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Abstract

The space of one-sided infinite words plays a crucial rôle in several
parts of Theoretical Computer Science. Usually, it is convenient to regard
this space as a metric space, the CANTOR space. It turned out that for
several purposes topologies other than the one of the CANTOR space are
useful, e.g. for studying fragments of first-order logic over infinite words
or for a topological characterisation of random infinite words.

It is shown that these topologies refine the topology of the CANTOR

space. Moreover, from common features of these topologies we extract
properties which characterise a large class of topologies. It turns out that,
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2 S. Schwarz and L. Staiger

for this general class of topologies, the corresponding closure and inte-
rior operators respect the shift operations and also, to some extent, the
definability of sets of infinite words by finite automata.

Keywords: CANTOR space, shift-invariance, finite automata, subword
metrics, ω-languages
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Topologies refining the CANTOR topology on Xω 3

The space of one-sided infinite words plays a crucial rôle in several parts of
Theoretical Computer Science (see [PP04, TB73] and the surveys [HR86, Sta97,
Tho90, Tho97]). Several properties known from automata theory or its appli-
cations in specification and verification can be characterised using topological
properties of the accepted languages of infinite words (see e.g. [Sch04] or the
recent survey [DMW15]). Usually, it is convenient to regard this space as a topo-
logical space provided with the CANTOR topology.

It turned out that for several purposes other topologies on the space of in-
finite words are also useful [Red86, Sta87], e.g. for investigations in first-order
logic [DK11], to characterise the set of random infinite words [CMS03] or the set
of disjunctive infinite words [Sta05] and to describe the convergence behaviour
of not necessarily hyperbolic iterative function systems [FS01, Sta03].

Most of these papers use topologies on the space of infinite words which
are refinements of the CANTOR topology showing a kind of shift invariance. The
aim of this paper is to give a unified treatment of those topologies and to inves-
tigate their relations to the CANTOR topology.

Special attention is paid to subsets of the space of infinite words definable
by finite automata. It turns out that several of the refinements of the CAN-
TOR topology under consideration behave well with respect to finite automata,
that is, the corresponding closure and interior operators preserve at least one
of the classes of finite-state or regular ω-languages.

The paper is organised as follows. After some necessary notation in Sec-
tion 1 we introduce the concept of general topological spaces and we derive a
sufficient condition for their metrisability. Then in Section 2 we consider the
CANTOR space provided with its classical metric topology and we briefly intro-
duceω-languages (sets of infinite words) definable by finite automata and their
properties w.r.t. the CANTOR topology. Though the paper deals with automaton-
definableω-languages we will refer to automata explicitly mainly in Section 2.2.
As described in [DMW15] automata-theoretic properties used here are in fact
topological properties.

The third section is devoted to general properties of shift-invariant topolo-
gies on the CANTOR space. Then in the fourth part we investigate four par-
ticular shift-invariant topologies generated by bases consisting of automaton-
definable ω-languages. Two subword metrics and their topologies are the sub-
ject of Section 5. Here also automaton-definableω-languages play a major rôle.
All seven topologies are compared with each other in the sixth section, and
the final Section 5.4 draws a connection to the subword complexity of infinite
words.

The paper combines, in a self-contained manner, results of the conference
papers [SS10] and [HS15].
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1 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN = {0,1,2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality
|X | ≥ 2. By X ∗ we denote the set (monoid) of words on X , including the empty
word e, and Xω is the set of infinite sequences (ω-words) over X . For w ∈ X ∗

and η ∈ X ∗∪ Xω let w ·η be their concatenation. This concatenation product
extends in an obvious way to subsets W ⊆ X ∗ and P ⊆ X ∗ ∪ Xω. For a lan-
guage W let W ∗ := ⋃

i∈IN W i be the submonoid of X ∗ generated by W , and by
W ω := {w1 · · ·wi · · · : w j ∈W à{e}} we denote the set of infinite strings formed by
concatenating words in W . Furthermore |w | is the length of the word w ∈ X ∗

and pref(P ) (infix(P )) is the set of all finite prefixes (infixes) of strings in P ⊆
X ∗∪ Xω. We shall abbreviate w ∈ pref(η) (η ∈ X ∗∪ Xω) by w v η. If ξ ∈ Xω by
infix∞(ξ) ⊆ infix(ξ) we denote the set of infixes occurring infinitely often in ξ.

Further we denote by P/w := {η : w ·η ∈ P } the left derivative or state of the
set P ⊆ X ∗∪Xω generated by the word w . We refer to P as finite-state provided
the set of states {P/w : w ∈ X ∗} is finite. It is well-known that a language W ⊆ X ∗

is finite state if and only if it is accepted by a finite automaton, that is, it is a
regular language.1

Regular ω-languages, that is, ω-languages accepted by finite automata, are
the finite unions of sets of the form W ·V ω, where W and V are regular lan-
guages (cf. e.g. [Sta97]). Every regular ω-language is finite-state, but, as it
was observed in [Tra62], not every finite-state ω-language is regular (cf. also
[Sta83]).

1.1 Topological spaces in general

A topological space is a pair (X ,O ) where X is a non-empty set and O ⊆ 2X is
a family of subsets of X containing X itself and being closed under arbitrary
union and under finite intersection. The family O is usually called the family of
open subsets of the space X . Their complements are referred to as closed sets
of the space X .

As usually, a set IB ⊆ O is a base for a topology (X ,O ) provided every set
M ∈O is the (possibly empty) union of sets from IB. Thus it does no harm if one
considers bases containing ;. It is well-known that a family of subsets IB of a
set X which is closed under finite intersection generates a topology on X in
this way.

KURATOWSKI observed that topological spaces can be likewise defined using
closure or interior operators. A topological interior operator J is a mapping

1Observe that the relation ∼P defined by w ∼P v iff P/w = P/v is the NERODE right congru-
ence of P .
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J : 2X → 2X satisfying the following relations.

JX = X

M ⊇ J M = JJ M , and
J (M1 ∩M2) = J M1 ∩J M2

(1)

It assigns to a subset M ⊆ X the largest open set contained in M . The interior
operator J can be described by a base IB as follows.

J (M) :=⋃
{B : B ⊆ M ∧B ∈ IB} (2)

Using the complementary (duality) relation between open and closed sets
one defines the closure (smallest closed set containing M) as follows.

C M :=X àJ (X àM) (3)

Then the following holds.

C ; = ;
M ⊆ C M = C C M , and

C (M1 ∪M2) = C M1 ∪C M2

(4)

For topologies T1 = (X ,O1) and T2 = (X ,O2) we say that T1 is finer than T2

provided O1 ⊇ O2, which is equivalent to ∀M(M ⊆ X → J1(M) ⊇ J2(M)) or,
equivalently, ∀M(M ⊆X →C1(M) ⊆C2(M)). In order to prove that a topology
T1 is finer than T2 it suffices to show IB2 ⊆O1 for some base IB2 of T2.

An element x ∈ X is called an isolated point if the singleton {x} is an open
subset of X . We denote by IIT the set of isolated points of T = (X ,O ). Every
M ⊆ IIT is an open subset of X . Moreover, the following is easily seen.

Property 1 Let T = (X ,O ) be a topological space, IIT its set of isolated points
and let M ⊆ IIT be a closed set. Then every M ′ ⊆ M is simultaneously open and
closed.

Moreover, x is an isolated point of T if and only if {x} is in some (every) base
of T .

Proof. The first assertion follows because X à M ′ = (X à M)∪ (M à M ′) is a
union of two open sets, and the second because {x} has to be a union of base
sets. o
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1.2 Metrisability

Usually, a topology T = (X ,O ) is given by the set of open sets O or a base IB.
If the topological space T , however, satisfies certain separation properties it
might be possible to introduce a metric. A metric on X is a function ρ : X ×
X → [0,∞) which satisfies the following conditions.

