

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CHEMOPREVENTION STUDIES WITH PACIFIC FOODSTUFFS: EFFECTS ON XENOBIOTIC METABOLISING ENZYMES AND CYTOTOXICITY.

By Rachel A.C. M^cPherson (BSc, PGDipSci)

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD).

The University of Auckland, 2004

Abstract

The aims of this thesis were to examine:(1) the effects of acute and chronic dietary exposure of the pro-carcinogen, IQ on the expression and activity of xenobiotic metabolising enzymes; (2) the ability of foodstuffs chronically (individually and in combination with the dietary pro-carcinogen IQ) to alter the xenobiotic metabolising enzymes; (3) whether tissue-specific effects of the foodstuffs on XME could explain pathological results; and (4) whether any isolated fraction of the foodstuffs acted directly as a toxicant or stimulated cell growth *in vitro*.

For the chronic study, male Fischer 344 rats were fed defined AIN-76A diet \pm 10 % foodstuff (taro, kumara, pineapple, or coconut), with or without IQ (300ppm for 52 weeks). In the acute study, male Fischer 344 rats were fed defined AIN-76A diet and gavaged with IQ (20 mg.kg⁻¹, 3 days). Pathology was observed and changes in enzyme activities and expression examined. Simple fractionation of the foodstuffs was also performed and their effects on cell viability and enzyme expression were investigated *in vitro* in freshly isolated rat hepatocytes and immortal human HT29 and P388 cells.

In the liver, acute exposure to IQ affected enzymes consistent with complex xenobiotic response element / glucocorticoid response element activation, whereas chronic exposure was consistent with activation of the antioxidant response element. No pattern of enzyme change was obvious in other organs. Inclusion of South Pacific foodstuffs in the diet at 10 % had a marked effect on enzyme activity in the liver and lung, although there was no consistent pattern for enzyme changes for a particular enzyme or foodstuff. Enzyme activity in the colon was below the level of detection. There was a complex response when IQ was included with the foodstuffs, which did not resemble the response to either IQ or the foodstuff alone. Fractionantion of foodstuffs that explained the complex changes in pathology or XME observed *in vivo*.

The interaction between foodstuffs and IQ in the body was complicated. This may be explained by the presence of many compounds within the foodstuffs that have additive, synergistic, or inhibitory actions on many pathways in the body and underlines the complexity of using whole foodstuffs, rather than a single, purified constituent, in chemoprevention studies.

Publications Arising From This Thesis

McPherson, R. A. C., L. R. Ferguson, et al. (2000). Effect of kumara (*Ipomoea batatis*) and chronic dietary exposure to 2-amino-3-methyl-imidazo[4,5-*f*]quinoline on xenobiotic metabolising enzymes in the male Fischer 344 rat. The Annual meeting of Society for Free Radical Research (SFRR) Australasia, Christchurch.

McPherson, R. A. C., M. D. Tingle, et al. (1999). "Effect of chronic dietary exposure to IQ on glutathione S-transferase in the male Fischer 344 rat liver." Proceedings Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 6: 181.

McPherson, R. A. C., M. D. Tingle, et al. (1999). "Effect of dietary exposure to IQ on phase I and II XME in the male Fischer rat liver." Proceedings of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 6: 30.

McPherson, R. A. C., M. D. Tingle, et al. (2000). "Dietary intervention studies in the rat: Organ-specific effects on the modulation of xenobiotic metabolising enzymes by IQ." Proceedings Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 8: 114.

McPherson, R. A. C., M. D. Tingle, et al. (2000). "Effect of pacific island foodstuffs on the enzyme modulation resulting from chronic dietary exposure to 2-amino 3methylimidazo [4,5-f]quinoline (IQ)." Proceedings Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 7: 114.

McPherson, R. A. C., M. D. Tingle, et al. (2001). "Contrasting effects of acute and chronic dietary exposure to 2-amino-3-methyl-imidazo[4,5-*f*]quinoline (IQ) on xenobiotic metabolising enzymes in the male Fischer 344 rat: implications for chemoprevention studies." European Journal of Nutrition **40**(1): 39-47.

