31 92.44 64.20

K3,3 6 9 18 68 7 2 2 4.77 68.00 2.28

K3,4 7 12 24 119 9 2 2 3.33 95.56 9.72

K3 3 3 9 23 4 1 1 1.32 99.48 71.36

K4,4 8 16 32 190 12 2 2 4.47 98.72 0.64

K4,5 9 20 36 251 16 2 2 4.82 98.84 0.20

K4 4 6 12 39 4 1 1 1.86 99.96 38.48

K5 5 10 20 92 7 1 1 2.41 100.0 9.40

K5x5 10 25 40 324 17 2 2 5.03 99.76 0.12

K5x6 11 30 44 357 17 2 2 5.38 99.76 0.04

K6 6 15 24 117 9 1 1 2.54 96.44 13.40

K6x6 12 36 48 537 25 2 2 4.85 98.44 0.52

K7 7 21 28 181 10 1 1 4.56 12.00 3.44

K8 8 28 32 260 13 1 1 5.24 75.20 25.84

K9 9 36 45 460 25 1 1 4.39 100.0 0.08

Krackhardt 10 18 34 205 15 3 2 5.69 82.20 0.56

Octahedral 6 12 24 124 9 2 2 3.32 98.32 16.32

Pappus 18 27 54 370 15 6 5 9.81 85.08 0.12

Petersen 10 15 30 161 11 3 3 4.96 79.28 1.08

Poussin 15 39 60 585 27 3 3 7.87 98.04 0.04

Q3 8 12 24 97 8 2 2 6.39 14.40 0.52

Q4 16 32 64 578 26 6 4 9.68 96.80 0.32

Robertson 19 38 76 827 39 6 5 10.58 81.48 0.08

S2 3 2 7 13 3 1 1 1.52 95.28 47.16

S3 4 3 9 17 3 1 1 1.57 96.84 56.32

S4 5 4 12 28 4 1 1 2.31 81.84 11.60

S5 6 5 14 40 4 1 1 2.02 94.36 26.12

S6 7 6 16 49 5 1 1 3.16 98.56 4.80

S7 8 7 18 57 5 1 1 3.06 98.72 3.44

S8 9 8 21 80 8 1 1 3.78 53.64 0.76

S9 10 9 23 95 7 1 1 3.94 78.76 1.44

S10 11 10 25 107 10 1 1 4.22 81.36 0.44

Shrikhande 16 48 64 785 37 4 3 7.09 90.56 0.32

Sousselier 16 27 53 390 19 5 4 8.42 64.88 0.24

Tietze 12 18 36 191 10 4 3 5.74 87.84 1.96

Wagner 8 12 24 106 9 3 3 4.97 47.56 0.24
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Table 3.6: Results for some small graphs for Edge Cover.
Logical Physical Embedding Best Optimal Average Probability of Probability of

Graph Order Size Qubits Qubits Max Chain Answer Answer Valid Answer Valid Answer Best Answer

BidiakisCube 12 18 42 149 6 6 6 7.98 64.92 3.48

Bull 5 5 10 22 3 3 3 3.24 47.12 36.04

Butterfly 5 6 12 33 7 3 3 3.63 63.16 24.20

C10 10 10 20 55 5 5 5 5.42 89.24 53.88

C11 11 11 22 51 7 6 6 6.48 71.76 39.36

C12 12 12 24 53 5 6 6 6.98 77.52 12.00

C4 4 4 8 13 2 2 2 2.05 98.56 93.64

C5 5 5 10 16 2 3 3 3.01 98.92 97.88

C6 6 6 12 23 3 3 3 3.10 61.84 55.96

C7 7 7 14 31 4 4 4 4.03 70.36 68.16

C8 8 8 16 28 3 4 4 4.21 64.20 51.32

C9 9 9 18 34 3 5 5 5.12 74.40 66.16

Chvatal 12 24 48 227 7 7 6 11.05 69.60 0.96

Clebsch 16 40 88 653 22 13 8 19.02 78.48 0.20

Diamond 4 5 11 25 3 2 2 2.50 92.12 47.56

Dinneen 9 21 42 283 12 5 5 8.77 71.04 0.08

Dodecahedral 20 30 70 245 6 11 10 13.63 47.84 1.64

Durer 12 18 42 143 6 6 6 8.66 74.76 0.60

Errera 17 45 96 633 15 13 9 21.28 80.64 0.04

Frucht 12 18 42 139 6 6 6 8.09 39.12 0.56

GoldnerHarary 11 27 54 411 17 8 6 12.81 46.12 0.04

Grid2x3 6 7 15 33 3 3 3 3.42 90.64 56.68

Grid3x3 9 12 26 73 5 5 5 5.75 74.40 32.48

Grid3x4 12 17 37 113 6 6 6 7.36 58.20 8.52

Grid4x4 16 24 52 191 8 8 8 11.28 69.80 0.44

Grid4x5 20 31 67 265 13 10 10 14.02 47.64 0.08

Grotzsch 11 20 43 207 10 7 6 10.12 53.28 0.76

Heawood 14 21 49 179 8 7 7 9.41 64.88 0.64

Herschel 11 18 40 144 7 6 6 7.75 60.48 6.40

Hexahedral 8 12 28 114 10 4 4 5.74 66.52 4.56

Hoffman 16 32 64 325 11 9 8 12.90 46.52 0.08

House 5 6 13 28 3 3 3 3.15 82.68 70.44

Icosahedral 12 30 66 508 22 8 6 13.53 78.96 0.08

K2,3 5 6 13 28 3 3 3 3.14 77.72 67.24

K3,3 6 9 21 70 5 3 3 4.39 89.92 12.84

K3,4 7 12 26 103 7 4 4 5.00 81.44 23.00

K3 3 3 6 10 2 2 2 2.00 83.20 83.08

K4,4 8 16 32 149 11 4 4 6.46 92.48 4.16

K4,5 9 20 42 251 12 5 5 8.69 62.04 0.04

K4 4 6 14 49 5 2 2 2.32 83.16 58.76

K5,5 10 25 55 417 18 7 5 11.87 83.88 0.20

K5,6 11 30 63 576 22 8 6 12.15 73.36 0.80

K5 5 10 20 87 6 3 3 4.17 86.24 2.32

K6,6 12 36 72 719 31 9 6 15.18 87.12 0.04

K6 6 15 33 187 11 3 3 6.61 86.12 0.08

K7 7 21 42 338 14 4 4 8.65 91.16 0.04

K8 8 28 52 546 19 6 4 11.15 91.72 0.24

K9 9 36 63 801 27 7 5 13.30 95.36 0.08

Krackhardt 10 18 38 172 9 6 5 9.16 46.36 0.44

Octahedral 6 12 24 89 6 3 3 5.20 83.12 1.52

Pappus 18 27 63 224 8 9 9 12.60 50.72 0.08

Petersen 10 15 35 129 7 5 5 6.96 66.88 1.00

Poussin 15 39 82 692 21 12 8 18.42 70.00 0.08

Q3 8 12 28 95 5 4 4 5.42 77.92 8.00

Q4 16 32 64 431 17 8 8 12.81 71.24 0.04

Robertson 19 38 76 443 13 10 10 15.43 52.12 0.04

S2 3 2 3 4 2 2 2 2.00 97.68 97.68

S3 4 3 5 8 2 3 3 3.00 65.12 65.12

S4 5 4 6 14 3 4 4 4.00 10.32 10.32

S5 6 5 8 22 3 5 5 5.00 1.52 1.52

S6 7 6 9 30 5 6 6 6.00 0.84 0.84

S7 8 7 10 39 4 - 7 - - -

S8 9 8 11 44 5 8 8 8.00 0.04 0.04

S9 10 9 13 64 6 - 9 - - -

S10 11 10 14 77 7 - 10 - - -

Shrikhande 16 48 96 864 26 14 8 20.90 88.20 0.04

Sousselier 16 27 60 256 11 10 8 13.93 48.40 0.24

Tietze 12 18 42 146 6 6 6 8.39 50.44 0.20

Wagner 8 12 28 97 7 4 4 5.44 54.60 5.44



Chapter 4

The Graph Isomorphism Problem

The Graph Isomorphism Problem is the computational problem of determining whether
two finite graphs are isomorphic. The problem is one of very few problems in NP
that is neither known to be solvable in polynomial time nor NP-complete. Moreover,
it is the only problem listed in [25] which remains still unsolved.

The problem can be solved in polynomial time for many special classes of graphs
and in practice the Graph Isomorphism Problem can often be solved efficiently,
see [40]. L. Babai posted a paper [4] showing that the Graph Isomorphism Prob-
lem can be solved in quasi-polynomial exp((lg n)O(1)) time. These mathematical facts
suggest that the Graph Isomorphism Problem has an intermediate complexity, hence
a good chance to be solved efficiently using D-Wave.

If the graphs have different sizes or orders, then they cannot be isomorphic and these
cases can be decided quickly. So in what follows we will assume that the input to the
Graph Isomorphism Problem are two graphs G1 = (V1, E1) and G2 = (V2, E2) with
the same order and the same size. If the graphs are isomorphic, then the output is a
bijective edge-invariant vertex mapping f : V1 → V2.

Formally the problem can be stated as follows:

Graph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|
and |E1| = |E2|.

Question: Determine whether there exists a bijective edge-invariant
vertex mapping (isomorphism) f : V1 → V2.

The required mapping f is a permutation of vertices in V1. To represent any of the
n! permutations we only need min{k | 2k ≥ n!} = dlg(n!)e bits, that is about ndlg ne
bits. A QUBO formulation of the problem with this theoretical lower bound seems
difficult to be realized as mentioned in Section 2.3.

We will provide several different QUBO formulations of the Graph Isomorphism Prob-
lem obtained through different methods and compare their efficiency in terms of the

29
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number of variables required and the densities of the QUBO graphs. We will also
provide formulation for two variations of the Graph Isomorphism Problem.

4.1 Simple approach using Integer Programming

In this section we present a simple formulation (i.e. a polynomial-time reduction) of
the Graph Isomorphism Problem to an IP Problem.

Recall the input consists of two graphs G1 and G2 with both being of order n and
size m. We use the following n+ 2m integer variables:

• vi, 0 ≤ i < n, denotes the permutation from vertices of G1 to G2,

• xk, 0 ≤ k < 2m, denotes the bijection from edges of G1 to G2.

For both graphs, we rank the m edges with two different values each from 0 to 2m−1,
by considering the pairs of integers (i, j) and (j, i) as two equivalent representations
of a possible edge ij. We say that rank(a, b) < rank(c, d) if na + b < nc + d. That
is, the edges are ranked by considering their index within the (row-wise flattened)
adjacency matrix representation of a graph. Let E∗ denote this double set of 2m
ordered pairs obtained from a set of unordered edges E.

A dummy objective function for our optimization problem is min v0, which indicates
that the first vertex of G1 is mapped to the smallest indexed vertex of G2, if at least
one isomorphism exits.

The integer programming constraints given below justify the conditions of an
isomorphism between G1 and G2.

First, every vertex of G1 is mapped to a vertex of G2, zero indexed:

0 ≤ vi < n, for all 0 ≤ i < n. (4.1)

Next, every vertex of G1 is mapped to a different vertex of G2:

(vi − vj)2 > 0, for all 0 ≤ i < j < n. (4.2)

Each edge ij of E1 needs to be mapped to the correct two indices in E∗2 with
respect to the given vi variables:

nvi + vj = xk, for i 6= j, (i, j) ∈ E∗1 and rank(i, j) = k. (4.3)
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Note that constraints (4.1)–(4.3) ensure that 1 ≤ xk ≤ n2−2, which are the possi-
ble indices into the flattened adjacency matrix of G2. These three sets of constraints
also imply that xk 6= xk′ for all k 6= k′.

