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Abstract 

We use decision making experiments to study the impact of different pay schemes and feedback 

on performance and learning in a cognitively challenging task.  In each of multiple rounds, 

subjects are presented with two cue values, Cue A and Cue B, and asked to predict the value of a 

third variable X, which is derived from a function of the two cue values.  We measure performance 

with the forecast error of the prediction, the absolute difference between the actual and predicted 

values of X.  Our pay schemes include: (1) piece rates, where subjects are paid on the basis of only 

their own performance; (2) a two-person winner-takes-all-tournament, where subjects are paired 

and the one with the highest performance earns a positive payoff while the other earns nothing; 

and 3) a fixed salary, where subjects are paid a flat lump-sum amount regardless of their 

performance.  These pay schemes make up three of our experimental treatments: the Piece Rate, 

Tournament and Salary treatments.  In our fourth treatment – the Piece Rate Win Lose treatment 

– we investigate the role of relative performance feedback by paying people piece rates based on 

their own performance, while informing them about whether they performed better or worse than 

a random partner.  We find that the Piece Rate Win Lose and Salary treatments perform better 

than the Piece Rate and Tournament treatments, with no difference in performance between the 

former and latter two treatments.  However, we only observe significant learning in the 

Tournament treatment. 

 

JEL Codes: D83, J24, J33 
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1. Introduction 

A fundamental objective in economics is to maximise the productivity of workers, as this is 

necessary for a productive economy.  While labour productivity is multi-dimensional and is 

affected by a range of factors, we focus on worker-level productivity and see how it is affected by 

two factors: the choice of pay scheme, and the feedback that is provided to the workers – in 

particular whether workers get feedback only on their own performance or whether they get 

feedback on others’ performance as well.  To the firm, these two factors are easily manipulated 

and are relatively cost effective ways of influencing worker effort, if indeed these manipulations 

can be shown to have an influence on worker productivity.  This thesis utilises economic decision-

making experiments to study how worker productivity is affected by various pay schemes, as well 

as how it is affected by the provision of feedback about the performance of others.   

We also study how these two factors influence learning over time.  Learning is an important 

element of productivity as most tasks require some degree of learning over time in order to do 

well.  As learning occurs, workers pick up skills, heuristics and experience which improves their 

productivity.  To our knowledge, there has been no prior research into how pay schemes and 

relative feedback affect learning.  

In this thesis, we focus on three different pay schemes: piece rates, fixed salaries and 

tournaments.  These pay schemes differ in terms of the incentives that they provide.  Piece rates 

pay people according to their performance, so that they are motivated to perform.  Piece rates 

require performance to be accurately observed, measurable and attributable to individual workers.  

In practice, this is not always the case. 

Fixed salaries, on the other hand, are often employed when piece rates are not appropriate.  

Salaries pay workers based on the input of time, and does not depend on performance.  Since 

salaries do not change with increased levels of effort or performance, workers do not have any 

incentive to exert effort over-and-above the minimum which is required, particularly when effort 

is costly. 

Rank-order tournaments are an alternative method to pay workers.  Tournaments pay 

workers depending on how they perform compared to others.  If a worker performs better than 
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his peers, he receives a larger ‘prize’, while other workers receive smaller ones or none at all.  An 

employee’s bonus is an example of a tournament-based scheme, where the relative performance 

of a particular worker will influence the manager’s decision whether to pay a bonus or not and 

who to pay it to. 

Theoretical research has shown that tournaments elicit a similar level of effort as do piece rates 

(Lazear & Rosen, 1981).  Tournaments incentivise performance primarily through competition 

between workers.  In order to earn more money, a worker will need to exert greater effort to 

improve their performance.  If this increased performance leads to a higher rank, the worker’s 

relative position improves and is rewarded with a larger monetary payment.  If increased 

performance is insufficient to improve one’s rank, there will be no subsequent increase in earnings.  

This could be because the performance of others also simultaneously improve.  A worker will not 

necessarily earn more even if his absolute performance improves – this contrasts with piece rates 

where greater performance guarantees higher earnings.  As a consequence, workers may not want 

to increase performance over and above what is required to attain a particular rank, since excess 

performance does not improve payoffs. 

While tournaments incentivise performance through rank-dependent payoffs, there may exist 

other factors that also motivate performance.  The act of competing may itself motivate workers 

to perform, even when monetary payoffs are not tied to the outcome of winning or losing.  For 

example in a casual game of tennis, even when there are no tangible prizes or rewards for the 

winner, each player may still want to outplay his rival.  This could be because players are 

stimulated by competition, or because they are motivated by the status and esteem that is 

associated with winning.  In the case of tournaments, workers may be motivated to work harder 

in order to improve their chances of winning, even if they are not tangibly rewarded for it.  We 

will refer to this notion of competition as ‘competition for rank’, where it is not linked to any 

monetary or tangible rewards.  We study the effect of rank competition by providing workers 

feedback which informs them of how well they are performing relative to their peers, with such 

feedback having no effect whatsoever on monetary payoffs. 

We focus on three primary research questions.  The first asks which of the incentives – piece 

rates, fixed salaries and tournaments – induce the best performance from workers.  Piece rates 
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and tournaments depend on performance, while salaries do not.  In addition to the different 

extrinsic incentives provided by each pay scheme, these different schemes might also influence 

workers’ intrinsic motivation in different ways.  A strand of literature suggests that performance 

pay schemes reduce peoples’ intrinsic motivation to work, suggesting that salaries might not 

perform as poorly as would be otherwise anticipated (see Deci, Koestner, & Ryan, 1999).  The 

overall effect brought about by the choice of pay scheme is therefore ambiguous.  The literature 

regarding the efficacy of performance pay schemes remains contentious. 

Our second research question aims to isolate the motivating effects of rank competition from 

competition for payoffs, both inherent in tournaments.  Rank competition refers to the 

competition that is independent of monetary rewards, and is brought about solely by feedback 

on relative performance.  If players are able to gauge their performance vis à vis others, they may 

improve their performance in order to improve their relative standing amongst their peers.  In 

other words, rank competition may itself motivate performance under tournaments.  On the 

other hand, the rank-dependent payoffs inherent in tournaments could also play a part in 

motiving performance.  People may work harder in order to attain a higher rank, for which they 

are rewarded with a larger monetary payoff.  Since both rank competition and payoff competition 

plausibly motivate performance, our second research question decomposes these effects and asks 

how each of these affects tournament performance.   

Our final research question relates to learning.  How do different pay schemes, as well as 

feedback on relative performance, affect people’s learning?  As learning occurs, people pick up 

skills, heuristics and experience which assists them to perform.  Learning therefore plays a critical 

role in one’s performance as it promotes better long term performance. 

Our three research questions are re-iterated below: 

R1. 
How effective are piece rates, tournaments and fixed salaries in motivating 

worker performance? 

  

R2. 
How do rank feedback and rank-dependent payoffs influence performance under 

tournaments? 
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R3. 
How is learning affected by different pay schemes and the provision of relative 

performance feedback? 

We examine these three research questions with a series of laboratory experiments.  Lab 

experiments are appropriate since real-world data on worker performance and pay is difficult to 

obtain given the commercial sensitivity of micro-productivity data.  Furthermore, lab 

experiments give us latitude to control for various factors, which may influence our results. 

Our experiments utilise a real-effort stock forecasting task to simulate the tasks that workers 

face in their jobs.  In this task, players in each of twenty rounds observe two numerical cue values, 

denoted Cue A and Cue B, and are asked to predict the underlying stock price X.  This underlying 

stock price X is based on an underlying function of the two cue values.  This task is cognitively 

challenging, reminiscent of the everyday tasks that workers face in their jobs.  The difficult nature 

of this task, as well as the fact that players will need to uncover the underlying relationship in 

order to perform well, means that it is suitable to study learning.  We measure performance in 

this task with the absolute forecast errors of the prediction, the absolute difference between the 

actual and predicted value of the stock price.  The absolute forecast error indicates the accuracy 

of the forecast. 

We pay our worker participants in three different ways: piece rates, tournaments and salaries.  

These three pay schemes constitute different treatments of our experiment – the Piece Rate, 

Tournament and Salary treatments.  A further treatment manipulates feedback on relative 

performance.  In the Piece Rate Win Lose treatment, workers are paid according to piece rates, 

but are provided additional information about whether they performed better or worse than a 

randomly matched, anonymous partner.  Here relative feedback has no influence on monetary 

payoffs, allowing us to analyse the effect of rank competition.   

Our findings show that the S treatment performers better than the PR and T treatments, 

suggesting that performance pay schemes are not as effective as fixed salaries in motivating 

performance.  In terms of the tournament decomposition, we find that relative performance 

feedback is effective in motivating performance, with the PRWL treatment performing better 

than the PR treatment.  We find that payoff competition plays a smaller role than rank 

competition in motivating performance under tournaments.   
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In terms of learning, however, we only find significant evidence of learning in the T treatment.  

Since learning was not observed in the PRWL treatment, we attribute such learning to 

competition over the rank-dependent payoffs inherent in tournaments.  Learning is observed for 

both high and low performers in the T treatment. 

The thesis proceeds in the following manner.  Chapter 2 surveys the various strands of 

literature that are relevant to our study.  Chapter 3 outlines the experimental design and 

procedures.  Chapter 4 presents our overall results at the aggregated level.  Chapter 5 focuses on 

the dynamics of learning.  Chapters 6 and 7 disaggregates results by players of different ability 

and gender respectively, allowing us to uncover finer results which could be masked by 

aggregation.  Chapter 8 concludes. 
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2. Literature Review 

This chapter reviews the literature that relates to our research questions.  In particular, we focus 

on studies that look at the motivating effects associated with pay schemes and relative 

performance feedback.  Due to the large number of papers that is covered, we organise the review 

according to our three research questions. 

We begin by outlining the framework for which we will adopt when interpreting empirical 

results.  Next, we define and classify different pay schemes and discuss their theoretical properties.  

In line with our first research question, the following section of the review covers empirical studies 

that look at the motivating effects of different pay schemes. 

Our second research question decomposes the effects that relative performance feedback and 

payoffs have under tournaments.  We review the relevant literature, most of which focuses on the 

effect relative feedback has on performance.  We also discuss the small number of papers that 

decompose tournaments and are able to shed light on the effect of rank-dependent payoffs. 

Our third research question focuses on learning.  To our knowledge there are few papers that 

focuses on learning in the context of pay schemes and feedback.  We review these papers, as well 

as those that are related to the notion of learning in general. 

The literature review concludes with a discussion of the novelty of our study.  Our research 

methodology is laid out in the following chapter. 

2.1. Conceptual Framework 

2.1.1. Principal-Agent Model 

We begin this literature review by explaining the conceptual framework which we will adopt 

when discussing the various effects that could come into play.  Once this framework has been 

established, we will define and classify different types of pay schemes. 

It is standard in the personnel economics literature to model workers’ productivity in a 

principal-agent framework.  The firm (principal) pays workers according to a particular pay 

scheme in order to produce output 𝑞𝑞, for which the firm sells at price 𝑃𝑃, the price which they can 
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sell this output at.1  The worker (agent) produces this output 𝑞𝑞 by exerting effort2 𝑒𝑒, according 

to some production function: 

𝑞𝑞 = 𝑓𝑓(𝑒𝑒) + 𝜀𝜀 

We assume that higher effort entails higher production ( 𝑓𝑓′(𝑒𝑒) > 0 ) and that there are 

diminishing returns to effort (𝑓𝑓′′(𝑒𝑒) < 0).  Since the production function is specific to a 

particular task for a particular worker, we will make no further assumptions regarding it.  In some 

instances, where output cannot be reliably measured or observed, the production function may 

be augmented with some noise 𝜀𝜀.  If there is output can be perfectly monitored, then 𝜀𝜀 = 0. 

Workers decide on the level of effort to exert in order to produce their desired output.  

However, effort is costly to the worker.  The cost of effort 𝑐𝑐(𝑒𝑒) is assumed to be increasing and 

convex in effort.  Higher effort is more costly than less (𝑐𝑐′(𝑒𝑒) > 0) and effort becomes increasing 

costly to exert (𝑐𝑐′′(𝑒𝑒) > 0).  We consider workers of different ability to have different marginal 

effort costs, whereby marginal costs are lower for higher ability workers. 

As 𝑞𝑞 is the production associated with individual workers, it also represents their level of 

performance.  The ratio of performance to effort 𝑞𝑞 𝑒𝑒⁄  therefore measures the productivity of 

workers.  Since effort is typically not empirically observable, the distinction between performance 

and productivity is much less relevant in practice.  As such, we will use the terms ‘performance’ 

and ‘productivity’ interchangeably.  Where it is relevant, we will infer effort from observed 

performance, drawing from the assumption that higher effort is necessary for higher performance. 

Workers choose the amount of effort to exert in order to maximise their utility, which is the 

payment received from the firm according to a particular pay scheme less the cost associated with 

the effort exerted.  Without loss of generality, this will yield a first order condition which suggests 

the worker should exert effort such that the incremental pay associated with (the output generated 

from) a marginal increase in effort is equal to their marginal cost of effort. 

                                                 

1  For simplicity, we assume the firm is perfectly competitive in the output market, so it has no influence over the market price. 

2  Here we refer to effort in terms of its intensity.  As such, we do not consider the duration of time that a worker works for as their effort. 
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Anticipating the effort exerted by the worker and the associated output, for a given set of pay 

scheme parameters (we explain this below), the firm chooses these parameters in order to 

maximise their profit.  We will not discuss the firm’s optimisation further, since we primarily 

focus on worker performance. 

2.1.2. Taxonomy of Pay Schemes 

We now define and classify different pay schemes.3  The pay schemes that we discuss here differ 

along three dimensions: 1) whether or not the pay scheme depends on performance; 2) if it 

depends on performance, whether the pay scheme depends on absolute or relative performance; 

and 3) whether the pay scheme is discrete or continuous. 

Fixed salaries (or wages)4 are a common pay scheme that is invariant to performance.  Workers 

receive the same pay whether they exert high or low effort, since the marginal pay with respect to 

output – and therefore effort – is zero.  Since effort is costly and is not rewarded, workers would 

be expected to exert zero effort under salaries.  This is the textbook example of moral hazard, 

whereby workers shirk under fixed wages once they have been hired. 

In contrast, piece rates depend on performance.  Total remuneration depends continuously 

on output, and is invariant to other factors.  Piece rates can be expressed as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 

where 𝑎𝑎 is the fixed component and 𝑏𝑏 is the marginal return on output 𝑞𝑞.  𝑎𝑎 is non-negative 

while 𝑏𝑏 is strictly positive.  The fixed component 𝑎𝑎 can be thought of as a base salary which is 

earned even if output is zero.  𝑏𝑏 is sometimes itself referred to as the piece rate, representing the 

rate of earnings.  We will however refer to 𝑏𝑏 as the power of the piece rate, representing the stakes 

at play.  The piece rate is low-powered if 𝑏𝑏 is small, or high-powered if 𝑏𝑏 is large. 

From the perspective of workers, they will exert effort such that the marginal cost of effort is 

equal to the piece rate earnings associated with the marginal unit of effort.  This means that 

                                                 

3  See Prendergast (1999) for a review of various incentive schemes and related themes. 

4  We will use the terms ‘wage’ and ‘salary’ interchangeably in this thesis. 
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worker effort is positive and is typically considered to be high.  In other words, in theory, piece 

rates motivate workers to perform.  Piece rates therefore serve as the benchmark pay scheme. 

Distinction can also be made between pay schemes which are either continuous or discrete.  

The aforementioned piece rate is an example of a continuous pay scheme, where the marginal 

payoffs from increased output is strictly positive for any level of output.  A discrete pay scheme 

can be thought of as a lump-sum payment that is payable only when output exceeds a particular 

threshold.  Performance bonuses can be considered discrete performance pay if a fixed amount is 

paid to workers whose performance exceeds some predefined standard.  A discrete performance 

pay scheme will be defined to be one where the marginal payoffs from increased performance is 

zero for at least some interval of output, and is only strictly positive at the relevant threshold. 

The motivating effects from discrete performance-based pay schemes are somewhat complex.  

For simplicity, a two-tiered discrete pay scheme takes the form: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑎𝑎 𝑖𝑖𝑖𝑖  𝑞𝑞 < 𝑞𝑞�
𝑏𝑏 𝑖𝑖𝑖𝑖  𝑞𝑞 ≥ 𝑞𝑞�      𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎 < 𝑏𝑏 

With this discrete payment scheme, there are no incentives for the worker to produce output 

beyond the threshold level 𝑞𝑞�, since the excess output (𝑞𝑞 − 𝑞𝑞�) does not lead to any additional 

monetary reward while is costly in terms of effort.  Similarly, there are no incentives for workers 

to produce output levels in the open interval between 0 and the threshold output 𝑞𝑞�, since they 

will always be better off producing output of either 0 or 𝑞𝑞�, depending on their cost of effort.  

Consider some level of output less than 𝑞𝑞�.  A worker will only exert sufficient effort to reach 𝑞𝑞� 

by producing (𝑞𝑞� − 𝑞𝑞)  output if the incremental reward (𝑏𝑏 − 𝑎𝑎)  is sufficient to at least 

compensate for the additional cost of effort.  If the incremental reward is sufficient to compensate 

for the increase in effort required for attaining the higher level of payment, then it follows that 

the worker increases his output to reach the threshold 𝑞𝑞�.  Otherwise, the worker is better off 

producing output of 0, since any excess output incurs unnecessary effort which is not 

compensated for.  A rational worker should only be observed to produce output of either 0 or 𝑞𝑞�, 

depending on their cost of effort. 

There are clear similarities between the motivating effects of discrete performance pay and 

salaries in that the marginal incentives to perform is zero over a range of output levels.  In fact, 
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salaries which have a performance requirement would be considered a discrete performance pay 

scheme, since the flat payment is received only when performance meets or exceeds a prescribed 

level.  This type of scheme is most reminiscent to salaries in the real world, where there is a tacit 

understanding that workers will be laid off – earning nothing – if their performance is falls short 

of some standard. 

Tournament pay schemes can be considered a special form of discrete performance-based pay, 

where the performance standard is endogenised.  Rank-order tournaments (Lazear & Rosen, 

1981; Green & Stokey, 1983; Nalebuff & Stiglitz, 1983) pay fixed monetary ‘prizes’ depending 

on how people perform relative to others, whereby a higher prize is paid to those with a higher 

performance rank.  The key performance motivator in tournaments is the prize spread, the 

difference between the winning and losing prizes.  The wider the prize spread, the greater the 

incentives for winning relative to losing, better motivating players to perform. 

Theoretical tournament models show that they elicit a level of effort from workers analogous 

to that under piece rates.  We shall refer to this as the Piece Rate Equivalence property of 

tournaments.  In a lab experiment, Bull, Schotter, and Weigelt (1987) confirm Piece Rate 

Equivalence, where agents exert a similar level of effort under both tournaments and piece rates, 

although there is higher variation of effort choices under tournaments. 

As with discrete performance pay, a unit improvement in performance under tournaments 

does not lead to additional earnings if it is insufficient to increase the rank of an agent.  By contrast, 

continuous relative pay schemes reward the agent for their own performance, while penalises their 

pay against the performance of others.  Examples of continuous relative pay schemes can be found 

in Knoeber and Thurman (1994) and Bandiera, Barankay, and Rasul (2005), where individual 

performance in these schemes are evaluated against the average performance of all workers in an 

additive or multiplicative manner, respectively. 

Pay schemes that depend on relative performance inherently feature negative productivity 

spillovers.  As relative performance increases, it will adversely affect the (expected) earnings of 

others.  In a tournament setting, suppose an agent improves his rank and receives a higher prize.  

Due to the zero sum nature of performance ranks, this implies that the rank of someone else will 

fall, reducing their prize.  Similarly in continuous relative pay schemes, the pay of others will be 
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penalised by an increase in individual performance, ceteris paribus.  If agents have concerns over 

the welfare of others, perhaps with fairness considerations (Fehr & Schmidt, 1999), then they 

may choose to withhold their performance to mitigate the negative effects they impose on others 

(see Bandiera et al., 2005). 

Different pay schemes are also unique in their sorting efficiency.  When there is a distribution 

of worker abilities, piece rates are shown both theoretically and empirically to attract and retain 

the high ability workers (Lazear, 1986, 2000; Dohmen & Falk, 2011).  The performance 

improvements that arise from sorting are due to average performance increasing when the low 

performance group drop out, rather than due to improvements in individual performance per se.  

In our study we focus on worker-level productivity associated with different pay schemes, and for 

this reason the effects that arise from sorting and selection are not looked at in this thesis.   

2.2. Extrinsic Incentives versus Intrinsic Motivation 

We have previously discussed the extrinsic incentives associated with different pay schemes.  

These extrinsic incentives suggest that performance pay schemes are effective in motivating 

performance.  On the other hand, fixed salaries do not incentivise performance.  We will discuss 

empirical studies comparing these pay schemes shortly.  This literature is contentious, with a 

number of papers showing that performance pay schemes are actually counter-productive in that 

they reduce performance.5   

These papers draw on the notion of intrinsic motivation and suggest that extrinsic incentives 

‘crowd out’ a person’s innate desire to perform.  A person is considered to be intrinsically 

motivated to perform a particular task if there is no apparent reward at stake for doing it – the 

only reward is attained by doing the task itself (Deci, 1972).  Conceptually, intrinsic motivation 

is closely related to the effort that people exert. 

                                                 

5  Although the terms “performance” and “output” are used repeatedly here to refer to the basis of “performance pay”, it should be noted that 
payment schemes have applications in contexts outside the workplace.  “Performance” should be more accurately thought of as the outcomes that 
are tied to the performance pay schemes, although we will refer to the former for ease of exposition. 
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Extrinsic incentives can reduce a person’s intrinsic motivation through various channels.  For 

example, the Overjustification Hypothesis (Lepper, Greene, & Nisbett, 1973)6 posits that if a 

person is initially intrinsically motivated to perform a task in the absence of pay, but are 

subsequently offered a piece rate on his performance, then he faces too many reasons to perform.  

As a result, his intrinsic motivation falls to balance such ‘overjustification’.   

In other words, while extrinsic incentives can induce effort, they can also reduce it by 

negatively impacting intrinsic motivation.  Whether performance pay schemes motivate 

performance or not depends on the relative magnitudes of the extrinsic incentive and intrinsic 

motivation effects. 

In the following section, we draw on the relevant literature to discuss empirical papers relevant 

to our first research question, which asks which pay schemes of piece rates, tournaments and fixed 

salaries elicit the highest level of performance from people.   

2.3. Evidence on Pay Schemes 

2.3.1. Performance Incentives and No Pay 

To study whether performance pay schemes are effective in incentivising behaviour, we first 

review studies that compare the performance of people when they are not paid to when they are 

paid according to a performance pay scheme.  In many circumstances it is not the norm to be 

paid to do certain activities, for example when people are volunteers.  If people are motivated by 

the performance pay schemes, then we would expect them to outperform those who are not paid 

at all for the same work.   

Gneezy and Rustichini (2000b) studied how student volunteers respond to financial 

incentives.  In Israel a number of ‘donation days’ are publicised each year where high school 

students would go door-knocking around the community to solicit charitable donations.  The 

authors offered to pay one group of student volunteers a piece rate of 1% of the donations they 

collected on the day, and another group was offered 10% of the collection total.  It was made 

                                                 

6  We discuss other channels for which intrinsic motivation can be crowded out in Section 2.3.4. 
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clear that this percentage payment to them was not deducted from the donation money, but was 

rather paid out from separate funds available to the authors.  A third group of students served as 

the control and did not receive any money: they collected money out of their own free will.  For 

volunteers who were paid 1% of the donation money, the average donations solicited was lower 

than the control group, who were not paid for their services.  Those who were paid 10% solicited 

a similar amount of money as the control group, though higher than those paid 1%. 

Fryer (2011) found that financial payments made to high school students had no effect on 

their academic performance.  In a large scale field experiment involving numerous schools in New 

York City and Chicago, he compared the academic performance of students who were 

incentivised to study with control groups who were not paid.  In New York City, participating 

students received $5 U.S. for completing each test and a piece rate on performance in each; 

students could earn up to $25 for each of ten tests.  The incentives were high powered, with the 

average student receiving $140 out of a maximum of $244.  Students performed no differently 

to the control group who were not paid for their study. 

Fryer also paid students in Chicago based on the letter grades in each of five courses issued in 

five-weekly reports.  The discrete performance pay scheme paid students $50 for each A-grade, 

$35 for each B, $20 for each C and nothing for grades D and below.  On average, these Chicago 

students received $696 out of the maximum $1875 that could be earned.  Despite the sizeable 

incentives that were offered, the average grades of treatment students were similar to those at 

control schools, who were not paid. 

In an experimental setting, Charness and Gneezy (2009) analysed whether a discrete 

performance-based pay scheme was effective in influencing students’ long term gym-visiting 

behaviour.  120 students from the University of Chicago, who received gym membership as part 

of their tuition fees, were recruited for the study.  Each student participant was asked to sign a 

consent form which allowed the authors to access their access card records for past and future 

gym attendance.  Forty students served as the control group and were not paid at all, but were 

informed of the benefits of exercise.  Forty other students were paid $25 if they visited the gym 

at least once in the upcoming week.  The last group of forty students were paid $25 to visit the 

gym once in the following week, as per the previous group, but when they arrived to collect this 
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initial payment, were offered an additional payment of $100 if they went to the gym 8 additional 

times across the next four weeks.  The two treatment groups who were incentivised for gym 

attendance were also provided information about the benefits of exercise. 

Participants were drawn to these incentives and increased their gym attendance accordingly 

to the level required.  The pre-intervention level of gym attendance averaged 0.7 times per week.  

In the first week after the incentives were offered, when they had to visit the gym once, gym 

attendance increased to 1.7 times in the one-time group and 1.5 times for the eight-times group.  

The eight-times group were required to visit the gym eight more times over the following 4 weeks 

in order to collect an additional payment.  Gym attendance increased once again to a level of 2.3 

times a week.  By comparison, there was no change in the average gym visits for the control group 

who were not paid.  This suggests that the incentives have been effective in driving this behaviour. 

By and large, the studies in this section found that performance pay schemes have mixed 

results when they are implemented.  Gneezy and Rustichini (2000b) showed adverse effects when 

a low powered incentive is introduced.  Fryer (2011) found that high powered payments tied to 

academic performance had no effect on student achievement.  Charness and Gneezy (2009), on 

the other hand, found that financial incentives were effective in encouraging students to visit the 

gym.   

The common element in each of these papers is that people are provided incentives for 

something that they usually would not expect payment from, and their behaviours compared to 

a control group who were not provided these incentives.7  The notion of being paid in this context 

could potentially reduce people’s intrinsic motivation, as it changes the nature of the task or 

activity, reducing their motivation to do what they were willing to do in the absence of financial 

incentives.  We elaborate on this, and other possible explanations in Section 2.3.4. 

                                                 

7  There are also papers that look at the effect of performance-based penalties to deter behaviour – the counterpart to incentives to encourage 
behaviour.  See Gneezy and Rustichini (2000a) and Holmås, Kjerstad, Lurås, and Straume (2010).  These studies find that performance-based 
penalties are counter-productive and do not have their desired effect. 



15 

2.3.2. Performance Incentives and Fixed Salaries 

While the previous studies showed mixed effects when performance pay schemes were compared 

to instances when people were not paid, we can also look at the effect of performance pay schemes 

by comparing them to fixed salaries.  Although the situation of no-pay can be considered an 

instance of a zero salary, we make a distinction between these since there are differences with 

respect to whether people expect to be paid or not.  There is, therefore, a different reference point 

when the pay scheme changes or is introduced.   

Lazear (2000) reported on the productivity improvements Safelite Glass Corporation realised 

when they decided to shift its employees from hourly wages to piece rates during 1994-5.  The 

new piece rate paid workers for every windscreen they installed, while guaranteeing them a 

minimum wage if their weekly pay under piece rates fell short.  Workers’ productivity, measured 

by the number of windshields installed per day increased 44% after piece rates replaced the wages; 

half of this productivity gain was attributed to the incentives brought about by piece rates. 

In a field experiment with Canadian tree-planters, Shearer (2004) finds that they are more 

productive under paid a piece rate than a fixed wage.  The work requires physical effort: digging 

a hole, planting a seedling and filling the hole back.  In the industry, workers are usually paid 

piece rates on the number of seedlings they plant, without any base wage.  These piece rates are 

only made known to workers at the start of each work day, as it varies with the physical terrain 

of the land and how difficult it is to plant on.  However, on occasion when unexpected 

circumstances arise, workers are paid a fixed wage for the day’s work, with total remuneration 

similar to what can be earned under piece rates.  In their experiment, the output of 9 male tree-

planters was tracked over a number of days.  Workers were assigned to work under piece rates or 

a fixed wage at the start of each planting day, such that they planted an equal number of days 

under each pay scheme.  On average, workers planted 1256 trees per day under a piece rate, 

compared to 1037 trees under paid fixed wages.  This represents 21% higher performance under 

piece rates. 