McPherson, R. A. C., M. D. Tingle, et al. (2001). "Effects of the dietary carcinogen IQ and Pacific island foods on XME in male Fischer 344 rat lung and liver." Toxicology **164**(1-3): 147.

111

Dedication

This thesis is dedicated in loving memory of Andrew James Rea (13th September 1976 – 2nd February 2001).

Acknowledgments

I wish to express my thanks to my supervisor Dr Malcolm Tingle for his guidance, patience and support. I could not have asked for a better mentor and friend over the past six years.

I also thank my co-supervisor Prof. Lynnette Ferguson for her assistance in the preparation of this thesis and her contribution of the chronic animal tissues analysed in this thesis. I acknowledge Prof. Lynnette Ferguson's receipt of a Lotteries grant for the chronic animal feeding study.

I thank Dr Paul Wright and Daphne Cheah of the Key Toxicology Centre and Prof. Theo Macrides of the Natural Products Laboratory, both at RMIT, Melbourne, for their collaboration and instruction in the fractionation of the Pacific foodstuffs, the isolation of hepatocytes and the *in vitro* cytotoxicity assays.

I would also like to thank the staff and students of the Department of Pharmacology and Clinical Pharmacology plus the Auckland University Cancer Research Centre, especially Dr Nuala Helsby and Dr Abby Collier, for their help and support throughout my years of study.

I acknowledge receipt of travel grants from the Maurice and Phyllis Paykel Trust, the Australian Society of Clinical and Experimental Pharmacologists and Toxicologists, The Royal Society of New Zealand, the New Zealand Cancer Society and the University of Auckland Graduate Research Fund.

Finally I express my gratitude to my husband, Dr Peter Galettis, for his love and support during my PhD and to my son, Max, for being such a contented and independent baby enabling me to complete this thesis and thank my parents for their love, encouragement and financial help.

V

Table of Contents

CHAPTER	1 Introduction1
1.1	Cancer and the Associated Epidemiological Risks
1.2	(Pro)-carcinogens in the human diet2
1.3	Cancer in New Zealand: The Colon Cancer Story
1.4	The Theory of Cancer Prevention
1.5	Cancer prevention from anti-carcinogens in the human diet
1.6	Chemoprevention of Colon Cancer in New Zealand
1.7	The Project Base
1.8	Thesis Aims
CHAPTER	2 Characterisation of the Hepatic Enzymes in F344 Rats
After Chron	nic and Acute IQ Exposure15
2.1	Materials
2.1.1	Chemicals21
2.1.2	Animals
2.1.3	Diet
2.2	Methods
2.2.1	Dosing Regimes
2.2.2	Preparation of sub-cellular fractions23
2.2.3	Protein Determination24
2.2.4	Western Immunoblots24
2.2.5	Enzyme Activity Assays
2.2	2.5.1 The GST activity assays
2.2	2.5.2 The NQO activity assay
2.2	2.5.3 The UGT activity assay
2.2	2.5.4 The β -Glucuronidase activity assay
2.2	2.5.5 The CYP1A1/2 activity assay
2.2	2.5.6 The CYP2B1 activity assay
2.2	2.5.7 The CYP2E1 activity assay
2.2.6	
2.3	Results
2.3.1	Effects of IQ exposure on GST activity and expression
2.3.2	Effect of IQ exposure on NQO, UGT and β -glucuronidase activity 27
2.3.3	Effect of IQ exposure on CYP activity and expression
2.4	Discussion