Next we check that the bijection, given by the map i 7→ vi, is edge-invariant. Let
the pre-computed integer constant yl, 0 ≤ l < 2m, be the edge encoding yl = na + b
for (a, b) ∈ E∗2 with rank(a, b) = l:

Πyl∈E∗2 (xk − yl) = 0, for all xk. (4.4)

The constraints given in (4.4) ensure that each edge of G1 is mapped to an edge in
G2. Since xk acts as an injective function and both input graphs have the same size
m, the function is also surjective, so we do not need to explicitly check that non-edges
map to non-edges.

To convert the IP to one with only linear binary constraints, we use standard
conversion techniques (see [10]): a) dlg ne binary variables to represent each variable vi
and dlg(n2−2)e binary variables to represent each variable xk. b) each product xy of
binary variables is replaced with a new binary variable z and two linear constraints
involving x, y and z. Lastly, we need to convert the final binary linear IP to a standard
form (equality constraints only) by introducing slack variables.

The final step is to build an equivalent QUBO matrix Q from the IP formulation.
Here consider each linear equation constraint Ck of the form

∑n
i=1 c(k,i)xi = dk for

xi ∈ {0, 1} with fixed integer constants c(k,i) and dk. This equation is satisfied if and
only if

∑n
i=1 c(k,i)xi−dk = 0, or equivalently, the optimal solution of x∗ = minxC

′
k(x)

is 0 where C ′k(x) = (
∑n

i=1 c(k,i)xi − dk)2. We (symbolically) add all these quadratic
expressions C ′k(x) together, combining coefficients for any same terms xixj, to get a
final QUBO objective function xTQx. Note that the coefficients of the linear terms
xi = xixi correspond to the diagonal entries of Q and we can safely ignore any
constant terms, which have no impact on the selection of the best assignment of the
binary variables x = (x0, x2, . . . , xn−1) as explained in Section 2.4.

Theorem 5. The IP approach for generating a QUBO formulation for the Graph
Isomorphism Problem described above requires O(m3 lg n) qubits.

Proof. We make a tally of the number of integer variables and their integer range to
determine the number of binary variables needed. For the n variables vi we need n lg n
binary variables. For the possible n2 products vivj we need 2n2 lg n binary variables.
For the 2m variables xk we need 4m lg n binary variables. Further, for the products of
constraints (4.4), we need to represent all powers xjk for 1 ≤ j ≤ 2m, which increases
the number of binary variables is slightly over 8m3 lg n. This is because we have to
choose all combinations of selecting products of all the lg n binary variables for each
xk, which is approximately

∑2m
i=2(
√

2 lg n+ i)2. Following the standard reduction, see
[9], we need at most lg n binary slack variables for constraints of type (4.1) and at most
2 lg n binary slack variables for constraints of type (4.2). The other constraints are
already in equality form. Thus the total number of binary variables is O(m3 lg n).
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4.1.1 An example: the graph P3

Consider the path graph P3 of order 3 and two copies represented as G1 with edges
E1 = {{0, 1}, {1, 2}} and G2 with edges E2 = {{0, 1}, {0, 2}}. It is easy to see there
are two possible isomorphisms between G1 and G2, where we require vertex 1 of G1

to be mapped to vertex 0 of G2. With variables x1, x2, x3, and x4 from the ranked
edges in E∗1 and constants y1 = 1, y2 = 2, y3 = 3 and y4 = 6 from E∗2 we have the
following integer programming constraints.

0 ≤ v0 ≤ 2, 0 ≤ v1 ≤ 2, 0 ≤ v2 ≤ 2,

1 ≤ (v0 − v1)2 ≤ 4, 1 ≤ (v0 − v2)2 ≤ 4, 1 ≤ (v1 − v2)2 ≤ 4,

3v0 + v1 − x0 = 0, 3v1 + v0 − x1 = 0, 3v1 + v2 − x2 = 0, 3v2 + v1 − x3 = 0,

(x0 − 1)(x0 − 2)(x0 − 3)(x0 − 6) = 0, (x1 − 1)(x1 − 2)(x1 − 3)(x1 − 6) = 0,
(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 6) = 0, (x3 − 1)(x3 − 2)(x3 − 3)(x3 − 6) = 0.

Converting to binary variables and adding slack variables we have the following con-
straints:

2v0,1 + v0,0 + 2s0,1 + s0,0 = 2,
2v1,1 + v1,0 + 2s1,1 + s1,0 = 2,
2v2,1 + v2,0 + 2s2,1 + s2,0 = 2,

−(2v0,1 + v0,0 − 2v1,1 − v1,0)2 + 2s3,1 + s3,0 = −1,

−(2v0,1 + v0,0 − 2v2,1 − v2,0)2 + 2s4,1 + s4,0 = −1,

−(2v1,1 + v1,0 − 2v2,1 − v2,0)2 + 2s5,1 + s5,0 = −1,
6v0,1 + 3v0,0 + 2v1,1 + v1,0 − 4x0,2 − 2x0,1 − x0,0 = 0,
6v1,1 + 3v1,0 + 2v0,1 + v0,0 − 4x1,2 − 2x1,1 − x1,0 = 0,
6v1,1 + 3v1,0 + 2v2,1 + v2,0 − 4x2,2 − 2x2,1 − x2,0 = 0,
6v2,1 + 3v2,0 + 2v1,1 + v1,0 − 4x3,2 − 2x3,1 − x3,0 = 0,

(4x0,2+2x0,1+x0,0−1)(4x0,2+2x0,1+x0,0−2)(4x0,2+2x0,1+x0,0−3)(4x0,2+2x0,1+x0,0−6)=0,

(4x1,2+2x1,1+x1,0−1)(4x1,2+2x1,1+x1,0−2)(4x1,2+2x1,1+x1,0−3)(4x1,2+2x1,1+x1,0−6)=0,

(4x2,2+2x2,1+x2,0−1)(4x2,2+2x2,1+x2,0−2)(4x2,2+2x2,1+x2,0−3)(4x2,2+2x2,1+x2,0−6)=0,

(4x3,2+2x3,1+x3,0−1)(4x3,2+2x3,1+x3,0−2)(4x3,2+2x3,1+x3,0−3)(4x3,2+2x3,1+x3,0−6)=0.

Here we added 6 additional binary slack variables (labeled si,j) for constraints of
type (4.1) and 6 additional for constraints of type (4.2). Finally, to convert to linear
constraints we need to add (ndlg(n− 1)e)2 = 62 = 36 additional binary variables for

those of type (4.2) and 2m
∑2m

i=2

(dlg(n2−2)+i−1e
i

)
= 4(6 + 10 + 15) = 124 additional

binary variables for those of type (4.4). Thus, 6+12+6+6+36+124=190 total qubits
required for the final QUBO matrix for this input.
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4.2 A direct QUBO formulation

We present an improved QUBO objective function F for the Graph Isomorphism
Problem in this subsection. After we have developed this formulation, we noted that
A. Lucas in his paper [37] had an Ising formulation that is similar to what we have
developed. However, the Graph Isomorphism Problem studied in [37] does not make
the explicit assumption that G1 and G2 have the same number of edges. As a result,
the direct formulation we provide here is of a simpler form and has a lower time
complexity (if we consider the formulation a reduction to QUBO) in some cases.

The formulation requires only n2 binary variables represented by a binary vector
x ∈ Zn2

2 :

x = (x0,0, x0,1, . . . , x0,n−1, x1,0, x1,1, . . . , x1,n−1, . . . , xn−1,0, . . . , xn−1,n−1).

The equality xi,i′ = 1 encodes the property that the function f maps the vertex vi in
G1 to the vertex vi′ in G2:f(vi) = vi′ . For this mapping we need to pre-compute n2

binary constants ei,j for 0 ≤ i < n and 0 ≤ j < n such that

ei,j =

{
1 if ij ∈ E2

0 otherwise.

The function F consists of two parts, H(x) and
∑

ij∈E1
Pi,j(x). Each part serves

as a penalty for the case when the function f is not an isomorphism. The first
part H ensures that f is a bijective function: H = 0 if and only if the function
f encoded by the vector x is a bijection. The second term ensures that f is edge-
invariant:

∑
ij∈E1

Pi,j(x) > 0 if and only if there exists an edge uv ∈ E1 such that
f(u)f(v) /∈ E2.

The objective function F (x) has the following form:

F (x) = H(x) +
∑
ij∈E1

Pi,j(x), (4.5)

where

H(x) =
∑

0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

+
∑

0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

, (4.6)

and

Pi,j(x) =
∑

0≤i′<n

(
xi,i′

∑
0≤j′<n

xj,j′(1− ei′,j′)

)
. (4.7)

Assume that x∗ = minx F (x). Decoder function D will be used to obtain the
vertex mapping f . Let F be the set of all bijections between V1 and V2. Then
D : Zn2

2 → F is a partial function that re-constructs the vertex mapping f from the
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vector x, if such f exists. The domain of D contains all vectors x ∈ Zn2

2 that can be
decoded into a bijective function f :

dom(D) =

{
x ∈ Zn2

2

∣∣∣∣∣ ∑
0≤i′<n

xi,i′ = 1, for all 0 ≤ i < n

and
∑

0≤i<n

xi,i′ = 1, for all 0 ≤ i′ < n

}
,

and

D(x) =

{
f, if x ∈ dom(D),

undefined, otherwise,

where f : V1 → V2 is a bijection such that f(vi) = vi′ if and only if xi,i′ = 1.

Recall that I(v) denote the set of edges incident to the vertex v. The term xi,i′xj,j′
in the right-hand side of (4.7) has a positive coefficient if and only if i′j′ /∈ I(vi′),
hence an equivalent, simpler definition of Pi,j(x) in (4.7) can be given without ei′,j′
as follows:

Pi,j(x) =
∑

0≤i′<n

xi,i′ ∑
i′j′ /∈I(vi′ )

xj,j′

 . (4.8)

The following two lemmata will be used to prove correctness of the objective
function F in (4.5).

Lemma 6. For every x ∈ Zn2

2 , H(x) = 0 if and only if D(x) is defined (in this case
D(x) is a bijection).

Proof. Fix x ∈ Zn2

2 . The term H(x) has two components,

∑
0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

and
∑

0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

.

Since both components consist of only quadratic terms, we have H(x) = 0 if and only
if both components are equal to 0.

First, ∑
0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

= 0 (4.9)

if and only if for each 0 ≤ i < n, exactly one variable in the set {xi,i′ | 0 ≤ i′ < n}
has value 1, that is, every vertex v ∈ V1 has an image.

Second, with the same argument,
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∑
0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

= 0 (4.10)

if and only if for each 0 ≤ i′ < n, exactly one variable in the set {xi,i′ | 0 ≤ i < n}
has value 1, hence the function vi 7→ vi′ is surjective.

Together the conditions (4.9) and (4.10) are equivalent with the property that every
vertex vi ∈ V1 is mapped to a unique vertex vi′ ∈ V2, and since the orders of G1 and
G2 are same, the mapping vi 7→ vi′ is bijective.

The second lemma stated below ensures that the mapping f , if bijective, is also
edge-invariant.