A number of lab experiments have also looked at how performance pay schemes compare to 

salaries.  Gneezy and Rustichini (2000b) reports on a real-effort experiment with students 

working on an IQ task.  In their experimental control, participants were paid a flat $60.  In other 
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treatments, participants were paid a piece rate of 10c, $1 or $3 for each correct answer on top of 

the base $60.  They found that those who were paid the 10c piece rate performed worse than the 

control group who only received the flat $60, while the treatment groups who were paid the $1 

and $3 piece rate performed better than the baseline control.  Similarly Bellemare, Lepage, and 

Shearer (2010) found that participants in a data entry task were more productive when they were 

paid a piece rate compared to when they were paid a salary. 

These studies all show that piece rates are superior to salaries in motivating performance.  The 

empirical findings regarding performance pay being introduced to people who were not 

previously paid is less clear, though there is evidence suggesting that the incentives need to be 

sufficiently high powered for the motivating effects to work. 

2.3.3. Psychology Studies on Performance Pay Schemes 

The effects of performance pay schemes have also been studied extensively in the field of 

psychology.8  This literature is presented separately because the methodology and focus of these 

studies is different to those by economists.  One key difference is the focus on measures of intrinsic 

motivation rather than on measures of performance.  Conceptually, intrinsic motivation is closely 

related to the effort that people exert.   

Most studies follow the paradigm laid out by Deci (1971), which considers the proportion of 

a participant’s ‘free choice’ time they devote to the task as the primary measure of intrinsic 

motivation.  In his study, student participants9 were asked to reproduce configurations with 

various pieces of puzzle blocks for three rounds.  In the control, participants were not paid for 

any of the rounds.  In the treatment group, participants were paid a piece rate of $1 for each 

correct configuration in the second round; they were not paid for the first or third rounds.  At 

the end of each round, the experimenter left the room for a couple of minutes, informing the 

participant that he will be in another room preparing materials for the experiment.  The 

                                                 

8  The psychology literature on intrinsic motivation is voluminous.  The papers reviewed here are selective – see Deci et al. (1999) for an extensive 
meta-review of the literature. 

9  Unlike economic experiments, it is not the norm to pay participants in psychology experiments.  The participants are usually university students 
enrolled in psychology courses who are required to participate in experiments to fulfil course requirements.  In these studies, participants are 
usually experimented on individually rather than as a group. 
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participant was told he could do anything he wanted to, including reading the magazines or 

working on other puzzle configurations that were placed on the participant’s desk beforehand.  

While the experimenter was away, he was actually observing the participant through a one-way 

window from another room, recording the duration the participant had spent working on the 

puzzles.  The idea is that if the participant chooses to work on the puzzle in his ‘free choice time’ 

when he is not required to, and in the presence of alternative options such as reading a magazine, 

then he must be intrinsically motivated to work on the puzzle.  Deci (1971) found that the 

proportion of free choice time that participants spent on the puzzle increased significantly after 

round 2, when piece rates were provided.  The free choice time spent on the puzzle fell 

significantly after round 3, after the piece rate was removed, to a level even lower than in the first 

round.  By comparison, the free time spent on the puzzle in the control group was higher after 

round 3 than after round 1. 

It was unclear why intrinsic motivation increased immediately after piece rates were provided 

but fell below the pre-piece rate level after they were removed.  Deci (1972) anecdotally noted 

from his 1971 study that participants who were paid felt they had received a lot of money for 

relatively little work.  He posited that by receiving more money than they felt they deserved – 

being overpaid relative to their expectations – people would continue to perform even if the pay 

was discontinued10, in order to correct the ‘inequity’ of being overpaid.  This would not be the 

case if people were paid according to their expectations.   

Deci (1972) followed up with a similar design.  With the same task, his 1972 study was one-

shot, consisting of a single round followed by the free choice period.  Participants were either not 

paid at all, or paid a piece rate on configurations solved during the round.  For the participants 

who were paid, payment was made either before the free choice period or afterwards.  The 

experimental design with payment made before/after the free choice period was aimed to 

distinguish the motivating effects of incentives from that of equity restoration.  The evaluation 

of overpayment was thought to occur at the moment that participants are paid, so those who 

                                                 

10  This idea is similar to that of the Fair Wage Hypothesis (Akerlof & Yellen, 1990), that posits people will shirk if they are paid wages lower 
than their expectations such that the effective wage, relative to effort exerted, will be equalised to a level as if they were paid according to their 
expectation but did not shirk. 
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were paid after the free choice period would not have felt they were overpaid in the free choice 

period that preceded it.  Indeed, participants who were paid the same piece rates before the free 

choice period were more intrinsically motivated than those who were paid afterwards, giving 

weight to the hypothesis that participants are more intrinsically motivated in order to reduce their 

feelings of guilt. 

Those who were paid after the free choice period, who would not have felt they earned more 

than they deserved, were less intrinsically motivated than those who were not paid at all.  This 

suggests that people’s intrinsic motivation decreases when performance incentives are present, 

after ruling out people’s concerns of pay equity. 

Ryan, Mims, and Koestner (1983) employed a similar design looking at the effect of discrete 

performance based pay.  Participants who were paid according to some performance criterion 

showed less intrinsic motivation than a similar group who received no pay.  They also showed 

that participants who were paid salaries to be less motivated than those who were not paid at all.  

These results confirm those of Harackiewicz (1979), who rewarded participants with pens and a 

notebook instead of with money. 

The studies cited here have been selected from, but is representative of, a large literature in 

psychology which shows that monetary and in-kind rewards undermines intrinsic motivation.  

See Cameron and Pierce (1994) and Deci et al. (1999) for opposing perspectives of the intrinsic 

motivation literature. 

2.3.4. Theory and Explanations 

It is interesting to compare the economics and psychology literatures.  In economics, there is clear 

evidence that performance pay schemes improve performance over fixed salaries, while there is 

mixed evidence that performance pay schemes are successful in motivating performance when 

introduced to situations where people do not expect to be paid for their work.  In the psychology 

literature, performance pay schemes have been shown to ‘crowd out’ intrinsic motivation, which 

presumably adversely affects performance.  While this dichotomy is difficult to explain, we discuss 

some explanations as to why performance pay schemes might not always work to motivate 
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performance.11  In what follows, we discuss Cognitive Evaluation Theory, the Overjustification 

Hypothesis, and how image motivation and framing affects the effectiveness of performance pay 

schemes. 

Cognitive Evaluation Theory 

There are two key aspects to Cognitive Evaluation Theory (Deci & Ryan, 1985).  It posits that 

intrinsic motivation is affected by underlying psychological needs for competency and autonomy.  

Events or actions that affect a person’s perceptions of competency or autonomy will affect their 

intrinsic motivation.  If someone is provided positive feedback that he is performing well in an 

activity, then he is made to feel more competent.  According to Cognitive Evaluation Theory, he 

should be more intrinsically motivated to perform the activity.  Conversely, negative feedback is 

expected to reduce intrinsic motivation.  There is an emphasis on how informative interventions 

are in terms of how well someone is performing. 

The other aspect of Cognitive Evaluation Theory is that of autonomy.  People prefer to work 

free of constraints without being controlled by others or their environment.  Drawing heavily 

from deCharms’s (1968) notion of the locus of causality, people would rather be in control of 

their actions than be controlled by others – that their locus of causality is internal and not 

controlled by external factors.  When people face deadlines, for example, they are usually less 

intrinsically motivated to work since they are considered to have a controlling effect on one’s 

behaviour.  Ryan et al. (1983) show that people are more intrinsically motivated when they are 

provided feedback of an informative nature than when they are provided feedback of a controlling 

nature.  Falk and Kosfeld (2006) also provide empirical support that people are averse to control. 

With the framework prescribed by Cognitive Evaluation Theory, pay schemes can be analysed 

in terms of their information content and how controlling they are perceived to be.  Observing 

the amount earned, rank-order tournaments provide more information about an agent’s 

                                                 

11  See Frey and Jegen (2001), Gneezy, Meier, and Rey-Biel (2011) and Bowles and Polanía-Reyes (2012) for surveys on the role of performance 
pay schemes and intrinsic motivation from an economics perspective.  From a psychology perspective, see Cameron and Pierce (1994) and Deci 
et al. (1999) for opposing perspectives.  Bruno (2013), Promberger and Marteau (2013) and Festré and Garrouste (2015) for reviews of both 
economics and psychology literatures. 
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competency than discrete performance-based pay, since an agent would be able to infer their 

competency relative to others under tournaments but not under discrete performance pay.  

Discrete performance-based pay schemes are more informative than piece rates since agents are 

able to assess their level of competency against the performance thresholds under discrete pay, 

while piece rates do not provide such benchmark.  Piece rates are in turn more informative than 

salaries since one cannot make out their level of competency based on pay that is invariant with 

performance. 

In terms of control, the pay schemes that are most informative about performance also rank 

to be most controlling.  Tournaments are most controlling since an agent is required to 

outperform others in order to earn more money, followed by discrete output based pay where 

agents need to outperform a predefined performance threshold.  Piece rates are less controlling 

since there is no performance criteria to satisfy in order to earn more money.  Salaries are least 

controlling as the flat pay structure means that there is no pressure to improve performance, since 

it will not increase pay. 

Since pay schemes that are more informative about competency are also more controlling, 

Cognitive Evaluation Theory makes no solid predictions a priori about how various pay schemes 

affect intrinsic motivation.  The overall effect on intrinsic motivation depends on both the relative 

strength of these effects as well as the emphasis an agent places on them. 

Cognitive Evaluation Theory predicts that higher powered incentives should be more 

controlling while carrying the same competency feedback as lower incentives, so larger incentives 

would unambiguously be expected to lower intrinsic motivation.  The theoretical model by James 

(2005) is consistent with this, suggesting that motivation crowding out worsens as the total level 

of compensation increases. 

Overjustification Hypothesis 

The Overjustification Hypothesis (Lepper et al., 1973) suggests that agents will reduce their level 

of intrinsic motivation in the presence of extrinsic rewards as the agent faces too many reasons to 

engage in the activity.  In the absence of any incentives, an agent will perform the activity out of 

his innate desire to do so and he attributes his actions to it.  If he is subsequently provided a 
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monetary incentive to perform the same task, he places greater weight on the extrinsic incentive 

as his reason to perform the task, and lesser weight on his intrinsic motivation.  This lower weight 

placed on intrinsic motivation is realised, resulting in the agent being less intrinsically motivated 

to perform in the presence of monetary incentives. 

This can explain why people are less intrinsically motivated under fixed salaries than if they 

are not paid at all (Harackiewicz, 1979; Ryan et al., 1983).  The mere fact that people are paid 

provides extra justification to perform over and above that when they are not paid to perform, 

crowding out intrinsic motivation.  The Overjustification Hypothesis provides a better 

explanation of this result than Cognitive Evaluation Theory given that salaries carry no 

informative value about competency and are not considered to be controlling. 

The Overjustification Hypothesis suggests that larger stakes and higher powered incentives 

have a stronger undermining effect as this amplifies the extent of overjustification.  This 

contradicts the result from Gneezy and Rustichini (2000b) where small incentives are 

counterproductive while higher powered incentives induce performance. 

Image Motivation 

Bénabou and Tirole (2006) models motivation crowding out through the adverse effect incentives 

have on one’s image and reputation.  Workers are assumed to derive utility from three key sources: 

from money, from their innate desire to work and from their reputation.  Individuals assign 

separate weights to each of these sources to reflect the relative importance of each.  Intrinsic 

motivation is modelled in the utility function by assuming that workers derive utility from their 

own choice of effort, despite it also being costly to them.  Reputation reflects how other people 

perceive the agent, for which the agent cares since he does not want to be negatively judged.  

Agents want to be seen as intrinsically motivated rather than greedy. 

A key point made by Bénabou and Tirole is that the power of incentives provide information 

to outsiders allowing them to judge how intrinsically motivated or greedy agents are, which is 

private information to agents themselves.  If people are observed to work in the absence of any 

financial reward, then they cannot be working out of greed, so they must either be working out 

of intrinsic motivation or for the reputational benefit they derive.  When incentives are provided 
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or if the power of the pay scheme increases, it becomes less clear to the outsider whether people 

are working for the monetary reward or because they are intrinsically motivated to do so.  The 

weight outsiders place on greed increases while the weight on motivation decreases in the presence 

of higher incentives, diminishing the image they hold of the agent.  Though agents benefit from 

receiving greater income, their reputation falls as they are also deemed more to be greedy.  If 

agents place greater weight on their reputation than on monetary incentives, the provision of 

monetary incentives (or its increase) would lead to lower effort exerted by the agent. 

The theory of image motivation receives empirical support from Ariely, Bracha, and Meier 

(2009), who conducted a lab experiment where participants took part in a real-effort key-pressing 

task.  The higher the task performance by participants, the greater the donations that the 

experimenters pledged to charity.  The donations were made according to a piece rate on each 

key-press, with the rate declining with higher output thresholds.  The treatments varied across 

two dimensions: whether or not each participant also received individual incentives and whether 

or not the performance and payment individuals received were made public.  For those who were 

paid, they were paid according to the same scheme that was applied for donations – the incentives 

received were separate to the donations.  Participants in public condition had their performance 

level, donation amount and incentive receipts revealed to all other participants in the session, 

while all this was kept private in the private condition. 

In the public condition, performance was higher when there were no personal incentives 

compared to when piece rates were paid to participants.  On the other hand, performance was 

higher in the presence of personal incentives when pay and performance were kept private.  The 

publicity component suggests that people care about how they are perceived by others, and 

reduces their performance in the presence of incentives to mitigate others’ perception that they 

are greedy.  Image concerns are irrelevant when all information is private, and participants are 

shown to be motivated by the incentives.  This is consistent with the theory of image motivation. 
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Framing 

Motivation crowding out can also be explained by changes in a person’s mindset.12  When 

monetary incentives are introduced, the task or action may be perceived differently and with a 

different context compared to when these incentives were not in place, and this may adversely 

affect intrinsic motivation and subsequently performance.  The framing effect explains why a 

monetary penalty issued to late-arriving parents actually increased the incidence of late-arrivals at 

Israeli daycare centres, since the parents merely viewed the financial penalty as a price and treated 

lateness as a marketable good for which they were willing to pay (Gneezy & Rustichini, 2000a). 

The framing effect can explain the phenomena Bowles and Polanía-Reyes (2012) refer to as 

the ‘categorical effect’ of incentives, where low powered incentives are inadequate to compensate 

for the reduction of intrinsic motivation.  In Gneezy and Rustichini (2000b) the introduction of 

a piece rate reduces the amount volunteers collect when the stakes are small, but only begins to 

induce performance as the power of the incentives increases.  The initial reduction in performance 

can be attributable to framing as volunteers reconsider the nature of volunteer work and reduce 

their motivation to collect money.  Only when incentives are sufficiently large do they begin to 

outweigh the negative categorical effect. 

2.3.5. Relative Performance Pay Schemes 

Having discussed the motivating effects of performance pay schemes, we now look at how pay 

schemes that depend on relative performance affect a workers’ performance.  Earlier on we 

discussed the Piece Rate Equivalence property of tournaments, where tournaments elicit the same 

level of effort as piece rates do (Lazear & Rosen, 1981).  Bull et al. (1987) verified this claim in a 

lab experiment with the caveat that effort choices under tournaments are more variable than 

under piece rates.  This section reviews studies which show the motivating effects of the relative 

incentives inherent in tournaments13 and continuous relative performance pay schemes. 

                                                 

12  See Bowles and Polanía-Reyes (2012) for an elaborate discussion and review. 

13  See Dechenaux, Kovenock, and Sheremeta (2015) for a survey of experimental research on tournaments. 
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The incremental nature of rank incentives have been shown to induce performance.  Eriksson 

(1999) showed with Danish personnel data that various features of the corporate hierarchy are 

consistent with a tournament.  He found that a larger prize spread improves firm performance, 

presumably from higher effort put forth by individual workers.  Rank-based incentives have also 

been shown to induce behaviour in sport contests.  Ehrenberg and Bognanno (1990) showed that 

a larger prize spread motivates performance in golf tournaments.  Knoeber and Thurman (1994) 

has shown with data for chicken growers, who are paid tournaments, that increases in the 

magnitude of the rank prizes have no effect on performance if the prize spread if left unchanged. 

On the other hand, Delfgaauw, Dur, Non, and Verbeke (2014) do not find that tournaments 

have any effect.  Tournament bonuses were offered to every employee and manager of treatment 

stores in a retail chain.  These bonuses were awarded if the retail store had higher sales growth 

than three other stores, who served as the control and were not offered these bonuses.  The authors 

found that these bonuses had no effect on the sales of treatment stores over and above that of the 

control stores. 

We now look at studies which compare relative performance pay schemes with other pay 

schemes.  Comparing the performance of tournaments and a fixed salary in a real-effort decoding 

task, Masclet, Peterle, and Larribeau (2015) find that better performance is attained under 

tournaments. 

Comparing a continuous relative performance pay scheme to piece rates, Bandiera et al. (2005) 

find piece rates induce better performance from U.K. fruit pickers.  Under the relative pay scheme, 

workers received higher pay with higher individual performance, but was penalised by higher 

average performance of all workers.  With the introduction of the piece rate, despite being 

approximately 12% lower on a per unit basis than the continuous relative pay scheme, the 

quantity of fruit picked increased by between 50-70%.  The authors attribute a large portion of 

this effect to workers withholding performance under the relative pay scheme. 

2.4. Productivity Spillovers and Monitoring 

Most of the prior emphasis in this literature review has been on the effects of pay schemes when 

production externalities are absent.  As previously mentioned, relative performance pay schemes 
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exhibit negative production externalities where the unilateral increase in an agent’s performance 

will reduce the expected payoffs of others.  Productivity spillovers also occur in other 

circumstances, and quite often the externality affects others favourably rather than adversely.  For 

example positive productivity spillovers occur when pay schemes depend on the joint production 

of many agents (for example see Fryer, 2013), under profit sharing arrangements (Kandel & 

Lazear, 1992), and are sometimes inherent in the job itself (Mas & Moretti, 2009).  When the 

spillovers are positive, the agent only receives a portion of the aggregate benefit derived from a 

marginal increase in output – since it is shared with other agents – while incurring marginal costs 

in full.14  Each agent have the incentive to free-ride off the output of others, reducing it below 

the efficient level. 

If others are able to monitor the performance of the agent, the imposition of appropriate 

sanctions may be able to influence the performance of the agent.  This is the essence behind 

Kandel and Lazear’s (1992) model of peer pressure, where they find that agents’ use of peer 

pressure as a means of social sanction is effective in manipulating the performance of their peers.   

In Bandiera et al.’s (2005) study of fruit pickers, they attributed the low performance of 

relative pay schemes to workers’ internalisation of the negative externality that they impose onto 

others.  Workers are thought to restrict performance so not to reduce the rate of pay that their 

peers receive.  For a particular type of fruit whereby the tall shrubs prevent pickers from observing 

the performance of their peers, they find that there are no differences in the performance under 

piece rates and relative pay.  This suggests that peer monitoring is effective in influencing others’ 

performance. 

Peer monitoring has also been found to be effective in affecting performance when positive 

production externalities are present.  Mas and Moretti (2009) found that supermarket checkout 

operators became more productive as higher productivity workers arrive on shift.  The nature of 

checkout work is such that if one shirks, they impose a higher workload onto other workers; 

conversely, someone working harder reduces the workload of others.  The productivity of workers 

improved when they were being observed by their co-workers, being in their line of sight – 

                                                 

14  This is analogous to the problem of public goods provision. 
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suggesting that peer pressure is at play.  Workers who monitored others but were not being 

monitored themselves were not subjected to peer pressure and their performance did not increase 

when higher productivity workers entered a shift. 

In Falk and Ichino (2006), experimental student workers were asked to stuff envelopes, either 

alone in a room by themselves or in the presence of a partner.  The task was individual and 

workers were paid a fixed wage for their work.  The authors found that those who worked alone 

had lower performance than those who worked in the presence of a partner.  Furthermore, the 

variation of output within each pair is lower than between different pairs, suggesting that each 

partner mutually motivated the other to perform at a similar level.  This suggests that peer effects 

comes about from a desire to conform to the actions of others.15 

2.5. Decomposition of Tournament Effects 

2.5.1. Relative Performance Feedback 

The literature review has so far focused on the motivating effects associated with different pay 

schemes – relevant to our first research question.  We now review papers that are related to our 

second research question about the effects of relative performance feedback and rank-dependent 

payoffs.  We first focus on papers that investigate what effect the provision of relative performance 

feedback has on performance.  Relative performance feedback is used to invoke competition 

between workers, independently from payoffs. 

Relative performance feedback may affect performance through two distinct channels.  The 

first is where people improve their performance in order to increase their chances of winning, 

where they derive utility from being compared favourably with others relative to unfavourable 

comparisons.16  For ease of exposition, we refer to favourable comparisons as ‘winning’ and the 

converse as ‘losing’.  In a tournament setting, Kräkel (2008) modelled the emotions associated 

with winning and losing a tournament.  He shows that the desire to win increases effort, regardless 

                                                 

15  See also Kuhn, Kooreman, Soetevent, and Kapteyn (2011) and Card, Mas, Moretti, and Saez (2012). 

16  The desire to win may be derived from preferences for status and respect.  See Ellingsen and Johannesson (2007) for a review.  See also Kosfeld 
and Neckermann (2011). 
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of whether one experiences positive emotions from winning or negative emotions from losing.  

While winning increases utility, agents also want to exert more effort in order to avoid losing, 

since losing reduces it.  Similar to how the prize spread induces effort in tournament theory, 

emotions increase the benefit from winning relative to losing, making the perceived prizes larger 

than the actual monetary prizes, in turn incentivising agents to increase their effort.  Since this 

first channel reflects a person’s innate desire to win, the motivating effect would take place even 

before the participant has received any feedback on relative performance feedback. 

In contrast, the second channel which relative performance feedback could influence 

performance occur after the feedback has been received.  Cognitive Evaluation Theory (Deci & 

Ryan, 1985) suggests that relative performance feedback will improve a person’s intrinsic 

motivation, and therefore performance.  Relative performance feedback will provide richer 

information about an agent’s performance vis à vis others which should improve their feelings of 

competency if the feedback is favourable.  Unfavourable relative feedback would be expected to 

reduce perceptions of competency, in turn reducing intrinsic motivation and performance. 

Many studies have found that the provision of relative feedback to agents leads to higher 

performance.  A number of experimental studies (Hannan, Krishnan, & Newman, 2008; Cadsby, 

Engle-Warnick, Fang, & Song, 2010; Kuhnen & Tymula, 2012; Charness, Masclet, & Villeval, 

2014; Azmat & Iriberri, 2016) have found that different forms of relative feedback improve 

performance.  In the field, Azmat and Iriberri (2010) and Tran and Zeckhauser (2012) find that 

students’ academic performance improves when relative performance feedback is provided, 

allowing students to compare their academic performance to others in their class.  Blanes i Vidal 

and Nossol (2011) found that the productivity of German warehouse workers improved when 

they were provided rank information in their payslips.  The authors find evidence for both 

anticipation and revelation effects, where worker productivity improved both in the post-

announcement period before feedback was provided, and in the period after initial feedback has 

been provided. 

There are, however, a few papers that find relative performance feedback to have no effect on 

performance.  In a lab experiment, Eriksson, Poulsen, and Villeval (2009) provided either discrete 

or continuous feedback to participants working on a number-adding task.  Participants were paid 
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either piece rates or tournaments.  The authors found that, regardless of how they were paid, 

players who received either form of relative feedback did not perform differently to their 

counterparts who did not receive any relative feedback.   

Several papers have found relative performance feedback to have mixed effects, depending on 

the pay scheme.  Hannan et al. (2008) find that relative feedback improves performance under 

piece rates, but reduces performance under tournaments.  In Bellemare et al. (2010), relative 

feedback has no effect under piece rates but reduces performance under fixed salaries.  Azmat and 

Iriberri (2016) find that relative performance feedback improves performance under piece rates, 

while having no effect under salaries.  Since there are no consistent results from these studies, it 

is unclear what effect different pay schemes have on the effectiveness of relative performance 

feedback. 

This literature, by and large, shows that relative performance feedback improves performance.  

The literature provides several insights into how relative feedback works to improve performance.  

The first insight is that it makes no difference whether feedback is delivered publicly or privately 

(Tran & Zeckhauser, 2012; Cadsby et al., 2010).  This implies that relative performance feedback 

improves performance not necessarily because agents strive for status (Ellingsen & Johannesson, 

2007) or external recognition (Bénabou & Tirole, 2006), since external recognition would 

require the revelation of one’s relative position to others.  We posit that the effect of relative 

performance feedback is driven by an innate desire to do better than others.  The utility attained 

from doing better than others is independent to the utility attained from ‘showing off’ this piece 

of information to peers. 

A second insight is that agents respond not only to the relative performance feedback after its 

release, but also in the period leading up to the release of this information (Blanes i Vidal & 

Nossol, 2011).  Knowledge that relative feedback will be provided at some point in the future is 

sufficient to motivate performance, even before any feedback has been provided.  The 

anticipation of relative feedback is sufficient to motivate people to improve their performance, as 

they strive for a favourable comparison with others.  Kuhnen and Tymula (2012) reinforces this 

point when they found that players who were merely told that they might receive rank feedback 

performed better than those who were told they will definitely not receive such feedback.  This 
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suggests that agents are motivated by the desire to do better than their peers and will exert 

additional effort attempting to improve their relative performance, even before any information 

can be extracted from the feedback itself. 

Few studies mentioned so far look at the effect of favourable and unfavourable feedback.  

Studies by psychologists shed some light, whereby they manipulate the feedback that is 

provided.17  Harackiewicz (1979) looked at the effect of favourable relative performance feedback 

on various measures of intrinsic motivation, including the amount of time participants spent on 

the task during a free choice period.  The favourable feedback that was provided told participants 

that they performed better than the average high school student.  This comparison was chosen to 

be artificially low so that all participants would receive favourable feedback.  Participants who 

received favourable feedback were either not rewarded at all, or were rewarded markers and a 

notebook for participation in the experiment.  Intrinsic motivation was higher amongst those 

who received favourable relative feedback compared to groups who did not receive any feedback 

at all, whether they were rewarded or not.  In similar fashion, Epstein and Harackiewicz (1992) 

found that favourable relative feedback improved participants’ sense of competency compared to 

those who received unfavourable feedback.   Reeve and Deci (1996) reported higher intrinsic 

motivation amongst participants who received favourable feedback compared to those who 

received unfavourable feedback.  These findings are consistent with Cognitive Evaluation Theory. 

2.5.2. Rank-Dependent Payoffs of Tournaments 

We now review papers that look at the motivating effects associated with rank-dependent payoffs.  

Here we are mainly interested in the tournament pay mechanism.  In order to study the effect of 

rank-dependent payoffs inherent in tournaments, it is necessary to control for the relative 

performance feedback that also feature in tournaments.  While there are many papers which focus 

on the effect of relative performance feedback, there are few papers that focus on the rank-

dependent payoffs characteristic of tournaments.  To our knowledge, there are only two papers 

that distinguish and decompose these two effects.   

                                                 

17  In these studies, the feedback that is provided is exogenously determined by the experimenters, and is not necessarily true. 
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Eriksson et al. (2009) conducted a lab experiment where they paid participants either piece 

rates or tournaments, and provided them with either relative feedback or not.  In the absence of 

relative performance feedback, piece rates and tournaments perform similarly to one another – 

supporting the property of Piece Rate Equivalence.  Relative performance feedback is found to 

have no effect on performance.  Proceeding with the decomposition, the authors find that 

tournaments perform no differently to piece rates when relative feedback is controlled for.  This 

suggests that the rank-dependent payoffs of tournaments serve as the main motivator, with 

relative feedback playing no role. 

Hannan et al. (2008) conduct a similar experiment, whereby they decompose the effects of 

relative feedback and payoffs.  Their findings are, however, quite different to those of Eriksson et 

al. (2009).  When relative feedback is absent, tournaments outperformed piece rates.  Relative 

performance feedback improves performance under piece rates, but reduces performance under 

tournaments.  When relative performance feedback is controlled for, they find that piece rates 

perform better than tournaments.  In Hannan et al’s study, relative feedback plays a greater role 

in tournaments than payoffs do. 

2.6. Learning 

Our third research question focuses on the dynamics of learning – how do different pay schemes 

and relative performance feedback affect learning?  The process of learning is multi-dimensional: 

involving heuristics and rules (Roth & Erev, 1995; Erev & Roth, 1998; Charness & Levin, 2005), 

feedback (Rick & Weber, 2010) and observation (Merlo & Schotter, 2003; Cardella, 2012), and 

payoffs (Merlo & Schotter, 1999).  To our knowledge, however, there has been no prior research 

on how pay schemes affect learning. 