CHAPTER 3 Effects of Pacific Island Foodstuffs on Hepatic
Enzymes in F344 Rats After Chronic IQ Exposure
3.1 Materials
3.1.1 Chemicals
3.1.2 Animals
3.1.3 Diet
3.2 <i>Methods</i>
3.2.1 Dosing Regimes
3.2.2 Preparation of sub-cellular fractions
3.2.3 Western Immunoblots
3.2.4 Enzyme Activity Assays
3.2.4.1 Determination of NQO activity in a microtitre plate
3.2.5 Data Analysis
3.3 Results
3.3.1 Effect of kumara on XME activity and expression in the male F344 rat
liver in the presence and absence of IQ 48
3.3.1.1 Effect of dietary kumara on UGT activity in the presence and absence of
IQ
3.3.1.2 Effect of dietary kumara on β -glucuronidase activity in the presence and
absence of IQ
3.3.1.3 Effects of kumara on GST activity and expression in the presence and
absence of IQ
3.3.1.4 Effect of dietary kumara on NQO activity in the presence and absence of
IQ
3.3.1.5 Effect of kumara on CYP activity and expression in the presence and
absence of IQ
3.3.2 Effect of pineapple on XME activity and expression in male F344 rat
liver in the presence and absence of IQ 52
3.3.2.1 Effect of pineapple on UGT activity in the presence and absence of IQ52
3.3.2.2 Effect of pineapple on β -glucuronidase activity in the presence and
absence of IQ
3.3.2.3 Effects of pineapple on GST activity and expression in the presence and
absence of IQ
3.3.2.4 Effect of pineapple on NQO activity in the presence and absence of IQ53
3.3.2.5 Effect of pineapple on CYP activity and expression in the presence and
absence of IQ

3.3.3 Ef	fect of coconut on XME activity and expression in male F344 rat liver
in the pro	esence and absence of IQ54
3.3.3.1	Effect of coconut on UGT activity in the presence and absence of IQ 54
3.3.3.2	Effect of coconut on β -glucuronidase activity in the presence and
absence	of IQ
3.3.3.3	Effects of coconut on GST activity and expression in the presence and
absence	of IQ
3.3.3.4	Effect of coconut on NQO activity in the presence and absence of IQ 55
3.3.3.5	Effect of coconut on CYP activity and expression in the presence and
absence	of IQ
3.3.4 Ef	fect of taro on XME activity and expression in male F344 rat liver in
the prese	nce and absence of IQ
3.3.4.1	Effect of taro on UGT activity in the presence and absence of IQ 56
3.3.4.2	Effect of taro on β -glucuronidase activity in the presence and absence of
IQ	
3.3.4.3	Effects of taro on GST activity and expression in the presence and
absence	of IQ
3.3.4.4	Effect of taro on NQO activity in the presence and absence of IQ 57
3.3.4.5	Effect of taro on CYP activity and expression in the presence and
absence	of IQ
3.4 Discu	ssion
CHAPTER 4	Effects of Pacific Island Foodstuffs on Colonic and
Pulmonary Enzy	mes in F344 Rats After Chronic IQ Exposure
4.1 Mate	rials and Methods
4.1.1 2-I	Dimensional gel
4.1.1.1	Sample preparation
4.1.1.2	Running the first dimension
4.1.1.3	Running the Second Dimension
4.1.1.4	Visualisation
4.1.2 Da	ta Analysis
4.2 Resu	<i>Its</i>
4.2.1 Th	e effect of IQ alone on the enzyme expression and activity of the male
F344 rat	ung
4.2.2 Ef	fect of Pacific Island foodstuffs on the expression and activity of XME
in the ma	le F344 rat lung in the presence and absence of IO