ρ(x, x) = 0 if and only if x = y,

ρ(x, y) = ρ(y, x), and

ρ(x, y) ≤ ρ(x, y)+ρ(y, z)

A metric ρ on X induces a topology Tρ in the following way: Take the set of
open balls IBρ = {K (x,ε) : x ∈ X ∧ ε > 0} where K (x,ε) := {y : ρ(x, y) < ε} as a
base for the topology.

Ifρ satisfies the stronger ultra-metric inequalityρ(x, y) ≤ max{ρ(x, y),ρ(y, z)}
then all open balls K (x,ε) are also closed.

A topological space T = (X ,O ) is referred to as metrisable if there is a met-
ric ρ on X such that IBρ is a base for the topology T . It is well-known that
not every topological space is metrisable [Eng77, Kur66]. In Chapters 4 and 5 of
[Eng77] several metrisation theorems are given. Here we rely on special prop-
erties of the topologies introduced below.

To show the metrisability of the spaces considered below we have the fol-
lowing idea from profinite methods in mind (e.g. [Pin09]): two elements x1, x2 ∈
X are close if a base set of large weight is required to separate them. Here a
weight of base sets B ∈ IB is a function ν : IB → IN such that the pre-image ν−1(i )
is finite for every i ∈ IN.

Theorem 2 Let (X ,O ) be an infinite topological space with a countable base IB
satisfying the following conditions.

1. Every set B ∈ IB is also closed, and

2. for every two points x, y ∈ X , x 6= y, there are disjoint base sets Bx ,By ∈ IB
such that x ∈ Bx and y ∈ By .

Then (X ,O ) is metrisable.

For the sake of completeness we add a proof.
Proof. Let IB = {Bi : i ∈ IN}, and assign to every base set Bi a weight ν(i ) ∈ IN

such that every ν−1(k) = {Bi : ν(i ) = k} is finite. Then define

ρ(x, y) :=
{

0, if x = y , and
sup

{
2−ν(i ) : |{x, y}∩Bi | = 1

}
, otherwise.

Observe the following two properties of the metric ρ.
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1. ρ(x, y) ≤ max{ρ(x, z),ρ(y, z)}

2. ρ(x, y) < ε if and only if ∀ j (ε≤ 2−ν( j ) → (x ∈ B j ↔ y ∈ B j ))

For open balls K (x,ε) of radius ε> 0 around x ∈X , this implies

on the one hand K (x,ε) = ⋂
ε≤2−ν(i ),x∈Bi

Bi ∩
⋂

ε≤2−ν(i ),x∉Bi

(X àBi ),

and on the other hand Bi = ⋃
ε≤2−ν(i ),x∈Bi

K (x,ε) .

The proof follows from these identities and the facts that the sets X àBi are
also open and that in view of ν(i ) ≤− log2ε the intersections are finite. o

As usual, in a topological space, we denote the classes of countable unions
of closed sets as Fσ and of countable intersections of open sets as Gδ.

Lemma 3 Let (X ,O ) be a topological space. Then the classes of Fσ-sets and of
Gδ-sets are closed under finite union and intersection, and the class of sets being
simultaneously of type Fσ and Gδ is a Boolean algebra.

In metric spaces the following holds (cf. [Eng77, Kur66]).

Lemma 4 If (X ,O ) is a metrisable topological space then every closed subset is
a Gδ-set, and, hence, every open subset is an Fσ-set.

2 The CANTOR topology

In this section we list some properties of the CANTOR topology on Xω and of
regular ω-languages (see [PP04, Sta97, Tho90, TB73]).

2.1 Basic properties

We consider the space of infinite words (ω-words) Xω as a metric space with
metric ρ defined as follows2

ρ(ξ,η) := sup{r 1−|w | : w ∈ pref(ξ)∆pref(η)}, (5)

that is, the distance ρ(ξ,η) is specified by the shortest non-common prefix of ξ
and η. Here r > 1 is a real number3, ∆ denotes the symmetric difference of sets
and we set sup; := 0, that is, ρ(ξ,η) = 0 if and only if ξ= η..

2Observe that e ∉ pref(ξ)∆pref(η) and Eq. (5) imply ρ(ξ,η) = inf{r−|w | : w @ ξ∧w @ η}.
3It is convenient to choose r = |X |. Then every ball of radius r−n is partitioned into exactly r

balls of radius r−(n+1)
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Since pref(ξ)∆pref(η) ⊆ (pref(ξ)∆pref(ζ)) ∪ (pref(ζ)∆pref(η)), the metric ρ
satisfies the ultra-metric inequality

ρ(ξ,η) ≤ max{ρ(ξ,ζ),ρ(ζ,η)} .

As it was explained above, the space (Xω,ρ) can be also considered as a
topological space with base IBC := {w · Xω : w ∈ X ∗}. Here the non-empty base
sets w ·Xω are open (and closed) balls with radius r−|w |.

The following is well-known.

Property 5 The following holds for the CANTOR topology.

1. Open sets in (Xω,ρ) are of the form W ·Xω where W ⊆ X ∗.

2. A subset E ⊆ Xω is open and closed (clopen) if and only if E =W ·Xω where
W ⊆ X ∗ is finite.

3. A subset F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F )}.

4. CC (F ) := {ξ : ξ ∈ Xω∧pref(ξ) ⊆ pref(F )}
= ⋂{

W ·Xω : W ⊆ X ∗∧W is finite∧F ⊆W ·Xω
}

is the closure of F .

Moreover, the space (Xω,ρ) is a compact space, that is, for every family of open
sets (Ei )i∈I such that

⋃
i∈I Ei = Xω there is a finite sub-family (Ei )i∈I ′ satisfying⋃

i∈I ′ Ei = Xω. This property is in some sense characteristic for the CANTOR

topology on Xω. In particular, no topology refining the CANTOR topology is
compact.

Lemma 6 Let (Xω,O ) be a topology with {W ·Xω : W ⊆ X ∗} ⊂O . Then the space
(Xω,O ) is not compact.

The proof uses Corollary 3.1.14 in [Eng77]. We give an example illustrating
Lemma 6 in the CANTOR space.

Example 1 Let X = {0,1} and (Xω,O ) be a topology with {W ·Xω : W ⊆ X ∗} ⊆O .
Let further F ∉ {W · Xω : W ⊆ X ∗} be an open and closed subset of Xω with
0ω ∈ F . Then F and the sets 0n1·XωàF are an infinite partition of Xω into open
sets. o
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2.2 Regularω-languages

In this part we mention some facts on regular ω-languages known from the
literature, e.g. [HR86, PP04, Sta97, Tho90, TB73].

The first one shows the importance of ultimately periodicω-words. Denote
by Ult := {w · vω : w, v ∈ X ∗∧ v 6= e} the set of ultimately periodic ω-words.

Theorem 7 (Büchi [Büc62]) The class of regularω-languages is a Boolean alge-
bra and, if F ⊆ Xω is regular, w ∈ X ∗, and W ⊆ X ∗ is a regular language, then
W ·F and F /w are regular.

Every non-empty regularω-language contains an ultimately periodicω-word,
and regular ω-languages E ,F ⊆ Xω coincide if and only if E ∩Ult= F ∩Ult.

As a consequence we obtain that Ult itself is an example of a finite-state ω-
language not being regular.

Example 2 Ult is finite-state, in particular,Ult/w =Ult, but in view of Xω∩Ult=
Ult and Xω 6=Ult not regular.

The class of finite-stateω-languages has similar closure properties (see [Sta83]).

Lemma 8 The class of finite-state ω-languages is a Boolean algebra and, if F ⊆
Xω is finite-state, w ∈ X ∗, and W ⊆ X ∗ is a regular language, then W ·F and
F /w are also finite-state.

For regularω-languages we have the following topological characterisations
analogous to Property 5.

Property 9 Let F ⊆ Xω be regular. Then in the CANTOR topology the following
hold true.