Lemma 7. Let x ∈ Zn2

2 and assume that D(x) is a bijective function. Then,∑
ij∈E1

Pi,j(x) = 0 if and only if the mapping f = D(x) is edge-invariant.

Proof. Fix x ∈ Zn2

2 . Note that Pi,j(x) from (4.7) does not contain cubic terms,
so, as all ei′,j′ are constants, Pi,j(x) contains only quadratic terms (see also (4.8));
consequently, Pi,j(x) ≥ 0, for all ij ∈ E1. Furthermore,

∑
ij∈E1

Pi,j(x) = 0 if and only
if Pi,j(x) = 0, for all ij ∈ E1.

After expanding the left hand side of equation (4.7), we get

Pi,j(x) =
∑

0≤i′<n

xi,i′ (xj,0(1− ei′,0) + xj,1(1− ei′,1) + · · ·+ xj,n−1(1− ei′,n−1)) .

Since f is a bijection, for every edge ij ∈ E1, in the set {xi,i′ | 0 ≤ i′ < n} there is
a unique variable, denoted by x∗i,i′ , with value 1, and in the set {xj,j′ | 0 ≤ j′ < n}
there is exactly one variable, denoted by x∗j,j′ , with value 1.

Assume that
∑

ij∈E1
Pi,j(x) 6= 0, i.e. for some ij ∈ E1 we have Pi,j(x) 6= 0. It is easy

to see that Pi,j(x) 6= 0 if and only if x∗i,i′x
∗
j,j′(1− ei′,j′) 6= 0, or equivalently, ei′,j′ = 0.

The last equality violates the condition of an edge-invariant mapping as ei′,j′ = 0
implies that there is no edge between the vertices vi′ and vj′ in G2.

Conversely, if
∑

ij∈E1
Pi,j(x) = 0, then Pi,j(x) = 0 for all ij ∈ E1, hence x∗i,i′x

∗
j,j′(1−

ei′,j′) = 0 which implies ei′,j′ = 1. This means that for all ij ∈ E1, f(i)f(j) ∈ E2.
Since f is bijective and |E1| = |E2|, every edge ij ∈ E2 must also have an correspond-
ing edge f−1(i)f−1(j) ∈ E1, so f is edge-invariant.

Using Lemmata 6 and 7 we now prove the main result of the section.

Theorem 8. For every x ∈ Zn2

2 , F (x) = 0 if and only if the mapping f : V1 → V2

defined by f = D(x) is an isomorphism.
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Proof. Since both H(x) and
∑

ij∈E1
Pi,j(x) contain only quadratic terms, we have

F (x) = 0 if and only if both H(x) = 0 and
∑

ij∈E1
Pi,j(x) = 0.

Assume F (x) = 0. Then by Lemmas 6 and 7, f must be bijective and edge-invariant.
On the other hand, if F (x) 6= 0, then we have either H(x) 6= 0 or

∑
ij∈E1

Pi,j(x) 6= 0.
If H(x) 6= 0, then f is not bijective by Lemma 6. If H(x) = 0 and

∑
ij∈E1

Pi,j(x) 6= 0,
then by Lemma 7 the mapping is not edge-invariant.

4.2.1 An example: the graph P3 revisited

We use the same instances of G1 and G2 as described in Section 4.1.1. The direct
QUBO formulation requires 32 = 9 variables and the binary variable vector x ∈ Z9

2

is:
x = (x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x2,0, x2,1, x2,2).

By expanding equation (4.6), we have the following penalty terms:

H(x) = (1− (x0,0 + x0,1 + x0,2))2 + (1− (x1,0 + x1,1 + x1,2))2

+ (1− (x2,0 + x2,1 + x2,2))2 + (1− (x0,0 + x1,0 + x2,0))2

+ (1− (x0,1 + x1,1 + x2,1))2 + (1− (x0,2 + x1,2 + x2,2))2 .

Using definition of Pi,j given by equation (4.7) we need to pre-compute the following
binary constants ei,j: e0,0 = 0, e0,1 = 1, e0,2 = 1, e1,0 = 1, e1,1 = 0, e1,2 = 0, e2,0 =
1, e2,1 = 0, e2,2 = 0. By substituting the variables and the constants ei,j in equa-
tion (4.7), we obtain the following penalty terms:

P0,1 = x0,0x1,0 + x0,1(x1,1 + x1,2) + x0,2(x1,1 + x1,2),
P1,2 = x1,0x2,0 + x1,1(x2,1 + x2,2) + x1,2(x2,1 + x2,2).

Once again, we need to process some of the penalty terms before we can encode them
in a QUBO instance. Take the first penalty term (1−(x0,0 +x0,1 +x0,2))2 for example.
After expanding the brackets, we get

(1− (x0,0 + x0,1 + x0,2))2 = 1− (2x0,0 + 2x0,1 + 2x0,2) + x2
0,0 + x0,0x0,1

+ x0,0x0,2 + x0,1x0,0 + x2
0,1 + x0,1x0,2 + x0,2x0,0 + x0,2x0,1 + x2

0,2.

We have one constant term as well as three linear terms in the penalty term above.
As described in Section 2.4, first the constant term 1 can be ignored. Second, all
variables xi,i′ will be replaced by x2

i,i′ . After summing up the new terms, we get the
final penalty term that will be encoded into the QUBO instance:

−x2
0,0 − x2

0,1 − x2
0,2 + 2x0,0x0,1 + 2x0,0x0,2 + 2x0,1x0,2.

The process has to be applied to all penalty terms in F (x) to finally obtain an
objective function F (x) that has quadratic only terms, so it can be encoded into a
QUBO instance. In our example we obtain a 9× 9 QUBO matrix Q.
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For all elements xi,i′ in x we map the variable xi,i′ to the index d(xi,i′) = 3i + i′ + 1
(between 1 and 9) and then the entry Q(d(xi,i′ ),d(xj,j′ ))

is assigned the coefficient of the
term xi,i′xj,j′ in F (x). As for each pair xi,i′ and xj,j′ there are two possible equivalent
terms, xi,i′xj,j′ and xj,j′xi,i′ , as a convention, we will use the term that is be mapped to
the upper-triangle part of Q. That is, we use xi,i′xj,j′ if d(xi,i′) ≤ d(xj,j′) and xj,j′xi,i′
otherwise. The upper-triangular matrix representation of Q is shown in Table 4.1.

Table 4.1: QUBO matrix for P3

variables x0,0 x0,1 x0,2 x1,0 x1,1 x1,2 x2,0 x2,1 x2,2

x0,0 -2 2 2 3 0 0 2 0 0
x0,1 -2 2 0 3 1 0 2 0
x0,2 -2 0 1 3 0 0 2
x1,0 -2 2 2 3 0 0
x1,1 -2 2 0 3 1
x1,2 -2 0 1 3
x2,0 -2 2 2
x2,1 -2 2
x2,2 -2

Note that the removal of any constants will introduce an offset to the value of the
objective function as mentioned in Section 2.4. In our case, we have removed a
constant value of 6 from F (x) when encoding it into Q. As a result, the optimal
solution of f(x) = xTQx will now have a value of −6.

As mentioned in Section 4.1, the vertex 1 in G1 is mapped to vertex 0 in G2, hence
we have the following two optimal solutions:

x1 = (0, 1, 0, 1, 0, 0, 0, 0, 1) and x2 = (0, 0, 1, 1, 0, 0, 0, 1, 0).

An example: the graph C4

In this section we present a different example. A cycle graph Cn of order n is a graph
that consists of a single cycle of length n.

Definition 22. A cycle graph with n vertices, denoted by Cn, has V = {0, 1, · · · , n−
1} and E = {{i, i+ 1} | 0 ≤ i < n− 1} ∪ {{0, n− 1}}.

Let G1 = G2 = C4. After obtaining the objective function F and applying the
procedure described in Section 2.4 again, we get 16 variables. Each variable xi,i′ will
be mapped to the index 4i + i′ + 1. The coefficients of each quadratic term xi,i′xj,j′
in F (x) are then computed and the entry Q(4i+i′+1,4j+j′+1) is set to that coefficient.
The complete QUBO matrix is shown in Table 4.2.

If we consider the vertex mapping f as a permutation of the vertices in V1 and the
sequence 0, 1, 2, 3 as a cycle in G1, then the sequence of vertices in the permutation
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Table 4.2: QUBO matrix for C4

variables x0,0 x0,1 x0,2 x0,3 x1,0 x1,1 x1,2 x1,3 x2,0 x2,1 x2,2 x2,3 x3,0 x3,1 x3,2 x3,3

x0,0 -2 2 2 2 3 0 1 0 2 0 0 0 3 0 1 0
x0,1 -2 2 2 0 3 0 1 0 2 0 0 0 3 0 1
x0,2 -2 2 1 0 3 0 0 0 2 0 1 0 3 0
x0,3 -2 0 1 0 3 0 0 0 2 0 1 0 3
x1,0 -2 2 2 2 3 0 1 0 2 0 0 0
x1,1 -2 2 2 0 3 0 1 0 2 0 0
x1,2 -2 2 1 0 3 0 0 0 2 0
x1,3 -2 0 1 0 3 0 0 0 2
x2,0 -2 2 2 2 3 0 1 0
x2,1 -2 2 2 0 3 0 1
x2,2 -2 2 1 0 3 0
x2,3 -2 0 1 0 3
x3,0 -2 2 2 2
x3,1 -2 2 2
x3,2 -2 2
x3,3 -2

corresponds to a cycle in G2. There are eight different cycles in G2. A cycle can start
at any of the four vertices, and after fixing the starting vertex of the cycle, the path
can take on two different orientations. Using this ideas, we find the eight optimal
solutions of the equation x∗ = minx F (x):

x1 = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), x2 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),

x3 = (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0), x4 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0),

x5 = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0), x6 = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),

x7 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), x8 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0),

each of which gives an isomorphism between G1 and G2.

4.3 Formulation via reduction to Clique

In this section we give an alternate QUBO formulation that requires n2 binary vari-
ables for the Graph Isomorphism Problem. The construction is based on a known
polynomial-time reduction from the Graph Isomorphism Problem to the Clique Prob-
lem [6]. Then later in this section we provide an optimal QUBO formulation of the
Clique Problem to complete the formulation.

Definition 23. Let G = (V,E) be graph, a clique of G is a subgraph induced by a
subset of vertices V ′ ⊆ V such that for all {a, b} ⊆ V ′ we have ab ∈ E.
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Clique Problem:

Instance: Graph G = (V,E) and integer k.
Question: Is there a clique V ′ ⊆ V of size k?

The Clique Problem is one of the original Karp’s 21 NP-complete problems [33]. The
maximum clique of size k of a graph is called the clique number, denoted by χ(G).
For our construction we use some ideas developed in [45].

Definition 24. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The associated
graph product Ψ(G1, G2) = (V,E) is a graph vertices V = V1 × V2 and edges
E = {((a, b), (c, d)) ∈ V × V | a 6= c, b 6= d and ac ∈ E1 ⇔ bd ∈ E2}

Theorem 9. Two graphs G1 and G2 with |V1| = |V2| = n are isomorphic if and only
if χ(Ψ(G1, G2)) = n.

Proof. Let us first consider the case where G1 and G2 are isomorphic via a bijection
f : V1 → V2. Then we claim that the subset V ′ = {(i, f(i)) | i ∈ V1} ⊆ V is a clique
in Ψ(G1, G2). Since V ′ has n vertices, we just need to check there is an edge between
any pair of vertices. Consider a pair (a, b) and (c, d) in V ′ with a 6= c. Since f is
a bijection we have b 6= d when b = f(a) and d = f(c). Since any isomorphism is
edge-invariant, we also have ac ∈ E1 ⇔ bd ∈ E2, which is preserved by the definition
of E for Ψ(G1, G2).

