Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Superantigens as vaccine delivery vehicles for the generation of cellular immune responses

Mei San Loh

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Molecular Medicine and Pathology
The University of Auckland
2006
Abstract

The constant battle between pathogen and host has led to substantial diversity and adaptability of the host immune system. Pathogens too, have evolved unique mechanisms to evade their hosts. The production of superantigens is one of these mechanisms.

Superantigens are potent T cell mitogens that have the unique ability to bind simultaneously to major histocompatibility complex (MHC) class II molecules and T cell receptors (TCRs). The resulting uncontrolled activation of up to 20% of all T cells and the subsequent cytokine release, can lead to fever, shock and death. Superantigens are not processed intracellularly like conventional antigens but instead bind as intact proteins to MHC class II molecules expressed on the surface of professional antigen presenting cells.

On the hypothesis that the unique properties of superantigens may serve useful for vaccine delivery, several bacterial superantigens were selectively mutated at their TCR-binding site with the ultimate goal of creating a safe, non-toxic carrier protein that could target antigen presenting cells by binding to MHC class II.

Antigen presenting cells that expressed MHC class II were indeed targeted by the TCR-binding-deficient superantigens. Cellular internalisation of the superantigen into vesicles was observed as early as 30 min. These superantigens were also shown to traffic to, and be captured by, the lymph nodes of immunised mice. Using TCR-binding-deficient superantigens as vaccine carrier proteins, enhanced antigenicity and immunogenicity of the conjugated MHC class I-restricted peptide antigen, GP33, was observed in a mouse model. In vitro studies revealed up to 200-fold enhancement of antigenicity when GP33 was conjugated to superantigen. Enhanced immunogenicity was also observed in vivo, with
conjugates providing protection against Lymphocytic choriomeningitis virus infection after only a single immunisation. These results indicate that modified superantigens are able to safely deliver peptides for cross-presentation, and may serve as a novel mechanism for vaccine delivery.
In memory of Donald Loh
Your love, support, and guidance will be with me always
Acknowledgements

I would like to thank Professor John Fraser for giving me the incredible opportunity to work on this project. His inspirational attitude towards science will always be remembered.

Thank you to my co-supervisors Birgit Schrage and Diana Schuhbauer for their guidance, advice and friendship.

To past, present and honorary members of the Lab: Indira Basu, Fiona Clow, Matthew Chung, Vanessa Handley, Nicola Jackson, Ries Langely, Guy Moffatt, Thomas Proft, Amanda Taylor, Natasha Willoughby, Phillip Webb and Lily Yang, thank you for your contributions and for being a second family to me.

Thank you to all my friends, especially to the “dinner out girls”: Carissa Fonseca, Nimali Withana and Lily Yang, for which without their love and support would not have made this chapter in my life complete.

To Donald, Rosie and Selina, for being the best family anyone could hope for. Mum, thank you for sacrificing so much for me and for putting up with me for all these years.

To Regan Hughes, not only for the tough job of proof-reading this thesis, but also for believing in me and helping me through the tough times. Thank you for your endless encouragement and unconditional love.

This work was generously supported by scholarships and research grants from the University of Auckland, the Health Research Council of New Zealand and Auckland UniServices.
CHAPTER I
Introduction