4.2.2	2.1 Kumara
4.2.2	2.2 Pineapple
4.2.2	2.3 Coconut
4.2.2	2.4 Effects of taro on the expression and activity of XME in the male F344
rat li	ung in the presence and absence of IQ
4.2.3	The effect of IQ alone on the enzyme expression and activity of the male
F344	rat colon
4.2.4	Effect of Pacific Island foodstuffs on the expression and activity of XME
in the	male F344 rat colon in the presence and absence of IQ
4.2.4	4.1 Kumara
4.2.4	4.2 Effect of pineapple on the expression and activity of XME in the colon in
the p	resence and absence of IQ
4.2.4	4.3 Effect of coconut on the expression and activity of XME in the colon in
the p	resence and absence of IQ
4.2.4	4.4 Effect of taro on the expression and activity of XME in the colon in the
prese	ence and absence of IQ
4.2.5	Effect of IQ on the expression of proteins in the male F344 rat colon,
analys	sed by 2D-gel
4.2.5	5.1 Effect of IQ on the expression of proteins in the male F344 rat colon,
analy	ysed by 2D-gel with fluorescent SYPRO [®] Staining
4.2.5	5.2 Effect of IQ on the expression of proteins in the male F344 rat colon,
analy	ysed by 2D-gel with Coomassie [®] Brilliant Blue Staining
4.2.5	5.3 Effect of IQ on the expression of proteins in the male F344 rat colon,
analy	vsed by 2D-gel with Silver Staining
4.3 D	iscussion
CHAPTER 5	Fractionation of the Pacific Island Foodstuffs and
Assessment o	f Their Biological Activity In Vitro
5.1 M	laterials
5.1.1	Chemicals
5.1.2	Cellular Requirements
5.2 M	1ethods
5.2.1	Hepatocyte Isolation
5.2.2	Preparation of Foodstuff for Fractionation
5.2.3	Fractionations of Kumara, Taro and Pineapple
5.2.	3.1 Terpenes: Neutral and Acidic

5.2	3.2 Flavonoids: Aglycones and Glycosides
5.2	3.3 Alkaloids: Neutral and Acidic
5.2.4	Fractionation of Coconut
5.2.5	Re-suspension of Fractionations for TLC's and in vitro Assays 100
5.2.6	Characterisation by TLC
5.2.0	5.1 Alkaloids, Quaternary Alkaloids and N-oxides
5.2.0	5.2 Terpenes, Terpenoids and Phenolics
5.2.0	5.3 Flavonoid aglycones and glycosides
5.2.0	6.4 Fats and Waxes
5.2.7	Tumour Cell Growth Inhibition Assay - Neutral Red Uptake
Cytot	oxicity Plate Assay
5.2.8	Cytotoxicity Testing in Isolated Hepatocytes
5.2.8	8.1 Hepatocyte Isolation
5.2.8	8.2 Cytotoxicity Testing in Isolated Hepatocytes
5.2.9	Western Blotting104
5.2.10	Data Analysis
5.3 R	esults
5.3.1	Fractionations
5.3.2	TLC Identification
5.3.2	2.1 Taro
5.3.2	2.2 Kumara
5.3.2	2.3 Pineapple
5.3.2	2.4 Coconut
5.3.3	Effect of plant fractions on cell viability and proliferation118
5.3.3	2.1 Neutral Red in HT29 Cells
5.3.3	2.2 Neutral Red in P388 cells
5.3.3	8.3 Neutral Red in Isolated Hepatocytes
5.3.3	8.4 Trypan Blue in isolated hepatocytes with the Australian purchased taro
fract	ions
5.3.4	Effect of plant fractions on CYP2E1 expression
5.4 D	iscussion130
CHAPTER 6	General Discussion136
Bibliography	