For the other direction, we assume there is clique V ′ of order n in Ψ(G1, G2) and
we extract an isomorphism f from this set. First note that for any distinct pair of
vertices (a, b) and (c, d) in V ′, we have a 6= c and b 6= d since otherwise, we would
not have an edge between them in the clique. Thus, with exactly n pairs of vertices
(u, v) with u ∈ V1 and v ∈ V2, we have a well-defined bijective function f from V1

to V2 defined by b = f(a) for (a, b) ∈ V ′. For f to be an isomorphism we need
ac ∈ E1 ⇔ f(a)f(c) ∈ E2. Again, since V ′ was assumed to be a clique and, for a 6= c,
there exists an edge between (a, f(a)) and (c, f(c)) so using the definition of E we
must have ac ∈ E1 ⇔ f(a)f(c) ∈ E2.

Next we give a simple construction of an optimal QUBO matrix for the Clique Prob-
lem. For a graph G = (V,E) of order n we build an upper-triangle matrix Q of
dimension n where

Q(i,j) =


−1, if i = j,
0, if i < j and ij ∈ E,
2, if i < j and ij 6∈ E.

Theorem 10. For every graph G, the minimum value of the QUBO objective function
f(x) = xTQx is −χ(G); in this case the set of variables of x with value 1 correspond
to a maximum clique.

Proof. First, let V ′ be a maximum clique of G and set xi = 1 if i ∈ V ′, otherwise
xi = 0. The sum

∑
i≤j xiQ(i,j)xj has χ(G) terms with value -1 whenever i = j and
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xi = 1. All other terms will be 0 since, by assumption, if both xi and xj are 1 then
there is an edge between i and j in V ′ and the corresponding entries Q(i,j) are defined
to be 0. In other cases, one of xi or xj is 0, so it does not matter what value is set
for Q(i,j). Hence the sum f(x) totals to −χ(G) for any maximum clique.

Now let us assume x∗ is an optimal minimum value of the objective f(x) for some
assignment of x that does not correspond to a clique V ′ of G. Let i and j be two
vertices such that ij 6∈ E but xi = xj = 1. The sum

∑
i≤j xiQ(i,j)xj has at least one

term with value 2. If we slightly change x, say setting xi = 0, the sum will decrease by
2 for that term (and possibly more for other non-edges involving i) and increase by 1
for the diagonal term xiQ(i,i)xi. This global decrease with at least 1 which contradicts
the minimality of x∗. Finally, if the clique V ′ is not as large as possible, then x∗ is
also not optimal, so the theorem is proved.

4.3.1 Example: the graph P3 revisited

We use the same instances of G1 and G2 as described in Section 4.1.1. The associated
product graph with nine vertices is given in Figure 4.1. We can see there are two
cliques of size 3, which correspond to the two possible isomorphisms ofG1 andG2. The
shared vertex ‘1,0’ (of the two 3-cliques) indicates that both of these two isomorphisms
require vertex 1 to be mapped to vertex 0.

0,0

1,1

1,2

2,0

0,1 2,2

1,0

0,2 2,1

Figure 4.1: The graph Ψ(G1, G2).

The QUBO matrix for the Clique Problem applied to this graph Ψ(G1, G2) is given
in Table 4.3.

Note that for this particular input P3, this clique-based n2 formulation has slightly
more non-zero entries than the direct formulation given in Table 4.1. Thus, embed-
ding the QUBO instance on the D-Wave architecture may require more physical
qubits even though the number of logical qubits are the same. As we mentioned in
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Table 4.3: The alternative QUBO matrix for P3

vertices 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
0, 0 -1 2 2 2 0 0 2 2 2
0, 1 -1 2 0 2 2 2 2 0
0, 2 -1 0 2 2 2 0 2
1, 0 -1 2 2 2 0 0
1, 1 -1 2 0 2 2
1, 2 -1 0 2 2
2, 0 -1 2 2
2, 1 -1 2
2, 2 -1

Section 2.3, we will always be restricted by the number of physical qubits in the hard-
ware, hence a formulation that requires less physical qubits to embed is advantageous
here from a practical point of view.

4.4 Minor embedding comparison

Motivated by the observation we made on the P3 example in Section 4.2.1 and 4.3.1,
and the limitation on the number of available physical qubits, we ran several ex-
periments to investigate the difference on hardware embeddings between the clique
and direct approach. Most of the relevant test cases are too big to be embedded on
the actual D-Wave 2X chipset; since D-Wave is planning on upscaling their current
hardware design in the future [14], we decided to pick two large Chimera graphs to
test the embeddings on, hoping the results will provide some insight on how well the
different formulations will perform with future machines.

The first host graph is a Chimera graph with 7200 vertices and 21360 edges (M =
N = 30, L = 4). The second is a Chimera graph with 6800 vertices and 31680
edges (M = N = 20, L = 4). For convenience, we will call them host1 and host2
respectively. Standard adjacency list for both hosts can be generated using script H
in the appendix. The actual hardware structure of the D-Wave quantum computers
always had blocks of K4,4, host2 has blocks of K8,8 which doubles the connectivity
(number of edges) inside each block. As a result, host2 has about 50% more edges
than host1. We purposely pick K8,8 to see whether a large increase in the connectivity
inside each block (which seems a more challenging task from an engineering point of
view) would lead to better embeddings.

We ran the same minor embedding algorithm used in Section 3.3 on a number of
different test cases. We also used the same graphs from Section 3.3 as the input
graph G1 to the Graph Isomorphism Problem. A random permutation of the vertices
was generated to obtain G2 (i.e. we relabeled the vertices of G1 to get G2), hence
the two graphs will always have the same number of vertices and edges, and they
are always isomorphic to one another. The QUBO instances for the clique and direct



42

approach can be generated using Python scripts E, F and G. This particular minor
embedding algorithm is very time consuming, and therefore we only did two trials on
each test cases and only the better result (one with less number of physical qubits)
is shown here. We also set a time out value of about 10 minutes for each trial, that
is, the algorithm is terminated after 10 minutes even if a minor embedding was not
found.

4.4.1 Presentation of results

In Table 4.4, the second and third column contain the order and size of the input
graphs G1 and G2. The next three columns contains the number of variables of
the QUBO instances obtained through the three different approaches described in
Section 4.1, 4.2 and 4.3. The last two columns contain the densities of the QUBO
instances for the direct and clique formulation. The density of a QUBO instance
is defined as the number of non-zero entries in Q(i,j) where i < j divided by the
total number of entries in the same part of the matrix. Note that the main diagonal
was excluded as the connection of a logical qubit to itself does not affect the minor
embedding of the guest graph.

In Table 4.5, we provide the embedding result for both host1 and host2. It contains the
same standard information about the minor embedding as explained in Section 3.3.

4.4.2 Discussion

The IP formulation does not seem very useful here from a practical point of view,
the number of variables required quickly scales out of control and results in large
number of logical qubits. An interesting thing to note here is that the IP formulation
of the Broadcast Time Problem studies in [10] also require a huge number of binary
variables when converted to QUBO. In all test cases, the density of the QUBO in-
stances from the direct formulation is always smaller or equal to the one obtained
by the clique approach. In theory, it means that the QUBO instance of the direct
formulation should be easier to embed on the host graph. However, the minor embed-
ding algorithm we used is a heuristic algorithm that heavily relies on a randomized
initialization procedure [7]. As a result, the minor embedding found on the same set
of guest and host graphs may vary quite a lot on two different trials. Hence there are
several test cases where the direct QUBO instance requires more physical qubits.

In general, the numbers fit our expectation, that is, the direct QUBO formulation
requires less number of physical qubits to embed on the host than the clique approach
and the embedding max chain length is shorter for the direct method as well. This
pattern becomes clearer as the scale of the QUBO instance gets larger. We suspect
that the difference in the densities is related to the fact that the Clique approach does
not make any explicit assumptions on the two input graphs G1 and G2 having the
same order and size. In other words, the direct formulation uses more information of
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the input. Together with the absurdly large number of variables required from the
IP approach, it shows how a directly encoded QUBO instance for the problem could
outperform one that is obtained through a more generic approach (reduction from IP
and Clique here) in practice.

The entries in the tables marked by a ‘-’ correspond to the cases where the algorithm
was not able to find a minor embedding. The large number of such cases is likely due
to the big scaling of the number of physical qubits required. As the order of input
graphs increase by 1, the number of physical qubits approximately doubles. Even
with the large increase of connectivity in host2, the algorithm was still not able to
embed any test cases with order (of G1 and G2) bigger than 12. With host1, the
largest embeddable case had an order of 11. So it does not seems like upscaling the
internal connectivity inside each block made too much difference here. In summary,
the overall result is not very satisfactory. As we explained in Section 3.3.3, we suspect
that longer embedding chains may lead to less accurate results. Hence the huge chains
we have in both test cases could prevent us from obtaining any meaningful solution
from the machine even if the scale of the actual hardware is up to the size of host1
and host2.
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Table 4.4: Number of variables and QUBO densities for different formulations
Logical Qubits Density

