

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CHARACTERISATION OF RYANODINE RECEPTOR EXPRESSION IN THE RAT COCHLEA

RACHEL MORTON-JONES

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

Molecular Physiology Laboratory

Department of Physiology

Faculty of Medical and Health Science

University of Auckland

2007

ABSTRACT

Increases in intracellular Ca^{2+} play a central role in cochlear function. The ryanodine receptor (RyR) intracellular Ca^{2+} release channel, a ubiquitous element of Ca^{2+} signalling, has been implicated in the regulation of sound transduction and auditory neurotransmission. Despite this, the molecular basis underlying RyR-mediated Ca^{2+} signalling in the cochlea has been limited.

This thesis investigates the molecular and functional characterisation of RyR expression in the cochlea. RT-PCR analysis showed expression of RyR1, RyR2 and RyR3 isoform mRNA transcripts in the rat cochlea and also in the spiral ganglion. Localisation of RyR protein revealed differential expression of these isoforms in the cochlea. Strong RyR immunolabelling for RyR1, RyR2 and RyR3 were detected in the spiral ganglion neuron (SGN) cell bodies. RyR3 labelling extended to the synaptic terminals innervating the inner and outer hair cells. RyR2 expression also occurred in the inner hair cells and supporting cells of the organ of Corti. Cells associated with ion homeostasis in the cochlea were also labelled, including RyR1 in spiral limbus interdental cells, and RyR2 and RyR3 in spiral prominence epithelial cells and stria vascularis basal cells. In the SGN cell bodies, confocal imaging of Ca²⁺ store release confirmed the presence of a functional RyRgated Ca^{2+} store. Superfusion of glutamate and α -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) evoked large Ca²⁺ responses in the SGN cell bodies that were dependent upon Ca²⁺ entry. However, subsequent depletion of SGN RyR-gated Ca2+ stores substantially reduced the glutamate- and AMPA-induced Ca²⁺ responses, demonstrating that the majority of the Ca²⁺ signal derived from RyR-gated Ca2+ stores via Ca2+ induced Ca2+ release. Involvement of the AMPA/Kainate-type glutamate receptor was confirmed by elimination of glutamate- and AMPAinduced Ca²⁺ responses with an AMPA/Kainate receptor antagonist.

These findings support a role for RyR in the regulation of auditory neurotransmission, sound transduction and cochlear electrochemical homeostasis. These data also demonstrate coupling between somatic AMPA-type glutamate receptors and RyR-gated Ca²⁺ stores, which is likely to influence auditory neurotransmission.

ii

ACKNOWLEDGEMENTS

- I would first like to express my gratitude and appreciation to my supervisor Associate Professor Gary Housley for his guidance and support throughout this project. Thank you for your advice and for sharing your time and technical expertise.
- To my co-supervisor Professor Mark Cannell I would like to express my thanks for his advice during the preparation of the manuscripts published during this study. I would also like to thank Professor Mark Cannell and Dr Christian Soeller for the use of their equipment. My thanks also go to Angus McMorland for his technical help.
- I would like to thank my Advisor Professor Peter Thorne for his continued support and advice.
- To Nick Raybould a very big thank you for all your help whether it was big or small.
- Special thanks to Dr Denise Greenwood for her technical advice and for all her encouragement.
- To the members of the Molecular Physiology Laboratory; Nick Raybould, Meagan Barclay, Young-Soo Kim, Lin-Chien (Synaptic Function Laboratory), Dr Srdjan Vlajkovic, Mary O'Keeffe, Cindy Guo (Auditory Neurobiology Laboratory), and Vinthiya Param (Cochlear Physiology Laboratory); thank you for your friendship, for the many laughs, encouragement and support.
- I would like to acknowledge the Deafness Research Foundation of New Zealand and the University of Auckland for awarding me PhD scholarships. This research was supported by the Marsden Fund and Deafness Research Foundation.
- To my husband (Stephen) and son (Peter) my sincere gratitude and appreciation. Thank you so much for your support in everything and for your unwavering patience.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEGEMENTS	
TABLE OF CONTENTS	
LIST OF FIGURES	viii
ABBREVIATIONS	Х