1. F is open if and only if F =W ·Xω where W ⊆ X ∗ is a regular language.

2. F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F )} and pref(F ) is
regular.

3. If F is an Fσ-set then F is the (countable) union of closed regularω-languages.

4. F is the (countable) union of regular ω-languages in the class Gδ.

The class of finite-state ω-languages has the following additional closure prop-
erties.

Property 10 Let E ⊆ Xω be finite-state.
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1. pref(E) is a regular language.

2. CC (E) and JC (E) are regular ω-languages.

And, finally, we mention a topological sufficient condition when finite-state
ω-languages are regular.

Theorem 11 ([Sta83]) Every finite-stateω-language in the class Fσ∩Gδ is a Boolean
combination of open regularω-languages, thus, in particular, a regularω-language.

We conclude this part with examples of regular ω-languages having certain
topological properties.

Example 3 Let ;⊂ A ⊂ X and w ∈ X ∗à{e}. Theω-languages Aω and also w ·Aω

are regular and closed but not open. Thus the complementary ω-languages
XωàAω = X ∗ ·(X àA)·Xω and Xωàw ·Aω =⋃

u∈X |w |à{w} u ·Xω∪w ·X ∗(X àA)·Xω

are regular and open but not closed.
Then, for w 6v v and v 6v w , the ω-languages w · Aω ∪ v · X ∗ · (X à A) · Xω

are Boolean combinations of open regular ω-languages and neither open nor
closed. o

Example 4 As a consequence of the BAIRE category theorem (see [Kur66, Chap-
ter 3.9.3] or [Kur66, Chapter 3, §34.V]) we know that a set F ⊆ Xω which is dense
in itself, that is, ξ ∈ CC (F à {ξ}) for ξ ∈ F , and countable is an Fσ-set but not a
Gδ-set in the CANTOR topology. Hence, for A ⊆ X , |A| ≥ 2 and w ∈ A∗, the ω-
languages A∗ ·wω are regular ones in the class FσàGδ.

In fact, using the results of [SW74, Wag79] and Theorem 12 of the next part
one can show that A∗ ·wω ∈ FσàGδ by automata-theoretic means. o

2.3 Acceptance by finite automata

Next we give a connection between accepting devices and topology. This makes
it possible to prove the metrisability of the topologies in Section 4 via Theo-
rem 2.

The typical accepting devices for regular ω-languages are finite automata.
A finite (deterministic) automaton over the alphabet X is a quadruple A =
(X ;S; s0;δ) where S is a finite non-empty set, s0 ∈ S and δ : ⊆ S × X → S is a
partial function.

From McNaughton’s paper [McN66] we know that an ω-language F ⊆ Xω is
regular provided there are a finite automaton A and a table S ⊆ {S′ : S′ ⊆ S}
such that, for ξ ∈ Xω, ξ ∈ F holds if and only if Inf(A ;ξ) ∈ S where Inf(A ;ξ) is
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the set of all states s ∈ S through which the automaton A runs infinitely often
when reading the input ξ.

A simpler acceptance mode is obtained when we use deterministic BÜCHI

automata, that is, ξ ∈ F ⊆ Xω if and only if there are a finite automaton A and a
subset S′ ⊆ S such that Inf(A ;ξ)∩S′ 6= ;. Then we have the following.

Theorem 12 (Landweber [Lan69]) Anω-language F is accepted by a determin-
istic BÜCHI automaton if and only if F is regular and a Gδ-set.

It follows from Example 4 that not every regular ω-language is accepted by a
deterministic BÜCHI automaton.

A particular case of BÜCHI acceptance is the following. Observe that we
consider automata where δ is not fully defined.

Proposition 13 An ω-language F is accepted by a (deterministic) BÜCHI au-
tomaton A = (X ;S; s0;δ) with S′ = S if and only if F is regular and closed.

3 Topologies Refining the CANTOR Topology: Shift-
invariant Topologies

In this section we consider topologies on Xω which are invariant under left and
right shifts. To this end we define the following.

Definition 1 We will refer to a family IM ⊆ 2Xω
as shift-invariant provided

∀F∀w∀v(F ∈ IM∧w ∈ X ∗∧ v ∈ pref(F ) → w ·F,F /v ∈ IM). (6)

Theorem 7 and Lemma 8 show, in particular, that the classes of regular or finite-
state ω-languages are shift-invariant.

We will call a topology T = (Xω,O ) shift-invariant provided its set of open
sets O is shift-invariant. It is easy to see that a topology T is shift-invariant if
it has a shift-invariant base IBT and that the base IBC of the CANTOR-topology
is shift-invariant. Since Xω ∈ O for every topology T = (Xω,O ), every shift-
invariant topology on Xω refines the CANTOR-topology.

Shift-invariant topologies on the space of finite words were investigated
in [Pro80].

Next we are going to describe the interior and closure operator of shift-
invariant topologies T on Xω. To this end we call a set of open sets M ⊆ 2Xω

a
shift generator of T provided {w ·E : w ∈ X ∗∧E ∈ M } is a base of T . In particu-
lar, if a base IB of T itself is shift-invariant, IB is a shift generator of T . For the
CANTOR topology, for instance, M = {Xω} is a minimal shift generator of TC .
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Now, the interior operator of a shift-invariant topology can be described
using the following construction. Let E ,F ⊆ Xω. We set

L(F ;E) := {w : w ∈ X ∗∧F ⊇ w ·E } . (7)

Lemma 14 Let M be a shift generator of the topology T on Xω. If J is the cor-
responding interior operator then

J (F ) =⋃
E∈M L(F ;E) ·E

for every F ⊆ Xω.

Proof. Since J (F ) is open and M is a shift generator of T there are a family
of sets E j ∈ M and a family of words w j ∈ X ∗ such that J (F ) = ⋃

j∈J w j ·E j .
Thus F ⊇ w j ·E j for j ∈ J , that is, w j ∈ L(F ;E j ). Now, the assertion follows with⋃

j∈J w j ·E j =⋃
j∈J L(F ;E j ) ·E j . o

It should be mentioned that the languages L(F ;E) have a simple structure, if
only F has a simple structure.

Lemma 15 If F ⊆ Xω is finite-state then L(F ;E) is a regular language.

Proof. It suffices to prove the identity

L(F /v ;E) = L(F ;E)/v . (8)

Indeed, we have w ∈ L(F /v ;E) if and only if F ⊇ (v · w) ·E which, in turn, is
equivalent to v ·w ∈ L(F ;E), that is, w ∈ L(F ;E)/v . o

The subsequent lemma shows that for shift-invariant topologies on Xω the clo-
sure and the interior operators are stable with respect to the derivative.

Lemma 16 If T is a shift-invariant topology on Xω then J (F )/v =J (F /v) and
C (F )/v =C (F /v) for all F ⊆ Xω and v ∈ X ∗.

Proof. Let M be a shift generator for T . Then, in view of Lemmas 14 and 15
and Eq. (8) we have

J (F )/v = (
⋃

E∈M L(F ;E) ·E )/v

= ⋃
E∈M (L(F ;E)/v) ·E ∪⋃

E∈M

⋃
v ′·v ′′=v

v ′∈L(F ;E)

E/v ′′ , and

J (F /v) = ⋃
E∈M (L(F ;E)/v) ·E .
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Thus it remains to show that E ′/v ′′ ⊆J (F /v) whenever E ′ ∈ M and v = v ′·v ′′

with v ′ ∈ L(F ;E ′).
From v = v ′ · v ′′ and v ′ ∈ L(F ;E ′) we have v · (E ′/v ′′) ⊆ v ′ ·E ′ ⊆ F whence

E ′/v ′′ ⊆ F /v . The assertion E ′/v ′′ ⊆J (F /v) follows since E ′/v ′′ is open.
The proof for C follows from the identity XωàE/w = (XωàE)/w and Eq. (3).

o

As a consequence of Lemma 16 we obtain

Corollary 17 If a topology T on Xω is shift-invariant then J (v ·F ) = v ·J (F )
and C (v ·F ) = v ·C (F ) for all F ⊆ Xω and v ∈ X ∗.