In terms of how relative performance feedback affects learning, previous papers which study 

the effect of relative performance feedback have not focused on learning.  To our knowledge, 

only Kuhnen and Tymula (2012) and Azmat and Iriberri (2016) mention learning in their papers.  

In both these papers, the authors study the effect of relative feedback in an arithmetic task across 

a number of rounds.  In analyses, the authors of these papers control for a linear time trend and 

find that, in general, learning occurs over time.  However, the learning here is common for all 
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participants and not disaggregated by treatment – so we do not know how learning is affected by 

relative feedback. 

2.7. Contribution to Literature 

In this literature review, we have discussed many papers that relate to pay schemes, relative 

performance feedback and learning.  While some areas of research has reached a consensus on 

findings, other areas of research remain contentious, whereby the results of many papers do not 

conform to those from other papers.  For example, there is much disagreement amongst 

economists as to whether performance pay schemes are effective in motivating performance and 

whether motivation crowding out exists or not.  With respect to the literature on relative 

performance feedback, while the majority of studies show that the provision of relative feedback 

improves performance, a non-negligible number of papers also show that relative feedback either 

has no effect or is counterproductive.  As such, it is difficult to interpret the literature as a whole 

and there remains a number of key questions that have been left unanswered. 

Although some of our research questions have been studied before by others, we nevertheless 

add to the literature in several ways.  First, we are able to test the robustness of previous findings 

to see whether or not they are replicable.  Second and more importantly, we look into the 

underlying channels that influence people’s motivation to perform under different pay schemes 

or in the presence of relative performance feedback. 

We utilise controlled lab experiments to investigate these underlying effects.18  Laboratory 

experiments facilitate us in isolating various elements that could possibly affect the results.  We 

further facilitate the study of underlying mechanics by asking participants to fill out 

questionnaires which elicit various factors such as their level of interest, effort, and anxiety 

associated with the experimental task.  These factors allow us to narrow down the core effects that 

are at play.   

                                                 

18  See Falk and Fehr (2003) for a discussion of the merits of lab experiments as a means to study labour market issues. 
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One of the main effects that we postulate to play a crucial role is Cognitive Evaluation Theory.  

While it has been studied widely in the field of psychology, previous studies have focused on how 

the two dimensions of control and competency associated with pay schemes have affected people’s 

intrinsic motivation, rather than their performance.  Our study fills this void by focusing on 

performance. 

Our experiment utilises a cognitively difficult real-effort task which replicates the work 

environment.  Participants work on a stock forecasting task, and are paid according to various 

pay schemes.  In some treatments, participants are provided information about whether they 

performed better than a random partner or not.  By manipulating different pay schemes and 

relative feedback, we are able to answer our three research questions.  The details of the 

experiment are provided in the following chapter. 

To our knowledge, our experiment is unique in using a cognitively challenging task.  The 

experimental studies that we have reviewed use tasks that require little thought and cognition.  

These tasks – such as simple arithmetic, key-pressing or data entry – are mechanical in nature 

and require little skill.  By contrast, our stock forecasting task is difficult.  To do well in our task, 

players need to exert cognitive effort and process the various pieces of information provided to 

them to assist them to make their forecast.  Our task is reminiscent of white-collar jobs, where 

the skills of reasoning and problem-solving are valued. 

Since our task is difficult, and is repeated over a number of rounds, we are able to also study 

how pay schemes and feedback affect people’s learning over time.  There has been little work 

done in this area.  Those prior studies that have indeed tried to study learning in the context of 

pay schemes and relative feedback do not look at learning in a meaningful way due to their choice 

of experimental task.  Similar to the point made in the previous paragraph, there is nothing to 

‘learn’ per se in simple mechanical tasks.   
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3. Experimental Design 

3.1. The Task 

This thesis uses an experiment that is based on a multiple cue probabilistic learning task19, where 

participants are required to determine the value of a variable 𝑥𝑥 based on the observation of two 

numerical cues provided to the participant.  This variable 𝑥𝑥 can be thought of as the underlying 

price of a stock; the cues as variables that affect the value of the stock; and the task at hand as one 

of forecasting stock prices.  The actual value of the stock is determined by the underlying equation: 

𝑥𝑥𝑡𝑡 = 10 + 0.3×𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑡𝑡 + 0.7×𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝑡𝑡 + 𝜀𝜀𝑡𝑡 (3.1) 

where 𝑥𝑥𝑡𝑡 is the actual value of the stock participants are required to predict, 𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑡𝑡 and 𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝑡𝑡 

are the values of the two numerical cues provided to the participant, and 𝜀𝜀𝑡𝑡 is a random variable 

which is uniformly, but discretely, distributed within [−5, 5] in round 𝑡𝑡.  Although participants 

know that the actual stock’s value is determined by an underlying relationship with cue values for 

every round, participants do not know anything about this relationship, including its functional 

form. 

Two variants of the task are used in the experiment.  In one of these, Cue A is fixed at the 

value of 150 for each of the 20 rounds, while Cue B changes every round.  This ‘single cue’ task 

is designed to be less difficult than the ‘dual cue’ task, where both cue values change round by 

round.  Both the single cue and dual cue tasks are employed in parallel to determine treatment 

effects across different levels of task difficulty.  The cues, though randomly determined, are 

predefined for each of the single and dual cue tasks.  As such, the cue values for a particular round 

are identical for each participant in each treatment for the respective task difficulty, facilitating 

direct comparison of performance across treatments. 

Participants are given 5 minutes to study ten examples of cue values and actual stock prices 

prior to the first round.  The examples for each version of the task are shown in Table 3.1.  This 

                                                 

19  Multiple cue probability learning tasks are common in the field of psychology to study cognitive learning and reinforcement (see Balzer, 
Doherty, & O'Connor, 1989).  In economics, see Brown (1995, 1998), Vandegrift and Brown (2003, 2005) and Vandegrift, Yavas, and Brown 
(2007) for examples of the multiple cue probabilistic learning task used in experiments. 
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provides them with an opportunity to familiarise themselves with the task at hand.  The provision 

of these examples also mitigates the effect that ‘wild guesses’ have on early rounds of play. 

In each of the rounds, having observed the cues presented to them, participants have 90 

seconds to submit their forecast of the stock’s price.  After all participants have entered their 

forecasts, they are presented with a table of information, including the values of Cue A and Cue 

B, the underlying actual value that corresponds with the cues, their submitted forecast, the 

absolute forecast error and earnings for the prior round, as well as a tally of their cumulative 

earnings.  The absolute forecast error (hereafter, forecast error) is the absolute difference between 

the actual stock value and that forecasted by the participant.  The forecast error measures the 

accuracy of the forecast, and serves as our primary measure of performance. 

Table 3.1 Example Cues 

Single Cue Task  Dual Cue Task 
Cue A Cue B Actual Price  Cue A Cue B Actual Price 
150 92 117  12 64 54 
150 143 157  372 63 162 
150 379 321  179 109 137 
150 373 313  415 146 240 
150 240 220  116 186 175 
150 285 256  355 223 275 
150 187 188  145 286 255 
150 143 153  199 356 317 
150 191 185  439 354 372 
150 361 311  73 442 345 

 

3.2. Pay schemes 

All participants are guaranteed to earn at least a $5 show-up fee for their participation.20  In 

addition to this, they will earn money based on piece rates, tournaments or salaries depending on 

                                                 

20 All dollar values are expressed in New Zealand Dollars. 
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the treatment they are in.  All earnings are accrued in an earnings account and the balance is paid 

out in cash at the end of the session. 

Piece rates pay people proportionately according to their performance.  In each round, each 

participants’ piece rate earnings are calculated to be $1 minus their forecast error (expressed as 

cents).  For example, for a forecast error of 18 in a particular round, the corresponding piece rate 

earnings is $0.82 (1.00 – 0.18).  Greater performance, represented by lower forecast errors, 

increases monetary earnings.  A participant who makes a perfect forecast, with forecast error of 

zero, would earn $1 for the round.  If the forecast error is greater than 100, earnings are boosted 

up to zero to avoid negative earnings. 

Tournaments pay people according to relative performance.  Since tournaments require 

participants to be ranked amongst others, the performance of each participant in each round will 

be benchmarked against a random and anonymous partner, who is rematched every round.  The 

better performer amongst each pair receives $1 while his counterpart receives nothing in the 

round.21  This scheme is a simple two player winner-takes-all tournament. 

Salaries pay people a flat amount that is independent of performance.  Participants are told 

upfront that they will receive $20 for their participation before they begin the task, which is to 

be paid out at the end of the session.  This amount includes the $5 show-up fee.   

These three pay schemes are inherently different in nature, and they accordingly differ in 

terms of the hypothetical maximum and minimum that could be earned under each pay scheme.  

For example, the least that can be earned in any particular round is zero under piece rates (if 

forecast errors are 100 or greater) and tournaments (if participants lose), while earnings are 

guaranteed in salaries to be an equivalent of $0.75 ($20 guaranteed payment, less $5 show up fee, 

divided by 20 rounds).  Despite these inherent differences, we facilitate comparison of these three 

pay schemes by calibrating the average amount that is earned under each scheme.  As a result, as 

                                                 

21  If the forecast errors for a particular pair are identical, then the winner and loser is determined randomly. 
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can be seen in Table 3.8, the average earnings in each pay scheme are not statistically different 

from one another, in the vicinity of $20. 

3.3. Treatments 

For each version of the forecasting task, the experiment consists of five treatments that differ in 

terms of how participants are paid and the feedback that is provided to them.  In all treatments 

other than the Salary treatment, participants are paid piece rates on their forecast errors for each 

of the first five rounds of the 20 round game.22  These first five rounds allow us to benchmark 

participants’ underlying ability.  After each round they are provided feedback on how they have 

performed, getting to see the actual stock price, the corresponding forecast error and earnings for 

that round.  Participants are told that there might be a change in how the game is played in 

rounds 6 to 20.  After round 5, participants are informed whether or not there are any changes 

to how the game is to be played thereafter. 

3.3.1. Piece Rate Treatment 

In the Piece Rate treatment participants are told that there is no change in how the game is played 

beyond round 5.  Participants continue to receive piece rates on their forecasts for each round 

and there is no change to the feedback that they are provided with at the end of each round.  

Table 3.2 shows a hypothetical example, based on hypothetical forecasts, of the information a 

player in the single cue Piece Rate treatment would observe at the end of round 10.   

  

                                                 

22  In the Salary treatment, participants are told at the start of the experiment that they will be paid a flat $20 for their participation.  Piece rates 
therefore cannot be applied to the first five rounds.  Though participants in the Salary treatment are not paid piece rates for the first five rounds, 
they see the same feedback – including piece rate earnings – as participants would in any other treatment. 
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Table 3.2 Onscreen Information in Piece Rate Treatment 

Round Cue A Cue B Forecast Actual 
Price 

Forecast 
Error 

Earnings 
this Round 

       
1 150 201 179 192 13 $0.87 
2 150 263 221 243 22 $0.78 
3 150 88 131 117 14 $0.86 
4 150 248 219 232 13 $0.87 
5 150 201 197 200 3 $0.97 
6 150 196 182 194 12 $0.88 
7 150 353 298 305 7 $0.93 
8 150 173 169 173 4 $0.96 
9 150 270 231 248 17 $0.83 

10 150 243 233 222 11 $0.89 
 

3.3.2. Piece Rate Win Lose Treatment 

The Piece Rate Win Lose treatment also pays participants piece rates after round 5, but additional 

information is provided to participants after each round regarding how they have performed 

compared to a random partner.  They are randomly and anonymously paired and subsequently 

re-matched every round.  The participant with the smaller forecast error will receive the feedback 

of ‘win’ while his partner will receive feedback of ‘lose’23 – an example is shown in Table 3.3.  

Participants are not provided information about the forecast errors of their partners, so they do 

not know the margin for which they win or lose by.  Irrespective of whether a participant wins or 

loses, their round earnings are based on piece rates.  In other words, the winning/losing feedback 

is decoupled from monetary payoffs. 

This additional winning/losing information brings about a sense of competition.  In the Piece 

Rate Win Lose treatment, participants’ earnings after round 5 are independent of the outcome 

of winning or losing – contrasting with tournaments where earnings depend solely on whether 

one wins or loses.  If competition that is independent of pay has an effect on performance, then 

                                                 

23  If the forecast errors are identical, then the tie is broken by random draw. 
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this competition for rank and status plays a role in motivating people to perform.  Such 

competition refers solely to people’s innate desire for favourable comparison, so they would be 

expected to exert more effort and increase their performance in order to improve their prospects 

of winning. 

We randomly rematch participants so that they are able to play with people of varying ability 

throughout the experiment, though they are blind to who they are matched with.  This keeps the 

spirit of competition alive.  If a low ability participant is matched with the same superior 

opponent over the course of session, he might decide to give up if he believes he will not be able 

to beat his opponent.  Similarly, the superior opponent might choose to exert less effort since he 

can expect to win easily while matched with an inferior opponent.  Random rematching alleviates 

this scenario – which we later refer to as ‘bifurcation’ – and spurs competition over time as people 

are matched with different people.  We will elaborate on these dynamics in Chapter 6. 

While both Piece Rate and Piece Rate Win Lose treatments pay participants piece rates after 

round 5, the difference lies in the additional winning/losing information that is displayed to 

participants in the Piece Rate Win Lose treatment.  Since both treatments apply the same pay 

scheme, any observable differences in the performance of participants would be attributable to 

the winning/losing feedback in the Piece Rate Win Lose treatment, suggesting that psychological 

competition influences performance. 

Table 3.3 Onscreen Information in Piece Rate Win Lose Treatment 

Round Cue A Cue B Forecast 
Actual 
Price 

Forecast 
Error 

Earnings 
this Round 

Win or 
Lose 

        
1 150 201 179 192 13 $0.87  
2 150 263 221 243 22 $0.78  
3 150 88 131 117 14 $0.86  
4 150 248 219 232 13 $0.87  
5 150 201 197 200 3 $0.97  
6 150 196 182 194 12 $0.88 LOSE 
7 150 353 298 305 7 $0.93 WIN 
8 150 173 169 173 4 $0.96 WIN 
9 150 270 231 248 17 $0.83 LOSE 

10 150 243 233 222 11 $0.89 WIN 
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3.3.3. Tournament Treatment 

The Tournament treatment is based on a winner-takes-all tournament with a large prize for the 

winner and a prize of zero for the loser.  After round 5, participants are randomly paired with 

someone else and are paid fixed amounts depending on how participants have performed relative 

to their partners.  At the end of each round, participants are provided the same winning/losing 

information as in the Piece Rate Win Lose treatment, but their earnings depend on their 

performance relative to their partner.  Participants either earn $1 if their forecasts are more 

accurate than their partner, or they do not earn anything for the round if their forecasts are worse.  

Due to the all-or-nothing nature of the rank-dependent payoffs, all participants receive an extra 

$4 after round 5 in order to align total earnings closer to the $20 average that was announced 

during the recruitment process.  Table 3.4 shows an example of the feedback players receive.  

Notice that when the tournament scheme kicks in from round 6, earnings are no longer paid 

according to piece rates but are now tied to winning or losing. 

Table 3.4 Onscreen Information in the Tournament Treatment 

Round Cue A Cue B Forecast Actual 
Price 

Forecast 
Error 

Earnings 
this Round 

Win or 
Lose 

        
1 150 201 179 192 13 $0.87  
2 150 263 221 243 22 $0.78  
3 150 88 131 117 14 $0.86  
4 150 248 219 232 13 $0.87  
5 150 201 197 200 3 $0.97  
6 150 196 182 194 12 $0.00 LOSE 
7 150 353 298 305 7 $1.00 WIN 
8 150 173 169 173 4 $1.00 WIN 
9 150 270 231 248 17 $0.00 LOSE 

10 150 243 233 222 11 $1.00 WIN 
 

Both Piece Rate Win Lose and Tournament treatments simulate competition by allowing 

participants to learn how they perform relative to a random partner, though they differ in terms 

of how participants are paid.  The Piece Rate Win Lose treatment pays piece rates which do not 

depend on how participants perform relative to their partners.  On the other hand, the 
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Tournament treatment pays participants based on the outcome of the competition.  Differences 

that are observed across these treatments therefore are due to differences in the payment scheme. 

3.3.4. Tournament-No-Info Treatment 

The Tournament-No-Info treatment is also based upon a winner-takes-all tournament after 

round 5.  Participants are paired and subsequently rematched at the end of each round.  They 

earn either $1 if they perform better than their partner or nothing if they do worse.  After each 

round participants are informed only of their forecast errors and are unaware of how they have 

performed relative to their partners.  This means that winning/losing feedback and the associated 

earnings feedback is withheld over rounds 6 to 20.  The information pertaining to relative 

standing are released to players at the end of the game at the end of round 20, meaning that 

participants only know of their absolute performance and not their relative performance whilst 

they are engaged in the tournament.  Like the Tournament treatment, all participants are paid 

an extra $4 after round 5. 

Panel A of Table 3.5 shows an example of the information available to Tournament-No-Info 

participants.  After round 5 when the tournament scheme applies, participants are oblivious to 

how well they are doing compared to their partners and do not know their earnings after each 

round.  After round 20 participants see a summary of their performance, including the previously 

omitted winning/losing and earnings information for all rounds: Panel B shows an example of 

this. 

Both Tournament and Tournament-No-Info treatments pay participants the same way but 

differ in terms of the feedback that is provided.  The Tournament treatment notifies participants 

of their relative performance after every round, while the Tournament-No-Info treatment only 

releases this information after the final round.  Any differences in participants forecast errors are 

attributable to the role that relative performance feedback has on participants.  It will be 

particularly interesting to see how learning is affected in the Tournament-No-Info treatment 

when participants are blind to their earnings and how they perform relative to others. 
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Table 3.5 Onscreen Information in the Tournament-No-Info Treatment 

Panel A: Before Round 20 

Round Cue A Cue B Forecast Actual 
Price 

Forecast 
Error 

Earnings 
this Round 

Win or 
Lose 

        
1 150 201 179 192 13 $0.87  
2 150 263 221 243 22 $0.78  
3 150 88 131 117 14 $0.86  
4 150 248 219 232 13 $0.87  
5 150 201 197 200 3 $0.97  
6 150 196 182 194 12   
7 150 353 298 305 7   
8 150 173 169 173 4   
9 150 270 231 248 17   

10 150 243 233 222 11   
 

Panel B: After Round 20 

Round Cue A Cue B Forecast Actual 
Price 

Forecast 
Error 

Earnings 
this Round 

Win or 
Lose 

        
1 150 201 179 192 13 $0.87  
2 150 263 221 243 22 $0.78  
3 150 88 131 117 14 $0.86  
4 150 248 219 232 13 $0.87  
5 150 201 197 200 3 $0.97  
6 150 196 182 194 12 $0.00 LOSE 
7 150 353 298 305 7 $1.00 WIN 
8 150 173 169 173 4 $1.00 WIN 
9 150 270 231 248 17 $0.00 LOSE 

10 150 243 233 222 11 $1.00 WIN 
11 150 60 105 102 3 $1.00 WIN 
12 150 320 256 274 18 $0.00 LOSE 
13 150 340 304 289 15 $1.00 WIN 
14 150 361 287 311 24 $0.00 LOSE 
15 150 321 280 285 5 $1.00 WIN 
16 150 361 311 309 2 $1.00 WIN 
17 150 148 149 155 6 $0.00 LOSE 
18 150 309 246 275 29 $0.00 LOSE 
19 150 135 143 145 2 $1.00 WIN 
20 150 142 147 156 9 $0.00 LOSE 
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3.3.5. Salary Treatment 

The Salary treatment offers participants a flat payment of $20, including the $5 show up fee, for 

their participation in the experiment.  This is announced at the start of the experiment before 

they begin the task.  Although earnings do not depend on performance, at the end of each round 

participants are shown their forecast errors and feedback on earnings as if they were paid piece 

rates. 

We have chosen to provide piece rate earnings information to Salary participants so we are 

able to perfectly match feedback with that present in the Piece Rate treatment, given that the 

main comparison of the Salary treatment is with the Piece Rate treatment.   

Prior research has found that feedback on absolute performance itself motivates people to 

perform (Bandiera, Larcinese, & Rasul, 2015).  Since piece rates are based on performance, 

information about piece rate earnings makes a participant’s performance more salient, providing 

a greater source of motivation to those who are paid piece rates.  If such piece rate earnings is not 

controlled for in the Salary treatment, this effect would impede our analyses of the effect of 

extrinsic incentives.   

The Piece Rate and Salary treatments both provide the same information to participants, but 

varies by payment scheme.  Piece rates pay participants for higher performance while salaries are 

performance-invariant.  If participants are primarily motivated by money, those in the Piece Rate 

treatment would be expected to perform better than those in the Salary treatment.  If participants 

in the Salary treatment performs at least as well as those in the Piece Rate treatment, then it can 

be inferred that participants in the Salary treatment are intrinsically motivated by factors other 

than financial rewards. 

Each of these five treatments differ in terms of pay scheme and whether or not winning/losing 

feedback is provided.  These treatments are applied to both the single and dual cue tasks.  The 

differing levels of task difficulty allows for analysis of how task difficulty affects competitiveness 

and intrinsic motivation.  The different treatments are summarised in Table 3.7. 

Only one session of the Tournament-No-Info treatment was conducted with the single cue 

task.  There did not appear to be differences in forecast errors between the Tournament and 
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Tournament-No-Info treatments in the dual cue task, and also in the single cue task with the 

data for the sole session of Tournament-No-Info treatment.  As a result, further single cue 

Tournament-No-Info treatments were not conducted due to financial constraints.  Due to the 

small sample size from one session, analyses hereafter will not include the single cue Tournament-

No-Info treatment.  We will present analyses of the dual cue Tournament-No-Info treatment 

separately from the other treatments. 

Table 3.6 Onscreen Information in the Salary Treatment 

Round Cue A Cue B Forecast Actual 
Price 

Forecast 
Error 

Earnings 
this Round 

       
1 150 201 179 192 13 $0.87 
2 150 263 221 243 22 $0.78 
3 150 88 131 117 14 $0.86 
4 150 248 219 232 13 $0.87 
5 150 201 197 200 3 $0.97 
6 150 196 182 194 12 $0.88 
7 150 353 298 305 7 $0.93 
8 150 173 169 173 4 $0.96 
9 150 270 231 248 17 $0.83 

10 150 243 233 222 11 $0.89 
 

For the purpose of exposition, we will abbreviate the treatment names.  PR denotes the Piece 

Rate treatment; PRWL for the Piece Rate Win Lose treatment; T for the Tournament treatment; 

TNI for the Tournament-No-Info treatment; and S for the Salary treatment.  In what follows, 

only the treatments are abbreviated.  When we refer to pay schemes generically rather than the 

treatment itself, we will write it out in full. 
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Table 3.7 Summary of Treatments 

Single Cue Task 

 Payoffs Relative 
Feedback 

Number of 
Sessions 

Number of 
Subjects 

     
Piece Rate 

(PR) Piece rate No 2 421 

Piece Rate Win Lose 
(PRWL) Piece rate Yes 2 42 

Tournament 
(T) Tournament Yes 2 40 

Tournament-No-Info 
(TNI) 

Tournament No 1 20 

Salary 
(S) 

Salary No 2 42 

 

Dual Cue Task 

 Payoffs Relative 
Feedback 

Number of 
Sessions 

Number of 
Subjects 

     
Piece Rate 

(PR) Piece Rate No 2 392 

Piece Rate Win Lose 
(PRWL) Piece Rate Yes 2 353 

Tournament 
(T) Tournament Yes 2 38 

Tournament-No-Info 
(TNI) 

Tournament No 2 38 

Salary 
(S) 

Salary No 2 34 

1.  There was initially a third single cue Piece Rate session with 22 participants.  We decided not to include this session in the analyses 
because a glitch in the experimental software meant that a) there are only 17 rounds of data in this session and b) the data for one 
participant is missing.  The results do not vary substantially whether this session is included in analyses or not. 
2.  We recruited 20 people for a particular session, but one person did not show up. 
3.  For reasons out of our control, a participant had left halfway through a session.  We do not use data pertaining to this participant. 
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3.4. Questionnaires 

Two questionnaires were distributed to participants over the course of the experiment: one prior 

to the task and the other afterwards.  The main aim of the questionnaires is to elicit psychological 

variables, many relating to intrinsic motivation, which can be used to complement forecast errors 

as our central measure of performance.  Questionnaires of this nature are quite common in the 

field of psychology. 

The pre-task questionnaire (see Appendix A2.6) is used to elicit each participants’ trait anxiety 

level.  Trait anxiety measures how prone people are to stress and situations that make them 

anxious.  It differs from state anxiety in that it is not situation- or context-specific, but rather is 

specific to individuals like a personality trait.  This is why the trait anxiety is elicited in the pre-

task questionnaire before the forecasting task. 

We elicit trait anxiety as a means to control for differences in the competitiveness of 

participants in our sample.  Exogenous differences in how competitive participants are could 

affect their performance in some of our treatments – particularly those in the PRWL, T and TNI 

treatments that feature an element of competition.24  For example, those who have performed 

poorly in these treatments may have done so as a means of ‘shying away’ due to low preferences 

for competition, rather than performing poorly as a result of the treatment intervention.  The 

elicitation of trait anxiety allows us to disentangle these effects by controlling for participants’ 

aversion to competition.  The link between trait anxiety and competitiveness was established by 

Segal and Weinberg (1984), where they propose trait anxiety as a proxy for competition avoidance. 

The questionnaire that we use to elicit trait anxiety is adopted from the State-Trait Anxiety 

Inventory (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983).  There are twenty statements 

describing various feelings and emotions for which participants are asked to rate on a 4-point 

scale how accurate each statement reflects their general feelings.  Some example statements 

include “I am inclined to take things hard”, “I wish I could be as happy as others seem to be”, “I 

                                                 

24 Aversion to competition may be especially salient in women compared to men.  See Niederle and Vesterlund (2007). 
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lack self-confidence” and “I worry too much over something that doesn’t really matter”.  These 

statements reflect various dimensions of trait anxiety. 

A trait anxiety variable is constructed by adding the elicited scores associated with each 

question, reversing the statements which are presented with a negative frame.  The trait anxiety 

variable is calculated as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗

= �5 − 𝑡𝑡𝑡𝑡1𝑗𝑗� + 𝑡𝑡𝑡𝑡2𝑗𝑗 + 𝑡𝑡𝑡𝑡3𝑗𝑗 + 𝑡𝑡𝑡𝑡4𝑗𝑗 + 𝑡𝑡𝑡𝑡5𝑗𝑗 + (5 − 𝑡𝑡𝑡𝑡6𝑗𝑗)

+ (5 − 𝑡𝑡𝑡𝑡7𝑗𝑗) + 𝑡𝑡𝑡𝑡8𝑗𝑗 + 𝑡𝑡𝑡𝑡9𝑗𝑗 + (5 − 𝑡𝑡𝑡𝑡10𝑗𝑗) + 𝑡𝑡𝑡𝑡11𝑗𝑗 + 𝑡𝑡𝑡𝑡12𝑗𝑗

+ (5 − 𝑡𝑡𝑡𝑡13𝑗𝑗) + 𝑡𝑡𝑡𝑡14𝑗𝑗 + 𝑡𝑡𝑡𝑡15𝑗𝑗 + (5 − 𝑡𝑡𝑡𝑡16𝑗𝑗) + 𝑡𝑡𝑡𝑡17𝑗𝑗 + 𝑡𝑡𝑡𝑡18𝑗𝑗

+ (5 − 𝑡𝑡𝑡𝑡19𝑗𝑗) + 𝑡𝑡𝑡𝑡20𝑗𝑗  

(3.2) 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the self-evaluated score for the 𝑖𝑖’th statement in the trait anxiety questionnaire for 

participant 𝑗𝑗.  A higher value indicates a higher level of trait anxiety.  The constructed variable is 

ordinal in nature allowing for comparisons across individuals, even though no intrinsic meaning 

is attached to the value itself.  A priori, it is expected that a participant who is more trait anxious 

will perform worse than another who has lower trait anxiety, ceteris paribus.  This effect should 

be larger in the treatments that feature competition: the PRWL, T and TNI treatments. 