Graph Order Size IP Clique Direct Clique Direct

BidiakisCube 12 18 6380377398 144 144 0.4895 0.3217

Bull 5 5 30315 25 25 0.6667 0.5000

Butterfly 5 6 74539 25 25 0.6533 0.4933

C10 10 10 17762575 100 100 0.4646 0.3232

C11 11 11 34339547 121 121 0.4333 0.3000

C12 12 12 252442038 144 144 0.4056 0.2797

C4 4 4 4056 16 16 0.6667 0.5333

C5 5 5 30315 25 25 0.6667 0.5000

C6 6 6 223191 36 36 0.6286 0.4571

C7 7 7 543235 49 49 0.5833 0.4167

C8 8 8 1194584 64 64 0.5397 0.3810

C9 9 9 8654166 81 81 0.5000 0.3500

Chvatal 12 24 68183718414 144 144 0.5455 0.3497

Clebsch 16 40 5142153247264 256 256 0.5098 0.3137

Diamond 4 5 10104 16 16 0.5667 0.4833

Dinneen 9 21 3607826070 81 81 0.5889 0.3944

Dodecahedral 20 30 3400324505130 400 400 0.3358 0.2155

Durer 12 18 6380377398 144 144 0.4895 0.3217

Errera 17 45 155792785116353 289 289 0.5047 0.3079

Frucht 12 18 6380377398 144 144 0.4895 0.3217

GoldnerHarary 11 27 23558624475 121 121 0.5832 0.3749

Grid2x3 6 7 543061 36 36 0.6413 0.4635

Grid3x3 9 12 63111360 81 81 0.5556 0.3778

Grid3x4 12 17 4013029118 144 144 0.4775 0.3157

Grid4x4 16 24 68183720736 256 256 0.4000 0.2588

Grid4x5 20 31 4617380539608 400 400 0.3423 0.2188

Grotzsch 11 20 2515662329 121 121 0.5523 0.3595

Heawood 14 21 22548907234 196 196 0.4410 0.2872

Herschel 11 18 1160070477 121 121 0.5336 0.3501

Hexahedral 8 12 14251368 64 64 0.6032 0.4127

Hoffman 16 32 766017051200 256 256 0.4627 0.2902

House 5 6 74539 25 25 0.6533 0.4933

Icosahedral 12 30 443520588882 144 144 0.5734 0.3636

K10 10 45 1156161672465 100 100 0.1818 0.1818

K2,3 5 6 74539 25 25 0.6533 0.4933

K2 2 1 12 4 4 0.6667 0.6667

K3,3 6 9 2423145 36 36 0.6286 0.4571

K3,4 7 12 14251185 49 49 0.6173 0.4337

K3 3 3 552 9 9 0.5000 0.5000

K4,4 8 16 88342552 64 64 0.6032 0.4127

K4,5 9 20 2515661504 81 81 0.5951 0.3975

K4 4 6 21932 16 16 0.4000 0.4000

K5,5 10 25 13219293745 100 100 0.5859 0.3838

K5,6 11 30 52178894829 121 121 0.5799 0.3733

K5 5 10 1062875 25 25 0.3333 0.3333

K6,6 12 36 2087102677590 144 144 0.5734 0.3636

K6 6 15 58434165 36 36 0.2857 0.2857

K7 7 21 515404071 49 49 0.2500 0.2500

K8 8 28 3442573800 64 64 0.2222 0.2222

K9 9 36 208710268992 81 81 0.2000 0.2000

Krackhardt 10 18 1160070063 100 100 0.5745 0.3782

Octahedral 6 12 14251011 36 36 0.5143 0.4000

Pappus 18 27 1278055259613 324 324 0.3653 0.2353

Petersen 10 15 308866125 100 100 0.5455 0.3636

Poussin 15 39 4138707982302 225 225 0.5336 0.3293

Q3 8 12 14251368 64 64 0.6032 0.4127

Q4 16 32 766017051200 256 256 0.4627 0.2902

Robertson 19 38 31291626737038 361 361 0.4111 0.2556

S10 11 10 17762989 121 121 0.4146 0.2906

S2 3 2 190 9 9 0.7222 0.6111

S3 4 3 1358 16 16 0.7000 0.5500

S4 5 4 10583 25 25 0.6533 0.4933

S5 6 5 80505 36 36 0.6032 0.4444

S6 7 6 223365 49 49 0.5561 0.4031

S7 8 7 543418 64 64 0.5139 0.3681

S8 9 8 3924080 81 81 0.4765 0.3383

S9 10 9 8654577 100 100 0.4436 0.3127

Shrikhande 16 48 24727250232768 256 256 0.5412 0.3294

Sousselier 16 27 182579326560 256 256 0.4254 0.2715

Tietze 12 18 6380377398 144 144 0.4895 0.3217

Wagner 8 12 14251368 64 64 0.6032 0.4127
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Table 4.5: Minor embedding results
Physical Qubits Embedding Max Chain

host1 host2 host1 host2
Graph Clique Direct Clique Direct Clique Direct Clique Direct

BidiakisCube - - 4916 4221 - - 54 54

Bull 220 183 114 101 10 10 6 6

Butterfly 210 160 100 101 11 9 6 6

C10 4216 3402 1997 1857 66 51 31 28

C11 5996 5685 3534 2699 79 76 44 30

C12 - - 5579 4735 - - 66 47

C4 65 70 40 40 5 5 3 3

C5 192 171 107 98 10 8 6 5

C6 516 406 218 206 17 14 8 8

C7 963 765 464 409 27 18 12 11

C8 1448 1345 897 702 31 31 19 15

C9 2956 2362 1343 1203 48 39 25 24

Chvatal - - 5440 4710 - - 55 53

Clebsch - - - - - - - -

Diamond 70 65 44 41 6 5 3 4

Dinneen 3021 2232 1283 1363 64 37 21 24

Dodecahedral - - - - - - - -

Durer - - 4833 4961 - - 54 51

Errera - - - - - - - -

Frucht - - 4546 5373 - - 55 55

GoldnerHarary 6457 6027 2920 3342 88 73 35 44

Grid2x3 445 348 233 252 17 14 9 9

Grid3x3 2893 2523 1508 1367 54 46 27 22

Grid3x4 - - 5050 5169 - - 54 52

Grid4x4 - - - - - - - -

Grid4x5 - - - - - - - -

Grotzsch 6204 5990 3225 3404 83 95 47 43

Heawood - - - - - - - -

Herschel 6059 5986 3181 3043 75 80 41 40

Hexahedral 1754 1385 812 857 38 31 19 17

Hoffman - - - - - - - -

House 210 178 117 110 10 8 6 7

Icosahedral - - 4738 4775 - - 53 46

K10 2513 2381 1361 1233 54 43 21 18

K2,3 192 179 96 92 12 8 5 6

K2 4 4 4 4 1 1 1 1

K3,3 312 380 173 187 11 14 7 7

K3,4 765 698 319 329 21 19 9 10

K3 20 20 12 12 3 3 2 2

K4,4 1792 1205 558 715 41 26 10 17

K4,5 1622 2019 1373 954 26 34 28 19

K4 58 60 44 43 4 5 3 3

K5,5 5178 3342 2178 1651 67 41 28 20

K5,6 6385 5553 3216 2498 83 78 42 32

K5 148 150 95 94 7 8 5 5

K6,6 - - 4856 4182 - - 50 50

K6 291 313 167 179 11 11 6 6

K7 558 577 345 320 19 16 10 9

K8 964 925 513 481 24 22 13 10

K9 1663 1574 825 937 32 33 15 17

Krackhardt 4132 4168 2133 1871 67 55 30 28

Octahedral 434 306 212 196 15 12 8 7

Pappus - - - - - - - -

Petersen 5030 4044 2299 2444 78 60 33 33

Poussin - - - - - - - -

Q3 1953 1671 854 807 41 37 19 17

Q4 - - - - - - - -

Robertson - - - - - - - -

S10 5935 4956 2801 2267 79 70 35 31

S2 24 24 13 13 4 3 2 2

S3 77 67 47 43 6 6 4 4

S4 199 161 111 106 10 9 6 5

S5 441 402 214 214 16 14 8 8

S6 805 713 380 385 25 20 10 11

S7 1503 1180 644 652 37 28 14 16

S8 2554 1872 1114 1064 67 49 20 25

S9 5031 3205 2398 1421 97 52 38 25

Shrikhande - - - - - - - -

Sousselier - - - - - - - -

Tietze - - 4648 3892 - - 50 55

Wagner 1728 1408 875 718 43 31 21 18
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4.5 The Subgraph Isomorphism Problem

The Subgraph Isomorphism Problem – a generalization of the Graph Isomorphism
Problem – is the NP-hard problem of determining whether a graph G1 is a subgraph
of another graph G2.

Definition 25. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We say that G1 is
a subgraph of G2 if if there exist an edge-preserving injective function f : V1 → V2

such that if {u, v} ∈ E1, then {f(u), f(v)} ∈ E2.

Subgraph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with n1 = |V1| ≤ |V2| = n2

and |E1| ≤ |E2|.
Question: Find an edge-preserving injective function f : V1 → V2 if such f exists.

Note that the problem is trivial if G1 is a graph of order 1, as it will always be a
subgraph of any other non-empty graphs. So we will assume that all input graphs
are of order at least 2.

4.5.1 A direct QUBO formulation

The objective function (4.5) can be modified to solve the Subgraph Isomorphism
Problem using the same method as in Section 4.2. As the order of G1 and G2 can be
different, all possible mappings could be represented by a vector x ∈ Zn1n2

2 :

x = (x0,0, x0,1, . . . , x0,n2−1, x1,0, x1,1, . . . , x1,n2−1, . . . , xn1−1,0, . . . , xn1−1,n2−1).

We also need n2 slack variables encoded in y = (y0, y1, . . . , yn2−1), which will be

appended to x ∈ Zn1n2
2 to form the binary vector z ∈ Z(n1+1)n2

2 :

z = xy.

Let
F (z) = H(z) +

∑
ij∈E1

Pi,j(x), (4.11)

where

H(z) =
∑

0≤i<n1

(
1−

∑
0≤i′<n2

xi,i′

)2

+
∑

0≤i′<n2

(
1−

∑
0≤i<n1

xi,i′ − yi′
)2

, (4.12)

and

Pi,j(x) =
∑

0≤i′<n2

(
xi,i′

∑
0≤j′<n2

xj,j′(1− ei′,j′)

)
. (4.13)
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The definition of the decoder function D : Zn1n2
2 → F is:

dom(D) =

{
x ∈ Zn1n2

2

∣∣∣∣∣ ∑
0≤i′<n2

xi,i′ = 1, for all 0 ≤ i < n1

and
∑

0≤i<n1

xi,i′ = 1, for all 0 ≤ i′ < n2

}
,

and

D(x) =

{
f, if x ∈ dom(D),

undefined, otherwise,

where f : V1 → V2 is an injection such that f(vi) = vi′ where xi,i′ = 1.

Lemma 11. For every z ∈ Z(n1+1)n2

2 corresponding to the solution z∗ = minz F (z),
H(z) = 0 if and only if D(x) is defined (in this case D(x) is an injection).

Proof. Fix z ∈ Z(n1+1)n2

2 where z corresponds to an optimal solution of z∗ = minz F (z).
The term H(z) has two components,

∑
0≤i<n1

(
1−

∑
0≤i′<n2

xi,i′

)2

and
∑

0≤i′<n2

(
1−

∑
0≤i<n1

xi,i′ − yi′
)2

.

Since both components consist of only quadratic terms, we have H(z) = 0 if and
only if both components are equal to 0. First,

∑
0≤i<n1

(
1−

∑
0≤i′<n2

xi,i′

)2

= 0 (4.14)

if and only if for each 0 ≤ i < n, exactly one variable in the set {xi,i′ | 0 ≤ i′ < n2}
has value 1, hence every vertex v ∈ V1 has exactly one image in V2.

Second, with a similar argument,

∑
0≤i′<n2

(
1−

∑
0≤i<n1

xi,i′ − yi′
)2

= 0 (4.15)

if and only if for each 0 ≤ i′ < n2, 1−
∑

0≤i<n1
xi,i′ − yi′ = 0. We have the following

cases:

1. None of the variables in the set {xi,i′ | 0 ≤ i < n1} has value 1.

2. Exactly one variable in the set {xi,i′ | 0 ≤ i < n1} has value 1.
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3. More than one variables in the set {xi,i′ | 0 ≤ i < n1} have value of 1.

In the first case, we have 1 −
∑

0≤i<n1
xi,i′ = 1, so setting yi′ = 1 will avoid the

penalty. By assumption, n1 ≤ n2, so if n1 < n2, then not all vertices in V2 should
have a pre-image and no penalty should be given in this case. If n1 = n2 however, the
mapping from V1 to V2 should be a bijection. Since condition (4.14) enforces every
vertex in V1 to have an image in V2, we will have either Case 2 or 3.

In the second case, exactly one variable in the set {xi,i′ | 0 ≤ i < n1} has value 1
which means there is exactly one vertex in vi ∈ V1 that has been mapped to vi′ ∈ V2.
As a result, 1−

∑
0≤i<n1

xi,i′ − yi′ = 0 when yi′ is assigned value 0.

In the last case, the mapping can not be injective, so no values for yi′ can avoid
the penalty.

Together conditions (4.14) and (4.15) are equivalent with the property that every
vertex vi ∈ V1 is mapped to exactly one unique vertex vi′ ∈ V2, that is, the map
vi 7→ vi′ is injective.