1.1 Bacterial Superantigens

1.1.1 Overview

1.1.2 Superantigens produced by Staphylococcus aureus

1.1.3 Superantigens produced by Streptococcus pyogenes

1.1.4 Structure of staphylococcal and streptococcal superantigens

1.1.5 Superantigen interaction with MHC class II

1.1.6 Superantigen interaction with TCR

1.1.7 TCR-superantigen-MHC complex

1.1.8 Influence of other receptors on superantigen-mediated immune responses

1.1.9 Superantigens and disease

1.1.10 Toxico shock syndrome

b) Staphylococcal food poisoning

c) Kawasaki syndrome

d) Autoimmune diseases

1.1.10 Therapeutic strategies for superantigen-mediated disease

1.2 Antigen processing and presentation

1.2.1 Overview

1.2.2 Classical MHC class I antigen processing and presentation

a) Peptide generation

b) TAP and peptide translocation

c) Assembly of MHC class I complexes

1.2.3 Classical MHC class II antigen processing and presentation

a) Peptide generation

b) MHC class II assembly and trafficking

c) Formation of peptide-MHC class II complexes

1.2.4 Pathogen evasion strategies

a) Evasion of MHC class I presentation

b) Evasion of MHC class II presentation

1.2.5 Alternate MHC class I presentation pathways

a) Phagosome-to-cytosol pathway

b) Vacuolar pathway

1.2.6 Alternate MHC class II presentation pathways

1.3 Vaccines

1.3.1 Overview

1.3.2 Live, attenuated, inactivated and killed vaccines

1.3.3 Subunit vaccines

1.3.4 Conjugate vaccines

1.3.5 DNA vaccines

1.3.6 Adjuvants

1.3.7 New approaches for generating CTL responses

a) Liposomes and microspheres

b) Virus-like particles

c) Heat-shock proteins

d) Toxin-mediated vaccines
CHAPTER 2
Materials and Methods

MATERIALS
2.1 Molecular biology reagents.. 61
 2.1.1 Common buffers .. 61
 2.1.2 DNA ... 61
 (a) Reagents .. 61
 (b) Plasmids ... 62
 (c) Synthetic oligonucleotides .. 63
 2.1.3 Proteins ... 64
 (a) Reagents .. 64
 (b) Antibodies .. 65
 (c) Superantigen mutant genes .. 65
 (d) Peptides ... 66
2.2 Bacterial culture reagents .. 67
 2.2.1 Media ... 67
 2.2.2 Selective antibiotics .. 67
 2.2.3 Bacterial strains .. 68
 2.2.4 Buffers for preparation of competent cells 68
2.3 Eukaryotic cell culture reagents .. 69
 2.3.1 Buffers .. 69
 2.3.2 Media .. 69
 2.3.3 Additional culture reagents ... 70
 2.3.4 Cell lines .. 71
2.4 Mouse strains ... 72

METHODS
2.5 Methods for DNA work .. 73
 2.5.1 DNA extraction from bacteria (Plasmid prep) 73
(a) Ethanol precipitation of DNA ... 73
(b) Isopropanol precipitation of DNA 73
(c) Removing RNA from DNA preparations 74
(d) Phenol/chloroform purification 74
(e) Alkaline/ethidium purification 74
(f) DNA purification from agarose gels 74
(g) Direct purification of DNA from PCR amplifications 74

2.5.3 DNA analysis and manipulation 75
(a) Agarose gel electrophoresis ... 75
(b) Restriction enzyme digests .. 75
(c) Ligations ... 75
(d) Polymerase chain reaction (PCR) 75
(e) T-tailing pBlueScript for cloning PCR fragments 76
(f) Site-directed mutagenesis by overlap PCR 76
(g) Single colony PCR .. 76

2.5.4 Transformation .. 77
(a) Preparation of chemically competent cells 77
(b) Transformation of chemically competent cells 77

2.6 Methods for protein work .. 78

2.6.1 Protein expression from recombinant bacteria 78

2.6.2 Protein purification .. 78
(a) Preparation of glutathione or iminodiacetic acid sepharose .. 78
(b) GSH affinity chromatography 79
(c) CM cation exchange chromatography 79
(d) HS HPLC cation exchange chromatography 79
(e) Ni²⁺ affinity chromatography 80
(f) Polymyxin B ... 80

2.6.3 Protein manipulations and analysis 80
(a) Sodium dodecyl sulphate polyacrylamide gel electrophoresis . 80
(b) Electrophoresis of proteins under reducing and non-reducing
 conditions ... 81
(c) Coomassie Blue staining of SDS-PAGE gels 81
(d) Iodination of proteins ... 81
(e) Fluorescent labelling of proteins 81
2.7 Cell culture methods ... 82
 2.7.1 Production of GM-CSF .. 82
 2.7.2 Generation of murine dendritic cells ... 82
 2.7.3 Activation of THP-1 cells .. 82
2.8 Experimental procedures ... 83
 2.8.1 Conjugation of peptides to proteins .. 83
 (a) Conjugation by oxidation ... 83
 (b) Conjugation via chemical cross-linkers .. 83
 2.8.2 Superantigen interaction studies ... 84
 (a) Analysis of leukocyte binding .. 84
 (b) Analysis of binding to LG-2 or THP-1 cells ... 84
 (c) Neutralisation of superantigen binding to LG-2 cells .. 84
 (d) Cellular localisation of superantigens using fluorescence microscopy 85
 (e) Cellular localisation of superantigens using confocal microscopy 85
 2.8.3 Functional effects of superantigens on dendritic cells .. 85
 2.8.4 In vivo trafficking of superantigens ... 86
 2.8.5 In vitro proliferation assays .. 86
 (a) Mouse ... 86
 (b) Human ... 86
 2.8.6 In vitro CTL assay .. 87
 2.8.7 In vivo CTL assay .. 88
 (a) Preparation of target cells .. 88
 2.8.8 Depletion of CD25+ T cells .. 88
 2.8.9 Tumour challenge model ... 89
 2.8.10 Viral challenge model ... 89
 (a) Plaque assay ... 89
CHAPTER 3
Identification and analysis of TCR and MHC class II-binding residues of SPEC, SMEZ-2 and SEA