A second questionnaire was handed out at the conclusion of the twenty round forecasting 

task.  The post-task questionnaire (see Appendix A2.7) elicits information on intrinsic motivation, 

relatedness and participant demographics.  The questionnaire begins with 23 statements for 

which participants rate on a 7 point scale.  These statements are associated with how interested 

participants were in the forecasting task, how competent they felt they were, how much effort 

they felt they put in, and how anxious they were during the task.  Some questions include: “This 

activity was fun to do”, “I was pretty skilled at this activity”, “I tried very hard on this activity” 

and “I felt pressured while doing this activity”.  This questionnaire is similar to that used by Ryan 

(1982).  In a similar way to how trait anxiety was calculated before, variables reflecting interest, 

competency, effort and tension are calculated as follows: 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 = 𝑖𝑖𝑖𝑖1𝑗𝑗 + 𝑖𝑖𝑖𝑖5𝑗𝑗 + (8 − 𝑖𝑖𝑖𝑖9𝑗𝑗) + (8 − 𝑖𝑖𝑖𝑖13𝑗𝑗) + 𝑖𝑖𝑖𝑖17𝑗𝑗 + 𝑖𝑖𝑖𝑖21𝑗𝑗 + 𝑖𝑖𝑖𝑖23𝑗𝑗  (3.3) 

  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 = 𝑖𝑖𝑖𝑖2𝑗𝑗 + 𝑖𝑖𝑖𝑖6𝑗𝑗 + 𝑖𝑖𝑖𝑖10𝑗𝑗 + 𝑖𝑖𝑖𝑖14𝑗𝑗 + 𝑖𝑖𝑖𝑖18𝑗𝑗 + (8 − 𝑖𝑖𝑖𝑖22𝑗𝑗) (3.4) 

  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 = 𝑖𝑖𝑖𝑖3𝑗𝑗 + (8 − 𝑖𝑖𝑖𝑖7𝑗𝑗) + 𝑖𝑖𝑖𝑖11𝑗𝑗 + 𝑖𝑖𝑖𝑖15𝑗𝑗 + (8 − 𝑖𝑖𝑖𝑖19𝑗𝑗) (3.5) 

  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 = (8 − 𝑖𝑖𝑖𝑖4𝑗𝑗) + 𝑖𝑖𝑖𝑖8𝑗𝑗 + (8 − 𝑖𝑖𝑖𝑖12𝑗𝑗) + 𝑖𝑖𝑖𝑖16𝑗𝑗 + 𝑖𝑖𝑖𝑖20𝑗𝑗 (3.6) 

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the self-evaluated score for statement 𝑖𝑖 of the intrinsic motivation section of the 

post-questionnaire for participant 𝑗𝑗.  Of these, the competency and tension variables relate to the 

competency and control components of Cognitive Evaluation Theory.  Someone who feels more 

competent would be more intrinsically motivated to perform while someone with higher tension 

levels should be less intrinsically motivated to perform.  The other variables, interest and effort 

also relate to intrinsic motivation. 

The second part of the post-task questionnaire elicits a measure of how socially distant 

participants felt they were to their peers.  This sense of relatedness is considered a psychological 

need and should foster engagement through higher levels of effort and interest, and reduced 

anxiety (Baumeister & Leary, 1995).  Relatedness is considered a central element for productive 

learning (see Ryan & Powelson, 1991; Furrer & Skinner, 2003).  This variable is again 

constructed from ratings, on a 7 point scale, that participants assign to 8 statements.  It is 

constructed as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗 = �8 − 𝑟𝑟1𝑗𝑗� + (8 − 𝑟𝑟2𝑗𝑗) + 𝑟𝑟3𝑗𝑗 + 𝑟𝑟4𝑗𝑗 + (8 − 𝑟𝑟5𝑗𝑗) + (8 − 𝑟𝑟6𝑗𝑗) + 𝑟𝑟7𝑗𝑗

+ 𝑟𝑟8𝑗𝑗 
(3.7) 

The elicitation of the psychological variables potentially allow us to identify specific factors 

that drive intrinsic motivation.  However, with the exception of trait anxiety, these will not be 

used to relate directly to forecasting performance.  Since the intrinsic motivation and relatedness 

variables are elicited at the completion of the task, the way participants respond to the statements 

could have been influenced by how they performed in the task.  Yet the insights from psychology 

suggests that these factors actually influence performance.  There is likely to be endogeneity 

between these factors and forecast errors that cannot be disentangled.  Nevertheless there is value 

in analysing these, so we study these independently to forecast errors. 
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The remaining part of the post-task questionnaire elicits demographic information such as 

gender, age, course of study, ethnicity and country of birth. 

3.5. Experimental Procedure 

The experiment was conducted at the University of Auckland with undergraduate students 

recruited mainly from the Faculty of Business and Economics.  An email was sent out to students 

in various courses about an economic decision-making experiment and that it was seeking 

participation (see Appendix 1).  Students were told that there will be financial remuneration for 

participation where they can expect to earn $20, including a $5 show up fee, in a session which 

lasts approximately 90 minutes.  The actual earnings depend on the decisions they make during 

the session.  If they wished to participate, they were asked to sign up for their session of choice 

via a website link.  Students are informed that they cannot sign up for and participate in more 

than one session. 

At the start of the experiment, after all participants have been seated, the experimenters first 

distributed the trait anxiety questionnaire for participants to complete (see Section 3.4 for details).  

After participants have filled out this trait anxiety questionnaire, the experimenters distributed a 

copy of the instructions explaining the forecasting task and it is read out loud.  These 

instructions25 explained to participants that they will be presented with cues and are required to 

make a prediction of the actual stock value, determined by an underlying relationship involving 

the cues.  Their forecast accuracy is represented by their absolute forecast error, the absolute 

difference between their prediction and the underlying stock value.  Participants were told that 

they will be paid a piece rate based on their forecast errors for the first five rounds of the task26, 

and that there might be a change in the way the game is played at the end of round 5, in which 

                                                 

25 There are two versions of the general instructions: one version that is based around paying participants piece rates for the first 5 rounds, and 
another version that announces that they will be receiving a flat salary.  The latter version has additional emphasis that participants will only 
receive $20 for participation, despite observing information that suggests otherwise.  The overall description of the task is identical in both versions.  
See Appendix A2.1 for these instructions and differences between treatments is noted in brackets. 

26  In all treatments other than the S treatment, participants receive piece rates on their forecasts for the first 5 rounds.  Piece rates do not apply 
in the S treatment as the flat pay had been announced at the beginning of the session. 
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case further instructions will be provided at that point.  They were provided an opportunity to 

ask questions relating to the task after these instructions have been read.   

The experimenters then handed out instructions for participants about how to login to the 

server which hosted the experimental software.  Once in, participants were presented with 10 

examples of cues and corresponding stock prices to study before the rounds begin.  After 

providing them 5 minutes to review these examples, participants start the first round of play.  

They have 90 seconds to make their forecasts.  After all participants have submitted their forecasts 

for the round, the computer software calculates each participant’s absolute forecast error and their 

corresponding piece rate earnings.  Participants are provided feedback about these along with the 

cue values for the round; this information remains on the computer screen for the rest of the 

experiment.  Tables 3.2 to 3.6, presented earlier, showed examples of the on-screen feedback 

participants observe after each round.  Subsequent rounds proceed in the same manner.  After 

round 4, participants are reminded that there may be a change in the way the game is played after 

round 5. 

After round 5 participants are told by the experimenters how the game would proceed from 

round 6.  For the PR treatment, a verbal announcement is made that gameplay would continue 

as usual with piece rates being applied to forecast errors.  For the PRWL, T and TNI treatments, 

a new set of written instructions were handed out and read aloud by the experimenters (see 

Appendices A2.2 to A2.4).  These instructions explain that participants would now be paired 

with another participant in the session and would be rematched each round.  For the PRWL and 

T treatments, each participant would be shown winning and losing feedback after each round, 

while the same information for each round will only be shown at the conclusion of the final round 

in the TNI treatment.  Rank-dependent payoffs are applied to T and TNI treatments after round; 

participants in these treatments also receive a further $4 lump sum payment.  The intervention 

after round 5 does not apply to the S treatment, since participants are told from the outset that 

they will be paid a fixed sum at the end of the experiment and that there is no change in the 

information that is provided to them.  After reading the appropriate instructions, participants are 

given the opportunity to ask questions relating to the modified gameplay before continuing to 

round 6. 
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With no changes to the forecasting task, rounds 6 through 20 proceed in a manner similar to 

the first five rounds except with changes, if any, to the method of payment or to the feedback 

that is displayed.  At the end of the twenty rounds, participants are asked to fill out another 

questionnaire which elicits various measures of intrinsic motivation and basic demographic 

information. 

After filling out the questionnaire, each participant was called up and paid the balance of their 

earnings account.  Participants were asked to leave the premise after collecting their earnings.  

Table 3.8 shows the average earnings of participants by treatment. 

Table 3.8 Average Earnings by Treatment 

 Single Cue Task 

 

Dual Cue Task 
   

PR $22.81 $19.70 

PRWL $22.96 $20.11 

T $20.85 $19.90 

TNI $20.75 * $19.98 

S $20 $20 
* The average earnings in the single cue TNI treatment are computed with 20 
participants since only one session was run. 

 

3.6. Hypotheses 

Having laid out the experiment, we now formulate some working hypotheses that we structure 

our analyses upon.  These hypotheses are based on our three research questions.  Our first research 

question asks which of the three pay schemes that we study – piece rates, tournaments and fixed 

salaries – brings about the best performance from workers. 

Comparing the piece rate and tournament pay schemes, we would expect the two pay schemes 

to perform similarly.  This comes from the property of Piece Rate Equivalence, where rank-order 

tournaments are theoretically shown to elicit the same amount of effort as piece rates do (Lazear 

& Rosen, 1981).  This theoretical property was later confirmed in a lab experiment by Bull et al. 

(1987).  According to Piece Rate Equivalence, we would expect the PR treatment to perform no 

differently to the T treatment.   



51 

H1. 
According to Piece Rate Equivalence, we expect forecast errors in the PR 

treatment to be no different to those in the T treatment. 

Comparing piece rates and salaries, there is some ambiguity about how these pay schemes 

should perform relative to one another.  On the one hand, economic intuition would suggest 

fixed salaries to perform poorly as players shirk in order to minimise their effort costs.  Piece rates 

would perform well as players exert a high level of effort in order to maximise their monetary 

payoffs.  Conventional intuition would therefore suggest piece rates to outperform salaries.  This 

effect is also known as that brought about by extrinsic incentives. 

On the other hand, and as noted earlier, there is a large literature which shows that 

performance based incentives are counter-productive, as they crowd out the intrinsic motivation 

of people to perform.  See Deci et al. (1999), Frey and Jegen (2001), Gneezy et al. (2011), Bowles 

and Polanía-Reyes (2012) and Festré and Garrouste (2015) for a selection of recent surveys.  

According to Cognitive Evaluation Theory, Deci and Ryan (1985) suggest that people view 

performance-based incentives as controlling, going against their preferences for autonomy. As a 

result, people’s intrinsic motivation falls when they are paid for performance, reducing their 

productivity as a result. 

The issue of motivation crowding out is a contentious one, with evidence supporting 

opposing conclusions.  Our experimental setup provides a clean test of extrinsic versus intrinsic 

motivation by perfectly controlling for the feedback that people receive.  In the S treatment, in 

addition to feedback of their own forecast errors, players get to see hypothetical feedback as if 

they were paid according to a piece rate.  This allows us to examine the effects of extrinsic and 

intrinsic motivation, ruling out feedback as a confounding factor. 

How piece rates perform relative to salaries depends on the relative magnitudes of the 

aforementioned effects.  If standard economic theory holds, we would expect extrinsic incentives 

to be dominant, with little to no crowding out of motivation.  In this instance, we would expect 

piece rates to unambiguously outperform salaries.  Since this is the benchmark case, we can infer 

motivation crowding out even if we observe no difference in performance between piece rates and 

salaries.  A stronger form of crowding out occurs if salaries outperform piece rates.  We therefore 

express Hypothesis 2 in two parts: 
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H2a. 
If motivation crowding out does not occur, extrinsic incentives suggest that 

forecast errors in the PR treatment are smaller than in the S treatment. 

  

H2b. 

If motivation crowding out occurs, the motivating effect associated with extrinsic 

incentives is overpowered by the reduction in intrinsic motivation.  We expect 

forecast errors in the PR treatment to be greater than or equal to those in the S 

treatment. 

The final pairwise comparison from the three pay schemes is of tournaments and fixed salaries.  

Since Piece Rate Equivalence posits that performance under tournaments is no different to that 

under piece rates, the two-part hypothesis presented as H2 would also apply to tournaments.  

Tournaments motivate performance, while salaries do not.  However since tournaments are 

controlling, intrinsic motivation would be crowded out in tournaments.  The magnitude of the 

crowding out effect, if it occurs at all, determines how tournaments perform relative to salaries.  

While adopted directly from hypothesis 2, we present Hypothesis 3 below in two parts: 

H3a. 
If motivation crowding out does not occur, extrinsic incentives suggest that 

forecast errors in the T treatment are smaller than in the S treatment. 

  

H3b. 
Under motivation crowding out, we would expect forecast errors in the T 

treatment to be greater than or equal to forecast errors in the S treatment. 

The following research question relates to the decomposition of tournaments into feedback 

and payoff components.  Accordingly, we split analyses into two parts.  To look at the effect of 

providing relative performance feedback, we compare the PR and PRWL treatments.  These 

treatments are identical, except that the latter provides additional information at the end of each 

round about whether subjects performed better or worse than their partners.  Since subjects are 

paid piece rates in both treatments, the relative feedback does not impact earnings, allowing us 

to isolate the effect associated with the relative feedback. 

If people are motivated solely by monetary earnings, then we would not expect this relative 

feedback to have any effect on their performance.  If, on the other hand, people derive utility 

from winning (disutility from losing), we would expect them to exert greater effort to improve 



53 

their chances of winning (reduce their chances of losing).  As such we would expect performance 

to improve.  This effect may consist of an ex ante anticipation effect (Blanes i Vidal & Nossol, 

2011) that is associated with preferences for status and respect (see Ellingsen & Johannesson, 

2007 for a review), or an ex-post revelation effect when players respond to the feedback received.  

Both effects suggest better performance when relative performance feedback is provided.   

H4. 
The provision of relative performance feedback improves performance.  We expect 

forecast errors to be lower in the PRWL treatment than in the PR treatment. 

The other part of the second research question relates to the rank-dependent payoffs inherent 

in tournaments.  We compare the effectiveness of rank-dependent payoffs in motivating 

performance with piece rates.  This is addressed by comparing the forecast errors of the PRWL 

and T treatments.  Both treatments feature rank feedback, but differ in terms of incentives: piece 

rates and rank-dependent prizes respectively. 

Piece Rate Equivalence suggests that tournaments perform similarly to piece rates.  However 

this property is not directly applicable to our research question, which involves feedback-

augmented piece rates (as in the PRWL treatment).  If standard piece rates perform no differently 

to tournaments (H1), and feedback on relative performance induces higher performance from 

players (H4), then we would accordingly expect the feedback-augmented piece rates to perform 

better than tournaments.  Both Hannan et al. (2008) and Eriksson et al. (2009) provide evidence 

indicative of this, although not statistically significant. 

H5. 

Piece rates perform better than rank-dependent payoffs of tournaments, when 

relative performance feedback is controlled for.  We would expect forecast errors 

in the PRWL treatment to be lower than in the T treatment. 

Our final research question relates to learning.  Which of our treatments brings about the 

fastest rate of learning?  We posit that the rate of learning is highest amongst treatments that 

feature an element of competition.  This is because competition would continuously motivate 

people to perform.  According to Dutcher, Balafoutas, Lindner, Ryvkin, and Sutter (2015), 

tournament players increase their effort immediately following a loss, since they want to reduce 

their chances of losing in subsequent rounds.  The competition provides the impetus to perform.  
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Since competition features in both the PRWL and T treatments, we would expect learning to be 

more pronounced in these treatments compared to the PR and S treatments. 

Between the PRWL and T treatments, we would expect learning to be more salient in the T 

treatment than in the PRWL treatment.  While competition is common to both treatments, the 

precise nature of it is different.  In the PRWL treatment, winning or losing itself has no effect on 

monetary payoffs, since players are paid according to their absolute performance.  On the other 

hand, winning and losing has financial implications in the T treatment.  Winners receive a 

positive payoff, while losers receive nothing.  Since the notion of competition is reinforced by 

payoffs in the T treatment, we would expect learning to occur at a faster rate in the T treatment 

than in the PRWL treatment. 

We summarise our learning hypothesis below: 

H6. 

The rate of learning should be most pronounced in the T treatment, followed by 

the PRWL treatment.  Learning occurs at a slower rate in the PR and S 

treatments. 

These six hypotheses presented here form the core of our study, addressing our three primary 

research questions.  The presentation of results in the upcoming chapter will be structured around 

these hypotheses.   
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4. Results: Treatment Effects 

4.1. First Five Rounds 

From the design of our experiment, participants’ earnings in the first five rounds of play are based 

on piece rates in all treatments, except the S treatment.  Before we proceed with between-subjects 

comparisons of forecast errors in rounds 6 to 20, we begin by confirming that there are no 

differences in performance across treatments in these pre-intervention rounds, since the 

treatments should be identical to each other ex ante.  This check is necessary to ensure that the 

forthcoming between-subjects analyses is not undermined by systematic differences in 

participants’ performance. 

One way to analyse pre-intervention differences in performance is to look at each participant’s 

median forecast error across the first five rounds of play.  This serves as a metric for the overall 

ability of each participant.  A close look at the data for individual participants show that those 

who make unusually large forecast errors in any of the first five rounds do not necessarily perform 

poorly overall – it may be due to players making the odd mistake, or my simply reflect a trial-

and-error strategy being played.  In this regard the median statistic is an appropriate measure of 

ability, since it is unaffected by unusual forecast error values that do not necessarily reflect an 

individual’s overall ability.  As with forecast errors, a smaller value represents higher ability.  The 

average of these are shown in Table 4.1.   

Two obvious features of the data are apparent from Table 4.1.  Firstly, forecast errors tend to 

be larger in the dual cue task than in the single cue task in every treatment; this shows that the 

dual cue task is more difficult than the single cue task.  Secondly, there is a large spread in forecast 

errors even within each treatment.  These two features can also be observed in the distribution 

plots in Figure 4.1. 

From Table 4.1 we can see that the average ability of participants are reasonably similar across 

each of the single cue treatments, with ability values ranging from 9.1 to 11.9 across treatments.  

A Kruskal Wallis test shows that there are no cross treatment differences in ability across 

participants in the single cue task (χ2(3) = 1.60, p = 0.659, n = 166).  Across the dual cue 
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treatments, a Kruskal Wallis test shows that there are no significant differences in the distribution 

of participant ability (χ2(3) = 2.04, p = 0.564, n = 146). 

 

Table 4.1 Participant Ability by Treatment 

 Single Cue Dual Cue 
   

Piece Rate 
11.93 

(11.04) 
25.23 

(23.36) 

Piece Rate Win Lose 10.38 
(7.10) 

21.94 
(13.93) 

Tournament 10.90 
(9.99) 

25.89 
(16.27) 

Salary 9.14 
(6.63) 

20.79 
(11.25) 

   

Aggregated 10.58 
(8.85) 

23.58 
(17.02) 

Ability is defined to be the median forecast error of each participant across the 
first five rounds.  Smaller values indicate higher ability.  Table shows mean 
ability; standard deviation of ability are in parentheses. 

 

We have now established that there are no significant differences in participants’ ability in the 

first five rounds of play.  This finding enables us to analyse the effects of experimental 

interventions between subjects, and allows us to make causal inferences without worrying about 

how exogenous differences in participants’ ability and characteristics undermine the results. 
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Figure 4.1 Distributions of Participant Ability in Rounds 1 to 5, by Treatment 

Single Cue Piece Rate Dual Cue Piece Rate 

Single Cue Piece Rate Win Lose Dual Cue Piece Rate Win Lose 

Single Cue Tournament Dual Cue Tournament 

Single Cue Salary Dual Cue Salary 

Ability is defined to be the median forecast error of each participant across the first five rounds.  Since they are measured in forecast 
error units, ability is also truncated at zero.  The histograms show the number of participants in each treatment whose ability fall 
within each category of width 10.  The solid line shows the kernel density. 
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4.2. Descriptive Statistics 

In this section we compare participants’ forecast errors in rounds 6 to 20 across treatments.  To 

start off, descriptive statistics of forecast errors in rounds 6 to 20 are presented in Table 4.2, while 

Figure 4.2 depicts the distribution of forecast errors across treatments.  Prima facie, the shape of 

the forecast error distributions are similar across the single cue treatments, with the peak showing 

80-90% of the forecast error observations taking a value of 10 or less.  The right tail of the PRWL 

distribution represents a single observation where the forecast error took the value of 299. 

The mean forecast errors in Table 4.2 show that there are no obvious differences in 

performance across the single cue treatments.  The median forecast errors are practically identical.  

A series of non-parametric Wilcoxon Ranksum tests of pairwise treatment differences in forecast 

errors are tabulated in Table 4.3.  The unit of observation is the median forecast error of each 

participant across the 15 post-intervention rounds, yielding a single observation for each 

participant. 27   These pairwise tests confirm that there are no significant post-intervention 

differences in performance across single cue treatments. 

In the dual cue task, the T treatment stands out from the others.  The mean forecast error of 

30.7 in the T treatment appear to be much larger than forecast errors of the other treatments, 

with mean forecast errors in the vicinity of 25.  The distribution plots in Figure 4.2 show that 

despite the T treatment having a longer right tail than the PRWL and S treatments, much of the 

difference lies in that the peak of the distribution does not rise nearly as high as in the other 

treatments.  The higher median forecast error in the T treatment also reflects this.  However, 

when we look at the rank-sum tests presented in Panel B of Table 4.3, we do not observe the T 

treatment to perform significantly worse than other treatments at conventional levels.  The rank-

sum test between the dual cue PRWL and T treatments, however, only misses out at the 10% 

significance level.  

                                                 

27  Due to the panel nature of the data, we cannot conduct rank-sum tests with raw observations, since the raw observations are not truly 
independent – since they are correlated for each participant over the dimension of time.  We run the rank-sum tests with the median forecast 
error for each participant across rounds 6 to 20 to circumvent the independence requirement. 
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Table 4.2 Average Forecast Errors in Rounds 6 to 20, by Treatment 

 Single Cue Dual Cue 

 Mean 
(Std Dev) Median Mean 

(Std Dev) Median 

     

PR 10.16 
(14.70) 5 26.56 

(33.63) 15 

PRWL 9.60 
(16.83) 5 24.03 

(25.91) 15 

T 10.01 
(14.40) 5 30.74 

(36.55) 19 

S 9.01 
(11.84) 

6 25.06 
(27.00) 

16 

Forecast errors in rounds 6 to 20 averaged across participants and time for each treatment. 

 

Table 4.3 Pairwise Ranksum Differences in Forecast Errors in Rounds 6-20 

Panel A: Single Cue Task 

 PRWL 
(n = 42) 

T 
(n = 40) 

S 
(n = 42) 

    
PR 

(n = 42) 
|z| = 0.10 
p = 0.917 

|z| = 0.78 
p = 0.438 

|z| = 0.93 
p = 0.352 

PRWL 
(n = 42)  |z| = 0.53 

p = 0.600 
|z| = 0.83 
p = 0.404 

T 
(n = 40) 

  |z| = 1.57 
p = 0.116 

 

Panel B: Dual Cue Task 

 PRWL 
(n = 35) 

T 
(n = 38) 

S 
(n = 34) 

    
PR 

(n = 39) 
|z| = 0.72 
p = 0.474 

|z| = 0.63 
p = 0.531 

|z| = 0.08 
p = 0.934 

PRWL 
(n = 35)  |z| = 1.63 

p = 0.104 
|z| = 0.78 
p = 0.435 

T 
(n = 38)   |z| = 0.89 

p = 0.372 
Unit of observation is the median forecast error over the rounds 6 to 20 for each participant.. 
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Figure 4.2 Distribution of Forecast Errors in Rounds 6-20, by Treatment 

Single Cue Piece Rate Dual Cue Piece Rate 

Single Cue Piece Rate Win Lose Dual Cue Piece Rate Win Lose 

Single Cue Tournament Dual Cue Tournament 

Single Cue Salary Dual Cue Salary 

Forecast errors are expressed as absolute values, so the distributions are truncated at zero.  The histogram shows the percentage of 
forecast error observations that fall within each category of width 10.  The solid line is the kernel density. 

 

Initial analyses shows that there are no significant differences in forecast errors between 

treatments for both the single and dual cue tasks.  One problem inherent in the data is that there 

is a great deal of variability in forecast errors both across participants and across time.  It is quite 

possible that the variability, unaccounted for, may be masking some differences across treatments.  
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We now proceed with regression analyses, which allows us to explain some of this noise by 

controlling for other factors that might influence performance.  Panel data models are also able 

to account for some of the unobserved time-invariant differences across participants.  Regression 

analyses also allow us to answer more complex questions like how the process of learning is 

affected by the treatment interventions. 

4.3. Baseline Results 

In this section, we present our baseline regressions, which we will use to base our results upon.  

These regressions are run across rounds 6 to 20, the post-intervention rounds, and are estimated 

with random effects generalised least squares.  We opt for random effects models over fixed effects 

models here because fixed effects models are unable to estimate variables which are time invariant.  

This means that the treatment dummies, which we use to estimate the effects arising from 

experimental interventions, are inestimable since participants who are assigned to a treatment 

remain in that treatment for the entire duration of the task.  Due to this limitation of the fixed 

effects model, random effects estimation is used by default without consideration to the 

underpinning assumptions relating to the individual fixed effects.  The reported standard errors 

are clustered by participants to control for the within-participant correlation of standard errors 

across rounds. 

Our baseline regressions in Tables 4.4 to 4.6 regress forecast errors in rounds 6 to 20 while 

controlling for a series of different variables.  Each of these tables show the same regression 

specifications, but with different datasets: Table 4.4 runs the regressions with the single and dual 

cue data pooled together, while Tables 4.5 and 4.6 are repeated with single and dual cue 

treatments individually.  The main variables of interest are a complete series of dummy variables 

identifying each treatment, with the PR treatment serving as the reference category.  The 

estimated coefficients on these treatment dummies will reveal how the different treatments 

perform vis à vis others, quantifying the effect of the various treatment interventions.  Panel B of 

each regression table presents the results from Wald chi-squared tests of pairwise treatment 

differences. 

We also control for learning over time with the ‘Round’ variable, which represents a linear 

time trend.  The linear time trend itself reveals the general pattern of how forecast errors change 



62 

over the 15 post-intervention rounds.  If the trend is negative, it means that there is evidence for 

learning over time, where forecast errors improve over time.  In the regression tables, models 1 

and 2 estimate a common trend for all participants.  In models 3 and 4, we allow for treatment-

specific trends by interacting the linear time trend by treatment.  The interactions include the PR 

treatment, so there is no reference category to interpret the trends against.28  In Chapter 5, we 

study the notion of learning in greater detail. 

Models 2 and 4 of the regression tables also incorporate a number of control variables.  These 

controls include the trait anxiety and gender of participants.  Trait anxiety scores measure how 

prone participants are to stress and situations that may make them anxious.  We use this as a 

proxy to control for participants’ competitiveness – see Segal and Weinberg (1984).  Although 

we expect people who are more trait anxious to perform worse, trait anxiety does not seem to 

significantly influence forecast errors in our baseline regressions.   

Gender is also included in the regression models.  The forecasting task that we use is 

cognitively challenging and we expect women to perform worse than men, since men have been 

shown to be more capable in terms of abstract problem solving (Hyde, Fannema, & Lamon, 

1990).  The gender dummy is therefore included to capture these gender differences.  Gender 

differences in performance are only present in the dual cue task, and not in the simpler single cue 

task.  Chapter 7 studies gender performance differences in greater detail. 

We proceed with discussing the findings of our baseline regressions in Tables 4.4 to 4.6, 

systematically addressing our main first two research questions and associated hypotheses.  After 

the main results have been highlighted, a series of robustness checks are presented.  Evidence 

suggests that the PRWL and S treatments perform significantly better than the PR and T 

treatments, with no differences between the PRWL and S treatments, and between the PR and 

T treatments.  We discuss the results in detail below.  