In the proof of Lemma 7, the bijectivity of the mapping f was essential to prove
edge-invariance. With the same argument one can prove that an injective function f
is edge-preserving. Indeed, for each edge ij ∈ E1, the equality Pi,j = 0 ensures that
there is an edge f(i)f(j) ∈ E2, so we have the following result:

Lemma 12. Let x ∈ Zn1n2
2 and assume that D(x) is an injective function. Then,∑

ij∈E1
Pi,j(x) = 0 if and only if the mapping f = D(x) is edge-preserving.

Theorem 13. For every z ∈ Zn1n2
2 , F (z) = 0 if and only if the mapping f : V1 → V2

defined by f = D(x) is a subgraph isomorphism.

Proof. As in the proof of Theorem 8, the statement of the theorem is a direct conse-
quence of Lemmata 11 and 12.

4.5.2 Another direct QUBO formulation

In this subsection, we present a different QUBO formulation of the Subgraph Isomor-
phism Problem that does not need any slack variables. This alternative formulation
uses a vector x ∈ Zn1n2

2 :

x = (x0,0, x0,1, . . . , x0,n2−1, x1,0, x1,1, . . . , x1,n2−1, . . . , xn1−1,0, . . . , xn1−1,n2−1).

The objective function this time is of the form:

F (x) = H(x) + b
∑
ij∈E1

Pi,j(x), b ∈ R+ (4.16)
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where

H(x) = a
∑

1≤i≤n1

(1−
∑

1≤i′≤n2

xi,i′)
2 +

∑
1≤i′≤n2

(1−
∑

1≤i≤n1

xi,i′)
2, a > 1, (4.17)

and

Pi,j(x) =
∑

1≤i′≤n2

(
xi,i′

∑
1≤j′≤n2

xj,j′(1− ei′,j′)

)
. (4.18)

Assuming we have the solution to x∗ = minx F (x), the same decoder function D
in Section 4.5.1 can be used again to obtain the vertex mapping f .

In order for the formulation to be correct, the constant b has to be sufficiently
large than a, this fact will be mentioned in the proof of Lemma 16.

Theorem 14. If G1 is a subgraph of G2, assuming x∗ = minx F (x), then D(x) is an
edge-preserving vertex mapping.

Before we can prove Theorem 14, we need two lemmata.

Lemma 15. The term H(x) is bounded.

Proof. Since H(x) contains two quadratic terms, we have H(x) ≥ 0. H(x) is also
bounded above as the largest penalty we can obtain from H(x) is when all variables
xi,j are set to 1, in this case we get H(x) = an1(1− n2)2 + n2(1− n1)2 as the upper
bound.

Lemma 16. Let x∗ = minx F (x), then Pi,j(x) = 0 for all ij ∈ E1.

Proof. Assume we have Pi,j(x) 6= 0 for some ij ∈ E1. This means that we have i and
j mapped to i′ and j′ respectively and i′j′ /∈ E2. If this is the case, we can reduce
F (x) further by setting xi,i′ and xj,j′ to 0.

Setting xi,i′ and xj,j′ to 0 may or may not add a penalty to H(x), but since
Lemma 15 states that H(x) is bounded, the objective function F (x) will increase
by at most the upper bound of H(x) = an1(1 − n2)2 + n2(1 − n1)2. Therefore
with sufficiently large b, the overall value of F (x) will decrease. A contradiction to
x∗ = minx F (x).

Now we can begin the proof of Theorem 14.

Proof. Suppose we have two graphs G1 and G2 where G1 is a subgraph of G2. Assume
we have x∗ = minx F (x).

By Lemma 16, the term
∑

ij∈E1
Pi,j in F (x) must equal to 0. So the value of F (x)

solely depends on H(x). Consider the assignment of variables that has a minimum
penalty in H. Since H(x) consists of two quadratic terms, we have H(x) ≥ 0. There
are two cases here:
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• There exists a bijection between V1 and V2 (e.g. n1 = n2).

• There is no bijection between V1 and V2 (e.g. n1 < n2).

In the former case, we must have n1 = n2. Using the same argument in the proof
of Lemma 6, we can show that H(x) = 0 is the minimum value of H(x) and the
decoded function f must be a bijection in this case. And since G1 is a subgraph of
G2 by assumption, we know that an edge-preserving bijection from V1 to V2 exists. If
f is not edge-preserving, then Pi,j 6= 0 for some ij ∈ E1, Lemma 16 forbids this as it
contradicts the assumption that x∗ = minx F (x).

In the latter case, we have n1 < n2. By construction, the term a
∑

1≤i≤n1
(1 −∑

1≤i′≤n2
xi,i′)

2 in H(x) will be minimized with priority by the choice of a. So the
function f decoded in this case has to be an injection. Once again, we know an edge-
preserving function exists by assumption. If this function is not found by decoding
x∗, it contradicts the assumption that x∗ = minx F (x) by Lemma 16 again.

We also have the following corollary as a direct consequence (contrapositive) of The-
orem 14.

Corollary 17. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, assuming x∗ =
minx F (x). If the mapping D(x) is not an edge-preserving injection from V1 to V2,
then G1 is not a subgraph of G2.

4.5.3 Post-processing verification

Theorem 14 is of a weaker form than Theorem 13. To demonstrate the difference,
suppose we have G1 = (V1, E1) and G2 = (V2, E2). Assume that whether G1 is a
subgraph of G2 is unknown. Let x∗ = F (x∗) and y∗ = F ′(y∗) be the optimal solutions
and their corresponding variable assignment we obtain using objective function (4.11)
and (4.16) respectively.

If x∗ = 0, then we know by Theorem 13 that G1 is a subgraph of G2. We do not
need to generate the actual mapping f : V1 → V2 using the decoder function D to
verify its correctness. In other words, the correctness of f is encoded in x∗. This is
not the case with y∗ and y∗. Theorem 14 does not provide a constant value for y∗

to distinguish whether G1 is a subgraph of G2. As a result, we need to verify the
mapping f encoded in y∗ to check if it is a valid edge-preserving mapping. There are
two things to check:

• Is the function f = D(y∗) an injective function.

• Is the function f = D(y∗) edge-preserving.
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Both steps can be done efficiently and the overall verification can be performed in
polynomial time. Depending on whether f is an edge-preserving injective function
or not, by Theorem 14 and Corollary 17, we know whether G1 is a subgraph of G2

depending on the verification result.

Note that it could be the case that with specific values of a and b, the minimum value
of objective function (4.16) could provide extra information about the correctness
of the mapping f . We did not try to proof this fact explicitly. The main point of
the this alternative formulation is only to show that the redundancy in the number
of variables could be reduced sometimes by manipulating the objective function in
certain ways.

4.5.4 Formulation via reduction to Clique

In this section we give an alternate QUBO formulation that requires n1n2 binary
variables for checking if a graph of order n1 is a subgraph of a graph of order n2.
We slightly modify the product graph construction given earlier in Section 4.3. The
product graph Ψ′(G1, G2) this time has the same vertex set V as in Definition 24, the
edges are E = {((a, b), (c, d)) ∈ V × V | a 6= c, b 6= d and (ac 6∈ E1 or bd ∈ E2)}.

Theorem 18. The graph G1 = (V1, E1) is a subgraph of the graph G2 = (V2, E2) with
n1 = |V1| ≤ |V2| = n2 if and only if χ(Ψ′(G1, G2)) = n1.

Proof. We first consider the case when G1 is a subgraph of G2 and f : V1 → V2 is
the edge-preserving injective mapping. We claim that the subset of vertices V ′ =
{(i, f(i)) | i ∈ V1} ⊆ V is a clique in Ψ′(G1, G2). By construction, V ′ has n1 vertices,
so we only need to check the existence of an edge between any pair in it. Let (a, b)
and (c, d) be in V ′, with a 6= c. Since f is injective by assumption, if b = f(a)
and d = f(c), then b 6= d. Furthermore, since f is edge-preserving, if ac ∈ E1 then
bd ∈ E2. With the definition of E for Ψ′(G1, G2), this means that ((a, b), (c, d)) is an
edge in E.

Conversely, suppose V ′ ⊆ V is a clique of order n1 in Ψ′(G1, G2). From the
definition of E, we know that for any pair of distinct vertices (a, b) and (c, d) in E,
a 6= c and b 6= d, so the same condition is true for all pairs of vertices (a, b) and (c, d)
in V ′. Accordingly, a well-defined injective function f : V1 → V2 can be defined by
setting f(a) = b, for all (a, b) ∈ V ′. In order for f to be a subgraph isomorphism
the following condition has to be satisfied: if ac ∈ E1 then f(a)f(c) ∈ E2. Since V ′

is a clique by assumption, if a 6= c, then ((a, f(a), (c, f(c)) ∈ E. Therefore, in view
of the definition of E, we must have either ac /∈ E1 or f(a)f(c) ∈ E2, that is, f is
edge-preserving.

To solve the Subgraph Isomorphism Problem we just construct a QUBO instance
for the Clique Problem as in Section 4.3.
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4.6 The Induced Subgraph Isomorphism

The Induced Subgraph Isomorphism Problem is a NP-hard problem related to both
the Graph and Subgraph Isomorphism Problems. The input are two graphs G1 =
(V1, E1) and G2 = (V2, E1) and the goal is to find an injective edge-invariant vertex
mapping f : V1 → V2. We formally define the problem as follows:

Induced Subgraph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with n1 = |V1| ≤ |V2| = n2

and |E1| ≤ |E2|.
Question: Find an edge-invariant injective function f : V1 → V2 if such f exists.

4.6.1 A direct formulation

We can extend the QUBO formulation given for the Subgraph Isomorphism Problem
in Section 4.5.1 to solve the Induced Subgraph Isomorphism Problem. This formula-
tion uses the same binary variable vector z ∈ Z(n1+1)n2

2 which is the concatenation of
two vectors x ∈ Zn1n2

2 and y ∈ Zn2
2 , each serving the same purpose as in Section 4.5.1:

x encodes the injective function f , y counter balances unnecessary penalties. At the
end, the decoder function D : Zn1n2

2 → F described in Section 4.5.1 can be used again
to obtain the actual mapping.

The objective function F (z) has the following form:

F (z) = H(z) +
∑
ij∈E1

Pi,j(x) +
∑
ij /∈E1

Ni,j(x), (4.19)

H(z) =
∑

0≤i<n1

(1−
∑

0≤i′<n2

xi,i′)
2 +

∑
0≤i′<n2

(1−
∑

0≤i<n1

xi,i′ − yi)2, (4.20)

Pi,j(x) =
∑

0≤i′<n2

(
xi,i′

∑
0≤j′<n2

xj,j′(1− ei′,j′)

)
, (4.21)

and

Ni,j(x) =
∑

0≤i′<n2

(
xi,i′

∑
0≤j′<n2

xj,j′ei′,j′

)
. (4.22)

The parts H(z) and
∑

ij∈E1
Pi,j(x) serve the same purpose as in Equation (4.11),

that is, H(z) ensures the mapping decoded by D(x) is injective and
∑

ij∈E1
Pi,j(x)

guarantees the mapping is edge-preserving. Since both parts are identical as in Equa-
tion (4.11), Lemmata 11 and 12 hold and can be proved with the same argument as
in Section 4.5.1.
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The vertex mapping required for the Induced Subgraph Isomorphism Problem
has to be edge-invariant instead of edge-preserving. This means we need one more
condition, namely, for all ij /∈ E1 we have f(i)f(j) /∈ E2. This property is ensured
by the new term

∑
ij /∈E1

Ni,j(x) in F (x).