Proof. First recall that the topology T refines the CANTOR topology on Xω,
hence every set v · Xω is closed and open in T . Consequently, v · F ⊆ v · Xω

implies C (v ·F ) ⊆ v ·Xω.
Now according to Lemma 16 the identities C (F ) =C ((v ·F )/v) =C (v ·F )/v

hold. This yields v ·C (F ) = C (v · F ) ∩ v · Xω and the assertion follows with
C (v ·F ) ⊆ v ·Xω. The proof for J is similar. o

Property 10.2 showed that interior and closure of finite-state ω-languages in
the CANTOR topology are regular ω-languages. Here we investigate whether
this property holds for all shift-invariant topologies on Xω. First we derive the
following consequences of the Lemmas 14, 15 and 16.

Corollary 18 Let a topology T on Xω be shift-invariant and let F ⊆ Xω be a
finite-state ω-language.

1. Then J (F ) and C (F ) are finite-state ω-languages.

2. If moreover, there is a finite shift generator M of T consisting solely of reg-
ular ω-languages then J (F ) and C (F ) are even regular ω-languages.

Proof. The first assertion follows from Lemma 16.
For proving the assertion on the regularity of the ω-languages J (F ) and

C (F ) we observe that the strong assumption on M and Lemmas 14 and 15 yield
J (F ) =⋃

E∈MIB L(F ;E) ·E where the union is finite and L(F ;E) ⊆ X ∗ and E ⊆ Xω

are regular. Thus J (F ) is also regular. The assertion for C (F ) now follows from
Eq. (3). o

The following necessary and sufficient condition for the regularity of the inte-
rior and closure is easily seen.

Property 19 Let T be a shift-invariant topology on Xω. Then, for all finite-state
F ⊆ Xω, theω-languages JT (F ) and CT (F ) are regular if and only if every open
and finite-state E ⊆ Xω is a regular ω-language.
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4 Topologies Related to Finite Automata

In this section we consider shift-invariant topologies refining the CANTOR topol-
ogy which are closely related to finite automata. Common to these topologies
is the fact that they are defined by shift-invariant bases consisting of regular
ω-languages. The study of those topologies was inspired from the alphabetic
topologies introduced by DIEKERT and KUFLEITNER [DK11], Tα and Ts in the
sequel, which are useful for investigations in restricted first-order theories for
infinite words.

As a first topology we consider the topology, called BÜCHI toplogy TB , hav-
ing all regularω-languages as open (and closed) sets. This is the coarsest topol-
ogy having all regular ω-languages as open sets.

Then we turn to the automatic topology TA having all regular ω-languages
which are closed in the CANTOR topology as open sets. This topology is remark-
able because here by Property 9 and Theorem 12 all ω-languages accepted by
deterministic BÜCHI-automata are closed.

The subsequent two topologies are the alphabetic topologies Tα and Ts

mentioned above.
Each of the four topologies considered has an infinite set of isolated points

and, in view of Lemma 6, none of them is a compact topology on Xω.
Before proceeding to the study of the particular topologies we mention some

general properties of topologies having bases consisting solely of regular ω-
languages.

4.1 Isolated points

Our first property concerns isolated points in the topologies.
As was mentioned in Theorem 7, for ω-languages definable by finite au-

tomata ultimately periodic ω-words play a special rôle. The following property
applies to topologies related to finite automata.

Property 20 If T = (Xω,O ) has a base IB such that every F ∈ IB contains an
ultimately periodic ω-word then

1. every non-empty open subset of T contains an ultimately periodicω-word,

2. the set of isolated points IIT is a subset of Ult, and

3. J (XωàUlt) =; and C (Ult) = Xω.

4. If, moreover, T = (Xω,O ) has a basis consisting solely of regularω-languages
then every finite or countable open set is a subset of Ult.
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Proof. 1. Every non-empty open set contains a base set.
2. If ξ ∈ Xω is an isolated point then {ξ} is open, and Item 1 implies ξ ∈Ult.
3. The first identity is obvious and the second follows by the complementa-

tion property Eq. (3).
4. From Corollary 4.1 in [Sta97] we know that every finite or countable reg-

ular ω-language is a subset of Ult. o

It is, however, not true that Property 20 applies to all shift-invariant topolo-
gies on Xω. For example it does not apply to the topologies investigated in
[CMS03, Sta05]. In [CMS03] the set of isolated points is disjoint to Ult, and the
other topology has all ξ ∈ Xω with infix(ξ) 6= X ∗ as isolated points (see [Sta05,
Theorem 14]).

4.2 Metrisability

As we mentioned in Section 1, a topology on a set might be given in several
ways: by specifying all open sets or a particular base or, if possible, by a suitable
metric. In the latter case, the topology is referred to as metrisable.

For our topologies on Xω the following lemma applies.

Lemma 21 Let T = (Xω,O ) be a shift-invariant topology on Xω having a base
IB consisting solely of regular ω-languages. If every base set F ∈ IB is also closed
in T then T is metrisable.

Proof. By our assumptions the Condition 1 of Theorem 2 is satisfied. Observe
that, since T is shift-invariant, it refines the CANTOR topology on Xω. Thus
Condition 2 holds, too. Then we may take

ν(B) := min{|S| : (X ,S, s0,δ) is an automaton which accepts B}
as a weight for B ∈ IB and the assertion follows from Theorem 2. o

Remark. In the proof of Lemma 21, in general, it is not possible to take the
number of left derivatives ν(B) = |{B/w : w ∈ X ∗}| as a weight for B . Then in-
finitely many regular ω-languages may have the same weight, for example the
ω-languages X ∗ ·wω all have weight 1, and the construction in the proof of The-
orem 2 fails. o

4.3 The BÜCHI topology

As the first topology we introduce a topology which has all ω-languages defin-
able by finite automata as open sets.
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Definition 2 The BÜCHI topology TB is defined by the base
IBB := {F : F ⊆ Xω∧F is a regular ω-language}.

Since the class of regular ω-languages is closed under complement, every set
in the base IBB is simultaneously open and closed. As every set of the form
w ·Xω is a regularω-language the BÜCHI topology refines the CANTOR topology.
Moreover, the singletons {w · vω} are regular. Thus, in view of Property 20 the
set of isolated points of the BÜCHI topology is IIB =Ult.

As a consequence of Theorem 2 and Lemma 21 we obtain.

Corollary 22 The BÜCHI topology on Xω is metrisable.

In BÜCHI topology, trivially, interior and closure of regular ω-languages are
again regular. Unlike the CANTOR topology the interior and closure of finite-
state ω-languages need not be regular in TB : the finite-state non-regular ω-
language Ult is open and its complement XωàUlt is closed.

In view of Property 9.4 one can choose a smaller base for TB .
IB′

B := {F : F ⊆ Xω∧F is a regular ω-language in Gδ}

4.4 The automatic topology

In this section we introduce a topology where not all regular ω-languages are
simultaneously open and closed; the topology arises from the CANTOR topol-
ogy by adding all closed (in the CANTOR topology) regular ω-languages to the
base. By Property 9 and Theorem 12 this will result in having all deterministic
BÜCHI-acceptable ω-languages, that is, all regular ω-languages in the BOREL

class Gδ, as closed ones.

4.4.1 Definition and general properties

Definition 3 The automatic topology TA on Xω is defined by the base

IBA := {F : F ⊆ Xω∧F is a regular and F is closed in the CANTOR topology} .

The sets (open balls) w · Xω are regular and closed in the CANTOR topology.
Thus the base IBA contains IBC , and the automatic topology refines the CAN-
TOR topology. Since IBA ⊆ IBB , the BÜCHI topology is finer than the automatic
topology.

Property 23 1. If F ⊆ Xω is open (closed) in the CANTOR topology TC then F
is open (closed) in TA, and if E ⊆ Xω is open (closed) in TA then E is open
(closed) in TB .