I.	INT	ROL	DUCTION
	1.1	The	Peripheral Auditory System 1
	1.2	The	Cochlea
	1.3	The	Endocochlear Potential
	1.4	The	Organ of Corti
	1.4.	1	Sensory hair cells
	1.4.	2	Supporting cells
	1.5	Sou	nd Transduction
	1.5.	1	Inner Hair Cells
	1.6	The	Cochlear Amplifier9
	1.7	Ana	atomy of Auditory Neurotransmission
	1.7.	1	Cochlear Afferent Innervation
	1.7.	2	Cochlear Efferent Innervation
	1.8	Neu	arochemistry of Auditory Neurotransmission14
	1.8	.1	Neurotransmitters at the IHC afferent synapse14
	1.8	.2	Neurotransmitters at the IHC efferent synapse17
	1.8	.3	Neurotransmitters at the OHC afferent synapse18
	1.8	.4	Neurotransmitters at the OHC efferent synapse19

iv

1.9 Ca ²⁺	Signalling	
1.10 Ryanodine Receptors		
1.10.1	Molecular Physiology of RyR21	
1.11 Ryan	odine Receptor Activation	
1.11.1	Depolarisation-induced Ca ²⁺ release	
1.11.2	Ca ²⁺ -induced Ca ²⁺ release (CICR)	
1.11.3	IP ₃ -dependent Ca ²⁺ -induced Ca ²⁺ release (ICICR)	
1.12 Term	nination of RyR-mediated Ca ²⁺ release	
1.13 Regu	lation of RyR	
1.14 RyR	-mediated Ca ²⁺ Signalling	
1.15 Intra	cellular Ca ²⁺ Stores in the Cochlea	
1.15.1	IP ₃ R-gated Ca ²⁺ Stores in the Cochlea	
1.15.2	RyR-gated Ca ²⁺ stores in the Cochlea	
1.16 OBJ	ECTIVES	
II. MATER	IALS AND METHODS	
2.1 Tiss	ue Collection	
2.2 Ana	lysis of RyR mRNA transcripts by the reverse transcription-polymerase chain	
reaction		
2.2.1	RNA Extraction	
2.2.2	Reverse Transcription	
2.2.3	Polymerase Chain Reaction	
2.2.3.1	Primer Design45	
2.2.3.2	Housekeeping Genes	
2.2.3.3	PCR Protocol	
2.2.4	Purification of PCR Products	

	2.2.5	DNA Sequencing
2.	.3 I	Localisation of RyR Expression by Immunocytochemistry
	2.3.1	Tissue Preparation
	2.3.2	Primary Antibody Incubation
	2.3.3	Immunoperoxidase Histochemistry
	2.3.4	Immunofluorescence
2.	.4 (Confocal Ca ²⁺ Imaging of RyR-Gated Ca ²⁺ Stores
	2.4.1	Cochlear Slice Preparation
	2.4	.1.1 Acute Cochlear Slice Preparation
	2.4	.1.2 Organotypic Cochlear Slice Preparation
	2.4.2	Retrograde Labelling of SGN Cell Bodies
	2.4.3	Ca ²⁺ Imaging
	2.4.4	Drugs and Solutions
	2.4.5	Statistical Analysis
III.	RES	ULTS
3	,1	RyR mRNA transcript analysis
3	.2	Localisation of RyR Protein Expression in the Cochlea
3	.3	RyR-gated Ca ²⁺ Release in the SGN of Acute Slices
3	3.4 RyR-gated Ca ²⁺ Release in the SGN of Organotypic Slices	
3	3.5 Mechanism of RyR Activation74	
IV.	DISC	CUSSION95
4	.1	Characterisation of RyR Expression in the Cochlea95
4	.2	Functional RyR-gated Ca ²⁺ stores in the SGN105
4	1.3	AMPA Receptors trigger Ca^{2+} release from RyR-gated Ca^{2+} stores in the SGN 107
4	1.4	Functional Implications of AMPA Receptor-mediated CICR in the SGN 114