List of Tables

Table 2.1 Modified AIN-76A control diet recipe [140]
Table 2.2 Comparison of IQ dosage regimes for acute and chronically exposed animals,
including dose per day and total dose over the entire study
Table 2.3 Effect of acute and chronic exposure to IQ on GST, UGT, β -glucuronidase, NQO1
and CYP1A1 and CYP1A2, and CYP2E1 activity in the male F344 rat liver
Table 2.4 Total GST, UGT and NQO1 activities in the liver and pathological lesions and
tumours after 52-week dietary IQ exposure in male F344 rats
Table 3.1 Whole body pathology table showing the number of hyperplasic, degenerative
lesions and benign or malignant tumours in the treatment group following 52 weeks
inclusion of foodstuff alone (A) and foodstuff plus IQ (B) in the
diet43
Table 3.2 Liver pathology showing the number of hyperplastic, degenerative lesions and
benign or malignant tumours in the treatment group after chronic 52 weeks inclusion of
foodstuff alone (A) and foodstuff plus IQ (B) in the
diet
Table 3.3. The effect of foodstuff alone on the activity of the seven xenobiotic metabolising
enzymes assayed in the male F344 rat liver compared with the control diet, AIN-
76A49
Table 3.4 The effect of foodstuff plus IQ on the activity of the seven xenobiotic metabolising
enzymes assayed in the male F344 rat liver compared with IQ
alone
Table 3.5 The effect of foodstuff plus IQ on the activity of the seven xenobiotic metabolising
enzymes assayed in the male F344 rat liver compared with the foodstuff in the absence
of IQ
Table 4.1 Total number of lesions present in the lungs of the animals exposed to IQ or fed the
Pacific Island foodstuff in the presence or absence of IQ
Pacific Island foodstuff in the presence or absence of IQ
Pacific Island foodstuff in the presence or absence of IQ
Pacific Island foodstuff in the presence or absence of IQ
 Pacific Island foodstuff in the presence or absence of IQ
 Pacific Island foodstuff in the presence or absence of IQ
 Pacific Island foodstuff in the presence or absence of IQ. Table 4.2 Total number of lesions present in the colons of the animals exposed to IQ or fed the Pacific Island foodstuff in the presence or absence of IQ. 66 Table 4.3 Suggested Protocol for running 2D gels from Amersham Pharmacia Biotech. 70 Table 4.4 Average enzyme activity in the male F344 rat lung after 52 weeks exposure to AIN-76A or AIN-76A plus IQ. 74
 Pacific Island foodstuff in the presence or absence of IQ. Table 4.2 Total number of lesions present in the colons of the animals exposed to IQ or fed the Pacific Island foodstuff in the presence or absence of IQ. 66 Table 4.3 Suggested Protocol for running 2D gels from Amersham Pharmacia Biotech. 70 Table 4.4 Average enzyme activity in the male F344 rat lung after 52 weeks exposure to AIN-76A or AIN-76A plus IQ. 74 Table 4.5 The effect of foodstuff alone on the activity of the five xenobiotic metabolising

Table 4.7 The effect of foodstuff plus IQ on the activity of the five xenobiotic metabolising
enzymes assayed in the male F344 rat lung, compared with the foodstuff in the absence
of IQ
Table 4.8 The effect of foodstuff plus IQ on the activity of the three xenobiotic metabolising
enzymes assayed in the male F344 rat colon compared with IQ alone
Table 4.9 The effect of foodstuff plus IQ on the activity of the three xenobiotic metabolising
enzymes assayed in the male F344 rat colon, compared with the foodstuff in the absence
of IQ
Table 5.1 Yield of sample fraction from Pacific Foodstuffs