2. Every non-empty set open in TA contains an ultimately periodic ω-word.
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3. The set Ult of ultimately periodicω-words is the set IIA of all isolated points
in TA.

Proof. 1. and 2. were explained above.
3. IIA ⊆ Ult follows from Property 20.2. Conversely, every ω-language {w ·

vω} = w · {v}ω is regular and closed in the CANTOR topology, thus also open in
TA. o

Furthermore, the family of regular ω-languages and the family of ω-languages
closed in the CANTOR topology are shift-invariant. This shows that IBA and the
topology TA are shift-invariant. Following Property 23.1, every F ∈ IBA is also
closed in TA. Thus, as in the case of the BÜCHI topology, we can prove the
following.

Corollary 24 The automatic topology on Xω is metrisable.

The following theorem characterises the closure operator for the automatic
topology via regularω-languages open in the CANTOR topology in a way similar
to Property 5.4.

Theorem 25

CA(F ) =⋂
{W ·Xω : F ⊆W ·Xω∧W ⊆ X ∗ is regular}

Proof. If W ⊆ X ∗ is a regular language, then W ·Xω is a regularω-language open
in the CANTOR topology, and consequently XωàW · Xω ∈ IBA. Hence W · Xω is
closed in TA. Thus the inclusion “⊆” follows.

Let, conversely, ξ ∉ CA(F ). Then there is a set F ′ ∈ IBA such that ξ ∈ F ′ and
F ∩F ′ =;. F ′ is a regular ω-language closed in TC . Thus XωàF ′ =W ′ ·Xω ⊇ F
for some regular language W ′ ⊆ X ∗. Consequently, ξ ∉ W ′ · Xω ⊇ ⋂

{W · Xω :
W ⊆ X ∗∧F ⊆W ·Xω∧W is regular}. o

As an immediate consequence of the choice of IBA we obtain the following.

Corollary 26 Every set open in TA is an Fσ-set in the CANTOR topology, and ev-
ery set closed in TA is a Gδ-set in the CANTOR topology.

The converse of Corollary 26 is not true in general.

Example 5 Let η ∉ Ult and consider the countable ω-language F := {0n · 1 ·η :
n ∈ IN}.

Then, in the CANTOR topology, F = ({0}ω∪F )∩0∗ ·1 · {0,1}ω ⊆ {0,1}ω is the
intersection of a closed set with an open set, hence, both F and Xω à F are
simultaneously Fσ-sets and a Gδ-sets.
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As F does not contain any ultimately periodicω-word, it cannot be open in TA.
Thus XωàF is not closed in TA.

Consequently, 0 ·F ∪1 · (XωàF ) is neither open nor closed in TA but being
simultaneously an Fσ-set and a Gδ-set in the CANTOR topology. o

For regular ω-languages, however, we have the following characterisation of ω-
languages closed or open, respectively, in TA via topological properties in the
CANTOR topology. The second item, however, shows a difference to the CAN-
TOR topology.

Proposition 27 1. Let F ⊆ Xω be a regular ω-language. Then F is an Fσ-set
in the CANTOR topology if and only if F is open in TA, and F is a Gδ-set in
the CANTOR topology if and only if F is closed in TA.

2. There are clopen sets in TA which are not regular.

Proof. 1. In the CANTOR topology, every regular ω-language F being an Fσ-set
is a countable union of closed regular ω-languages (see [SW74] or the surveys
[HR86, Sta97]).

2. The ω-language Fä := ⋃
n∈IN 0n2 · 1 · Xω and its complement Xω à Fä =

{0ω}∪⋃
n is not a square 0n · 1 · Xω partition the whole space Xω = {0,1}ω into two

non-regular ω-languages open in TA. o

4.4.2 Non-preservation of regularity by JA and CA

From Corollary 18.1 we know that finite-stateω-languages are preserved by the
interior JA and closure CA.

The same examples, Ult and XωàUlt, as for the BÜCHI topology show that
the interior or the closure of finite-state ω-languages need not be regular. A
still more striking difference to the CANTOR topology (see Property 10.1) is the
fact that the closure (and, by complementation, also the interior) of a regular
ω-language need not be regular again.

Example 6 We use the fact (Theorem 7) that two regular ω-languages E ,F co-
incide if only E∩Ult= F∩Ult. Then, if F ⊆ Xω is regular and CA(F )∩Ult= F∩Ult
we have either CA(F ) = F or CA(F ) is not regular.

Let X = {0,1} and consider F = {0,1}∗ · 0ω ⊆ Ult. According to Example 4
{0,1}∗ · 0ω is not a Gδ-set in the CANTOR-topology, hence not closed in TA,
whence CA({0,1}∗ ·0ω) 6= {0,1}∗ ·0ω.

Utilising Theorem 25 we get CA({0,1}∗ ·0ω) ⊆ ⋂
k∈IN{0,1}∗ ·0k · {0,1}ω. Con-

sequently, CA({0,1}∗ ·0ω)∩Ult= {0,1}∗ ·0ω = {0,1}∗ ·0ω∩Ult, and from the above
consideration we obtain that CA({0,1}∗ ·0ω) cannot be regular. o
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4.5 The alphabetic topology

This topology was introduced by DIEKERT and KUFLEITNER in [DK11]. It is de-
fined by the following base.

Definition 4 The alphabetic topology is defined by the base
IBα := {w · Aω : w ∈ X ∗∧ A ⊆ X }.

Then, obviously, IBC ⊆ IBα and Example 3 shows IBα ⊆ IBA. Similar to Prop-
erty 23, the following holds for Tα.

Property 28 1. If F ⊆ Xω is open (closed) in the CANTOR topology TC then F
is open (closed) in Tα, and if E ⊆ Xω is open (closed) in Tα then E is open
(closed) in TA.

2. Every non-empty set open in Tα contains an ultimately periodic ω-word
of the form w ·aω, w ∈ X ∗ and a ∈ X .

3. The set X ∗ · {aω : a ∈ X } is the set IIα of all isolated points in Tα.

Proof. 1. follows from the inclusion relations of the bases explained above, and
2. immediately from Definition 4.

3. The proof follows from the fact that ξ is an isolated point of a topology T

if and only if {ξ} is in some base IB of T . o

All base sets are regular and closed in the CANTOR topology TC , so they are also
closed in Tα and, since IBα is shift-invariant, from Lemma 21 we obtain the
following.

Corollary 29 The alphabetic topology on Xω is metrisable.

The base IBα has the finite shift generator Mα = {Aω : A ⊆ X }consisting of reg-
ular ω-languages. Thus we have the following consequence of Corollary 18.2.

Lemma 30 Let E ⊆ Xω be a finite-state ω-language. Then Jα(E) and Cα(E) are
regular ω-languages.

4.6 The strict alphabetic topology

For the next definition we fix the following notation (cf. [DK11]). For A ⊆ X
the ω-language Aim is the set of all ω-words ξ ∈ Xω where exactly the letters in
A occur infinitely often, that is, Aim = X ∗·(⋂a∈A(A∗ · a)ω). In particular, Aim =
X ∗ · Aim.
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Definition 5 The strict alphabetic topology is defined by the base
IBs := {w · (Aω∩ Aim) : w ∈ X ∗∧ A ⊆ X }.

The following elementary relations hold for the strict alphabetic topology Ts .

Property 31 1. If F ⊆ Xω is open (closed) in Tα then F is open (closed) in Ts ,
and if E ⊆ Xω is open (closed) in Ts then E is open (closed) in TB .

2. Every non-empty set open in Ts contains an ultimately periodic ω-word.

3. The set X ∗ · {aω : a ∈ X } is the set IIs of all isolated points in Tα.

Proof. 1. Since for A ⊆ X we have w ·Aω =⋃
B⊆A w ·A∗ ·(Bω∩B im), every F ∈ IBα

is open in Ts . The assertions for Tα then follow. The assertions for the BÜCHI

topology are obvious.
2. Let v ∈ A∗ contain every letter of A. Then w · vω ∈ w · (Aω∩ Aim). Thus

every base set contains an ultimately periodic ω-word.
3. According to Property 1, for an isolated point ξ the singleton {ξ} is in IBs .