3.1 Introduction ... 91
3.2 Results .. 93
 3.2.1 Cloning and expression of superantigen mutants 93
 a) Purification of recombinant superantigens using the pGEX system 96
 b) Purification of recombinant superantigens using the pET system .. 97
 3.2.2 Mitogenicity of superantigens and their mutants on human PBMCs 99
 3.2.3 Activity of superantigens and their mutants on murine lymphocytes...... 104
3.3 Summary ... 108

CHAPTER 4
Investigation of the mechanism-of-action of superantigen-mediated vaccine delivery

4.1 Introduction ... 109
4.2 Results .. 110
 4.2.1 Superantigen binding to human cells in vitro 110
 a) Human whole blood interactions 110
 b) LG-2 cell interactions .. 112
 c) THP-1 cell interactions .. 117
 4.2.2 Superantigen binding to murine cells in vitro 119
 4.2.3 Superantigen-mediated regulation of costimulatory molecule expression 122
 4.2.4 In vivo trafficking studies ... 123
4.3 Summary ... 126

CHAPTER 5
Investigation of superantigen vaccine delivery using the LCMV system

5.1 Introduction ... 128
5.2 Results .. 129
5.2.1 Conjugation of GP33 to proteins .. 129
 a) Direct conjugation by oxidation reaction 129
 b) Conjugation using chemical cross-linkers 130
5.2.2 In vitro proliferation assays using cells from 318 tg mice 131
5.2.3 In vitro CTL assays ... 136
5.2.4 In vivo CTL assays ... 140
5.2.5 In vivo tumour protection studies .. 146
 a) Protection against LL-LCMV tumour cells 147
 b) Protection against B16.gp33 tumour cells 150
 c) Addressing MHV infection issues ... 152
5.2.6 In vivo viral protection studies .. 154
5.3 Summary .. 156

CHAPTER 6
Discussion

6.1 Overview ... 157
6.2 Donor, species and strain-specific differences in T cell mitogenicity of
 superantigens .. 159
6.3 Effects of TCR-binding-deficient superantigens on antigen presenting cells...... 162
6.4 Neutralisation of superantigen binding ... 166
6.5 Do TCR-binding-deficient superantigens induce T cell tolerance? 168
6.6 Antigenicity and immunogenicity of superantigen conjugates in mouse models... 169
6.7 Conclusions .. 174
6.8 Future directions ... 175

Bibliography .. 177

XII
List of figures

Figure 1.1 The superantigen family of *S. aureus* and *S. pyogenes* 2
Figure 1.2 Crystal structures of two streptococcal superantigens and two staphylococcal superantigens 5
Figure 1.3 Secondary sequence alignment of the eleven crystallised superantigens .6
Figure 1.4 Ribbon diagram of the N-terminal domain of SEA 7
Figure 1.5 Ribbon diagram of the C-terminal domain of SEA and SMEZ-28
Figure 1.6 Open-rendered ribbon diagram of three structurally aligned superantigens showing the C-terminal β-sheet zinc-binding residues 9
Figure 1.7 A Schematic diagram of MHC molecules 10
Figure 1.8 Co-crystal structures of TSST-1 and SEB bound to HLA-DR12
Figure 1.9 Co-crystal structure of SPEC bound to HLA-DR2 13
Figure 1.10 Co-crystal structure of SEA D227A bound to HLA-DR115
Figure 1.11 A schematic diagram of the different MHC class II-binding modes of superantigens .. 16
Figure 1.12 Schematic representation of the T cell receptor 19
Figure 1.13 Co-crystal structures of superantigens complexed with TCR Vβ24
Figure 1.14 Molecular surface structure of the TCR-binding site on four superantigens ... 25
Figure 1.15 Backbone representation of a TCR-pMHC complex 27
Figure 1.16 Comparison of the TCR-pMHC complex with models of TCR-superantigen-pMHC complexes ... 28
Figure 1.17 Schematic representation of the immunological synapse 29
Figure 1.18 Overview of the classical MHC class I processing pathway35
Figure 1.19 Schematic diagram of a proteosome 37
Figure 1.20 Assembly of peptide-MHC class I complexes 38
Figure 1.21 Overview of the MHC class II processing and presentation pathways.... 41
Figure 1.22 The two major pathways of cross-presentation 45
Figure 1.23 Model of ER-membrane donation 48
Figure 3.1 SDS-PAGE analysis of SMEZ-2 M1 expression using the pGEX system ... 96
Figure 3.2 Purification of superantigens expressed using the pGEX system97
Expression and purification of SEA Y64A using the pET system 98