Lemma 19. Let x ∈ Zn1n2
2 and assume that D(x) is a function (injective). Then∑

ij∈E1
Pi,j(x) +

∑
ij /∈E1

Ni,j(x) = 0 if and only if the mapping f = D(x) is edge-
invariant.

Proof. Since both Pi,j(x) andNi,j(x) contain quadratic terms only, we have
∑

ij∈E1
Pi,j(x)+∑

ij /∈E1
Ni,j(x) = 0 if and only if Pi,j(x) = Ni,j(x) = 0, for all i and j.

As Lemma 12 holds here, f has to be edge-preserving when
∑

ij∈E1
Pi,j(x) = 0,

hence we only need to show that the non-edges are preserved as well under f . This
is indeed true as the term (1 − ei′,j′) in Equation (4.7) is replaced by ei′,j′ in Ni,j.
If
∑

ij /∈E1
Ni,j(x) = 0, then for all ij /∈ E1 we must have f(i)f(j) /∈ E2. Hence f is

edge-invariant if
∑

ij∈E1
Pi,j(x) +

∑
ij /∈E1

Ni,j(x) = 0.

Conversely, if
∑

ij∈E1
Pi,j(x) +

∑
ij /∈E1

Ni,j(x) 6= 0, then either at least one term of
the sum has to be non-zero. Therefore, either f is not edge-preserving by Lemma 12
or for some ij /∈ E1, f(i)f(j) ∈ E2. In either case, f is not edge-invariant.

Next we show the correctness of our direct QUBO formulation.

Theorem 20. For every z ∈ Zn1n2
2 , F (z) = 0 if and only if the mapping f : V1 → V2

defined by f = D(x) is an induced subgraph isomorphism.

Proof. If F (z) = 0, then H(z) =
∑

ij∈E1
Pi,j(x) =

∑
ij /∈E1

Ni,j(x) = 0. By Lem-
mata 11, 12 and 19, the mapping f must be injective and edge-invariant, therefore
an induced subgraph isomorphism.

On the other hand, if F (z) 6= 0, at least one of the terms H(z),
∑

ij∈E1
Pi,j(x) or∑

ij /∈E1
Ni,j(x) is not 0. By Lemmata 11, and 19, at least one of the requirement for

an induced subgraph isomorphism is not met, hence f is not an induced subgraph
isomorphism.

4.6.2 Formulation via reduction to Clique

In this section we give an alternate QUBO formulation that uses only n1n2 binary
variables for checking if a graph of order n1 is an induced subgraph of a graph of
order n2. It turns out that we can use the same product graph construction given
earlier in Section 4.3. Note that in the proof of Theorem 9 we do not actually require
the property that f is a bijection, we only require f to map different vertices in V1

to different vertices in V2 hence an injection f is sufficient. As a result, we have the
following corollary.
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Corollary 21. A graph G1 is an induced subgraph of a graph G2 with n1 = |V1| ≤
|V2| = n2 if and only if χ(Ψ(G1, G2)) = n1.

We then construct a QUBO instance for the Clique Problem, as done earlier, so we
can solve the Induced Subgraph Isomorphism Problem.



Chapter 5

Conclusions

We will provide a summary of the studies we have conducted as well as some possible
future works in this chapter.

We did not provide any benchmarking on the total computation time required to solve
any of the problems studied in this thesis between the method of using the D-Wave
quantum computer and any classical algorithms. Such benchmarking would require
a set of carefully formulated criteria in order to be able to provide any meaningful
insights, and current theory studies and engineering obstacles are preventing us from
determining them. For example, consider the experimental result we provided on the
Dominating Set problem in Chapter 3, and suppose we want to solve an instance of
the problem P using its QUBO formulation and the quantum annealer. Using the
method we described in Section 2.3, the total time T required to solve the problem is

T = Translate+ Embed+ n× (Query +Decode)

where Translate and Embed are the time required to obtain and embed the QUBO
instance on the hardware and n× (Query+Decode) is the time needed to query the
quantum annealer and decoding the solution n times. Ideally, we want the machine to
have probability 1 of finding the optimal solution in one query so we have probability
1 of solving P with n = 1. But since the probability of obtaining the optimal solution
using current hardware is relatively low (based on the data in Table 3.5 and 3.6), we
have to query the machine many times to have an acceptable probability of finding the
optimal solution of P in practice. The low probability could be related to a number
of engineering issues, and it reasonable to assume that through time, the hardware
precision will increase. Together with the development of tools which can reduce error
rates furthermore ([46] for example), hopefully we will see machines which are more
consistent and accurate in the future.

Note that there is one other big overhead in T , namely, the term Embed which
corresponds to the time needed to solve the NP-hard Minor Containment Problem,
this is closely related to the next two points.

55
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5.1 Hardware design

The host structure of all generations (up to this point) of D-Wave quantum computers
are all Chimera graphs. The embedding result we had in Section 4.4 shows that it
might be the case that the ‘scalability’ of Chimera graphs is not good in terms of the
Minor Containment Problem. Even after a 50% increase in connectivity (number of
edges) in the host graphs, the order of the QUBO instance that could be embedded
only went from 121 to 144. Note that the maximum minor embedding chain length
did decrease by a considerable amount for the larger host though. The exact cause
of such low scalability is unknown, but we suspect that it might be related to some
unknown properties of the Chimera graphs.

Similar to classical computers, building machines of larger scales is an important part
of hardware development for quantum computers as well. As we have mentioned
in Section 2.3, we can embed larger QUBO instances with a bigger host and the
length of the minor embedding chains will also be shorter in general. Thus making
it possible to solve bigger problems and to obtain more accurate answers. D-Wave
has been successfully doubling the number of qubits on their hardware each year for
the last 8 years now and is planning on doing so by constantly upscaling the current
design in the future [14]. If the poor scalability is due to some inherent features of
the Chimera structure, then maybe a hardware redesign could enable more potential
of the machine. We are planning on verifying this concept experimentally (and/or
theoretically) in the future.

5.2 Hybrid model

Let us put all the practical difficulties of engineering and manufacturing aside for
a moment and assume we live in a world where quantum computers with perfected
hardware exist. Would quantum computers replace classical ones by this point? No
doubt there are problems only a quantum computer can solve [23], but it does not
mean a classical computer would be of no value here. In fact, it has been shown in
studies that sometimes, a combination of quantum and classical computing can be
combined to achieve what each model can not perform alone [9, 35].

The concept of this quantum-classical computation, or quassical (see [1] for a more
detailed discussion) computation for short, can also be adapted here to solve some
of the problems studied in this thesis. Consider the weighted version of the graph
covering problems presented in Section 3.2. For the Weighted Dominating Set Prob-
lem, suppose we have an instance P of the problem. If we change the weight function
W : V → R+ and obtain a new instance P ′, the minor embedding will obviously
remain the same for P ′ but with reconfigured weights on each of the couplers. Hence
it effectively reduces the Embed time for P ′ to 0 (assuming the embedding of P was
previously computed). With a classical algorithm, it may need to treat P ′ as an
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entirely new instance where any information from its previous computation on P will
be of little use here.

As mentioned in Section 2.3, the Minor Containment Problem is one of the main
issues we need to consider if we want to achieve any kind of speedup using this general
approach to problems. We believe that the ideas from the previous paragraph can
be used effectively to provide a way in which the result of previous computations
can be reused and therefore reduce the overall overhead. Again, the viability of this
method has to be verified both theoretically and experimentally. We plan to study
this concept of quassical computing further in the future.

5.3 Final comments

Although we did not show that the current hardware can be of any practical use in
this thesis, the concepts we provided in Section 2.3 and 5.2 may still be applicable
as a general framework to how a quantum computing device can be used in practice.
Our study on the Graph Isomorphism Problem and its related variations in Chapter 4
also shows that there is a huge difference on the number of logical (physical) qubits
required between a directly formulated QUBO and one obtained through a reduction.
The impracticality of these generic approaches motivates the development of more
efficient QUBO formulations.

The US White House has published a report recently (see [44]) identifying quantum
computing (as a subtopic of Quantum Information Science) as a rapidly evolving
field. It has also showed that there has been a steadily increase in the amount of
quantum computing related research over the last 15 years. With attentions from
both the government and private sectors, it will be interesting to see where the future
of quantum computing will lead us.



Bibliography

[1] Alastair A. Abbott, Cristian S. Calude, Michael J. Dinneen, and Richard Hua.
Quassical computing with D-Wave, 2016. In preparation.

[2] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and
Oded Regev. Adiabatic quantum computation is equivalent to standard quantum
computation. SIAM J. Comput., 37(1):166–194, 2007.

[3] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data
reduction for dominating set. J. ACM, 51(3):363–384, May 2004.
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Appendix A

Python Program to Generate
QUBO Formulation of the
Dominating Set Problem

import sys , math , networkx as nx

def read_graph ():

n=int(sys.stdin.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=sys.stdin.readline ().split ()

for v in neighbors:

G.add_edge(u,int(v))

return G

def generateQUBO(G):

Q = {}

numOfRedVars = 0

# stores the number of redundant variables each vertex has

redVarsDict = {}

order = G.order()

for v in G:

redVars = int(math.log(nx.degree(G,v) ,2))+1

numOfRedVars += redVars

redVarsDict[v] = redVars

numOfRedVars = int(numOfRedVars)

totalNumOfVars = G.order() + numOfRedVars

redVarsIndexDict = {}

# compute index of y_i ,k in Q

for v in G:

temp = 0

for i in range(v):
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temp += redVarsDict[i]

redVarsIndexDict[v] = order + temp

# initialize Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

Q[i,j] = 0

# pick constant A > 1

A = 2

for v in G:

# (1-A)x_i

Q[v, v] -= 1

# -2A sum x_j

for u in G.neighbors(v):

Q[u,u] -= 2*A

# starting index of redundant variables of vertex v in Q

index = redVarsIndexDict[v]

# num is the number of redundant variables vertex v has

num = redVarsDict[v]

# 2A sum 2^ky_i ,k

for i in range(num):

temp = int (2*A*math.pow(2,i))

Q[index+i,index+i] += temp

# 2A x_i sum x_j

for u in G.neighbors(v):

Q[v, u] += 2*A

# -2A x_i sum 2^ky_i ,k

for i in range(num):

Q[v,index+i] -= int(2*A*math.pow(2,i))

# A sum x_j sum x_j

for u in G.neighbors(v):

for w in G.neighbors(v):

Q[u, w] += A

# -2A sum x_j sum 2^ky_i ,k

for u in G.neighbors(v):

for i in range(num):

Q[u, index+i] -= int(2*A*math.pow(2,i))

# A sum 2^ky_i ,k sum 2^ky_i ,k

for i in range(num):

for j in range(num):

Q[index+i,index+j] += int(A*math.pow(2,i)*math.pow

(2,j))

# move all entries to the upper triangle of the matrix

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if j > i:

Q[i,j] += Q[j,i]
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Q[j,i] = 0

# print a symmetric form of Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if i<= j:

print Q[i,j],

else:

print Q[j,i],

print

# main program

G=read_graph ()

generateQUBO(G)

listings/DS generate QUBO.py



Appendix B

Python Program to Generate
QUBO Formulation of the Edge
Cover Problem

import sys , math , networkx as nx

def generateQUBO(G):