V.	SUMMARY AND CONCLUSIONS11	16
VI.	BIBLIOGRAPHY	18

LIST OF FIGURES

Figure 1.1	Schematic of the cochlea2
Figure 1.2	Cross section of the cochlea duct7
Figure 1.3	Innervation of the sensory hair cells13
Figure 1.4	Schematic of RyR125
Figure 3.1	Identification of RyR isoform mRNA expression in the adult rat cochlea and
	spiral ganglion57
Figure 3.2	Localisation of RyR protein expression in the cochlea58
Figure 3.3	Localisation of RyR isoform-specific immunoreactivity in the cochlea61
Figure 3.4	High resolution images of RyR isoform-specific immunoperoxidase
	labelling62
Figure 3.5	RyR2 and RyR3 immunofluorescence64
Figure 3.6	Confirmation of RyR1 and RyR2 antibody specificity in adult rat skeletal and
	cardiac muscle
Figure 3.7	Identification of RyR mRNA and protein expression in P10 rat SGN70
Figure 3.8	RyR-mediated increases in $[Ca^{2+}]_i$ in neonatal SGN cell bodies in an acute
	slice preparation71
Figure 3.9	RyR-mediated increases in $[Ca^{2+}]_i$ in neonatal SGN cell bodies in an
	organotypic cochlear slice preparation73
Figure 3.10	High K^+ solution evokes a large transient increase in $[Ca^{2+}]_i$ levels in the SGN
	cell bodies76
Figure 3.11	High K^+ solution evoked an increase in $[Ca^{2+}]_i$ levels in the SGN cell
	bodies77
Figure 3.12	P2X and P2Y receptor agonists evoke a large transient increase in $[Ca^{2+}]_i$
	levels in the satellite cells but not in the SGN cell bodies

Figure 3.13	Effect of ACh receptor and L-type Ca^{2+} channel modulators on $[Ca^{2+}]_i$ levels in
	the SGN cell bodies82
Figure 3.14	Glutamate evoked transient increases in $[Ca^{2+}]_i$ levels in the SGN cell bodies
	that were dependent upon Ca ²⁺ entry85
Figure 3.15	Glutamate evoked an increase in $[Ca^{2+}]_i$ levels in the SGN cell bodies86
Figure 3.16	Glutamate-induced Ca ²⁺ responses were unaffected by Cd ²⁺ 87
Figure 3.17	The glutamate-evoked increases in $[Ca^{2+}]_i$ predominantly arose from activation
	of RyR-mediated Ca ²⁺ stores91
Figure 3.18	AMPA-type glutamate receptors activate RyR-mediated Ca ²⁺ stores92
Figure 3.19	Glutamate-induced Ca ²⁺ responses are mediated through AMPA-type
	glutamate receptors93
Figure 3.20	Signalling pathways in the SGN cell bodies

LIST OF TABLES

Table 3.1 Overview of RyR protein expression in the adult rat cochlea

ABBREVIATIONS

$[Ca^{2+}]_i$	intracellular Ca ²⁺ concentration
ACh	acetylcholine
AMPA	α -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
ATP	adenosine 5'-triphosphate
BK	big conductance Ca ²⁺ -activated K ⁺ channel
bs	basal cells
bp	base pair
Ca-F	Ca ²⁺ -free solution
Ca ²⁺	calcium ions
САР	compound action potential
сс	Claudius' cells
cDNA	complementary deoxyribonucleic acid
CICR	calcium-induced calcium release
СМ	cochlear microphonic
dc	Deiters' cells
DHPR	dihydropyridine receptor
DICR	depolarisation-induced Ca ²⁺ release
DMEM	Dulbecco's modified Eagle's medium
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DNQX	6,7-Dinitroquinoxaline-2,3-dione
EC	excitation contraction
EGTA	ethylene glycol-bis-(β -aminoethyl ether)- N , N , N' , N' -tetraacetic acid
ER	endoplasmic reticulum

GluR	glutamate receptor
HBSS	hank's balance salt solution
HRP	horseradish peroxidase
ICICR	IP ₃ -dependent Ca ²⁺ -induced Ca ²⁺ release
idc	interdental cells
iGluR	ionotropic glutamate receptor
IHC	inner hair cell
IP ₃ R	inositol-1,4,5-trisphosphate receptor
isc	inner sulcus cells
isp	inner spiral plexus
K^+	potassium ions
Mg ²⁺	magnesium ions
MET	mechanoelectrical transduction
mGluR	metabotropic glutamate receptor
mRNA	messenger ribonucleic acid
NGS	normal goat serum
NMDA	N-methyl-D-aspartate
NO	nitric oxide
o/C	organ of Corti
OCT	optimal cutting tissue mount
OHC	outer hair cell
OSF	outer spiral fibre
Р	postnatal day
PB	phosphate buffer
PBS	phosphate buffered saline

xi

pc	pillar cell
RT-PCR	Reverse Transcription-Polymerase Chain Reaction
RyR	ryanodine receptor
SGN	spiral ganglion neuron
SK	small conductance Ca^{2+} -activated K^+ channel
sl	spiral limbus
sp	spiral prominence
SR	sarcoplasmic reticulum
Std	standard external solution
SV	stria vascularis
tm	tectorial membrane
TMRD	tetramethylrhodamine-conjugated dextran
UTP	uridine 5'-triphosphate