                                                 

28  As such, the coefficients on each of these treatment-round interactions are interpreted as the slopes of the estimated trend line, rather than the 
marginal change in slope relative to that of the reference treatment. 
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Table 4.4 Baseline Regressions of Forecast Errors: Pooled 

Panel A: Regression Results 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -1.897 
(2.185) 

-4.235 * 
(2.399) 

-3.275 
(2.939) 

-6.114 * 
(3.185) 

Tournament 
2.052 

(2.738) 
0.661 

(2.944) 
4.984 

(3.177) 
3.339 

(3.381) 

Salary 
-1.865 
(2.182) 

-4.185 * 
(2.329) 

-2.558 
(2.684) 

-5.749 ** 
(2.848) 

Trait Anxiety  0.080 
(0.121)  0.080 

(0.121) 

Female  8.173 *** 
(1.536)  8.173 *** 

(1.536) 

Round -0.113 * 
(0.063) 

-0.126 * 
(0.068)   

PR*Round   -0.096 
(0.129) 

-0.142 
(0.146) 

PRWL*Round   0.010 
(0.147) 

0.003 
(0.153) 

T*Round   -0.322 *** 
(0.109) 

-0.348 *** 
(0.119) 

S*Round   -0.043 
(0.116) 

-0.021 
(0.118) 

Constant 
19.53 *** 
(1.849) 

13.83 *** 
(4.925) 

19.31 *** 
(2.017) 

14.03 *** 
(5.413) 

     

Observations 4680 4245 4680 4245 
Participants 312 283 312 283 

R2 0.004 0.036 0.005 0.036 
Wald χ2 6.87 40.91 13.60 50.50 
p > χ2 0.143 0.000 0.059 0.000 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 Model 4 
     

PRWL = 0 χ2(1) = 0.75 
p = 0.385 

χ2(1) = 3.12 
p = 0.078 

χ2(1) = 1.24 
p = 0.265 

χ2(1) = 3.68 
p = 0.055 

PRWL = T χ2(1) = 2.71 
p = 0.099 

χ2(1) = 4.07 
p = 0.044 

χ2(1) = 6.44 
p = 0.011 

χ2(1) = 7.71 
p = 0.006 

T = 0 χ2(1) = 0.56 
p = 0.454 

χ2(1) = 0.05 
p = 0.822 

χ2(1) = 2.46 
p = 0.117 

χ2(1) = 0.98 
p = 0.323 

S = 0 χ2(1) = 0.73 
p = 0.393 

χ2(1) = 3.23 
p = 0.072 

χ2(1) = 0.91 
p = 0.341 

χ2(1) = 4.08 
p = 0.044 

T = S χ2(1) = 2.67 
p = 0.102 

χ2(1) = 4.18 
p = 0.041 

χ2(1) = 6.20 
p = 0.013 

χ2(1) = 8.82 
p = 0.003 

     

PR*Round = PRWL*Round   χ2(1) = 0.30 
p = 0.587 

χ2(1) = 0.47 
p = 0.494 

PRWL*Round = T*Round   χ2(1) = 3.28 
p = 0.070 

χ2(1) = 3.27 
p = 0.071 

PR*Round = T*Round   χ2(1) = 1.79 
p = 0.182 

χ2(1) = 1.20 
p = 0.274 

PR*Round = S*Round   χ2(1) = 0.09 
p = 0.758 

χ2(1) = 0.41 
p = 0.521 

T*Round = S*Round   χ2(1) = 3.06 
p = 0.080 

χ2(1) = 3.77 
p = 0.052 

Bold typeface indicates statistical significance at the 10% level or better. 
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Table 4.5 Baseline Regressions of Forecast Errors: Single Cue 

Panel A: Regression Results 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win-Lose -0.557 
(1.493) 

-1.127 
(1.734) 

-1.317 
(2.973) 

-2.692 
(3.335) 

Tournament 
-0.145 
(1.656) 

-0.313 
(1.957) 

0.769 
(2.766) 

0.193 
(3.202) 

Salary 
-1.149 
(1.349) 

-1.910 
(1.571) 

-0.665 
(2.432) 

-2.452 
(2.774) 

Trait Anxiety  -0.063 
(0.098)  -0.063 

(0.098) 

Female  1.796 
(1.167)  1.796 

(1.168) 

Round -0.111 * 
(0.061) 

-0.123 * 
(0.067)   

PR*Round   -0.100 
(0.177) 

-0.158 
(0.140) 

PRWL*Round   
-0.042 
(0.177) 

-0.038 
(0.181) 

T*Round   
-0.170 * 
(0.090) 

-0.197 ** 
(0.100) 

S*Round   -0.137 * 
(0.077) 

-0.116 
(0.077) 

Constant 11.61 *** 
(1.493) 

14.07 *** 
(4.587) 

11.46 *** 
(2.103) 

14.53 *** 
(5.077) 

     

Observations 2490 2220 2490 2220 
Participants 166 148 166 148 

R2 0.002 0.009 0.002 0.009 
Wald χ2 4.77 12.58 8.63 15.07 
p > χ2 0.312 0.050 0.280 0.089 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 Model 4 
     

PRWL = 0 χ2(1) = 0.14 
p = 0.709 

χ2(1) = 0.42 
p = 0.516 

χ2(1) = 0.20 
p = 0.658 

χ2(1) = 0.65 
p = 0.420 

PRWL = T χ2(1) = 0.08 
p = 0.776 

χ2(1) = 0.30 
p = 0.583 

χ2(1) = 0.57 
p = 0.451 

χ2(1) = 0.99 
p = 0.319 

T = 0 χ2(1) = 0.01 
p = 0.930 

χ2(1) = 0.03 
p = 0.873 

χ2(1) = 0.08 
p = 0.781 

χ2(1) = 0.00 
p = 0.952 

S = 0 χ2(1) =0.73 
p = 0.394 

χ2(1) = 1.48 
p = 0.224 

χ2(1) = 0.07 
p = 0.785 

χ2(1) = 0.78 
p = 0.377 

T = S χ2(1) = 0.60 
p = 0.440 

χ2(1) = 1.44 
p = 0.230 

χ2(1) = 0.44 
p = 0.509 

χ2(1) = 1.38 
p = 0.240 

     

PR*Round = PRWL*Round   χ2(1) = 0.08 
p = 0.783 

χ2(1) = 0.28 
p = 0.599 

PRWL*Round = T*Round   χ2(1) = 0.42 
p = 0.516 

χ2(1) = 0.59 
p = 0.442 

PR*Round = T*Round   χ2(1) = 0.23 
p = 0.634 

χ2(1) = 0.05 
p = 0.822 

PR*Round = S*Round   χ2(1) = 0.07 
p = 0.791 

χ2(1) = 0.07 
p = 0.794 

T*Round = S*Round   χ2(1) = 0.08 
p = 0.779 

χ2(1) = 0.41 
p = 0.524 

Bold typeface indicates statistical significance at the 10% level or better. 
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Table 4.6 Baseline Regressions of Forecast Errors: Dual Cue 

Panel A: Regression Results 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win-Lose -2.533 
(3.434) 

-4.523 
(3.495) 

-4.659 
(4.708) 

-6.889 
(4.935) 

Tournament 4.173 
(4.416) 

2.294 
(4.577) 

9.229 * 
(4.747) 

7.067 
(4.895) 

Salary -1.498 
(3.405) 

-4.716 
(3.669) 

-3.653 
(4.418) 

-7.684 
(4.714) 

Trait Anxiety  0.090 
(0.193) 

 0.090 
(0.193) 

Female  
10.08 *** 
(2.375)  

10.08 *** 
(2.376) 

Round -0.115 
(0.117) 

-0.129 
(0.123)   

PR*Round   -0.092 
(0.236) 

-0.127 
(0.246) 

PRWL*Round   0.072 
(0.243) 

0.055 
(0.261) 

T*Round   -0.481 ** 
(0.201) 

-0.494 ** 
(0.212) 

S*Round   0.074 
(0.241) 

0.101 
(0.251) 

Constant 
28.06 *** 
(2.941) 

19.84 *** 
(7.941) 

27.76 *** 
(2.990) 

19.81 ** 
(8.680) 

     
Observations 2190 2025 2190 2025 
Participants 146 135 146 135 

R2 0.007 0.034 0.008 0.035 
Wald χ2 5.15 25.13 12.11 31.80 
p > χ2 0.273 0.000 0.097 0.000 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 Model 4 
     

PRWL = 0 χ2(1) = 0.54 
p = 0.461 

χ2(1) = 1.67 
p = 0.196 

χ2(1) = 0.98 
p = 0.322 

χ2(1) = 1.92 
p = 0.162 

PRWL = T χ2(1) = 3.30 
p = 0.069 

χ2(1) = 3.52 
p = 0.061 

χ2(1) = 7.19 
p = 0.007 

χ2(1) = 6.47 
p = 0.011 

T = 0 χ2(1) = 0.89 
p = 0.345 

χ2(1) = 0.25 
p = 0.616 

χ2(1) = 3.78 
p = 0.052 

χ2(1) = 2.08 
p = 0.149 

S = 0 χ2(1) = 0.19 
p = 0.660 

χ2(1) = 1.65 
p = 0.199 

χ2(1) = 0.68 
p = 0.408 

χ2(1) = 2.66 
p = 0.103 

T = S χ2(1) = 2.40 
p = 0.122 

χ2(1) = 3.52 
p = 0.061 

χ2(1) = 6.86 
p = 0.009 

χ2(1) = 8.29 
p = 0.004 

     

PR*Round = PRWL*Round   χ2(1) = 0.23 
p = 0.630 

χ2(1) = 0.26 
p = 0.612 

PRWL*Round = T*Round   χ2(1) = 3.06 
p = 0.080 

χ2(1) = 2.66 
p = 0.103 

PR*Round = T*Round   χ2(1) = 1.58 
p = 0.209 

χ2(1) = 1.28 
p = 0.258 

PR*Round = S*Round   χ2(1) = 0.24 
p = 0.623 

χ2(1) = 0.42 
p = 0.516 

T*Round = S*Round   χ2(1) = 3.13 
p = 0.077 

χ2(1) = 3.28 
p = 0.070 

Bold typeface indicates statistical significance at the 10% level or better. 
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4.3.1. Pay Schemes 

Piece Rates and Tournaments 

Our first research question asks which of the three pay schemes that we look at – piece rates, 

tournaments and fixed salaries – induces the best performance from workers.  This research 

question can be broken down into three pairwise comparisons. 

The first pairwise comparison is of piece rates and tournaments.  Drawing from the property 

of Piece Rate Equivalence, hypothesis H1 – laid out earlier in Section 3.6 – posited that forecast 

errors in the PR and T treatment would not be statistically different from one another.  From the 

regressions in Tables 4.4 to 4.6, this hypothesis would be represented by an insignificant T 

treatment dummy, since the PR treatment serves as the reference category. 

Overall, we find that tournaments do not perform differently to piece rates.  In the baseline 

pooled regressions in Table 4.4, the coefficients on the T treatment dummy are positive, but with 

large standard errors.  As a result, none of the coefficients in these models are statistically 

significant at conventional levels.  When we look only at the single cue treatments, Table 4.5 

again shows that the dummy variable for the T treatment is statistically insignificant in each of 

the four regression models. 

In the dual cue regressions in Table 4.6, we see that the T dummy is positive in each of the 

regression models, although insignificant in models 1, 2 and 4.  In regression model 3, forecast 

errors are higher in the T treatment than in the PR treatment by an average of 9.23 points, and 

is statistically significant with a p-value of 0.052.  While model 3 shows that tournaments perform 

significantly worse than piece rates in the dual cue task, this finding no longer holds when controls 

of trait anxiety and gender are included in model 4.  It should be noted that while the forecast 

errors in the T treatment are large in regression models 3 and 4, it is compensated by a greater 

rate of learning in the T treatment than in the PR treatment.  We will elaborate on the notion of 

learning at a later point in the following chapter. 

The insignificant T dummy in our pooled, single and dual cue baseline regressions in Tables 

4.4 to 4.6 lends support to hypothesis H1.  Tournaments do not perform differently to piece 

rates.  This verifies the property of Piece Rate Equivalence.  Our first result is stated below: 
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Result 4.1. 
Piece Rate Equivalence is verified.  Tournaments do not perform any 

differently to piece rates. 

 

Piece Rates and Salaries 

Our second pairwise comparison of pay schemes is between piece rates and fixed salaries.  As 

discussed earlier, the effects of extrinsic incentives and motivation crowding out play out in 

different directions.  The relative magnitude of these effects determines how piece rates perform 

relative to salaries.  Hypothesis H2 came in two parts.  According to H2a, if the motivation 

crowding out effect plays little or no role and the extrinsic effect dominates, then we would expect 

the PR treatment to have smaller forecast errors than the S treatment.  On the other hand if H2b 

holds, then forecast errors in the PR treatment are greater than or equal to forecast errors in the 

S treatment, indicating motivation crowding out. 

We find evidence to support the existence of motivation crowding out.  The pooled 

regressions in Table 4.4 show the S treatment dummy to have a negative coefficient in each of 

the four specifications.  The S dummy is statistically significant in regression models 2 and 4 

which incorporate the controls of trait anxiety and gender.  In the single cue regressions in Table 

4.5, we observe the coefficients on the S treatment dummy in each regression model to be negative, 

although none are statistically significant.  It is similar for the dual cue task in Table 4.6, where 

again the S treatment dummy is negative but insignificant in each specification.  The S dummy 

in regression model 4 of Table 4.6, however, is only insignificant at the margin, with a p-value of 

0.103. 

It is interesting that the signs on the S dummy coefficients in each of the pooled, single and 

dual cue regression models are negative, but is only statistically significant in the pooled 

regressions of Table 4.4.  This is likely due to the reduction in statistical power in the single and 

dual cue regressions as the sample size reduces through disaggregation.  Nevertheless, the results 

point towards salaries performing better than piece rates, providing support for hypothesis H2b 
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over the alternative H2a, that piece rates crowd out intrinsic motivation.29  Accordingly, Result 

4.2 is stated below: 

Result 4.2. 
Piece rates perform worse than fixed salaries.  The reduction in intrinsic 

motivation is more salient than the extrinsic incentives of piece rates. 

 

Tournaments and Salaries 

Our final pairwise comparison of pay schemes is of tournaments and salaries.  Given our first two 

results that a) piece rates perform similarly to tournaments, and that b) piece rates perform worse 

than fixed salaries, we would accordingly expect tournaments to perform worse than salaries.  This 

is expressed as hypothesis H3b, which we would expect to hold over H3a. 

The various regression tables show that the S treatment performs significantly better than the 

T treatment.  From the pooled regressions in Table 4.4, we see that forecast errors in the S 

treatment are estimated to be smaller than those for the T treatment – Wald tests show the 

difference to be highly significant in regression models 2 to 4, and only marginally insignificant 

in model 1 with p = 0.102.  The pattern of results is replicated when we run identical regressions 

for the dual cue task, where we see again that the S treatment performs better than the T treatment 

in models 2 to 4 of Table 4.6.  For the single cue task in Table 4.5, although the differences are 

insignificant, the estimated coefficients for T and S treatments indicate that the S treatment 

performs better than the T treatment. 

Our baseline regressions lend support for H3b, that salaries perform better than tournaments.  

Drawing upon Cognitive Evaluation Theory, this is attributable to the higher degree of control 

inherent in tournaments, which people may be averse to.  In order for the participant to earn any 

money under tournaments, they are required to outperform their random partner.  On the other 

hand, there are no performance requirements for the participant to fulfil in order to earn money 

under salaries.  The greater degree of control in tournaments reduces participants’ autonomy 

                                                 

29  Motivation crowding out can also be inferred even if piece rates perform similarly to salaries, as we find in the single and dual cue baseline 
regressions.  This is because if extrinsic incentives are dominant, then piece rates should unambiguously outperform salaries. 



72 

relative to salaries, and as a result their intrinsic motivation falls, leading to lower forecast 

performance. 

This explanation can be supported more directly by looking at the various psychological 

measures of intrinsic motivation which we have elicited from the post-task questionnaire (see 

Section 3.4 for details).  Table 4.7 presents the mean and standard deviation of four self-reported 

psychological variables – interest, competency, effort and tension – for the S and T treatments 

when the single and dual cue observations are pooled together.  To validate our explanation about 

the greater degree of control in the T treatment, we focus on the variable of ‘tension’.  Tension is 

indicative of control and participants’ loss of autonomy.  For example, the strict requirement of 

winning to earn money in tournaments brings about pressure for participants to perform, for 

which they should report higher levels of tension relative to salaries. 

From Table 4.7, we see that on average S participants report tension levels of 13.10 points, 

whereas T participants report higher levels of tension at 16.59 points.  According to a rank-sum 

test, the difference is highly significant (|z| = 3.58, p = 0.000, n = 149).  This supports the 

explanation that tournaments perform worse than salaries due to its more controlling nature.  Of 

the other psychological variables, there is no difference in the reported levels of interest and effort 

between the S and T treatments, although we do find that S participants rate themselves to be 

more competent than T participants. 

We can narrow down our comparison of tournaments and salaries.  Cognitive Evaluation 

Theory posits that intrinsic motivation improves as people receive favourable feedback regarding 

their level of competency, while motivation falls as they receive unfavourable feedback.  This 

applies to tournaments, where feedback provides rich information to players, allowing them to 

gauge their competency against others.  Since the winning or losing feedback is binary, there is 

no ambiguity in interpreting whether the feedback received is favourable or not.30   

 

                                                 

30  Compare this to the absolute performance feedback of forecast errors in the PR and S treatments.  Although smaller forecast errors indicate 
better performance than larger forecast errors, it is difficult for players to assess whether a particular forecast error represents ‘good’ or ‘bad’ 
performance since there is no benchmark. 
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Table 4.7 Psychological Measures of Intrinsic Motivation: T and S Treatments 

Panel A: Means and Standard Deviations 

 Salary Tournament Tournament 
Winners 

Tournament 
Losers 

     

Interest 34.72 
(8.54) 

34.23 
(7.82) 

37.20 
(6.89) 

30.95 
(7.56) 

Competency 29.04 
(5.23) 

25.19 
(8.02) 

29.30 
(5.59) 

20.49 
(7.83) 

Effort 23.05 
(6.26) 

22.49 
(4.52) 

22.80 
(4.54) 

22.14 
(4.55) 

Tension 13.10 
(5.40) 

16.59 
(6.14) 

16.20 
(5.96) 

17.06 
(6.40) 

Tournament winners are defined to be those in the T treatment who wins 8 or more of the 15 tournament rounds, while 
Tournament losers are those who wins 7 rounds or fewer.  Means of the psychological variables are presented; standard deviations 
are in parentheses. 

 

Panel B: Wilcoxon Rank-Sum Tests 

 Salary = 
Tournament 

Salary = 
Tournament 

Winners 

Salary = 
Tournament 

Losers 

Winners = 
Losers 

     

Interest 
|z| = 0.14 
p = 0.891 
n = 152 

|z| = 1.59 
p = 0.111 
n = 115 

|z| = 1.94 
p = 0.053 
n = 111 

|z| = 3.51 
p = 0.001 

n = 78 

Competency 
|z| = 2.94 
p = 0.003 
n = 150 

|z| = 0.17 
p = 0.865 
n = 115 

|z| = 5.21 
p = 0.000 
n = 110 

|z| = 4.60 
p = 0.000 

n = 75 

Effort 
|z| = 0.42 
p = 0.675 
n = 150 

|z| = 0.12 
p = 0.905 
n = 114 

|z| = 0.58 
p = 0.559 
n = 110 

|z| = 0.53 
p = 0.598 

n = 76 

Tension 
|z| = 3.58 
p = 0.000 
n = 149 

|z| = 2.78 
p = 0.006 
n = 114 

|z| = 3.10 
p = 0.002 
n = 108 

|z| = 0.53 
p = 0.594 

n = 76 
These elicited variables are participant-specific, so statistics and tests use a sample equal to the number of participants in these 
treatments (sub-groups).  Bold typeface indicates statistical significance at 10% or better. 

 

In the last two columns of Panel A of Table 4.7, we distinguish T participants according to 

whether they have won or lost more than half the time.  For simplicity, participants who wins 

more often than loses will be referred to as “winners”, while those who loses more often than wins 

will be referred to as “losers”.  Of the 78 participants in the Tournament treatment across both 
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single and dual cue tasks, there are 41 winners and 37 losers according to this classification.  

Naturally, the median performance of each player in the first five rounds differ significantly 

between T winners and losers (rank-sum |z| = 2.36, p = 0.019, n = 78). 

There are some clear differences in these measures of intrinsic motivation between winners 

and losers in the T treatment.  At the end of the game, T losers’ self-reported scores suggest that 

they are significantly less interested and less competent than T winners.  The lower competency 

of losers relative to winners is consistent with Cognitive Evaluation Theory.  There are no 

differences in the self-reported effort and tension scores between winners and losers in the T 

treatment. 

We now compare these measures of intrinsic motivation for T winners and losers with 

participants in the S treatment.  While the aggregated level of interest in the T treatment is similar 

to that in the S treatment, losers in the T treatment show significantly less interest than S 

participants.  T winners appear to be more interested than S participants, though not significantly 

so with a p-value just short of the 10% threshold (p = 0.111).   

Competency levels are similar between T winners and S participants.  On the other hand, T 

losers feel less competent than S participants. 

Tension levels are significantly higher for both T winners and losers compared to S 

participants.  Reported tension levels are similar across T winners and losers.  This is highly 

suggestive of the Cognitive Evaluation Theory prediction that people feel that tournaments are 

more controlling than fixed salaries, where the rank-dependent payoffs impose greater pressure 

on them to perform.  The dimension of control does not vary with the level of competency. 

Although we have established that those competing under tournaments – both winners and 

losers – face more tension than those who are paid salaries, and that tournament losers have lower 

levels of interest and feel less competent about their ability than those facing salaries, we do not 

know what the net effect is on forecast performance.  Since T losers show less interest, feel less 

competent and face greater tension than participants in the S treatment, we postulate that T losers 

have higher forecast errors than S participants, despite the extrinsic incentives to perform.  On 

the other hand, it is not so clear how T winners would perform relative to S participants.  
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Although they face higher tension from tournaments which lessens intrinsic motivation, there are 

also strong monetary incentives to perform. 

 

Table 4.8 Regressions of Forecast Errors: Salary and Tournament Winners and Losers 

Dep Var: 
Forecast Errors 

Tournament Winners Tournament Losers 
Model 1 Model 2 Model 3 Model 4 

     

Salary (base) (base) (base) (base) 

Tournament Winners -1.150 
(2.002) 

1.985 
(3.065)   

Tournament Losers   10.51 *** 
(3.746) 

15.82 *** 
(4.445) 

Trait Anxiety 0.032 
(0.148) 

0.032 
(0.148) 

-0.005 
(0.194) 

-0.005 
(0.194) 

Female 
6.308 *** 
(1.889) 

6.308 *** 
(1.889) 

9.607 *** 
(2.366) 

9.607 *** 
(2.366) 

Round -0.101 
(0.092)  -0.159 

(0.104)  

S*Round  -0.021 
(0.119)  -0.021 

(0.119) 

T*Round  -0.262 * 
(0.136)  -0.430 ** 

(0.195) 

Constant 12.23 * 
(6.287) 

11.20 * 
(6.370) 

12.77 
(8.364) 

10.98 
(8.363) 

     
Observations 1590 1590 1605 1605 
Participants 106 106 107 107 

R2 0.027 0.027 0.074 0.074 
Wald χ2 18.35 19.08 34.03 38.62 
p > χ2 0.001 0.002 0.000 0.000 

     

S*Round = T*Round  χ2(1) = 1.79 
p = 0.181 

 χ2(1) = 3.22 
p = 0.073 

Tournament winners are defined to be those in the T treatment who wins 8 or more of the 15 tournament rounds, while 
Tournament losers are those who wins 7 or fewer rounds.  Regressions are estimated with Random Effects GLS over rounds 6 to 
20.  Standard errors in parentheses are clustered at the participant level.  *, ** and *** represents the 10%, 5% and 1% level of 
significance respectively.  Wald chi-squared tests are presented at the bottom of the table, with bold typeface indicating 
significance at the 10% level or better. 
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We previously reported that forecasting performance is higher in the S treatment compared 

to the T treatment as a whole.  We repeat regression analyses of forecast errors while splitting T 

winners from losers.  Table 4.8 presents these regressions which only include observations from 

the S treatment and either winners or losers from the T treatment.  These regressions are pooled 

and do not distinguish between single and dual cue tasks. 

Table 4.8 shows that T winners perform no differently to S participants.  The previous finding 

that, overall, salaries perform better than tournaments is attributed entirely to the significantly 

lower performance of T losers.  T losers on average have forecast errors 10.51 points higher than 

those in the S treatment.  This difference widens in model 4 when we allow for treatment 

differences in time trend, for which we observe that T losers improve performance over time, 

both standalone and relative to S participants. 

To sum up, overall, we find that fixed salaries perform better than tournaments.  Broken 

down, this is due to the S treatment performing better than T players who loses more frequently 

than wins.  On the other hand, those T players who wins frequently performs similarly to S 

players.  These findings are reinforced by self-reported measures indicative of intrinsic motivation.  

T losers are less interested, feel less competent and faces greater tension than S participants.  T 

winners face greater tension than S participants, while reporting similar levels of interest, 

competency and effort.  The patterns of forecast errors and of these psychological measures are 

commensurate with Cognitive Evaluation Theory.  We state this as Result 4.3 below: 

Result 4.3. 

Tournaments perform worse than fixed salaries.  This is due to comparable 

performance by tournament winners alongside lower performance by 

tournament losers.  These findings are consistent with Cognitive Evaluation 

Theory. 

While the psychological measures complement our analysis, we are careful not to interpret a 

causal relationship from these.  For example, while it is plausible to suggest that greater tension 

brought about by greater control in tournaments reduces intrinsic motivation, which in turn 

contributes to higher forecast errors in the T treatment relative to the S treatment, we cannot 

empirically draw this inference.  This is because the intrinsic motivation variables reported in 

Table 4.7 are elicited at the end of the game, after players are able to observe their own 
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performance – and in the case of the T treatment, a record of their winning – which may influence 

how they self-report these measures.  For example, it is unclear whether T losers report low levels 

of competency because they were faced with a large number of losses, or because the losses were 

brought about by lower intrinsic motivation from low competency.  Although the direction of 

causality cannot be disentangled, mindful of this caveat, the correlation between these measures 

is nevertheless useful for us to present coherent explanations. 

4.3.2. Tournament Decomposition 

While our first research question asked how different pay schemes performed relative to one 

another, our second research question relate to the decomposition of tournament schemes.  This 

decomposition involves separating tournaments into components which relate to competition for 

rank or competition for payoffs, seeing how each influences performance.  Rank competition is 

modelled with the provision of rank feedback that is not tied in with monetary payoffs.   

The first part of our decomposition isolates the effect of rank feedback by controlling for 

payoffs.  We go about this in two ways: a) comparing forecast errors in the PR and PRWL 

treatments, and b) by comparing them for the Tournament (T) and Tournament-No-Info (TNI) 

treatments.  In the PR and PRWL treatments, both pay participants piece rates for their 

performance, but the PRWL treatment provides additional information after round 5 as to 

whether they performed better or worse than a random partner.  A between-subjects comparison 

of these two treatments allow us to infer the effect feedback on relative performance has on 

performance itself.31 

In the T and TNI treatments, we focus on tournament pay schemes while manipulating 

relative feedback.  In the T treatment, players observe relative feedback about whether they have 

won or lost.  By comparison, the TNI treatment suppresses this feedback, so that players do not 

know whether or not they have won the prior rounds.  Comparison of forecast errors between 

                                                 

31  In principle, the effect of relative performance feedback can also be inferred from a within-subjects comparison of participants in the PRWL 
treatment by comparing forecast errors in rounds 1 to 5, without feedback, to rounds 6 to 20 which provides it.  However this comparison is 
difficult to make due to the changing cue values in each round, and also due to the learning that might occur. 
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the T and TNI treatments allow us to ascertain the effect of relative performance feedback, 

independently to the comparison of the PR and PRWL treatments. 

The second part of our decomposition compares tournament payoffs to piece rates while 

controlling for rank feedback.  Comparing the PRWL and T treatments, both provide identical 

winning and losing feedback to participants, but differ by pay scheme.  The PRWL treatment 

pays participants according to piece rates on their forecast errors, while the T treatment pays rank-

dependent prizes to participants. 

With these two comparisons, we can determine, in a controlled manner, the relative 

importance that relative performance feedback has on tournament performance vis à vis rank 

dependent payoffs.  This decomposition exercise most closely resembles Eriksson et al. (2009) 

who have piece rate and tournament treatments with and without relative feedback.   

Relative Performance Feedback 

We begin by looking at the effect of relative performance feedback by comparing forecast errors 

of the PR and PRWL treatments in our baseline regressions.  In the baseline regressions in Tables 

4.4 to 4.6, the coefficient on the PRWL treatment dummy is consistently negative in each of the 

four regression models in each of the pooled, single and dual cue regressions respectively.  Since 

the base category is the PR treatment, this negative dummy shows that participants in the PRWL 

treatment make more accurate forecasts than those in the PR treatment, suggesting that the 

winning/losing feedback in the PRWL treatment has a motivating effect on performance.  

However, the PRWL dummy is only statistically significant in the pooled data regressions in 

Table 4.4 in models 2 and 4, where the control variables of trait anxiety and gender are controlled 

for.  The PRWL treatment dummy is not significant in analogous regressions when run 

individually in the single or dual cue tasks. 