In vitro stimulation of human PBMCs with SEA .. 100

In vitro stimulation of human PBMCs with SPEC .. 102

In vitro stimulation of human PBMCs with SMEZ-2 103

In vitro stimulation of murine cells with SEA WT and SEA QuinC 105

In vitro stimulation of murine cells with SPEC .. 106

In vitro stimulation of murine cells with SMEZ-2 107

Binding of SMEZ-2 M1 to whole human blood as analysed by flow cytometry ... 111

MHC class II expression and superantigen binding on LG-2 cells 112

Flow cytometry analysis of superantigens binding to LG-2 cells 113

SMEZ-2 M1 binding of LG-2 cells imaged on a Nikon E600 fluorescence microscope ... 114

Neutralisation of SMEZ-2 M1 binding to LG-2 cells 116

Flow cytometry analysis of MHC class II expression and superantigen binding on THP-1 cells ... 118

SMEZ-2 M1 binding of IFN-γ-activated THP-1 cells imaged on a Nikon E600 fluorescence microscope ... 119

MHC class II expression and superantigen binding to murine blood cells ... 120

Superantigen binding and internalisation by mBMDCs 121

Costimulatory molecule expression on C57BL/6 splenic DCs in response to in vivo administration of bacterial antigens 122

In vivo trafficking of superantigens after subcutaneous, intravenous and intraperitoneal injection ... 124

In vivo trafficking of SMEZ-2 mutants after subcutaneous and intravenous injection ... 125

Conjugation of GP33 to SMEZ-2 M1 by oxidation 130

Conjugation of GP33 to SMEZ-2 M0 or ovalbumin using the chemical cross-linker SMBS ... 131

Antigenicity of the original and modified version of GP33 132

Antigenicity of SEA QuinC-GP33 conjugates in vitro 133

Antigenicity of SPEC-GP33 conjugates in vitro 134

Antigenicity of SMEZ-2-GP33 conjugates in vitro 135
SMEZ-2 M1 coupled to GP33 elicits specific CTL responses \textit{in vitro} ... 137

\textit{In vitro} CTL assay showing the effect of a non-superantigenic carrier protein and method of conjugation on carrier-enhanced antigenicity...... 138

MHC class II binding was not essential for superantigen-mediated enhancement of GP33-specific antigenicity \textit{in vitro}................................. 139

\textit{In vivo} CTL assay showing difference in lysis of GP33-specific targets . 141

IFA was required to generate CTL responses \textit{in vivo} 142

\textit{In vivo} CTL assay showing dose titration of GP33 alone, SMEZ-2 M1-GP33, and SMEZ-2 M1 + GP33 .. 143

MHC class II binding was important for enhanced immunogenicity of superantigen-GP33 conjugates \textit{in vivo}................................. 144

Regulatory T cells did not negatively affect the immunogenicity of SMEZ-2 M1-GP33 \textit{in vivo}... 145

Enhanced memory response with SMEZ-2 M1-GP33 conjugates \textit{in vivo} 146

LL-LCMV tumour protection assay 1 .. 148

LL-LCMV tumour protection assay 2 .. 149

B16.gp33 tumour protection assay... 151

The effect of MHV infection on \textit{in vitro} immune responses...................... 153

SMEZ-2 M1-GP33 protects against viral challenge in a dose-dependent manner.. 155
List of Tables