A base set w · (Aω∩ Aim) of Ts is a singleton if and only if |A| = 1. Thus the as-
sertion follows. o

However, the automatic topology is not finer than the strict alphabetic topol-
ogy. To this end, in view of Example 4 and Proposition 27 it suffices to show that
in Ts there are closed sets of the form X ∗ ·aω, a ∈ X .

Corollary 32 There are closed sets in the strict alphabetic topology Ts on Xω

which are not Gδ-sets in CANTOR topology.

Proof. Let a ∈ X . Then every set X ∗ · (Bω ∩B im) is open in Ts and X ∗ · aω =
Xωà⋃

B 6={a} X ∗ · (Bω∩B im). o

Next we show that the strict alphabetic topology is also metrisable. As it is
clearly shift-invariant, it suffices to show that all F ∈ IBs are also closed. To this
end consider the following identity.

Proposition 33 Let A ⊆ X .

Then Aω∩ Aim =
(

Xωà ⋃
b∉A

X ∗ ·b ·Xω
)
à ⋃

B⊂A
X ∗ · (Bω∩B im).

Proof. The relations Aω = Xωà⋃
b∉A X ∗ ·b ·Xω and Aim ⊇ Aωà⋃

B⊂A X ∗ · (Bω∩
B im) prove the asserted identity. o

The metrisability of Ts now follows from Lemma 21.

Corollary 34 The strict alphabetic topology on Xω is metrisable.
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Since Ms := {Aω ∩ Aim : A ⊆ X } is a finite shift generator consisting of regu-
lar ω-languages for the base IBs , we obtain via Corollary 18.2 the analogue to
Lemma 30.

Corollary 35 If F ⊆ Xω is finite-state then Js(F ) and Cs(F ) are regular ω-lan-
guages.

5 Topologies Defined by Subword Metrics

It was shown (see [Sta93, Section 5] and [Sta12]) that regular ω-languages are
closely related to the (asymptotic) subword complexity of infinite words. There-
fore, as another two refinements of the CANTOR topology we introduce two
topologies which are defined via metrics on Xω. These metrics are derived from
the metric of the CANTOR space by taking into account not only the common
prefixes but also the subwords occurring or occurring infinitely often in the ω-
words.

Definition 6 (Subword metrics)

ρI (ξ,η) :=sup{r 1−|w | : w ∈ (pref(ξ)∆pref(η))∪ (infix(ξ)∆ infix(η))}

ρ∞(ξ,η) :=sup{r 1−|w | : w ∈ (pref(ξ)∆pref(η))∪ (infix∞(ξ)∆ infix∞(η))}

These metrics respect the length of the shortest non-common prefix of ξ and
η as well as the length of the shortest non-common subword (non-common
subword occurring infinitely often). Thus

ρI (ξ,η) ≥ ρ(ξ,η) and ρ∞(ξ,η) ≥ ρ(ξ,η), (9)

ρI (ξ,η) = max
{
ρ(ξ,η),sup{r 1−|w | : w ∈ infix(ξ)∆ infix(η)}

}
, and (10)

ρ∞(ξ,η) = max
{
ρ(ξ,η),sup{r 1−|w | : w ∈ infix∞(ξ)∆ infix∞(η)}

}
. (11)

Similar to the case of ρ one can verify that ρI and ρ∞ satisfy the ultra-metric
inequality. Therefore, balls in the metric spaces (Xω,ρI ) or (Xω,ρ∞) are simul-
taneously open and closed. Moreover, Eq. (9) shows that both topologies refine
the CANTOR topology of Xω.

5.1 Shift-invariance

In this part we show that the topologies T∞ and TI induced by the metrics ρ∞
and ρI , respectively, are shift-invariant. First we derive some simple properties
of the metrics.
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Lemma 36 Let u ∈ X ∗ and v, w ∈ X m . Then
ρ∞(u ·ξ,u ·η) ≤ ρ∞(ξ,η), (12)

ρ∞(ξ,η) ≤ r m ·ρ∞(w ·ξ, v ·η), (13)

ρI (u ·ξ,u ·η) ≤ ρI (ξ,η), and (14)

ρI (ξ,η) ≤ r m ·ρI (w ·ξ, v ·η). (15)

Proof. If ξ= η, all inequalities are trivially satisfied. So, in the following, we may
assume ξ 6= η.

As infix∞(ξ) = infix∞(u ·ξ), Eqs. (12) and (13) follow from Eq. (11) and the
respective properties of the metric ρ of the CANTOR topology ρ(u · ξ,u · η) ≤
ρ(ξ,η) and ρ(w ·ξ, v ·η) ≥ ρ(w ·ξ, w ·η) = r−|w | ·ρ(ξ,η).

Let ρI (ξ,η) = r−n , that is, infix(ξ)∩X n = infix(η)∩X n and w @ ξ and w @ η

for some w ∈ X n . Then, obviously, v @ u · ξ and v @ u · η for some v ∈ X n .
Moreover, infix(u ·ξ)∩X n = (infix(u ·w)∩X n)∪(infix(ξ)∩X n) = infix(u ·η)∩X n .
This proves Eq. (14).

Finally, we have to prove Eq. (15). If w 6= v then ρ(w · ξ, v ·η) ≥ r−m , and
Eq. (15) is obvious. Let w = v and ρI (ξ,η) = r−n for some n ∈ IN. We have to
show that ρI (w ·ξ, w ·η) ≥ r−(n+m).

If ρ(ξ,η) = r−n then ρ(w ·ξ, w ·η) = r−(n+m) and Eq. (10) proves ρI (w ·ξ, w ·
η) ≥ r−(n+m).

If ρ(ξ,η) < r−n in view of ρI (ξ,η) = r−n we have u ∈ infix(ξ)∆ infix(η) for
some u ∈ X n+1. Now, it suffices to show (infix(wξ)∆ infix(wη))∩ X n+m+1 6= ;.
Assume u ∈ infix(ξ) and v ′u ∉ infix(wξ)∆ infix(wη) for all v ′ ∈ X m . Then u ∈
infix(ξ) implies v ′u ∈ infix(wξ)∩ infix(wη) for some v ′ ∈ X m . Since |w | = |v ′| =
m, we have u ∈ infix(η), a contradiction. o

As a consequence we obtain our result.

Corollary 37 The topologies TI and T∞ are shift invariant.

Proof. We use the fact that, in view of Lemma 36, the mappings Φu and Φm

defined by Φu(ξ) := u ·ξ and Φm(w ·ξ) := ξ for w ∈ X m are continuous w.r.t. the
metrics ρI and ρ∞, respectively.

Thus, if F ⊆ Xω is open in TI or T∞ then Φ−1
u (F ) = F /u and, for m = |w |,

also w ·F =Φ−1
m (F )∩w ·Xω are open sets. o

5.2 Balls in TI and T∞
Denote by K I (ξ,r−n) and K∞(ξ,r−n) the open balls of radius r−n around ξ in the
spaces (Xω,ρI ) and (Xω,ρ∞), respectively. Since ρI and ρ∞ satisfy the ultra-
metric inequality, they are also closed balls of radius r−(n+1). For w @ ξ with
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|w | = n+1 and W := X n+1∩infix(ξ), V := X n+1∩infix∞(ξ), W := X n+1àinfix(ξ)
and V := X n+1à infix∞(ξ) we obtain the following description of balls via regu-
lar ω-languages.

K I (ξ,r−n) = w ·Xω∩ ⋂
u∈W

X ∗ ·u ·Xωà ⋃
u∈W

X ∗ ·u ·Xω, and (16)

K∞(ξ,r−n) = w ·Xω∩X ∗ · ([
⋂

u∈V
(X ∗ ·u)ω]à ⋃

u∈V
X ∗ ·u ·Xω). (17)

An immediate consequence of the representations in Eqs. (16) and (17) is the
following.