Two things can be made out from the pattern of significance of the PRWL dummy across the 

regressions.  The first is that the treatment dummy is only significant when the controls of trait 

anxiety and gender are incorporated.  When these variables are controlled for, they increase the 

magnitude of the coefficient on the PRWL dummy.  This is mainly brought about by the 

inclusion of both trait anxiety and gender.  When either trait anxiety or gender is excluded from 
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the regression, the PRWL dummy is no longer significant at conventional levels (regressions not 

presented).  For this reason, we include the trait anxiety variable even though it is not significant 

itself. 

The second insight here relates to the effect of pooling both single and dual cue data.  As 

mentioned, the PRWL dummy is insignificant in each regression model in Tables 4.5 and 4.6 

for the single and dual cue tasks.  Despite this, the coefficients are negative in all single and dual 

cue regressions.  By pooling the data, the treatment dummy is now significant with p-values of 

0.078 and 0.055 in models 2 and 4 of Table 4.4.  It appears that the results are masked by small 

samples, for which pooling the data assists with by increasing the sample size. 

Bearing these two caveats in mind, we find that relative performance feedback itself motivates 

participants to perform.  This is expressed as Result 4.4: 

Result 4.4. 

Under piece rates, the provision of relative performance feedback improves 

performance.  Rank competition, independent from payoffs, improves 

performance. 

Comparing Result 4.4 to the findings from previous studies of the effect of relative feedback 

on performance under piece rates, it differs from Eriksson et al. (2009) who find that relative 

performance feedback has no effect on productivity, but is in line with Blanes i Vidal and Nossol 

(2011) who find that German factory workers are more productive when they are provided rank 

feedback.  Result 4.4 is also consistent with the numerous studies that find relative performance 

feedback motivates performance when provided to people who are paid salaries. 

The other way we can analyse the effect of relative performance feedback is by comparing the 

performance of the T and TNI treatments.  In Table 4.9, we look for forecast error differences 

between the T and TNI treatments.  The regressions are run only with observations from the 

dual cue T and TNI treatments.32  Regression model 1 presents a basic regression with the TNI 

treatment dummy (with the T treatment as the reference category) as well as a time trend 

                                                 

32  This is because we only ran a single session of the TNI treatment with the single cue task.  Regressions of this session of the single cue TNI 
treatment compared to the single cue T treatment does not yield results any different to those presented in Table 4.9 with the dual cue task.  To 
simplify both presentation and analyses, we will focus on the dual cue T and TNI treatments. 
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common to both treatments.  Model 2 includes controls of trait anxiety and gender.  Regression 

models 3 and 4 repeat the previous regressions, but include treatment interacted time trends 

instead of the common trend.   

In each of the four regression specifications, the TNI treatment performs no differently to the 

T treatment.  This suggests that relative performance feedback does not have any effect in the 

context of tournaments.  On the face of things, it seems inconsistent with Result 4.4 that relative 

performance feedback improves performance when applied to piece rates, although it could 

simply suggest that relative feedback has different effects under different pay schemes.33  Similar 

to our finding here, Eriksson et al. (2009) also finds that relative feedback under tournaments 

have no effect on performance. 

 

  

                                                 

33  An alternative explanation for why the T and TNI treatments do not perform differently despite differing in terms of feedback is due to the 
smaller sample with only dual cue data.  Notice that in Tables 4.5 and 4.6, for the single and dual cue tasks separately, the PR and PRWL 
treatments were found to perform similarly to one another. 
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Table 4.9 Regression of Forecast Errors: Dual Cue T and TNI Treatments 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Tournament (base) (base) (base) (base) 

Tournament No Info -3.000 
(4.337) 

-4.042 
(4.842) 

-2.808 
(5.587) 

-4.659 
(5.959) 

Trait Anxiety  0.412 
(0.287) 

 0.412 
(0.287) 

Female  
9.070 ** 
(4.418)  

9.070 ** 
(4.420) 

Round -0.488 *** 
(0.144) 

-0.471 *** 
(0.153)   

T*Round   -0.481 ** 
(0.202) 

-0.494 ** 
(0.213) 

TNI*Round   -0.495 ** 
(0.205) 

-0.447 ** 
(0.220) 

Constant 34.64 *** 
(3.292) 

13.26 
(13.07) 

36.99 *** 
(3.698) 

13.57 
(13.38) 

     
Observations 1140 1065 1140 1065 
Participants 76 71 76 71 

R2 0.006 0.027 0.006 0.027 
Wald χ2 13.47 15.50 13.47 16.06 
p > χ2 0.001 0.004 0.004 0.007 

     

T*Round = TNI*Round   χ2(1) = 0.00 
p = 0.959 

χ2(1) = 0.02 
p = 0.877 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table. 

 

Piece Rates and Rank-Dependent Payoffs 

The second part of our tournament decomposition looks at how piece rate and tournament 

incentives compare to one another once competition has been controlled for, with rank feedback 

simulating such competition.  Drawing from our previous findings, we expect the PRWL 

treatment to perform better than the T treatment.  Result 4.1 found support for Piece Rate 
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Equivalence, that tournaments perform equally to standard piece rates – that is that the PR and 

T treatments have similar performance.  Result 4.4 found that relative feedback provided to piece 

rates improved performance, with better performance in the PRWL treatment compared to the 

PR treatment.  Jointly considering both results, we would expect the PRWL treatment to perform 

better than the T treatment.  This is the essence of hypothesis H5. 

The baseline pooled regressions in Table 4.4 and the corresponding Wald hypothesis tests 

shows that the PRWL treatment performs significantly better than the T treatment in every 

regression model.  The differences are marginally significant at the 10% level in regression model 

1, but significance improves in latter models, with significance at around 1% in models 3 and 4 

when treatment-round interactions are included.  Results from the dual cue task in Table 4.6 

echo these.  Although forecast errors in the single cue PRWL treatment are not statistically 

different to those in the T treatment, we nevertheless observe the coefficients for the PRWL 

dummy to be consistently smaller than those for the T dummy. 

Having controlled for rank competition, we find that piece rates perform better than the rank-

based incentives of tournament.  Hypothesis H5 receives support.  This is stated as Result 4.5. 

Result 4.5. 
When relative feedback has been controlled for, piece rates perform better 

than tournaments. 

The decomposition of tournament schemes is now complete.  From Result 4.1, we found 

that tournaments perform similarly to piece rates.  This Piece Rate Equivalence, however, no 

longer holds when competition is introduced to piece rates.  Result 4.5 found that when 

competition is controlled for, piece rates actually perform better than the rank-dependent payoffs 

inherent in tournaments.  This is explained by Result 4.4, that competition for rank motivates 

performance in its own right.  Piece Rate Equivalence, therefore, relies on the motivating effect 

of competition in tournaments to perfectly offset its inferior incentives relative to piece rates. 
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4.4. Checks for Robustness 

The five headline results stated earlier were determined from our baseline regressions presented 

in Tables 4.4 to 4.6.  We now reinforce these results with a series of robustness checks which 

addresses several points that could potentially undermine them. 

The first two robustness checks controls for temporal variability in forecast errors that could 

arise not only through learning, but through the cue values that change exogenously every round.  

The fact that cue values change every round is potentially problematic in two ways.  First, the 

inherent difficulty of the forecasting task changes with the cue values.  The wider the two cues 

are from one another, the more difficult it is to forecast the underlying value.  Second, as a result 

of the previous point, the variation of forecast errors over time is large, which explains to some 

extent why our baseline regressions had poor fit.  Temporal variability is controlled for in two 

ways: by controlling for an array of round dummies, and also by standardising our forecast errors 

so that it has common properties in every round.   

The third robustness check repeats the baseline regressions of Tables 4.4 to 4.6 while 

removing the random error term from the relationship of cue values to the underlying stock price 

in Equation 3.1.  Relative to the average forecast errors in both the single and dual cue tasks, such 

noise has a relatively large range.  To assess the impact of this random term, we recalculate forecast 

errors based on the noise-free equivalent relationship.  We run regressions analogous our earlier 

regressions and compare the results. 

4.4.1. Round Dummies 

The first robustness check involves controlling for temporal variability with a series of round 

dummies in our regressions.  Tables 4.10 to 4.12 include a complete array of dummy variables 

that represent the 15 post-intervention rounds – 14 round dummies plus the reference category.  

By including these dummies, the round-averaged forecast errors, which vary every round, are 

calibrated by the respective round dummy.  The approach of using round dummies can be 

thought of as including a unique constant term for each round.  This purges time effects that are 

common to all participants, including the effects of the changing cue values.  As a consequence, 

regressors that vary only over the time dimension are no longer estimable since they can be 
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reconstructed by the series of round dummies in a multi-collinear manner.  The linear time trend 

can no longer be estimated.  Tables 4.10 to 4.12 show these regressions for each of the pooled, 

single and dual cue datasets respectively.  Like the previous baseline regressions, regression model 

1 includes only the treatment and round dummies as regressors, while model 2 additionally 

controls for trait anxiety and gender.  Models 3 and 4 include interactions between each round 

dummy with each treatment dummy, without and with these controls respectively.  Due to the 

large number of regressors in these regressions, the coefficients on the round dummies and their 

treatment interactions are suppressed. 

We first check whether the regressions lend support to Result 4.1 regarding Piece Rate 

Equivalence.  From the pooled regressions in Table 4.10, we see that the T treatment dummy is 

insignificant in all four regression models, indicating that forecast errors are no different from the 

reference PR treatment.  The single and dual cue regressions with round dummies in Tables 4.11 

and 4.12 also show the T treatment to perform no differently to the PR treatment, affirming 

Result 4.1. 

There is also support for Result 4.2.  The S treatment dummy is consistently negative in every 

regression model across Tables 4.10 to 4.12, suggesting that forecast errors are lower in the S 

treatment than the reference PR treatment.  It is significant in model 2 of the pooled regressions 

in Table 4.10, and is almost significant in model 4.  The round dummy regressions also provide 

additional support to Result 4.3, although much weaker than in the previous baseline regressions 

in Tables 4.4 to 4.6.  The coefficient for the S treatment dummy is smaller than that for the T 

dummy in each of the pooled, single and dual cue regressions, though the differences are only 

significant in model 2 of the pooled and dual cue regressions.   

In terms of our tournament decomposition, the round dummy regressions also provide 

support to Results 4.4 and 4.5.  The PRWL treatment, as before, performs significantly better 

than the PR treatment when both single and dual cue tasks are pooled, suggesting that rank 

competition improves performance.  Comparing the effectiveness of piece rate and tournament 

payoffs while controlling for competition, we again see that the PRWL treatment outperforms 

the T treatment.  
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Table 4.10 Regression of Forecast Errors with Round Dummies: Pooled 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -1.897 
(2.188) 

-4.235 * 
(2.402) 

-4.192 * 
(2.423) 

-5.669 ** 
(2.527) 

Tournament 2.052 
(2.742) 

0.661 
(2.948) 

-0.482 
(2.963) 

-2.386 
(3.028) 

Salary 
-1.865 
(2.185) 

-4.185 * 
(2.333) 

-2.592 
(2.522) 

-4.106 
(2.598) 

Trait Anxiety  0.080 
(0.121)  0.080 

(0.122) 

Female  8.173 *** 
(1.538)  8.173 *** 

(1.546) 

Constant 14.43 *** 
(1.836) 

8.384 * 
(4.744) 

15.80 *** 
(1.957) 

9.498 * 
(5.026) 

     

Round Dummies Yes Yes Yes Yes 

Treatment-Round 
Dummy Interactions No No Yes Yes 

     
Observations 4680 4245 4680 4245 
Participants 312 283 312 283 

R2 0.052 0.086 0.057 0.097 
Wald χ2 222.2 260.3 388.2 402.5 
p > χ2 0.000 0.000 0.000 0.000 

     

PRWL = 0 χ2(1) = 0.75 
p = 0.386 

χ2(1) = 3.11 
p = 0.078 

χ2(1) = 2.99 
p = 0.084 

χ2(1) = 5.03 
p = 0.025 

PRWL = T χ2(1) = 2.70 
p = 0.100 

χ2(1) = 4.06 
p = 0.044 

χ2(1) = 1.97 
p = 0.161 

χ2(1) = 1.52 
p = 0.218 

T = 0 χ2(1) = 0.56 
p = 0.454 

χ2(1) = 0.05 
p = 0.823 

χ2(1) = 0.03 
p = 0.871 

χ2(1) = 0.62 
p = 0.431 

S = 0 χ2(1) = 0.73 
p = 0.393 

χ2(1) = 3.22 
p = 0.073 

χ2(1) = 1.06 
p = 0.304 

χ2(1) = 2.50 
p = 0.114 

T = S χ2(1) = 2.66 
p = 0.103 

χ2(1) = 4.17 
p = 0.041 

χ2(1) = 0.59 
p = 0.441 

χ2(1) = 0.40 
p = 0.527 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 

  



86 

Table 4.11 Regression of Forecast Errors with Round Dummies: Single Cue Task 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -0.557 
(1.497) 

-1.127 
(1.739) 

-1.762 
(1.550) 

-2.219 
(1.775) 

Tournament -0.145 
(1.660) 

-0.313 
(1.963) 

-1.027 
(1.512) 

-1.731 
(1.793) 

Salary 
-1.149 
(1.352) 

-1.910 
(1.576) 

-1.548 
(1.473) 

-1.934 
(1.710) 

Trait Anxiety  -0.063 
(0.098)  -0.063 

(0.099) 

Female  1.796 
(1.171)  1.796 

(1.182) 

Constant 7.334 *** 
(1.188) 

9.564 ** 
(4.206) 

7.952 *** 
(1.303) 

10.21 ** 
(4.572) 

     

Round Dummies Yes Yes Yes Yes 

Treatment-Round  
Dummy Interactions No No Yes Yes 

     
Observations 2490 2220 2490 2220 
Participants 166 148 166 148 

R2 0.069 0.076 0.081 0.089 
Wald χ2 223.6 240.1 624.7 682.8 
p > χ2 0.000 0.000 0.000 0.000 

     

PRWL = 0 χ2(1) = 0.14 
p = 0.710 

χ2(1) = 0.42 
p = 0.517 

χ2(1) = 1.29 
p = 0.256 

χ2(1) = 1.56 
p = 0.211 

PRWL = T χ2(1) = 0.08 
p = 0.777 

χ2(1) = 0.30 
p = 0.584 

χ2(1) = 0.41 
p = 0.522 

χ2(1) = 0.16 
p = 0.687 

T = 0 χ2(1) = 0.01 
p = 0.930 

χ2(1) = 0.03 
p = 0.873 

χ2(1) = 0.46 
p = 0.499 

χ2(1) = 0.93 
p = 0.334 

S = 0 χ2(1) = 0.72 
p = 0.395 

χ2(1) = 1.47 
p = 0.225 

χ2(1) = 1.10 
p = 0.294 

χ2(1) = 1.28 
p = 0.258 

T = S χ2(1) = 0.59 
p = 0.441 

χ2(1) = 1.43 
p = 0.231 

χ2(1) = 0.25 
p = 0.617 

χ2(1) = 0.04 
p = 0.850 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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Table 4.12 Regression of Forecast Errors with Round Dummies: Dual Cue Task 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -2.534 
(3.444) 

-4.523 
(3.506) 

-6.142 
(4.237) 

-6.561 
(4.034) 

Tournament 4.173 
(4.429) 

2.295 
(4.592) 

-0.099 
(5.254) 

-2.370 
(5.109) 

Salary 
-1.498 
(3.415) 

-4.716 
(3.681) 

-2.639 
(4.412) 

-4.673 
(4.496) 

Trait Anxiety  0.090 
(0.193)  0.090 

(0.195) 

Female  10.08 *** 
(2.382)  10.08 *** 

(2.408) 

Constant 22.01 *** 
(3.074) 

13.38 *** 
(7.621) 

24.26 *** 
(3.344) 

15.10 * 
(8.030) 

     

Round Dummies Yes Yes Yes Yes 

Treatment-Round 
Dummy Interactions No No Yes Yes 

     
Observations 2190 2025 2190 2025 
Participants 146 135 146 135 

R2 0.108 0.140 0.120 0.154 
Wald χ2 341.6 437.1 618.8 687.9 
p > χ2 0.000 0.000 0.000 0.000 

     

PRWL = 0 χ2(1) = 0.54 
p = 0.462 

χ2(1) = 1.66 
p = 0.197 

χ2(1) = 2.10 
p = 0.147 

χ2(1) = 2.64 
p = 0.104 

PRWL = T χ2(1) = 3.28 
p = 0.070 

χ2(1) = 3.49 
p = 0.062 

χ2(1) = 1.58 
p = 0.210 

χ2(1) = 0.80 
p = 0.371 

T = 0 χ2(1) = 0.89 
p = 0.346 

χ2(1) = 0.25 
p = 0.617 

χ2(1) = 0.00 
p = 0.985 

χ2(1) = 0.22 
p = 0.643 

S = 0 χ2(1) = 0.19 
p = 0.661 

χ2(1) = 1.64 
p = 0.200 

χ2(1) = 0.36 
p = 0.550 

χ2(1) = 1.08 
p = 0.299 

T = S χ2(1) = 2.38 
p = 0.123 

χ2(1) = 3.50 
p = 0.061 

χ2(1) = 0.26 
p = 0.609 

χ2(1) = 021 
p = 0.648 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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4.4.2. Standardised Forecast Errors 

Our second check of robustness involves transforming the forecast errors so that they have 

common properties in each round, purging the variability that occurs over time.  We construct 

standardised forecast errors so that they have a mean of zero and a standard deviation of one for 

each treatment in each round.  Since the mean and standard deviations of the standardised 

statistics are identical for every round, the time effects common to all participants are removed. 

This standardisation procedure is used by Brown (1995, 1998) to facilitate comparison of 

forecast errors in each round, removing heteroscedasticity associated with the changing cue values.  

Following Brown, the transformation subtracts the mean forecast error for each round from each 

individual’s forecast error, and then divides this mean-deviation by the standard deviation of 

forecast errors in the corresponding round.  It is represented by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  
𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒̅𝑒𝑡𝑡
𝜎𝜎𝑡𝑡(𝑒𝑒)   

where 𝑒𝑒𝑖𝑖𝑖𝑖  denotes the forecast error of participant 𝑖𝑖 in round 𝑡𝑡.  𝑒̅𝑒𝑡𝑡  is the mean forecast error 

across all participants for round 𝑡𝑡, and 𝜎𝜎𝑡𝑡(𝑒𝑒) is the corresponding standard deviation.  Since the 

mean and standard deviation of forecast errors are calculated for each round, cross-round 

comparison of the standardised forecast errors are interpreted relative to their respective means. 

The standardised forecast errors vary over the dimensions of participants and time.  For any 

given round, standardised forecast errors have a mean of zero and a standard deviation of one.34  

Standardised forecast errors have an interpretation akin to mean-deviation – its numerator – 

where a positive (negative) standardised forecast error means that the participant performed worse 

(better) than the average in that round.  From the formula, the division of the mean-deviation by 

the standard deviation means that the standardised forecast errors are measured in standard 

deviation units away from the mean.35 

                                                 

34  See Appendix 3 for a proof of these properties. 

35  An example is Fryer (2011, 2013), who reports the effects of incentives in schools in standard deviation units. 
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Table 4.13 presents the regressions of standardised forecast errors.  Regression models 1 and 

2 are estimated for the pooled series; models 3 and 4 for the single cue series; and models 5 and 

6 for the dual cue series.  The odd-numbered regression models include only the treatment 

dummies, with the PR treatment serving as the reference category.  The even-numbered models 

also incorporate the controls of trait anxiety and gender.  Time series regressors, such as the time 

trends, are not included since their effect has been purged due to the properties of the standardised 

forecast errors. 

The regressions in Table 4.13 provide additional support for our five results.  From the 

regressions, the T dummy is insignificant in each of the regression models, lending support to 

Result 4.1 that tournaments perform no differently to piece rates.  Salaries perform better than 

piece rates, supporting Result 4.2.  Comparing the T and S treatments, we see that the salaries 

perform significantly better than tournaments in regression models 1, 3 and 6, supporting Result 

4.3.  Results 4.4 and 4.5 are also supported.  In model 2, we see that forecast errors in the PRWL 

treatment are 0.18 standard deviations smaller than in the PR treatment, and is significant with 

a p-value of 0.07.  The PRWL treatment also performs better than the T treatment, both in the 

pooled and dual cue regressions. 
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Table 4.13 Regression of Standardised Forecast Errors 

Dep Var: 
Standardised 

Forecast Errors 

Pooled Single Cue Dual Cue 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

PR (base) (base) (base) (base) (base) (base) 

PRWL -0.084 
(0.090) 

-0.180 * 
(0.099) 

-0.080 
(0.111) 

-0.125 
(0.132) 

-0.087 
(0.121) 

-0.155 
(0.123) 

T 0.078 
(0.112) 

0.024 
(0.122) 

0.005 
(0.131) 

-0.016 
(0.156) 

0.131 
(0.151) 

0.068 
(0.158) 

S -0.084 
(0.089) 

-0.180 * 
(0.096) 

-0.085 
(0.107) 

-0.151 
(0.125) 

-0.058 
(0.118) 

-0.168 
(0.127) 

Trait Anxiety  
0.003 

(0.005) 
 

-0.004 
(0.007) 

 
0.004 

(0.006) 

Female  
0.320 *** 
(0.063) 

 
0.109 

(0.090) 
 

0.329 *** 
(0.083) 

Constant 0.022 
(0.075) 

-0.218 
(0.194) 

0.040 
(0.093) 

0.216 
(0.317) 

-0.000 
(0.104) 

-0.312 
(0.254) 

       

Observations 4680 4245 2490 2220 2190 2025 

Participants 312 283 166 148 146 135 

R2 0.005 0.037 0.002 0.009 0.007 0.037 

Wald χ2 3.75 27.76 1.25 4.06 3.26 17.89 

p > χ2 0.290 0.000 0.742 0.540 0.354 0.003 

       

PRWL = 0 χ2 = 0.88 
p = 0.349 

χ2 = 3.29 
p = 0.070 

χ2 = 0.52 
p = 0.471 

χ2 = 0.89 
p = 0.345 

χ2 = 0.52 
p = 0.473 

χ2 = 1.58 
p = 0.208 

PRWL = T χ2 = 2.77 
p = 0.096 

χ2 = 4.26 
p = 0.039 

χ2 = 0.60 
p = 0.440 

χ2 = 0.90 
p = 0.343 

χ2 = 3.00 
p = 0.083 

χ2 = 3.20 
p = 0.074 

T = 0 χ2 = 0.48 
p = 0.489 

χ2 = 0.04 
p = 0.845 

χ2 = 0.00 
p = 0.969 

χ2 = 0.01 
p = 0.920 

χ2 = 0.75 
p = 0.387 

χ2 = 0.19 
p = 0.664 

S = 0 χ2 = 0.89 
p = 0.346 

χ2 = 3.53 
p = 0.060 

χ2 = 0.63 
p = 0.428 

χ2 = 1.47 
p = 0.226 

χ2 = 0.24 
p = 0.627 

χ2 = 175 
p = 0.186 

T = S χ2 = 2.81 
p = 0.094 

χ2 = 4.52 
p = 0.033 

χ2 = 0.72 
p = 0.397 

χ2 = 1.52 
p = 0.217 

χ2 = 2.34 
p = 0.126 

χ2 = 3.53 
p = 0.060 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the participant level.  
*, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are presented at the bottom of the 
table, with bold typeface indicating significance at the 10% level or better. 
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4.4.3. Deterministic Forecast Errors 

As previously stated in Section 3.1 when the forecasting task was outlined, the underlying stock 

price is based on the underlying relationship earlier stated as Equation 3.1: 

𝑥𝑥𝑡𝑡 = 10 + 0.3×𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑡𝑡 + 0.7×𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝑡𝑡 + 𝜀𝜀𝑡𝑡 (3.1) 

where 𝑥𝑥𝑡𝑡 is the stock price and 𝜀𝜀𝑡𝑡 is a random term that is uniformly and discretely distributed 

within [−5, +5].  This underlying relationship is probabilistic due to this noise.  It could be 

argued that such noise is excessively large in light of the average forecast error values.  The 𝜀𝜀 has 

a range of 10, which is large compared to the mean post-intervention forecast errors across single 

(dual) cue treatments of 10 (23).  Since forecast errors incorporate the effect of such noise, to 

what extent does randomness influence our underlying results? 

We test our results for robustness by seeing whether they continue to hold once the 

randomness has been stripped out.  This is done by first working with a hypothetical deterministic 

relationship: 

𝑥𝑥�𝑡𝑡 = 10 + 0.3×𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑡𝑡 + 0.7×𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝑡𝑡 (4.1) 

where 𝑥𝑥�𝑡𝑡  is the hypothetical stock price whereby the noise 𝜀𝜀𝑡𝑡  does not feature.  Since this 

relationship now depends only upon the two cue values, and is not affected by random noise, this 

relationship is now a deterministic one.  From these hypothetical stock price values, we can 

construct a new series of forecast errors based on these.  The hypothetical forecast error is the 

absolute difference between the participant’s forecast and this hypothetical stock price.  This is 

expressed below: 

𝑒̃𝑒𝑖𝑖𝑖𝑖 = |𝑥𝑥�𝑖𝑖𝑖𝑖 − 𝑥𝑥�𝑡𝑡| (4.2) 

where 𝑒̃𝑒𝑖𝑖𝑖𝑖 is the hypothetical forecast error based on participant 𝑖𝑖’s forecast 𝑥𝑥�𝑖𝑖𝑖𝑖.  Notice how the 

noise 𝜀𝜀𝑡𝑡 is not reflected by these forecast errors.  We shall refer to these hypothetical forecast 

errors as deterministic forecast errors, since these arise from the deterministic relationship.  Since 

we are only removing the noise from the forecast errors, both variables are highly and almost 

perfectly correlated, with a correlation coefficient of 0.993. 

It should be noted that although these deterministic forecast errors are noise-free, they are 

merely hypothetical.  The standard forecast errors which incorporate such noise are recognised 

publicly as the measure of performance, where they are displayed as feedback round by round, 
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and are used to calculate payoffs under piece rates.  In light of this, the deterministic forecast 

errors are only useful to test the robustness of our previous results. 

Tables 4.14 to 4.16 replicate the baseline regressions in Tables 4.4 to 4.6 for each of the 

pooled, single and dual cue series.  Comparing both sets of analogous regressions, we see the 

estimated coefficients do not differ considerably, and each of our results receives the same level 

of support from the new regressions. 

In terms of pay schemes, the deterministic forecast errors are no different between the PR and 

T treatments in each regression model in Tables 4.14 to 4.16 with the T treatment dummy being 

insignificant.  This once again confirms Result 4.1 of Piece Rate Equivalence.  There is also 

support for Results 4.2 and 4.3, whereby salaries perform better than both piece rates and 

tournaments respectively. 