Table 1.1 MHC class II-binding modes of several superantigens 11
Table 1.2 TCR Vβ specificities of staphylococcal and streptococcal superantigens 21
Table 1.3 Comparison of different vaccine approaches .. 50
Table 2.1 Primers used for site directed mutagenesis of the SEA gene 63
Table 3.1 Expression and yield of SEA and its mutants 94
Table 3.2 Description, expression and yield of SPEC and its mutants 95
Table 3.3 Description, expression and yield of SMEZ-2 and its mutants 95
Table 3.4 P_{50} and reduction in P_{max} values of single point mutations of SEA ... 101
Table 3.5 P_{50} and P_{max} values of combined point mutations of SEA 101
Table 6.1 Comparison of superantigen potency on human PBMCs 159
Table 6.2 Comparison of superantigen potency on murine and human
lymphocytes .. 161
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>2-ME</td>
<td>2-mercaptoethanol</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cell</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>β_2m</td>
<td>β_2-microglobulin</td>
</tr>
<tr>
<td>BiP</td>
<td>Immunoglobin heavy chain binding protein</td>
</tr>
<tr>
<td>BMDC</td>
<td>Bone marrow-derived dendritic cell</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CDR</td>
<td>Complementary determining region</td>
</tr>
<tr>
<td>CFA</td>
<td>Complete Freund's adjuvant</td>
</tr>
<tr>
<td>CFSE</td>
<td>Carboxyfluorescein diacetate succinimidyl ester</td>
</tr>
<tr>
<td>CLIP</td>
<td>Class II-associated invariant chain peptide</td>
</tr>
<tr>
<td>CPM</td>
<td>Counts per minute</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy-terminal</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T lymphocyte</td>
</tr>
<tr>
<td>CTLA</td>
<td>Cytotoxic T lymphocyte-associated antigen</td>
</tr>
<tr>
<td>CV</td>
<td>Column volumes</td>
</tr>
<tr>
<td>CyaA</td>
<td>Adenylate cyclase toxin</td>
</tr>
<tr>
<td>Cα</td>
<td>Constant region of the T cell receptor α-chain</td>
</tr>
<tr>
<td>Cβ</td>
<td>Constant region of the T cell receptor β-chain</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Deionised water</td>
</tr>
<tr>
<td>DMA</td>
<td>N,N-dimethylacetamide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified eagle medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>dTTP</td>
<td>Deoxythymidine triphosphate</td>
</tr>
<tr>
<td>E:T</td>
<td>Effector:target</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EF</td>
<td>Edema factor</td>
</tr>
<tr>
<td>EMEM</td>
<td>Eagle's minimum essential medium</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>Fab</td>
<td>Antigen binding fragment</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescent activated cell sorter</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FR</td>
<td>Framework region</td>
</tr>
<tr>
<td>g</td>
<td>Gram or gravity</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony stimulating factor</td>
</tr>
<tr>
<td>GP</td>
<td>Glycoprotein</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-transferase</td>
</tr>
<tr>
<td>h</td>
<td>Hour or hours</td>
</tr>
<tr>
<td>HA</td>
<td>Hem agglutinin</td>
</tr>
</tbody>
</table>

XVII
HBsAg Hepatitis B surface antigen
HCMV Human cytomegalovirus
Hib *Haemophilus influenzae* type B
HIV Human immunodeficiency virus
HLA Human leukocyte antigen
HPLC High performance liquid chromatography
HPV Human papilloma virus
HSP Heat-shock protein
HSV Herpes simplex virus
HV Hypervariable region
ICAM Intracellular adhesion molecule
IDA Iminodiacetic Acid
IFA Incomplete Freund’s adjuvant
IFN Interferon
Ii Invariant chain
IL Interleukin
IPTG Isopropylthiogalactose
IVIG Intravenous immunoglobulin
kDa Kilo Daltons
KSHV Kaposi’s sarcoma-associated herpes virus
L Litre
LB Luria-Bertani broth
LCMV Lymphocytic choriomeningitis virus
LF Lethal factor
LFA Leukocyte function-associated antigen
LMP Low molecular weight protein
LPS Lipopolysaccharide
M Molar
mA Milliamperes
mBMDC Murine bone marrow-derived dendritic cell
MCS Multiple cloning site
MECL Multicatalytic endopeptidase complex like
mg Milligram
MHC Major histocompatibility complex
MHV Mouse hepatitis virus
MIIC MHC class II compartment
µl Microlitre
µM Micromolar
min Minutes
ml Millilitre
mM Millimolar
MOPS 3-(N-Morpholino) propanesulfonic acid
MQ H₂O MilliQ water
MW Molecular weight
ng Nanogram
NHS N-hydroxysuccinimide
N-terminal Amino-terminal
OMP Outer membrane protein
PA Protective antigen
PAMP Pathogen associated molecular patterns
PBMC Peripheral blood mononuclear cell

XVIII