Lists of Figures

Figure 1.1 The basic process of cancer formation, where chemopreventors can act and how
they act. [52-54]7
Figure 2.1 Chemical structure of 2-amino-3-methylimidazo-[4,5-f] quinoline (IQ)
Figure 2.2 Metabolism of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)
Figure 2.3 The Xenobiotic response element depicting activation by ligand binding at the
gene site and subsequent transcription of the mRNA coding for the various proteins
controlled. Adapted from [135]
Figure 2.4 Ligand dependent activation of the Xenobiotic Response Element (XRE)
Figure 2.5 Western blot showing the effects of chronic and acute exposure to IQ on the
expression of A. GST-A1, B. GST-A2, C. CYP1A1/2, and D. CYP2E1 in male F344 rat
liver (n=3 per group)
Figure 2.6 Effects of acute (a) and chronic (b) exposure of male F344 rats to IQ on GST,
UGT, β -glucuronidase, NQO1, CYP1A1 and CYP1A2, and CYP2E1 activity in the
liver
Figure 2.7 Speculated mechanism for activation of the XRE and the GRE and the resulting
enzyme modulation due to acute IQ exposure
Figure 2.8 Regulation of the Antioxidant Response Element (ARE) Adapted from a
combination of. [169, 172]
Figure 3.1 Traditional Pacific Island preparation of coconut
Figure 3.2 Western blots showing the effects of inclusion of the Pacific Islands foodstuffs;
kumara, pineapple, coconut and taro, in the diet, in the presence and absence of IQ on the
expression of A. GST-A1 and B. GST-A2, C. CYP1A1/2, and D. CYP2E1 in the male
F344 rat liver
Figure 3.3 Inverse glucuronidation reactions catalysed by UGT and β -glucuronidase
Figure 3.4 The proposed mechanism of XME activity modulation following exposure to a diet
containing IQ, Pacific Island foodstuff or the foodstuff and IQ62
Figure 4.1 Theory of 2D-gel Electrophoresis
Figure 4.2 Percentage change in enzyme activity in the male F344 rat lung after 52 weeks
exposure to AIN-76A plus IQ
Figure 4.3 Western blot of GST-A1 expression in the male F344 rat lung after chronic
exposure to the control diet AIN-76A, AIN-76A + IQ, or Pacific Island foodstuff \pm IQ.75
Figure 4.4 Western blot of A. GST-A1 and B. GST-A2 expression in the male F344 rat colon
after chronic exposure to the control diet AIN-76A, AIN-76A + IQ, or Pacific Island
foodstuff in the absence or presence of IQ

Figure 4.5 An IPG strip from batch no. 285030
Figure 4.6 2-Dimensional gels, run on IPG strip pH 3-10
Figure 5.1 TLC plate of taro neutral terpenes
Figure 5.2 TLC plate of taro acid terpenes
Figure 5.3 TLC plate of taro acid alkaloids
Figure 5.4 TLC plate of taro aglycones
Figure 5.5 TLC plate of kumara neutral terpenes
Figure 5.6 TLC plate of kumara acid terpenes
Figure 5.7 TLC plate of kumara acid alkaloids
Figure 5.8 TLC plate of kumara aglycones
Figure 5.9 TLC plate of pineapple neutral terpenes
Figure 5.10 TLC plate of pineapple neutral alkaloids
Figure 5.11 TLC plate of pineapple aglycones
Figure 5.12 TLC plate of pineapple glycosides
Figure 5.13 TLC plate of coconut fats and waxes
Figure 5.14 TLC plate of coconut fats and waxes
Figure 5.15 TLC plate of coconut glycosides
Figure 5.16 TLC plate of coconut terpenoids and phenolics
Figure 5.17 TLC plate of coconut quaternary alkaloids and N-oxides
Figure 5.18 Effect of coconut fractions on HT29 cell number, as determined by Neutral Red
dye uptake, compared with the effects of thyme oil
Figure 5.19 Effect of kumara fractions on HT29 cell number, as determined by Neutral Red
dye uptake, compared with the effects of thyme oil
Figure 5.20 Effect of pineapple fractions on HT29 cell number, as determined by Neutral Red
dye uptake, compared with the effects of thyme oil
Figure 5.21 Effect of Australian purchased pink taro fractions on HT29 cell number, as
determined by Neutral Red dye uptake, compared with the effects of thyme oil 121
Figure 5.22 Effect of New Zealand purchased pink taro fractions on HT29 cell number, as
determined by Neutral Red dye uptake, compared with the effects of thyme oil 121
Figure 5.23 Effect of kumara fractions on P388 cell number, as determined by Neutral Red
dye uptake, compared with the effects of thyme oil
Figure 5.24 Effect of pineapple fractions on P388 cell number, as determined by Neutral Red
dye uptake, compared with the effects of thyme oil 123
Figure 5.25 Effect of coconut fractions on P388 cell number, as determined by Neutral Red
dye uptake, compared with the effects of thyme oil