# map each edge of G to some index in Q

Q,edgeDict = {},{}

index = 0

for (u,v) in G.edges():

if (u,v) in edgeDict:

edgeDict [(v,u)] = edgeDict [(u,v)]

elif (v,u) in edgeDict:

edgeDict [(u,v)] = edgeDict [(v,u)]

else:

edgeDict [(u,v)] = index

edgeDict [(v,u)] = index

index +=1

# compute the index of redundant variables in Q

size = G.size()

numOfRedVars = 0

redVarsDict = {}

for v in G:

if nx.degree(G,v) != 1:

redVars = int(math.log(nx.degree(G,v) -1,2))+1

else:

redVars = 0

numOfRedVars += redVars

redVarsDict[v] = redVars

numOfRedVars = int(numOfRedVars)
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totalNumOfVars = G.size() + numOfRedVars

redVarsIndexDict = {}

for v in G:

temp = 0

for i in range(v):

temp += redVarsDict[i]

redVarsIndexDict[v] = size + temp

# initializing Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

Q[i,j] = 0

# pick constant A > 1

A = 2

# sum x_i ,j

for e in G.edges():

Q[edgeDict[e],edgeDict[e]] = 1

# sum P_i

for v in G.nodes():

# I is the set of edges incident to v

I = G.edges(v)

# -2A sum x_i ,j

for e in I:

Q[edgeDict[e],edgeDict[e]] -= 2*A

# starting index of redundant variable corresoponding to v

in Q

index = redVarsIndexDict[v]

# num is the number of redundant variables vertex v has

num = redVarsDict[v]

# 2A sum 2^k y_i ,k

for k in range(num):

Q[index+k, index+k] += int(2*A*math.pow(2,k))

# A sum x_i ,j sum x_i ,j

for e1 in I:

for e2 in I: # -2A sum x_i ,j sum 2^k y_i ,k

Q[edgeDict[e1],edgeDict[e2]] += A

for e in I:

for k in range(num):

Q[edgeDict[e],index+k] -= int(2*A*math.pow(2,k))

# A sum 2^k y_i ,k sum 2^k y_i ,k

for k1 in range(num):

for k2 in range(num):

Q[index+k1,index+k2] += A*int(math.pow(2,k1)*math.pow

(2,k2))
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# move all entries to the upper triangle of the matrix

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if j > i:

Q[i,j] += Q[j,i]

Q[j,i] = 0

# print a symmetric form of Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if i<= j:

print Q[i,j],

else:

print Q[j,i],

print

G=read_graph ()

result = generateQUBO(G)

listings/EC generate QUBO.py



Appendix C

Sage Math Program to Compute
the Exact Solution to the
Dominating Set Problem

import sys , networkx as nx

def read_graph ():

n=int(sys.stdin.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=sys.stdin.readline ().split ()

for v in neighbors: G.add_edge(u,int(v))

return G

G=read_graph ()

n=G.order ()

p=MixedIntegerLinearProgram(solver="GLPK", maximization=False)

x=p.new_variable(binary=True)

for v in G.nodes():

c = x[v]

for u in G.neighbors(v):

c = c + x[u]

p.add_constraint(c >= 1)

p.set_objective(sum(x[j] for j in range(n)))

try:

sz=p.solve()

except sage.numerical.mip.MIPSolverException as e:

pass

else:

pass

print "Minimum dominating set is", int(sz)

for i in p.get_values(x).items():

print i
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listings/DS sage.py



Appendix D

Python Program to Scale the Ising
Instances

# QUBO (with embedding) -> Scaled Ising -> DWave

import sys , time , math , traceback

from dwave_sapi2.remote import RemoteConnection

from dwave_sapi2.util import get_hardware_adjacency

from dwave_sapi2.embedding import embed_problem , unembed_answer

from dwave_sapi2.util import qubo_to_ising

from dwave_sapi2.core import solve_ising

# coupler strength for embedded qubits of same variable

s,s2=0.9 ,1.0

if (len(sys.argv)==2): s = float(sys.argv [1])

if (len(sys.argv)==3): s,s2 = float(sys.argv [1]),float(sys.argv [2])

print ’Embed scale:’,s,s2

assert 0 <= s <= 1

# read input QUBO

line=sys.stdin.readline ().strip().split()

n=int(line [0])

print ’Logical qubits used=’, n

Q = {}

for i in range(n):

line=sys.stdin.readline ().strip().split()

for j in range(n):

t = float(line[j])

if j>=i and t!=0: Q[(i,j)]=t

# convert to Ising

(H,J,ising_offset) = qubo_to_ising(Q)

print ’orig H=’,H

print ’orig J=’,J

print ’ising_offset=’,ising_offset
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# scale by maxV and s2

if len(H): maxH=max(abs(min(H)),abs(max(H)))

else: maxH =0.0

maxJ=max(abs(min(J.values ())),abs(max(J.values ())))

maxV=max(maxH ,maxJ)

for i in range(n):

if len(H)>i: H[i]=s2*H[i]/maxV

for j in range(n):

if j>=i and (i,j) in J:

J[(i,j)]=s2*J[(i,j)]/maxV

print ’scaled H=’,H

print ’scaled J=’,J

# read minor embedding

embedding=eval(sys.stdin.readline ())

print ’embedding=’, embedding

print ’Physical qubits used= %s’ % sum(len(embed) for embed in

embedding)

# create a remote connection using url and token and connect to

solver

print ’Attempting to connect to network ...’

remote_connection = RemoteConnection(url , token)

solver = remote_connection.get_solver(solver_name)

#print ’Solver properties :\n%s\n’ % solver.properties

A = get_hardware_adjacency(solver)

# Embed problem into hardware and scale non -minor couplers by s

(h0, j0, jc, new_emb) = embed_problem(H, J, embedding , A)

h1= [val*s for val in h0]

j1 = {}

for (key , val) in j0.iteritems ():

j1[key]=val*s

j1.update(jc)

print ’h1=’,h1

print ’j1=’,j1

# call the dwave solver

annealT =20 # annealing_time_range = [20, 2000]

progT =500 # programming_thermalization_range = [0 ,10000]

readT =10 # readout_thermalization_range = [0 ,10000]

print ’annealT=’,annealT ,’progT=’,progT ,’readT=’,readT

result = solve_ising(solver , h1 , j1 , num_reads =100, annealing_time=

annealT , programming_thermalization=progT , readout_thermalization

=readT)

print ’result:’, result

newresult = unembed_answer(result[’solutions ’], new_emb ,

broken_chains=’discard ’, h=H, j=J)
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#newresult = unembed_answer(result[’solutions ’], new_emb ,

broken_chains=’vote ’, h=H, j=J)

#newresult = unembed_answer(result[’solutions ’], new_emb ,

broken_chains=’minimize_energy ’, h=H, j=J)

print ’newresult:’, newresult

# print unembed solutions in QUBO format

for i, (embsol , sol) in enumerate(zip(result[’solutions ’], newresult

)):

print "solution %d:" % i,

for j, emb in enumerate(embedding):

if sol[j]== -1: print "0",

if sol[j]==1: print "1",

print

listings/scale Ising.py



Appendix E

Python Program to Generate the
Direct QUBO Formulation of the
Graph Isomorphism Problem

# direct QUBO formulation for graph isomorphism problem

import networkx as nx

import sys , math

# G1 and G2 are of type graph defined by the networkX library

def generateQUBO(G1 , G2):

n = G1.order ()

varsDict = {}

edgeDict = {}

# compute constants e_i ,j

for i in range(n):

for j in range(n):

if ((i,j) in G2.edges()) or ((j,i) in G2.edges()):

edgeDict[i,j] = 1

edgeDict[j,i] = 1

else:

edgeDict[i,j] = 0

edgeDict[j,i] = 0

# map each variable to an index in Q

index = 0

for i in range(n):

for j in range(n):

varsDict [(i,j)] = index

index += 1

# initialize Q

Q = {}

for i in range(n*n):
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for j in range(n*n):

Q[i,j] = 0

# HA part 1

for i in range(n):

for iprime in range(n):

index = varsDict [(i,iprime)]

Q[index ,index] -= 2

for iprime1 in range(n):

for iprime2 in range(n):

index1 = varsDict [(i,iprime1)]

index2 = varsDict [(i,iprime2)]

Q[index1 , index2] += 1

# HA part 2

for iprime in range(n):

for i in range(n):

index = varsDict [(i,iprime)]

Q[index ,index] -= 2

for i1 in range(n):

for i2 in range(n):

index1 = varsDict [(i1 ,iprime)]

index2 = varsDict [(i2 ,iprime)]

Q[index1 , index2] += 1

# Pij

for (i,j) in G1.edges():

for iprime in range(n):

xiiprime = varsDict [(i,iprime)]

for jprime in range(n):

xjjprime = varsDict [(j,jprime)]

Q[xiiprime ,xjjprime] += (1-edgeDict[iprime ,jprime ])

# Making Q uppertriangular

for i in range(n*n):

for j in range(n*n):

if (i > j) and (not(Q[i,j]==0)):

Q[j,i] += Q[i,j]

Q[i,j] = 0

return Q

listings/generateISOQUBO.py



Appendix F

Python Program to Generate
Graph Product

# create Psi product graph (iso -> clique construction)

# input graphs as two command -line argument filenames or ’cat’ two

graphs from stdin

import sys , networkx as nx

def read_graph(infile=sys.stdin):

n=int(infile.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=infile.readline ().split ()

for v in neighbors: G.add_edge(u,int(v))

return G

#print(sys.argv)

if len(sys.argv)==3:

gfile=open(sys.argv[1],’r’)

G1=read_graph(gfile)

gfile.close()

gfile=open(sys.argv[2],’r’)

G2=read_graph(gfile)

gfile.close()

elif len(sys.argv)==2:

gfile=open(sys.argv[1],’r’)

G1=read_graph(gfile)

gfile.close()

G2=read_graph ()

else:

G1=read_graph ()

G2=read_graph ()

n1=G1.order()

n2=G2.order()

76



77

n=n1*n2

P=nx.empty_graph(n,create_using=nx.Graph ())

for a in range(n1):

for b in range(n2):

for c in range(n1):

if a==c: continue

for d in range(n2):

if b==d: continue

if (a in G1[c])==(b in G2[d]): P.add_edge(a*n2+b,c*

n2+d)

print(n)

for u in range(n):

for v in P[u]:

print(v,end=’ ’)

print()

listings/psiproduct.py



Appendix G

Python Program to Generate
QUBO Formulation of the Clique
Problem

# Max Clique graph to QUBO Hamiltonian objective

import sys , networkx as nx

def read_graph(infile=sys.stdin):

n=int(infile.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=infile.readline ().split ()

for v in neighbors: G.add_edge(u,int(v))

return G

if len(sys.argv)==2:

gfile=open(sys.argv[1],’r’)

G=read_graph(gfile)

gfile.close()

else:

G=read_graph ()

n=G.order ()

Q = {}

print(n)

for u in range(n):

for v in range(n):

if u > v:

Q[u,v] = 0

elif u==v:

Q[u,v] = -1

elif u in G[v]:

Q[u,v] = 0
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else:

Q[u,v] = 2

for u in range(n):

for v in range(n):

print(Q[u,v], end=’ ’)

print()

listings/Clique2QUBO.py



Appendix H

Python Program to Generate
Chimera Graphs

import sys

from dwave_sapi import get_chimera_adjacency

import networkx as nx

[m,n,l]=[int(sys.argv[i]) for i in [1,2,3]]

A=get_chimera_adjacency(m,n,l)

#print A

order=n*m*l*2

G = nx.empty_graph(order)

G.add_edges_from(A)

print order

for i in range(order):

for j in G[i]: print j,

print

listings/chimera graph.py
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