In terms of tournament decomposition, we find once again that the provision of relative 

performance feedback improves performance, where the PRWL treatment performs better than 

the PR treatment.  Comparing piece rates and tournaments when feedback has been controlled 

for, the PRWL treatment performs better than the T treatment.  Results 4.4 and 4.5 are supported 

once more. 
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Table 4.14 Regressions of Deterministic Forecast Errors: Pooled 

Panel A: Regression Results 

Dep Var:  
Deterministic Forecast 

Errors 
Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -2.005 
(2.217) 

-4.370 * 
(2.438) 

-3.825 
(2.963) 

-6.592 ** 
(3.206) 

Tournament 1.884 
(2.768) 

0.486 
(2.979) 

4.684 
(3.204) 

3.097 
(3.410) 

Salary -2.093 
(2.209) 

-4.449 * 
(2.360) 

-3.359 
(2.697) 

-6.584 ** 
(2.861) 

Trait Anxiety  0.081 
(0.123) 

 0.081 
(0.123) 

Female  
8.163 *** 
(1.562)  

8.163 *** 
(1.563) 

Round -0.143 ** 
(0.063) 

-0.157 ** 
(0.068)   

PR*Round   -0.148 
(0.126) 

-0.192 
(0.142) 

PRWL*Round   -0.008 
(0.147) 

-0.021 
(0.153) 

T*Round   -0.363 *** 
(0.110) 

-0.393 *** 
(0.121) 

S*Round   -0.051 
(0.116) 

-0.027 
(0.118) 

Constant 
19.79 *** 
(1.873) 

14.07 *** 
(4.977) 

19.85 *** 
(2.020) 

14.53 *** 
(5.435) 

     
Observations 4680 4245 4680 4245 
Participants 312 283 312 283 

R2 0.005 0.037 0.005 0.038 
Wald χ2 8.95 42.98 16.90 54.27 
p > χ2 0.063 0.000 0.018 0.000 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 Model 4 
     

PRWL = 0 χ2(1) = 0.82 
p = 0.366 

χ2(1) = 3.21 
p = 0.073 

χ2(1) = 1.67 
p = 0.197 

χ2(1) = 4.23 
p = 0.040 

PRWL = T χ2(1) = 2.56 
p = 0.110 

χ2(1) = 3.89 
p = 0.049 

χ2(1) = 6.65 
p = 0.010 

χ2(1) = 7.87 
p = 0.005 

T = 0 χ2(1) = 0.46 
p = 0.496 

χ2(1) = 0.03 
p = 0.871 

χ2(1) = 2.14 
p = 0.144 

χ2(1) = 0.83 
p = 0.364 

S = 0 χ2(1) = 0.90 
p = 0.343 

χ2(1) = 3.56 
p = 0.059 

χ2(1) = 1.55 
p = 0.213 

χ2(1) = 5.30 
p = 0.021 

T = S χ2(1) = 2.69 
p = 0.101 

χ2(1) = 4.23 
p = 0.040 

χ2(1) = 6.89 
p = 0.009 

χ2(1) = 9.72 
p = 0.002 

     

PR*Round = PRWL*Round   χ2(1) = 0.52 
p = 0.470 

χ2(1) = 0.67 
p = 0.413 

PRWL*Round = T*Round   χ2(1) = 3.74 
p = 0.053 

χ2(1) = 3.64 
p = 0.056 

PR*Round = T*Round   χ2(1) = 1.65 
p = 0.198 

χ2(1) = 1.16 
p = 0.281 

PR*Round = S*Round   χ2(1) = 0.32 
p = 0.570 

χ2(1) = 0.79 
p = 0.375 

T*Round = S*Round   χ2(1) = 3.81 
p = 0.051 

χ2(1) = 4.67 
p = 0.031 

Bold typeface indicates statistical significance at the 10% level or better. 
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Table 4.15 Regressions of Deterministic Forecast Errors: Single Cue Task 

Panel A: Regression Results 

Dep Var: Deterministic 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -0.659 
(1.518) 

-1.228 
(1.758) 

-1.730 
(2.934) 

-2.984 
(3.268) 

Tournament 
-0.390 
(1.703) 

-0.548 
(2.002) 

-0.166 
(2.692) 

-0.708 
(3.102) 

Salary -1.270 
(1.382) 

-2.049 
(1.608) 

-1.767 
(2.410) 

-3.506 
(2.717) 

Trait Anxiety  -0.066 
(0.101)  -0.066 

(0.101) 

Female  1.726 
(1.203)  1.726 

(1.204) 

Round -0.162 *** 
(0.060) 

-0.171 *** 
(0.066) 

  

PR*Round   -0.188 * 
(0.112) 

-0.242 * 
(0.130) 

PRWL*Round   
-0.106 
(0.174) 

-0.107 
(0.179) 

T*Round   -0.206 ** 
(0.087) 

-0.230 ** 
(0.098) 

S*Round   -0.150 * 
(0.083) 

-0.130 
(0.084) 

Constant 11.83 *** 
(1.486) 

14.46 *** 
(4.648) 

12.18 *** 
(2.023) 

15.38 *** 
(5.076) 

     
Observations 2490 2220 2490 2220 
Participants 166 148 166 148 

R2 0.003 0.010 0.004 0.010 
Wald χ2 8.80 16.04 13.03 19.23 
p > χ2 0.066 0.014 0.071 0.023 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 Model 4 
     

PRWL = 0 χ2(1) = 0.19 
p = 0.664 

χ2(1) = 0.49 
p = 0.485 

χ2(1) = 0.35 
p = 0.555 

χ2(1) = 0.83 
p = 0.361 

PRWL = T χ2(1) = 0.03 
p = 0.859 

χ2(1) = 0.19 
p = 0.659 

χ2(1) = 0.32 
p = 0.572 

χ2(1) = 0.62 
p = 0.433 

T = 0 χ2(1) = 0.05 
p  =0.819 

χ2(1) = 0.07 
p = 0.784 

χ2(1) = 0.00 
p = 0.951 

χ2(1) = 0.05 
p = 0.820 

S = 0 χ2(1) = 0.84 
p = 0.358 

χ2(1) = 1.62 
p = 0.203 

χ2(1) = 0.54 
p = 0.463 

χ2(1) = 1.66 
p = 0.197 

T = S χ2(1) = 0.41 
p = 0.521 

χ2(1) = 1.14 
p = 0.286 

χ2(1) = 0.53 
p = 0.468 

χ2(1) = 1.49 
p = 0.222 

     

PR*Round = PRWL*Round   χ2(1) = 0.16 
p = 0.691 

χ2(1) = 0.37 
p = 0.541 

PRWL*Round = T*Round   χ2(1) = 0.26 
p = 0.609 

χ2(1) = 0.36 
p = 0.546 

PR*Round = T*Round   χ2(1) = 0.01 
p = 0.903 

χ2(1) = 0.01 
p = 0.940 

PR*Round = S*Round   χ2(1) = 0.08 
p = 0.784 

χ2(1) = 0.52 
p = 0.470 

T*Round = S*Round   χ2(1) = 0.21 
p = 0.644 

χ2(1) = 0.60 
p = 0.438 

Bold typeface indicates statistical significance at the 10% level or better. 
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Table 4.16 Regressions of Deterministic Forecast Errors: Dual Cue Task 

Panel A: Regression Results 

Dep Var: Deterministic 
Forecast Errors Model 1 Model 2 Model 3 Model 4 

     

Piece Rate (base) (base) (base) (base) 

Piece Rate Win Lose -2.610 
(3.429) 

-4.542 
(3.507) 

-5.394 
(4.849) 

-7.615 
(5.048) 

Tournament 
4.078 

(4.392) 
2.237 

(4.572) 
9.603 ** 
(4.820) 

7.489 
(4.958) 

Salary -1.812 
(3.390) 

-4.982 
(3.662) 

-4.110 
(4.465) 

-8.254 
(4.741) 

Trait Anxiety  0.092 
(0.192)  0.092 

(0.192) 

Female  9.909 *** 
(2.358)  9.909 *** 

(2.360) 

Round -0.123 
(0.117) 

-0.141 
(0.123) 

  

PR*Round   -0.104 
(0.233) 

-0.147 
(0.243) 

PRWL*Round   
0.110 

(0.246) 
0.090 

(0.263) 

T*Round   -0.529 *** 
(0.205) 

-0.551 ** 
(0.216) 

S*Round   0.072 
(0.237) 

0.105 
(0.247) 

Constant 28.35 *** 
(2.983) 

20.22 *** 
(7.898) 

28.12 *** 
(3.087) 

20.30 ** 
(8.637) 

     
Observations 2190 2025 2190 2025 
Participants 146 135 146 135 

R2 0.007 0.035 0.009 0.036 
Wald χ2 5.52 25.47 13.56 33.54 
p > χ2 0.238 0.000 0.060 0.000 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the 
participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 Model 4 
     

PRWL = 0 χ2(1) = 0.58 
p = 0.447 

χ2(1) = 1.68 
p = 0.195 

χ2(1) = 1.24 
p = 0.266 

χ2(1) = 2.28 
p = 0.131 

PRWL = T χ2(1) = 3.35 
p = 0.067 

χ2(1) = 3.53 
p = 0.060 

χ2(1) = 8.12 
p = 0.004 

χ2(1) = 7.38 
p = 0.007 

T = 0 χ2(1) = 0.86 
p = 0.353 

χ2(1) = 0.24 
p = 0.625 

χ2(1) = 3.97 
p = 0.046 

χ2(1) = 2.28 
p = 0.131 

S = 0 χ2(1) = 0.29 
p = 0.593 

χ2(1) = 1.85 
p = 0.174 

χ2(1) = 0.85 
p = 0.357 

χ2(1) = 3.03 
p = 0.082 

T = S χ2(1) = 2.65 
p = 0.103 

χ2(1) = 3.82 
p = 0.051 

χ2(1) = 7.80 
p = 0.005 

χ2(1) = 9.45 
p = 0.002 

     

PR*Round = PRWL*Round   χ2(1) = 0.40 
p = 0.528 

χ2(1) = 0.44 
p = 0.510 

PRWL*Round = T*Round   χ2(1) = 3.98 
p = 0.046 

χ2(1) = 3.54 
p = 0.060 

PR*Round = T*Round   χ2(1) = 1.88 
p = 0.171 

χ2(1) = 1.54 
p = 0.214 

PR*Round = S*Round   χ2(1) = 0.28 
p = 0.595 

χ2(1) = 0.53 
p = 0.468 

T*Round = S*Round   χ2(1) = 3.69 
p = 0.055 

χ2(1) = 3.99 
p = 0.046 

Bold typeface indicates statistical significance at the 10% level or better. 
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4.5. Summary 

This chapter analysed our main treatment effects and addressed our first two research questions: 

which pay scheme induces the highest performance from workers; and what effects do relative 

performance feedback and rank-dependent payoffs have in the performance of tournaments? 

First comparing the different pay schemes, we find that fixed salaries perform better than 

piece rates and tournaments.  The pay schemes that pay for performance elicit comparatively low 

effort from participants, resulting in lower performance relative to salaries.  Tournaments and 

piece rates perform similarly to one another, consistent with the Piece Rate Equivalence property 

of tournament theory.   

The performance ordering of pay schemes is consistent with Cognitive Evaluation Theory.  

Additional support is found when we compare the T and S treatments more closely.  Cognitive 

Evaluation Theory posits that intrinsic motivation is reduced when players are put in situations 

which are controlling, reducing their autonomy.  This is reflected in the data, whereby players in 

the T treatment report higher levels of tension compared to those in the S treatment.  Cognitive 

Evaluation Theory also suggests that people’s intrinsic motivation improves as they receive 

favourable feedback regarding their competency, while reduces as they receive unfavourable 

feedback.  When we categorise participants in the T treatment by whether or not they have won 

more than half of their post-intervention rounds, we found that T losers report both lower interest 

and competency than T winners.  T winners report similar levels of interest, competency and 

effort as S participants, and in fact, their levels of forecast performance are not statistically 

different. 

Our second research question looks deeper into the decomposition of factors that motivate 

tournaments to perform.  We look at the effects of tournament feedback and payoffs.  We found 

that when relative performance feedback was provided to players who were paid a piece rate on 

their performance, the performance of these players improved.  In other words, the competition 

brought about by feedback has a strong motivating effect on players.  This finding has real 

implications for the workplace.  Given that relative feedback is inexpensive to provide, it would 

be a cost effective way for firms to boost worker productivity. 
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To complete our decomposition of tournaments, we ask how the rank-dependent payoffs 

under tournaments compare to piece rates when feedback is perfectly controlled for.  We find 

that, purely in terms of the incentives at play, piece rates outperform the rank-dependent payoffs 

inherent in tournaments.  This in turn implies that the property of Piece Rate Equivalence relies 

crucially on relative feedback for it to hold.   
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5. Results: Learning 

The previous chapter took an aggregated view of how different pay schemes and feedback 

performed relative to one another.  These aggregated differences can be thought of as the one-off 

treatment effect.  In this chapter, we complement our previous analyses by studying how the 

treatment effects change over time.  The temporal element is particularly interesting in the 

context of our experiment.  First of all, it is not unreasonable to expect these effects to be dynamic 

and occur over time.  Second, learning is especially interesting given that our experimental task 

is difficult; so there is much scope for it to occur. 

We need to make a distinction between two aspects of learning: the learning process and the 

results that arise from this.  The ‘results’ aspect refer to the outcome or performance, and whether 

it improves over time or not.36  This essentially measures the effectiveness of the learning process, 

which looks at how people come about acquiring knowledge or skills that helps them to perform.  

The learning process is multi-dimensional: involving heuristics and rules (Roth & Erev, 1995; 

Erev & Roth, 1998; Charness & Levin, 2005), feedback (Rick & Weber, 2010) and observation 

(Merlo & Schotter, 2003; Cardella, 2012), and payoffs (Merlo & Schotter, 1999). 

We note that learning in our experiment is different to that in similar studies.  The reason is 

related to the choice of experimental task.  Of the experimental studies similar to ours which are 

run over a number of rounds, the real-effort task that is chosen is simple.  For example Kuhnen 

and Tymula (2012) and Cadsby et al. (2010) use an arithmetic task, while Charness et al. (2014) 

use a decoding task.  These tasks are similar to each other in that they mainly rely on effort in 

order to do well.  Even if performance improves over time, there is nothing to ‘learn’ per se.  Our 

task is different in that it is cognitively challenging.  In order to improve forecasts, participants 

need to uncover the underlying relationship of cues and the actual value, or at least get as close 

to it as possible.  This requires the formulation of a forecasting rule – which we do not observe as 

experimenters – and subsequent refinement of this rule through trial, error and reinforcement.  

The learning process here is clearly quite different to that in a simpler task. 

                                                 

36  The process of learning is often repetitive and iterative in nature, hence learning is often referred to in a temporal context.   
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With respect to learning, our task relates more closely to those used to specifically study the 

processes and mechanics of learning.  Underpinning these tasks or games is a definitive way that 

it should be played.  For example, in the Merlo and Schotter (1999, 2003) maximisation problem, 

payoffs are maximised at the equilibrium effort level, which players should be searching for to 

maximise their payoffs.  In multi-player strategic games (Charness & Levin, 2005; Rick & Weber, 

2010; Cardella, 2012), the ‘way to play’ is often prescribed as a dominant strategy (or at least one 

that is not dominated) which players should learn to play over time.  Our task is similar to these 

in that the definitive way to do well in the forecasting task is to deduce the underlying formula.   

One potential difficulty we encounter when studying learning in our forecasting task is that 

we do not actually observe the forecasting rule that participants base their forecasts upon.  Despite 

this, we are still able to investigate learning by looking at how forecast errors change over time.  

Since forecast errors measure how accurate forecasts are in relation to the underlying stock value, 

it also measures how well a particular forecasting rule performs, provided that forecasts were made 

from this latent rule.  Most of the forthcoming analyses in this chapter will focus on forecast 

errors as the main variable with respect to learning, since we would expect that if learning occurs, 

forecasts will become increasingly accurate. 

In addition to the accuracy of forecasts, we also look at the consistency of forecast performance.  

As a participant’s forecast rule tends towards the underlying formula, we would expect forecast 

errors for this participant to become increasingly consistent.  We measure consistency of forecast 

errors with the within-subject standard deviation of forecast errors defined over various three-

round periods and track how they change across these periods. 

This chapter proceeds in the following manner.  We first look for evidence of learning, seeing 

whether forecast accuracy or consistency improves over time in any of our treatments.  We find 

that learning is only present in the T treatment, and this is supported by a string of robustness 

checks.  Following from this we look into the underlying mechanisms that drive learning in 

tournaments and we back this up with a new line of evidence from the Tournament-No-Info 

treatment.  The next sections looks at learning from a different perspective by analysing how 

learning comes about, looking at how feedback is utilised in the process of learning.  More 

specifically, we look for signs of reinforcement learning, by seeing how forecast error feedback is 



103 

used to improve forecasts in subsequent rounds.  The final section looks at whether winning or 

losing in previous rounds affects forecast errors.  The chapter wraps up with a summary and 

discussion. 

5.1. Forecast Accuracy 

We start off by seeing how forecast accuracy changes over time across different treatments.  To 

study this, we regress forecast errors against treatment dummies as well as treatment-interacted 

time trends, building upon the baseline regressions from Tables 4.4 to 4.6.  We will mainly refer 

back to model 4 of the baseline pooled, single and dual cue regressions in Tables 4.4 to 4.6, 

focusing on the treatment-round interaction terms, which represent linear time trends specific to 

each treatment.  These regression models regressed forecast errors against the treatment dummies 

(with the PR treatment serving as the reference category), the trait anxiety scores and gender for 

each participant, as well as treatment-interacted time trends.  We replicate these in models 1, 3 

and 5 of Table 5.1.  To simplify the presentation of results, we present only the treatment-round 

interaction terms, suppressing the other regressors: treatment dummies, trait anxiety and gender.   

The odd-numbered regression models in Table 5.1 show the trends across rounds 6 to 20.  

However comparison of learning across these rounds is arguably unfair.  While the treatment 

intervention kicks in after round 5 in the PRWL and T treatments, the PR and S treatments 

continue playing the game in the exact same manner after round 5.  This means that, to some 

extent, we are comparing subjects experienced with their experimental environment to subjects 

who are only beginning to adapt to the interventions that have just come into play.   

To facilitate comparison, we repeat the same regressions but run with observations from 

rounds 11 to 20, allowing an arbitrary five rounds for participants in the PRWL and T treatments 

to adapt.  Regression models 2, 4 and 6 show the trends across the final ten rounds.  Wald tests 

comparing the estimated trends across treatments are presented at the bottom of the table. 

We begin by looking at the time trends across rounds 6 to 20.  From Table 5.1, models 1, 3 

and 5 show that the estimated trends for the PR, PRWL and S treatments are not statistically 

different to zero.  Accordingly, Wald tests show that there are no cross-treatment differences in 



104 

the trends estimated for these treatments.  That is, there are no learning differences between the 

PR and PRWL treatments, and between the PR and S treatments.   

While there are no distinct forecast error time trends in the PR, PRWL and S treatments, 

there is a clear downward trend in the T treatment.  In model 1, the time trend for the T 

treatment has a negative coefficient of -0.348, which is highly significant at the 1% level.  This 

means that forecast errors improve on average by 0.348 points every round in the T treatment.  

Wald tests at the bottom of Table 5.1 reveal that while this trend is in itself not significantly 

different from the PR trend, there are significant differences between the PRWL, and the S 

treatments. 

The pooled result in model 1 which shows that the T treatment has a significant downward 

trend across rounds 6 to 20 is corroborated by the analogous dual cue regression in model 5, 

which shows that the T trend is significantly different to that in the PRWL and S treatments.  In 

model 3 for the single cue task, even with a different set of cue values, the time trend for the T 

treatment is again negative and significant.  However pairwise tests show that the T trend is not 

statistically different to those in other treatments. 

In the pooled regression for rounds 11 to 20 in model 2 of Table 5.1, the T*Round coefficient 

is negative and is substantially smaller than the other trends.  It is again the only treatment to 

have a statistically significant time trend.  The trend on the T treatment across rounds 11 to 20 

is more than twice as steep compared to the corresponding trend across rounds 6 to 20 in model 

1 (-0.776 vs -0.348).  Across rounds 11 to 20 in the single cue task, in model 4, there is evidence 

show that forecasts improve over time in all treatments.  Despite this, the estimated trend is 

steeper in the T treatment than in other treatments, though is only significantly so compared to 

the PR treatment (p = 0.031).  The T time trend does not appear to be significant across rounds 

11 to 20 in the dual cue task, although the trend has again been estimated to indicate better 

learning. 

From Table 5.1, we have found that the S treatment does not show any learning over time.  

Comparing the trends of the S treatment with the PR treatment, and bearing Result 4.2 in mind 

which showed that the S treatment outperformed the PR treatment, we can conclude that fixed 
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pay schemes induce better performance from participants compared to piece rates and this effect 

is not dynamic. 

Table 5.1 Random Effects Regressions of Forecast Error Trends 

Dep Var:  
Forecast Errors 

Pooled Single Cue Dual Cue 

Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

PR*Round -0.141 
(0.146) 

-0.214 
(0.226) 

-0.158 
(0.140) 

-0.701 *** 
(0.135) 

-0.127 
(0.246) 

0.219 
(0.397) 

PRWL*Round 0.003 
(0.153) 

-0.349 
(0.338) 

-0.038 
(0.181) 

-0.710 ** 
(0.323) 

0.055 
(0.261) 

0.114 
(0.646) 

T*Round -0.348 *** 
(0.119) 

-0.776 *** 
(0.186) 

-0.197 ** 
(0.096) 

-1.216 *** 
(0.203) 

-0.494 ** 
(0.212) 

-0.347 
(0.294) 

S*Round 0.021 
(0.118) 

-0.326 
(0.292) 

-0.116 
(0.077) 

-0.953 *** 
(0.195) 

0.101 
(0.251) 

0.483 
(0.591) 

       

Observations 4245 2830 2220 1480 2025 1350 

Participants 283 283 148 148 135 135 

R2 0.036 0.036 0.009 0.032 0.035 0.035 

Wald χ2 50.50 61.99 15.07 131.32 31.80 29.33 

p > χ2 0.000 0.000 0.089 0.000 0.000 0.001 

       

PR*Round = 
PRWL*Round 

χ2 = 0.47 
p = 0.494 

χ2 = 0.11 
p = 0.741 

χ2 = 0.28 
p = 0.599 

χ2 =0.00 
p = 0.980 

χ2 = 0.26 
p = 0.612 

χ2 = 0.02 
p = 0.890 

PRWL*Round = 
T*Round 

χ2 = 3.27 
p = 0.071 

χ2 = 1.22 
p = 0.270 

χ2 = 0.59 
p = 0.442 

χ2 = 1.76 
p = 0.185 

χ2 = 2.66 
p = 0.103 

χ2 = 0.42 
p = 0.516 

PR*Round = 
T*Round 

χ2 = 1.20 
p = 0.274 

χ2 = 3.68 
p = 0.055 

χ2 = 0.05 
p = 0.822 

χ2 = 4.46 
p = 0.035 

χ2 = 1.28 
p = 0.258 

χ2 = 1.31 
p = 0.252 

PR*Round = 
S*Round 

χ2 = 0.41 
p = 0.521 

χ2 = 0.09 
p = 0.761 

χ2 = 0.07 
p = 0.794 

χ2 = 1.13 
p = 0.287 

χ2 = 0.42 
p = 0.516 

χ2 = 0.14 
p = 0.711 

T*Round = 
S*Round 

χ2 = 3.77 
p = 0.052 

χ2 = 1.68 
p = 0.195 

χ2 = 0.41 
p = 0.524 

χ2 = 0.87 
p = 0.352 

χ2 = 3.28 
p = 0.070 

χ2 = 1.58 
p = 0.208 

Partial results only.  Other coefficients that are suppressed include: treatment dummies, trait anxiety, gender and the constant term.  
Models 1, 3 and 5 are replicated from model 4 of Tables 4.4, 4.5 and 4.6.  Regressions are estimated with a Random Effects GLS 
procedure.  Forecast errors in parentheses and are clustered by participant.  *, **, *** represent significance at the 10%, 5% and 1% levels 
respectively.  Wald χ2 tests are presented at the bottom of the table.  Bold typeface indicates a Wald test to be significant at the 10% level 
or better. 

 

Overall it seems that the T treatment is the only one which shows consistent signs of learning.  

In what follows, we will focus on the T treatment alongside the directly comparable PR and 
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PRWL treatments.  We restrict focus on treatments with performance pay schemes since we do 

not find any learning in the S treatment.  For this reason we will proceed without the S treatment. 

We replicate the finding that the T treatment is the only one with significant learning with a 

series of robustness checks.  The first robustness check is in the form of a fixed effects regression.  

Random effects regressions were previously used to analyse the treatment effects in Chapter 4 

because fixed effects regressions were unable to estimate the treatment dummies, which varies 

across participants but not across time.  Since we focus on learning in this chapter, we need not 

estimate the overall time-invariant treatment effect – in which case fixed effects regressions are 

appropriate.  Fixed effects regressions control for the time-invariant heterogeneity of participants 

through a de-meaning procedure, which means we can have more confidence in the results since 

these are not affected by participants’ initial ability and various other traits, many of which are 

unobservable.  The fixed effects estimator is statistically consistent. 

Table 5.2 presents the linear time trends estimated from a series of fixed effects regressions, 

with a couple of cross-treatment F tests at the bottom of the table.  A comparison of the trends 

estimated under both random and fixed effects show that the trends for the PR and T treatments 

tend to be slightly smaller in magnitude under fixed effects estimation, while they are slightly 

larger for the PRWL treatment.  Despite the minor discrepancies in the estimated trends, the 

basic pattern of results still holds true.  The T treatment shows significant learning in every 

regression model except the last, for rounds 11 to 20 in the dual cue task – this trend was also 

insignificant under random effects estimation in Table 5.1.  Like before, there is also evidence of 

learning across rounds 11 to 20 in all single cue treatments, and this learning is greatest in the T 

treatment. 

The second robustness check applies the Pesaran and Smith (1995) mean-group estimator.  

They show that coefficients estimated from ‘pooled’ regressions, where the 𝑡𝑡 observations of the 

𝑛𝑛 participants are combined and common trends and intercepts are imposed, are not consistent 

when the regression model is dynamic.  This problem arises because potential heterogeneity across 

participants is unaccounted for.  The mean-group estimator that Pesaran and Smith proposed 

overcomes this problem.  Instead of pooling the 𝑡𝑡  observations of the 𝑛𝑛  participants and 

estimating a common trend for them, the mean-group estimator estimates a unique trend for all 
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𝑖𝑖 participants in an OLS regression, then subsequently takes the mean of these trends.  This 

procedure means that individual-specific, but time-invariant variables – such as treatment 

dummies, trait anxiety and gender – cannot be estimated. 

 

Table 5.2 Fixed Effects Regressions of Forecast Error Trends 

Dep Var:  
Forecast Errors 

Pooled Single Cue Dual Cue 

Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

PR*Round -0.096 
(0.129) 

-0.212 
(0.198) 

-0.100 
(0.118) 

-0.632 *** 
(0.145) 

-0.092 
(0.236) 

0.239 
(0.369) 

PRWL*Round 0.010 
(0.147) 

-0.361 
(0.333) 

-0.042 
(0.177) 

-0.797 ** 
(0.326) 

0.072 
(0.244) 

0.161 
(0.609) 

T*Round -0.322 *** 
(0.109) 

-0.726 *** 
(0.172) 

-0.170 * 
(0.090) 

-1.010 *** 
(0.187) 

-0.481 ** 
(0.201) 

-0.333 
(0.279) 

       

Observations 3540 2360 1860 1240 1680 1120 

Participants 236 236 124 124 112 112 

R2 0.002 0.000 0.000 0.009 0.004 0.003 

F 3.07 6.75 1.46 19.81 1.99 0.64 

p > F 0.029 0.000 0.228 0.000 0.120 0.590 

       

PR*Round = 
PRWL*Round 

F = 0.29 
p = 0.588 

F = 0.15 
p = 0.701 

F = 0.08 
p = 0.784 

F = 0.21 
p = 0.645 

F = 0.23 
p = 0.631 

F = 0.01 
p = 0.913 

PRWL*Round = 
T*Round 

F = 3.28 
p = 0.071 

F = 0.95 
p = 0.331 

F = 0.42 
p = 0.517 

F = 0.64 
p = 0.424 

F = 3.06 
p = 0.083 

F = 0.54 
p = 0.462 

PR*Round = 
T*Round 

F = 1.78 
p = 0.183 

F = 3.84 
p = 0.052 

F = 0.23 
p = 0.635 

F = 3.89 
p = 0.051 

F = 1.57 
p = 0.212 

F = 1.54 
p = 0.218 

Regressions are estimated with a Fixed Effects procedure.  Forecast errors in parentheses and are clustered by participant.  *, **, *** 
represent significance at the 10%, 5% and 1% levels respectively.  F tests are presented at the bottom of the table.  Bold typeface indicates 
an F test to be significant at the 10% level or better. 
 

The time trends estimated with the Pesaran Smith mean-group estimator are presented in 

Table 5.3.  Each coefficient in Table 5.3 represents the linear time trend averaged across all 

participants in each treatment sub-group, estimated from separate regressions.  For this reason we 

do not formally compare these mean group trends across treatments.  Instead we will qualitatively 

compare the estimated trends to those previously estimated. 
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Table 5.3 Pesaran Smith Mean Group Estimator of Time Trends 

Dep Var: Forecast 
Errors 

Pooled Single Cue Dual Cue 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 

(1) (2) (3) (4) (5) (6) 

       

PR*Round -0.096 
(0.129) 

-0.212 
(0.199) 

-0.100 
(0.119) 

-0.632 *** 
(0.146) 

-0.092 
(0.238) 

0.239 
(0.372) 

PRWL*Round 0.010 
(0.147) 

-0.361 
(0.334) 

-0.042 
(0.178) 

-0.797 ** 
(0.329) 

0.072 
(0.246) 

0.161 
(0.615) 

T*Round -0.322 *** 
(0.110) 

-0.726 *** 
(0.172) 

-0.170 * 
(0.090) 

-1.099 *** 
(0.189) 

-0.481 ** 
(0.203) 

-0.333 
(0.281) 

The coefficients presented for each cell have been estimated under a separate Pesaran Smith procedure for each (pooled, single or dual 
cue) treatment and for each time period.  This allows us to distinguish different levels of aggregation for which averaging takes place.  As 
such, we cannot formally test differences between the reported trends. 

 

A comparison of the mean-group estimated trends in Table 5.3 with the fixed effects trends 

in Table 5.2 show that they are virtually identical.  This means that the results confirm the basic 

learning result.  The T treatment stands out being the only one which shows learning over time.  