Abbreviations

2D	2-Dimensional
4-Ipomeanol	1-(3-Furyl)-4-hydroxypentanone
4-Mu	4-Methyl umbelliferone
4-MuG	4-Methyl umbelliferone glucuronide
4NO ₂ BC1	4-Nitrobenzylchloride
ADME	Absorption, Distribution, Metabolism and Elimination
AFB ₁	Aflatoxin B ₁
Ah-receptor	Aryl-hydrocarbon receptor
AhRR	Ah-receptor repressor
AIN-76A	American Institute of Nutrition diet number 76A
AIN-93G	American Institute of Nutrition diet number 93G
ALDH-3	Aldehyde dehydrogenase 3
AP-1	Activator Protein-1
ARE	Antioxidant Response Element
ARNT	Aryl-hydrocarbon receptor nuclear translocator
BaP	Benzo[a]pyrene
BCA	Bicinchoninic acid
BSA	Bovine Serum Albumin
CAR	Constitutive Androsterone Receptor
CDNB	1-Chloro 2,4-dinitrobenzene
CHAPS	3-[(3-Cholamidopropyl) dimethylammonio]-1-propane
	sulphonate
CYP1A	Cytochrome P450 1A
CYP1B	Cytochrome P450 1B
CYP2B	Cytochrome P450 2B
CYP2E	Cytochrome P450 2E
CYP3A	Cytochrome P450 3A
CYP450	Cytochrome P450
DCNB	3-4-Dichloro nitrobenzene
DCPIP	Dichloroindophenol
DMSO	Dimethylsulfoxide
DRE	Dioxin Response Element
DTT	Dithiothreitol
ECL	Enhanced chemiluminescence
EpRE	Electrophile responsive element

XVI

EtOH	Ethanol
F344	Fischer 344
FCS	Fetal Calf Serum
GR	Glucocorticoid receptor
GRE	Glucocorticoid response element
GST	Glutathione S-transferase
GST-A	Glutathione S-transferase alpha
GST-M	Glutathione S-transferase mu
GST-T	Glutathione S-transferase theta
HCA	Heterocyclic amine
HEPES	4-(2-Hydroxyethyl)piperazine-1-(2-ethanesulfonic acid)
HSP90	Heat shock protein, number 90
IARC	International Agency for Research on Cancer
IEF	Isoelectric Focusing
IPG	Immobilized pH gradient
IQ	2-Amino-3-methylimidazo- $[4,5-f]$ quinoline
MAP kinase	Mitogen-activated protein kinase
MeIQX	2-Amino-3, 4-dimethylimidazo- [4,5-f] quinoline
MEM	Minimum Essential Medium
MeOH	Methanol
MDR	Multidrug resistance gene
MRP	Multidrug resistance protein
NAD(P)H	Nicotinamide adenine dinucleotide phosphate
NADH	Nicotinamide adenine dinucleotide
NHR	Nuclear Hormone Receptor
NNK	4-(methylnitroso)-1-(3-pyridyl)-1-butanone
NQO1	NAD[P]H:quinine acceptor oxidoreductase
Nrf	Nuclear factor, erythroid-derived 2-like (transcription factor)
PAR	Pregnane activated receptor
PBREMa	Phenobarbitone Response Element Modulator- α
PCB	Polychlorinated biphenyls
PGHS	Prostaglandin-H synthase
PhIP	2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyridine
pi	Isoelectric point
pNP	<i>p</i> -Nitrophenol phosphate

PPAR-a	Peroxisome Proliferator Activated Receptor- α
ppm	Parts per million
PVDF	Polyvinylidene difluoride
PXR-RE	Pregnane X receptor response element
PXR	Pregnane X Receptor
RMIT	Royal Melbourne Institute of Technology
ROS	Reactive oxygen species
s.e.m	Standard error of the mean
SDS	Sodium dodecyl sulfate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
SXR	Steroid X receptor
TLC	Thin layer chromatography
UDPGA	Uridine di-phosphate glucuronic acid
UGT	Uridine di-phosphate-glucuronosyl transferase
XME	Xenobiotic metabolising enzyme
XRE	Xenobiotic response element