Lemma 38 1. Every ball K I (ξ,r−n) is a Boolean combination of regular ω-
languages open in the CANTOR topology and, therefore, simultaneously
open and closed in the automatic topology TA.

2. Every ball K∞(ξ,r−n) is a regular ω-language and, therefore, simultane-
ously open and closed in the BÜCHI topology TB .

Proof. 1. From Lemma 4 we know that open sets in a metric space are simul-
taneously Fσ- and Gδ-sets. Then, according to Lemma 3, the set K I (ξ,r−n) is
simultaneously an Fσ- and Gδ-set in the CANTOR topology. Now the assertion
follows from Proposition 27.

2. This is is obvious. o

Using the MORSE-HEDLUND Theorem (or the proof of Theorem 1.3.13 of [Lot02])
one obtains special representations of small balls containing ultimately peri-
odic ω-words. To this end we derive the following lemma.

Lemma 39 Let w,u ∈ X ∗,u 6= e and ξ ∈ Xω. Then w ·u @ ξ and infix(ξ)∩X |w ·u| =
infix(w ·uω)∩X |w ·u| imply ξ= w ·uω.

Proof. First observe that |infix(w ·uω)∩X |w ·u|| = |infix(w ·uω)∩X |w ·u|+1|. Thus,
for every v ∈ infix(w ·uω)∩ X |w ·u|, there is a unique v ′ ∈ infix(w ·uω)∩ X |w ·u|

such that v @ a · v ′ for some a ∈ X . Consequently, the ω-word ξ ∈ Xω with
w ·u @ ξ and infix(ξ)∩X |w ·u| = infix(w ·uω)∩X |w ·u| is uniquely specified. o

Lemma 40 Let w ·uω ∈ Xω where |w | ≤ |u| and let m ≥ |w | + |u| and n > |u|.
Then

K I (w ·uω,r−m) = {w ·uω}, and (18)

K∞(w ·uω,r−n) = w ′ ·X ∗ ·uω where w ′ @ w ·u and |w ′| = n. (19)
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Proof. Every ξ ∈ K I (w ·uω,r−m) satisfies infix(ξ)∩X m = infix(w ·uω)∩X m and
w ·u @ ξ, and the assertion of Eq. (18) follows from Lemma 39.

If ξ ∈ K∞(w ·uω,r−n) then there is a tail ξ′ of ξ such that u @ ξ′ and infix∞(ξ)∩
X n = infix(ξ′)∩X n = infix(uω)∩X n whence, again by Lemma 39, ξ′ = uω. o

As a corollary we obtain the following.

Corollary 41 1. The set of isolated points of the space (Xω,ρI ) is III =Ult.

2. The space (Xω,ρ∞) has no isolated points and all sets of the form X ∗ ·uω

are simultaneously closed and open.

3. In the space (Xω,ρ∞) there are open sets which are not Fσ-sets in the CAN-
TOR topology.

Proof. Since every non-empty open subset of (Xω,ρI ) and also of (Xω,ρ∞) con-
tains an ultimately periodic ω-word, every isolated point has to be ultimately
periodic. Now Eq. (18) shows that every w ·uω is an isolated point in (Xω,ρI ),
and Eq. (19) proves that (Xω,ρ∞) has no isolated points. The remaining part of
Item 2 follows from Eq. (19), X ∗ ·uω = ⋃

w∈X n w · X ∗ ·uω and that the balls are
closed and open.

Finally, it is known from Example 4 that XωàX ∗ ·uω is not an Fσ-set in the
CANTOR topology. o

5.3 Non-preservation of regularω-languages

In this section we investigate whether regularω-languages are preserved by JI ,
C I , J∞ and C∞.

As an immediate consequence of Corollary 18 and the fact that the topolo-
gies TI and T∞ are shift-invariant we obtain that the closure and interior of a
finite-state F ⊆ Xω are also finite-state.

Similar to the case of the automatic topology TA (see Example 6) we obtain
that the closure (and the interior) of regular ω-languages in the spaces (Xω,ρI )
and (Xω,ρ∞) need not be regular again. To this end we use the same argument
as in Example 6: We present regular ω-languages F such that their respective
closures satisfy C I (F )∩Ult= F ∩Ult and C I (F ) 6= F , or C∞(F )∩Ult= F ∩Ult and
C∞(F ) 6= F .

Example 7 Let X = {0,1} and F = {0,1}∗ ·0ω.
First we show that C I ({0,1}∗ ·0ω)∩Ult = {0,1}∗ ·0ω. Let w ·uω ∉ {0,1}∗ ·0ω.

Then u ∉ {0}∗ and 0|w ·u| ∉ infix(w ·uω). Now Eq. (18) yields K (w ·uω,r−|w ·u|)∩
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X ∗ ·0|w ·u| ·Xω =;. Thus ρI (w ·uω, v ·0ω) ≥ r−|w ·u| for all v ∈ X ∗ whence w ·uω ∉
C I ({0,1}∗ ·0ω).

In order to prove C I ({0,1}∗ ·0ω) ⊃ {0,1}∗ ·0ω we observe that C I ({0,1}∗ ·0ω)
contains every ζ with infix(ζ) = {0,1}∗. Indeed, let infix(ζ) = {0,1}∗ and define
for wn @ ζ, |wn | ≥ n, the ω-word ξn := wn · (

∏
v∈X n v) ·0ω. Then ρI (ξn ,ζ) ≤ r−n ,

and, therefore, limn→∞ξn = ζ ∈C I ({0,1}∗ ·0ω).
Thus the ω-language C I ({0,1}∗ ·0ω) is not regular. o

Since {0,1}∗ ·0ω is closed in T∞, we cannot use this ω-language in the case of
T∞.

Example 8 Let X = {0,1} and F := {0,1}∗ · ((00)∗1)ω.
If w ·uω ∈ C∞(F ), then there is a ξ ∈ F such that ρ∞(w ·uω,ξ) < r−|wu|. Ac-

cording to Lemma 40 we have ξ ∈ w ·X ∗ ·uω. Thus uω = u′ ·ηwhere η ∈ ((00)∗1)ω

whence w ·uω = w ·u′ ·η ∈ F .
Finally consider the ω-words ξi :=∏2i

j=0 10 j · (1 ·02i )ω ∈ F and ζ=∏∞
j=0 10 j =

110100 · · ·. Since ζ has infinitely many infixes 10 j 1 where j is odd, ζ ∉ F .
For theω-words ξi and ζwe have pref(ξi )∩X n = pref(ζ)∩X n and infix∞(ξi )∩

X n = infix∞(ζ)∩X n = {0n}∪ {0 j ·1 ·0n− j−1 : 0 ≤ j < n} when n ≤ 2i . This implies
ρ∞(ξi ,ζ) ≤ r−2i , that is, limi→∞ξi = ζ ∈C∞(F ).

Thus the ω-language C∞({0,1}∗ · ((00)∗1)ω) is not regular. o

5.4 Subword Complexity

Above we mentioned that regularω-languages are closely related to the (asymp-
totic) subword complexity of infinite words. In this part we show that the level
sets F (τ)

γ of the asymptotic subword complexity (see [Sta93, Sta12]) are open in
the topologies defined by the subword metrics ρI and ρ∞.

First we introduce the concept of asymptotic subword complexity.

Definition 7 (Asymptotic subword complexity)

τ(ξ) := lim
n→∞

log|X | |infix(ξ)∩X n |
n

Using the inequality |infix(ξ)∩X n+m | ≤ |infix(ξ)∩X n | · |infix(ξ)∩X m | it is easy
to see that the limit in Definition 7 exists and

τ(ξ) = inf

{ log|X | |infix(ξ)∩X n |
n

: n ∈ IN∧n ≥ 1

}
. (20)

Eq. (5.2) of [Sta93] shows that in Definition 7 and Eq. (20) one can replace the
term infix(ξ) by infix∞(ξ).
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Corollary 42

τ(ξ) = inf

{ log|X | |infix∞(ξ)∩X n |
n

: n ∈ IN∧n ≥ 1

}
Let, for 0 < γ ≤ 1, F (τ)

γ := {ξ : ξ ∈ Xω ∧ τ(ξ) < γ} be the lower level sets of

the asymptotic subword complexity. For γ = 0 we set F (τ)
0 := Ult (instead of

F (τ)
0 =;). We want to show that these sets are open in (Xω,ρI ) and (Xω,ρ∞). As

a preparatory result we derive the subsequent Lemma 43.
Let En(ξ) := {η : infix(η)∩ X n ⊆ infix(ξ)} and E ′

n(ξ) := {η : infix∞(η)∩ X n ⊆
infix∞(ξ)} be the sets of ω-words having only infixes or infixes occurring in-
finitely often of length n of ξ, respectively. These sets can be equivalently de-
scribed as

En(ξ) = XωàX ∗ · (X n à infix(ξ)) ·Xω and

E ′
n(ξ) = X ∗ · (XωàX ∗ · (X n à infix∞(ξ)) ·Xω), respectively

which resembles in some sense the characterisation of open balls in Eqs. (16)
and (17). In fact, it appears that the sets En(ξ) and E ′

n(ξ) are open in the respec-
tive spaces (Xω,ρI ) and (Xω,ρ∞).

Lemma 43 Let ξ ∈ Xω. Then ξ ∈ En(ξ)∩E ′
n(ξ), the set En(ξ) is open in (Xω,ρI )

and the set E ′
n(ξ) is open in (Xω,ρ∞).

Proof. Clearly, ξ ∈ En(ξ)∩E ′
n(ξ).

For a proof that En(ξ) is open in (Xω,ρI ) we show that η ∈ En(ξ) implies
that the ball K I (η,r−n) is contained in En(ξ). Let η ∈ En(ξ) and ζ ∈ K I (η,r−n).
Then, ρI (η,ζ) < r−n , that is, in particular, infix(η)∩ X n = infix(ζ)∩ X n , whence
ζ ∈ En(ξ)

The proof for E ′
n(ξ) is similar. o

This much preparation enables us to show that the level sets are open sets.

Theorem 44 Let 0 ≤ γ≤ 1. Then the sets F (τ)
γ are open in (Xω,ρI ) and (Xω,ρ∞).

Proof. For γ= 0 we have F (τ)
γ =Ult which, according to Corollary 41, is open in

(Xω,ρI ) as well as in (Xω,ρ∞).
Let γ > 0 and τ(ξ) < γ. We show that then En(ξ) ⊆ F (τ)

γ and E ′
n(ξ) ⊆ F (τ)

γ for

some n ∈ IN. Together with Lemma 43 this shows that F (τ)
γ contains, with every

ξ, open sets containing this ξ.
If τ(ξ) < γ then in view of Eq. (20) we have 1

n · log|X | |infix(ξ)∩ X n | < γ for
some n ∈ IN. Then for every η ∈ En(ξ) it holds τ(η) ≤ 1

n · log|X | |infix(ξ)∩X n | < γ
and, consequently, En(ξ) ⊆ F (τ)

γ .
The proof for (Xω,ρ∞) is similar using Corollary 42. o
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The proof shows also that ξ ∈ F (τ)
γ implies that XωàX ∗ ·(X nàinfix(ξ))·Xω ⊆ F (τ)

γ

for some n > 0. Thus F (τ)
γ is a countable union of regular ω-languages closed in

the CANTOR topology, hence an Fσ-set in the CANTOR topology. The sets F (τ)
γ are

finite-state4 non-regular ω-languages because their complement Xω à F (τ)
γ is

non-empty and does not contain any ultimately periodicω-word. Thus, in view
of Theorem 11, they are not Gδ-sets in CANTOR-space and they are examples of
sets open in (Xω,ρI ) and (Xω,ρ∞) which are non-regular Fσ-sets in CANTOR-
space.

Finally we show that the level sets F (τ)
γ for 0 ≤ γ≤ 1 are not open in the strict

alphabetic topology Ts and hence also not in Tα.

Example 9 Let X = {a1, . . . , ak }. Then ξ= (a1 · · ·ak )ω ∈Ult⊆ F (τ)
γ for all γ. Since

ξ contains every letter infinitely often, every base set E ∈ IBs with ξ ∈ E is of the
form w · X im. Thus it contains all η ∈ w · Xω with infix(η) = X ∗, that is τ(η) = 1.
Consequently, η ∉ F (τ)

1 ⊇ F (τ)
γ . o

6 The hierarchy of topologies

Finally we show that the following inclusions hold for the topologies considered
so far. All inclusions are proper and other ones than the ones indicated do not
exist.

TB

A
A
A
AK

T∞

�
�
�
�
��

6

Ts

6

�
��

TA
6

TI

@
@I

Tα

6

TC

First, the obvious inclusions of the bases IBB ⊇ IBA ⊇ IBα ⊇ IBC and IBB ⊇ IBs

imply the inclusions for the corresponding topologies (see also Properties 23,
28 and 31). Ts ⊇Tα follows from Property 31.

4In particular, they satisfy F (τ)
γ /w = F (τ)

γ for all w ∈ X ∗.
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Next we verify how the topologies TI and T∞ fit into the diagram. The in-
clusions TC ⊆ T∞ ⊆ TB follow from the fact that T∞ is shift-invariant (Corol-
lary 37) and that every ball in T∞ is a regular ω-language (Lemma 38.2). Simi-
larly, Lemma 38.1 proves the inclusion TI ⊆TA.

In order to show Tα ⊆ TI fix, for ; 6= B ⊆ X , an ω-word ξB ∈ Bω∩B im, that
is, ξB contains only letters in B and every letter of B infinitely often. Then Aω =⋃

B⊆A
⋃

a∈B K I (a ·ξB ,1), as a union of open balls, is open in TI , and Corollary 37
shows that IBα consists of sets open in TI .

The following relations show the properness of the inclusions.

Tα 6⊆ T∞, (21)

T∞ 6⊆ Ts , (22)

T∞ 6⊆ TA, (23)

TI 6⊆ Ts , (24)

Ts 6⊆ TA, and (25)

TA 6⊆ TI . (26)

Since the sets of isolated points satisfy III ⊃ IIs = IIα ⊃ II∞ we obtain the inequal-
ities Eqs. (21) and (24).

The topologies Ts and T∞ have open sets which are not Fσ-sets in the CAN-
TOR topology (see Corollary 32 and Corollary 41.3. Hence Eqs. (23) and (25)
follow from Corollary 26.

Finally, the remaining inequalities Eqs. (22) and (26) are proved by the fol-
lowing two examples.

Example 10 Let 0,1 ∈ X . Corollary 41.2 shows that the countable ω-language
F = X ∗ · (01)ω is open in T∞. Since for |A| ≥ 2 the base sets w · (Aω∩ Aim) ∈ IBs

are uncountable, 0 6= 1 implies that F does not contain a non-empty E ∈ IBs .
Hence F cannot be open in Ts . o

Example 11 ([Hof14]) The regular ω-language F = {1,00}ω ⊆ {0,1}ω is closed in
the CANTOR topology, hence open in TA. Assume F to be open in TI . We have
η=∏

i∈IN 102i ∈ F and, therefore, K I (η,r−n) ⊆ F for some n ∈ IN.
Consider ξ = ∏n

i=0 102i ·∏∞
i=2n+1 10i ∉ F . Then we have

∏n
i=0 102i @ η and∏n

i=0 102i @ ξ. Consequently,

infix(ξ)∩ {0,1}2n = (
infix(

∏n
i=0 102i )∪0∗ ·1 ·0∗∪0∗)∩ {0,1}2n

= infix(η)∩ {0,1}2n .
It follows ρI (ξ,η) ≤ r−2n , that is, ξ ∈ K I (η,r−n) ⊆ {1,00}ω, a contradiction. o
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