Although forecast errors improve over time across rounds 11 to 20 in the single cue task, learning 

is still more pronounced in the T treatment than in the others. 

A third robustness check relaxes the implicit assumption that learning occurs in a linear 

manner, where the same magnitude of improvement occurs in every round.  We repeat analyses 

by regressing forecast errors against the inverse of the Round variable.  This is essentially an 

asymptote converging towards zero.  Learning is conceived to occur at a diminishing rate, which 

we regard as a realistic assumption.  Regression results are presented in Table 5.4. 

The asymptotic trends in Table 5.4 show a familiar pattern of results.  Since the asymptote is 

naturally downward sloping to begin with, positive coefficients indicate the downward sloping 

trend, while negative coefficients represent an upward sloping trend.  The magnitude of the 

coefficient relates to the curvature.  We see that the asymptotic trend for the T treatment is always 

positive, although is not statistically significant in regression models 3 and 6.  Across rounds 6 to 

20, the pooled and dual cue regressions in models 1 and 5 show the T treatment to have a 

significant downward trend, while the other treatments have trends that are not statistically 
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different to zero.  Interestingly, the single cue regression across rounds 6 to 20, model 3, no longer 

shows the T treatment to have a significant trend.  Across rounds 11 to 20, the pattern of 

significance is similar to what we have seen before.  In the pooled regression only the T treatment 

has a significant trend; all treatments have a significant trend in the single cue regression; and no 

treatments have significant trends in the dual cue regression. 

Table 5.4 Fixed Effects Regressions of Non-Linear Forecast Error Trends 

Dep Var: 
Forecast Errors 

Pooled Single Cue Dual Cue 

Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

PR / Round 12.63 
(16.22) 

48.98 
(46.68) 

5.667 
(14.79) 

144.7 *** 
(32.68) 

20.12 
(29.75) 

-54.06 
(87.68) 

PRWL / Round -1.054 
(15.35) 

107.2 
(71.08) 

-6.085 
(18.66) 

192.3 *** 
(67.68) 

4.983 
(25.36) 

5.067 
(132.1) 

T / Round 29.32 ** 
(14.83) 

152.8 *** 
(41.48) 

3.368 
(12.94) 

240.6 *** 
(38.47) 

56.64 ** 
(26.60) 

60.43 
(72.18) 

       

Observations 3540 2360 1860 1240 1680 1120 

Participants 236 236 124 124 112 112 

R2 0.004 0.002 0.000 0.011 0.008 0.002 

F 1.51 5.65 0.11 22.26 1.68 0.36 

p > F 0.214 0.001 0.956 0.000 0.176 0.781 

       

PR / Round = 
PRWL / Round 

F = 0.38 
p = 0.541 

F = 0.47 
p = 0.494 

F = 0.24 
p = 0.623 

F = 0.40 
p = 0.527 

F = 0.15 
p = 0.699 

F = 0.14 
p = 0.710 

PRWL / Round 
= T / Round 

F = 2.02 
p = 0.156 

F = 0.31 
p = 0.580 

F = 0.17 
p = 0.678 

F = 0.38 
p = 0.536 

F = 1.98 
p = 0.163 

F = 0.14 
p = 0.714 

PR / Round = T 
/ Round 

F = 0.58 
p = 0.448 

F = 2.77 
p = 0.098 

F = 0.01 
p = 0.907 

F = 3.61 
p = 0.060 

F = 0.84 
p = 0.362 

F = 1.02 
p = 0.316 

Regressions are estimated with a Fixed Effects procedure.  Forecast errors in parentheses and are clustered by participant.  *, **, *** represent 
significance at the 10%, 5% and 1% levels respectively.  F tests are presented at the bottom of the table.  Bold typeface indicates an F test to 
be significant at the 10% level or better. 

 

All in all it seems that the T treatment is the only one which shows consistent signs of learning.  

The improvement in forecast errors over time however should not be interpreted in isolation.  

The previous chapter found the T treatment, along with the PR treatment, to be one of the lowest 

performing treatments.  A natural question to ask at this point is whether the learning in the T 

treatment is adequate to make up for the lower performance vis à vis the PRWL treatment.  If 
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learning occurs gradually round by round – as we model it – then we should expect the cumulative 

improvements in performance to be the greatest in the final round.  Using parameters estimated 

from the regressions in Table 5.1, we can construct the predicted forecast errors in round 20 for 

each treatment.  We calculate the round 20 treatment differences as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 20 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑘𝑘 = 𝛽𝛽0 + 𝛽𝛽𝑘𝑘 + 𝛽𝛽𝑘𝑘∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅×20 (5.1) 

where 𝛽𝛽𝑘𝑘  and 𝛽𝛽𝑘𝑘∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  are the coefficients of the treatment dummy and treatment-round 

interaction term for treatment 𝑘𝑘, while 𝛽𝛽0 is the constant term.  𝑘𝑘 indexes the PR, PRWL, T  

treatments, with 𝛽𝛽𝑘𝑘 = 0  for the PR treatment, representing the reference category for the 

treatment dummies.  These coefficients are taken from the regressions that underpin Table 5.1.  

Since we are mainly interested in the ceteris paribus treatment differences, our calculation does 

not include the effect of the other regressors that feature in the regression model, such as gender.  

These forecast error predictions are presented in Table 5.5. 

Panel A shows the predicted forecast errors based on the regressions run over rounds 6 to 20.  

We see that the PR treatment appears to do poorly overall.  In round 20, holding the control 

variables constant, forecast errors are estimated to be highest in the PR treatment in each of the 

pooled, single and dual cue regression models.  While the T treatment performed poorly to start 

off with, the faster pace of learning makes it perform better than the PR treatment by the last 

round.  In the single cue task, the predicted forecast errors in round 20 are slightly lower in the 

T treatment than in the PRWL treatment.  On the other hand, in the dual cue task it appears 

that the greater rate of learning in the T treatment is inadequate to close the initial performance 

gap with the PRWL treatment.  This is also reflected in the pooled predictions. 

From Table 5.1 we previously found that the trend on the T treatment was much steeper 

across rounds 11 to 20 than across rounds 6 to 20.  In Panel B of Table 5.5 with the trends 

estimated across rounds 11 to 20, we see a similar pattern of predictions as in Panel A.  The PR 

treatment performs poorly overall.  In the single cue task the T treatment is able to slightly 

outperform the PRWL treatment with the faster rate of learning, but this is not true in the dual 

cue task. 

Our analyses here is limited somewhat by our experimental design, with only 20 rounds.  If 

the estimated rates of learning in these treatments could be extrapolated to a greater number of 
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rounds, the T treatment would be expected to perform better than each of the other treatments 

due to the faster rate of learning even when initial performance lagged behind.  We already found 

evidence that by round 20, the T treatment in the single cue task would slightly outperform the 

PRWL treatment.  In the dual cue task, if we held the estimated coefficients constant and 

hypothetically allow the number of rounds to increase, we would see the T treatment perform 

better than the PRWL treatment if the number of rounds increased to 27.  If this holds true, 

there are policy implications regarding how workers should be paid to maximise their productivity.   

Table 5.5 Predicted Forecast Errors in Round 20 

Panel A: Rounds 6 to 20 

 Pooled Single Cue Dual Cue 
    

PR 11.20 11.37 17.27 

PRWL 7.977 11.09 14.03 

T 10.42 10.79 17.00 

 

Panel B: Rounds 11 to 20 

 Pooled Single Cue Dual Cue 
    

PR 10.38 7.485 18.61 

PRWL 6.245 6.554 14.53 

T 8.281 5.142 17.41 

 

5.2. Forecast Consistency 

We have previously analysed how forecast errors trend over time and have found that the T 

treatment is the only one that showed any consistent signs of learning.  Since forecast errors 

measure the accuracy of forecasts, this tells us that the accuracy of forecasts improves over time 

in the T treatment.  Another aspect of learning relates to consistency.  If a participant displays 

significant learning over time, we would not only expect the accuracy of their forecasts to improve, 

but also that their forecast errors become increasing consistent.  If learning does indeed occur, 

then we would expect people to settle on a forecast rule as it converges to the underlying formula.  
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In settling upon a given forecast rule or not making major adjustments to it, forecast errors should 

become more consistent, irrespective of its accuracy.  In conjunction, measures of both accuracy 

and consistency better reflect the notion of learning. 

The analysis of forecast accuracy can help us rule out the possibility that learning, or its 

absence, is driven by luck.  Due to the nature of real-effort tasks, we only observe the forecasts 

that participants make rather than the underlying heuristics and rules that they apply.  As a result 

we do not know whether the forecasts were random guesses or were the result of a carefully 

thought through process.  Moreover, there is a possibility that random guesses yield small forecast 

errors out of luck.  If we observe the pattern that forecast errors are becoming increasingly 

consistent over time, we are more likely to attribute this behaviour to learning than luck, since it 

would be quite unlikely that luck would consistently work in the direction of learning.  If we can 

confirm in the forthcoming analyses that forecast errors are indeed becoming more consistent, 

we can safely interpret the downward sloping trends as learning. 

We measure the consistency of forecasts with the standard deviation of each participant’s 

forecast errors across the dimension of time.  Since we want to see how this changes over time, 

we break up the 15 post-intervention rounds into 5 three-round blocks.  The within-subject 

standard deviation is calculated for each of these round-blocks.  This yields five standard deviation 

observations for each participant.  The treatment-averages of these are plotted in Figure 5.1. 

Panel A of Figure 5.1 shows the within-subject standard deviations for the single cue 

treatments.  Notably in the first block, rounds 6 to 8, the standard deviations were initially highest 

in the T treatment, with an average of just below 8 forecast error points.  Although there is some 

variation in these within-subject standard deviations over time, we see that in the final block, 

rounds 18 to 20, the standard deviations are lowest in the T treatment with a value of 6.  By 

contrast, these end up higher in the PR and PRWL treatments relative to the first block.   

For the dual cue task, Panel B, improvements in forecast error consistency is clear in the T 

treatment.  Standard deviations are substantially higher in the T treatment in the first block 

compared to other treatments, while are lowest in the final block.  A clear downward trend can 

be made out inbetween these first and last points.  In comparison, there does not appear to be 

any significant trend in standard deviations in the other dual cue treatments. 
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We formalise these findings by estimating a linear time trend in a random effects generalised 

least squares regression.  Within-subject standard deviation is regressed against a time trend, as 

well as the trait anxiety score and gender of the participant.  These regressions are presented in 

Table 5.6.  Model 1 shows the trend for single and dual cue treatments pooled together, while 

models 2 and 3 present these separately.  The trends are denoted by the ‘Block’ variable interacted 

by treatment. 

The estimated within-subject standard deviation trends are insignificant in the PR and PRWL 

treatments across the single and dual cue tasks, and also when these observations are pooled.  The 

T treatment stands out.  In regression model 1, we see that forecast error standard deviations 

reduce on average by 1.21 points across each three-round block – significant at the 5% level.  

Wald tests show that consistency improves at a greater rate in the T treatment than in the PR and 

PRWL treatments.  A similar pattern of learning is observed in the dual cue treatments in model 

3.  In the single cue task, we do not observe improved consistency in any treatment – although 

we do see that the trend in the T treatment is negative while the trends for other treatments is 

positive. 

Our finding that forecast errors become increasingly consistent over time in the T treatment 

supplement the previous finding that forecasts improve over time in the T treatment.  This 

strengthens our claim that there is substantial learning in the T treatment, while being absent in 

the other treatments. 

Given that there appears to be no differences in how forecast error consistency changes over 

time across the PR and PRWL treatments, the improving consistency in the T treatment over 

time is attributable to the rank-dependent payoffs in tournaments as opposed to relative feedback.  

In this regard, it is similar to what was established in the previous result that rank payoffs drive 

improvements in forecast errors over time. 

  



114 

Figure 5.1 Within-Subject Standard Deviation of Forecast Errors across Time 

Panel A: Single Cue Task 

 
 

Panel B: Dual Cue Task 

 
Round-Block 1 for rounds 6-8, block 2 for rounds 9-11, block 3 for rounds 12-14, block 4 for rounds 15-17, and block 5 for rounds 18-20. 
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Table 5.6 Regressions of Within-Subject Standard Deviation Time Trends 

Dep Var:  
Within Subject Std Dev 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 

    

PR (base) (base) (base) 

PRWL -2.621 
(2.430) 

-1.398 
(2.338) 

-1.853 
(3.851) 

T 
4.908 * 
(2.796) 

2.148 
(2.221) 

7.929 * 
(4.533) 

PR*Block 
0.535 

(0.536) 
0.267 

(0.509) 
0.773 

(0.911) 

PRWL*Block 0.572 
(0.578) 

0.627 
(0.808) 

0.501 
(0.829) 

T*Block -1.211 ** 
(0.491) 

-0.566 
(0.367) 

-1.838 ** 
(0.893) 

Trait Anxiety 0.084 
(0.104) 

-0.065 
(0.101) 

0.098 
(0.160) 

Female 5.296 *** 
(1.416) 

1.352 
(1.452) 

6.895 *** 
(1.985) 

Constant 
7.447 

(4.682) 
10.30 ** 
(4.570) 

10.407 
(7.453) 

    
Observations 1060 540 520 
Participants 212 108 104 

R2 0.034 0.009 0.042 
Wald χ2 23.24 4.14 18.64 
p > χ2 0.002 0.764 0.009 

    

PR*Block = PRWL*Block χ2(1) = 0.00 
p = 0.963 

χ2(1) = 0.14 
p = 0.706 

χ2(1) = 0.05 
p = 0.825 

PRWL*Block = T*Block χ2(1) = 5.53 
p = 0.019 

χ2(1) = 1.81 
p = 0.179 

χ2(1) = 3.68 
p = 0.055 

PR*Block = T*Block χ2(1) = 5.77 
p = 0.016 

χ2(1) = 1.76 
p = 0.185 

χ2(1) =4.19 
p = 0.041 

Block denotes the time trend.  Regressions are estimated with a Random Effects GLS procedure.  Standard 
errors are in parentheses and are clustered by participants.  Wald chi-squared tests of trends across treatments 
are presented at the bottom of the table, with bold typeface indicating statistical significance at the 10% level 
or better. 
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5.3. What Drives Tournament Learning? 

Why is learning more pronounced in the T treatment than in other treatments?  The answer lies 

in the rank-dependent reward structure, with the winner earning $1 while loser earns nothing.  

The Wald tests in Table 5.1 support this.  In comparing the T and S trends, we are looking at 

how the trend differs when people are paid according to relative performance to when they are 

not paid for performance at all.  If incentives are important and motivation crowding out plays a 

minor role, then we would expect better learning under tournaments.  There is evidence in models 

1 and 5 to show that the T trend is negative and steeper than the S treatment, showing 

significantly better learning.  This is the first indication that it is the incentives in tournaments 

that foster learning.   

The source of learning can be narrowed down further, by comparing PR and T treatments: 

both incentivise performance, but according to absolute and relative performance respectively.  

In models 2 and 4 of Table 5.1, there is evidence that the T treatment exhibits better learning 

than the PR treatment.  This shows that learning comes about from relative incentives rather than 

from incentives based on absolute performance. 

More specifically, we can compare the PRWL and T treatments.  Both feature relative 

feedback but differ by pay scheme: piece rates versus the rank dependent payoffs.  Here we 

distinguish between tournament feedback and payoffs.  Again, the Wald tests show that the T 

treatment learns better than the PRWL treatment, though this time in models 1 and 5.  This 

suggests that the rank-dependent payoffs inherent in tournaments is the source of the learning 

that we observe. 

While the rank-dependent payoffs inherent in tournaments motivate learning in the T 

treatment, it is interesting to note that relative feedback has no impact on learning.  Comparing 

the time trends of the PR and PRWL treatments, where pay is the same but the PRWL treatment 

includes feedback on relative performance, we see that the learning is identical in both treatments.  

This suggests that the winning/losing feedback itself does not contribute to learning in the T 

treatment.  Similar inter-treatment comparisons of forecast consistency presented in Table 5.6 

confirm this point. 
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The learning in the T treatment is attributable to the rank-order payoffs inherent in 

tournaments.  The winner of the tournament receives a high prize while the loser receives a low 

prize.  In our experiment the prize structure accentuates this effect, with players receiving $1.00 

for winning or $0.00 for losing in the tournament round.  Players improve their forecast errors 

in order to improve their chances of receiving the winning prize and/or reduce their chances of 

receiving the losing prize.  While our experiments do not distinguish between the objectives of 

striving to win or avoiding the loss, a recent paper by Dutcher et al. (2015) show that the avoid-

being-last objective has a greater effect than the strive-to-be-first objective in terms of eliciting 

effort.  They find that when both objectives are present, effort is higher than each of the two 

separately.  We believe the prize structure of our tournament is most reminiscent to their 

combined case. 

We summarise our findings with respect to learning below: 

Result 5.1. 

Learning occurs only under tournaments.  Both forecast accuracy and 

consistency improves over time.  This learning is attributable to the rank-

dependent payoffs inherent in tournaments. 

 

5.4. Tournament-No-Info Treatment 

The proposition that the rank incentives of tournaments promote learning can independently be 

verified by comparing the Tournament-No-Info (TNI) treatment with the Tournament (T) 

treatment.  At the end of the five piece rate rounds, the TNI treatment randomly matches a 

participant with another, and the winner with the smallest forecast errors receive the winning 

prize of $1 while the loser receives nothing.  It features the same tournament incentives as the T 

treatment.  The only difference is that in the TNI treatment, feedback pertaining to 

winning/losing – as well as round earnings, since it depends on winning and losing – is not shown 

inbetween rounds.  This means that TNI participants do not know whether they have won or 

lost in the previous round.  Since the T and TNI treatments feature the same rank-dependent 

incentives but differ in terms of relative feedback provision, the design is parallel to that of the 

PR and PRWL treatments.  Here the T and TNI treatment comparison provides us an 

independent test of how relative feedback and incentives affect learning. 
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A priori, if we observe no differences in the rate of learning across these treatments, then we 

can definitively rule out the effect relative feedback has on learning.  Furthermore – since we have 

already ascertained that there is learning in the T treatment – if we find that the TNI treatment 

has an identical rate of learning, then we can affirm that the learning is driven by the rank-payoffs. 

We present the estimated time trends for the dual cue T and TNI treatments in Table 5.7.37  

Models 1 and 2 estimate a random effects specification with the TNI treatment dummy (with 

the T treatment serving as the reference category), trait anxiety, gender and linear time trends for 

both treatments.  Regression models 3 and 4 run fixed effects regressions of the time trends, while 

purging the time-invariant variables.  The regressions in models 1 and 3 are run over all post-

intervention rounds, 6 to 20, while models 2 and 4 repeat the same over rounds 11 to 20. 

In model 1, across rounds 6 to 20, the linear trend for the T treatment has a slope of -0.494 

and is significant with a p-value of 0.02.  This is identical in magnitude to the dual cue T trend 

that was estimated in model 5 of Table 5.1.  In the TNI treatment, we observe a significant 

downward trend of -0.447, with a p-value of 0.043.  This is not statistically different to that for 

the T treatment.  It means that learning occurs even in the absence of relative performance 

feedback, lending more weight to the notion that the tournament incentives drive learning. 

Unlike in previous regressions where we argued that comparing time trends over rounds 6 to 

20 is potentially unfair due to interventions kicking in in some treatments but not others, we 

believe it is not inappropriate to study the T and TNI treatments over these rounds, since both 

treatments face similar interventions from round 6.  Nevertheless the trends over rounds 11 to 

20 are also presented.  In model 2, although the trends for both treatments retain their negative 

sign, the T*Round coefficient is now insignificant.  This is in line with model 6 of Table 5.1, 

where the T treatment did not have a significant trend line.  On the other hand, the trend line 

for the TNI treatment of -1.226 is statistically significant.  This suggests that the provision of 

relative feedback in the T treatment actually impedes learning, given that learning is significant 

in the TNI treatment but not the T treatment.  Despite this, a Wald test cannot reject the null 

                                                 

37  We find similar results for analogous regressions for the single cue task.  However we do not report these since we have only one session of the 
single cue TNI treatment, limiting the number of observations.  Since results are qualitatively similar, we will focus on the dual cue T and TNI 
treatments. 
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hypothesis that the estimated trend lines for the T and TNI treatment have the same slope (p = 

0.153).   

 

Table 5.7 Time Trends in Dual Cue Tournament and Tournament-No-Info Treatments 

Dep Var: 
Forecast Errors 

Random Effects Fixed Effects 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 
Model 1 Model 2 Model 3 Model 4 

     

T (base) (base)   

TNI -4.659 
(5.959) 

10.78 
(12.22)   

Trait Anxiety 0.412 
(0.287) 

0.379 
(0.333)   

Female 9.070 ** 
(4.420) 

10.27 ** 
(4.604) 

  

T*Round -0.494 ** 
(0.213) 

-0.347 
(0.295) 

-0.481 ** 
(0.201) 

-0.333 
(0.279) 

TNI*Round 
-0.447 ** 
(0.220) 

-1.226 ** 
(0.540) 

-0.495 ** 
(0.205) 

-1.311 ** 
(0.506) 

Constant 13.57 
(13.38) 

11.85 
(16.26)   

     
Observations 1065 710 1140 760 
Participants 71 71 76 76 

R2 0.027 0.028 0.004 0.002 
Wald χ2 16.06 10.08   
p > χ2 0.007 0.073   

F   5.78 4.07 
p > F   0.005 0.021 

     

T*Round = TNI*Round χ2(1) = 0.02 
p = 0.877 

χ2(1) = 2.04 
p = 0.153 

F = 0.00 
p = 0.959 

F = 2.86 
p = 0.095 

Regressions are run with observations from the dual cue T and TNI treatments.  Standard errors are in parentheses and are 
clustered by participants.  *, **, *** represent significance at the 10%, 5% and 1% levels respectively.  A hypothesis test is presented 
at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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The fixed effects regressions in models 3 and 4 show similar results.  The rate of learning 

across both treatments is identical across rounds 6 to 20.  When the trend lines are drawn over 

rounds 11 to 20, the T trend is negative but insignificant, while the TNI trend indicates 

significant improvements to forecast errors round by round.  The pairwise F-test shows the trend 

is significantly different at the margin, with a p-value of 0.095.  The corresponding pairwise test 

in model 2 did not show significance (p = 0.153). 

To reiterate, for the T and TNI treatments we see no difference in learning between these 

treatments across rounds 6 to 20.  Since the only difference between these treatments is in the 

provision of relative feedback, we can conclude that it has no effect on learning over these rounds.  

Across rounds 11 to 20, the regressions provide ambiguous results.  There is marginal evidence 

to suggest that learning is actually better in the TNI treatment in the absence of relative feedback 

than in the T treatment with feedback provided.  Since the evidence is marginal and differs from 

the unambiguous findings across rounds 6 to 20, and also since the data here is limited to only 

the dual cue task, we will err on the side of conservatism to adopt the interpretation of this 

evidence that there is no learning difference between these treatments across the latter rounds.38 

Having found that forecast errors in the T and TNI treatments improve at indistinguishable 

rates, we proceed by comparing changes in forecast consistency across time in these two 

treatments.  We again look at the within-subject standard deviation of forecast errors over three-

round blocks over rounds 6 to 20.  Figure 5.2 shows the within-subject standard deviations 

averaged across the T and TNI treatments for each three-round block.  Like before, higher 

forecast consistency is represented by smaller within-subject standard deviations. 

We see that forecast errors are more consistent in the TNI treatment than the T treatment in 

the first block of post-intervention rounds, rounds 6 to 8.  In the last block, rounds 18 to 20, 

forecast errors in both treatments are lower than their levels in the first block.  We observe that, 

compared to the first block, forecast consistency is much lower in the T treatment while is only 

                                                 

38  If we adopted the alternative interpretation of the marginal evidence, that the TNI treatment learns better than the T treatment, we are 
suggesting that relative feedback impedes learning.  Since there are close parallels to Merlo and Schotter (1999), it could be explained by their 
explanation of myopia.  The provision of relative feedback in the T treatment diverts participants’ attention away from the absolute feedback.  
Relative feedback does not assist one to learn of the underlying relationship per se, while absolute feedback can be useful via reinforcement.  To 
shift attention towards relative feedback induces a myopic view of learning. 
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slightly so in the TNI treatment.  Consequently, the downward trend in consistency is more 

apparent in the T treatment.  There is a higher degree of fluctuation in forecast consistency in 

the TNI treatment, with a sharp peak in the third block, then sharply dropping over the fourth 

and fifth blocks. 

We formalise analyses with regression analysis.  Table 5.8 presents regressions of the within-

subjects standard deviation of forecast errors for T and TNI treatments.  The regressors include 

the TNI treatment dummy, trait anxiety scores and gender of each participant, as well as a linear 

trend for T and TNI treatments, denoted as T*Block and TNI*Block respectively.  The first 

regression model is run across all round blocks, over rounds 6 to 20.  We see that while the 

intercept is slightly lower in the TNI treatment compared to the T treatment, although not 

significantly so, consistency improves at a much faster rate in the T treatment.  The linear trend 

for the T treatment has a slope of -1.838 and is significant at the 5% level.  On the other hand, 

the TNI trend is negative but mild and insignificant.  A Wald test comparing the trends, however, 

do not reject the null that the trends are identical (χ2(1) = 2.16, p = 0.142).   

 

Figure 5.2 Within-Subject Standard Deviation of Forecast Errors in T and TNI Treatments 
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Regression model 2 in Table 5.8 draws the trend lines from the second block.  In other words, 

we are dropping 71 observations pertaining to the first block and estimating the trends starting 

from a different base.  This allows us to test the sensitivity of these trends to their starting points, 

noting that consistency was initially much lower in the T treatment than the TNI treatment.  In 

model 2, we again see that consistency improves in both T and TNI treatments over time, but 

now at a faster rate in the TNI treatment.  Despite these negative trends, neither are statistically 

significant at conventional levels.  Wald tests again do not suggest any differences in these trends 

(χ2(1) = 0.60, p = 0.437). 

Finally, the third regression model in Table 5.8 replicates the previous regressions starting 

from the third block of rounds.  While we have lost 40% of observations compared to model 1, 

drawing trends over three periods instead of five, model 3 is particularly interesting because it 

begins with the distinct peak in the TNI treatment – shown again in Figure 5.2.  Accordingly, 

we observe the obvious downward sloping trend in the TNI treatment, with significance at a level 

better than 1%.  Interestingly we also see significant improvements in consistency for the T 

treatment, also highly significant.  As in the previous two regression models, hypothesis tests do 

not indicate any differences in the estimated trends for T and TNI treatments (χ2(1) = 0.73, p = 

0.394). 

The estimated trends of forecast consistency in Table 5.8 seem to be highly sensitive to the 

starting point.  It is likely to be attributable to the small number of temporal periods for which 

the trends are drawn.  Nevertheless two recurring observations can be made out from these 

regressions.  The first is that across each regression model, both T and TNI treatments show a 

downward trend, whether it is significant or not.  The second observation is that these downward 

sloping trends are no different across T and TNI treatments in each regression model, even 

though they vary considerably in magnitude in some cases.  Based on these two overarching 

observations, we conclude that forecasts become increasingly consistent in both T and TNI 

treatments, and that there are no differences in this rate. 

We have found evidence that there is leaning in both T and TNI treatments, where both the 

accuracy of forecasts and its consistency improves over time.  More interesting is that the rates of 

learning are indistinguishable across these two treatments.  Since the design differences between 
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these treatments lie in the suppressed winning/losing feedback in the TNI treatment, the finding 

that both have similar rates of learning suggest that this feedback does not drive learning in the 

T treatment.  Rather, since learning occurs in the TNI treatment when this feedback is absent, 

we can pinpoint learning down to the common rank-based incentives that feature in both 

treatments. 

The findings here from the T and TNI treatments reinforce our previous explanation that it 

is the rank-based incentives that drives learning in tournaments.  The extremity of the winner-

take-all rewards provides the impetus for players to perform since the differences in reward 

between winning and losing are stark.  The rank-payoffs reward the winner well, while the zero 

losing prize acts as a deterrence to losing.  As a result, those in the T and TNI treatments have 

the motivation to improve their forecast errors, irrespective of whether they know whether they 

have won or lost in prior play. 
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Table 5.8 Regressions of Within-Standard Deviation Time  
Trends in T and TNI Treatments 

Dep Var: 
Within-Subject Std Dev 

Blocks 1-5 Blocks 2-5 Blocks 3-5 
Rounds 6-20 Rounds 9-20 Rounds 12-20 

Model 1 Model 2 Model 3 
    

T (base) (base) (base) 

TNI 
-4.858 
(4.608) 

6.014 
(7.585) 

13.541 
(16.112) 

Trait Anxiety 0.287 
(0.221) 

0.255 
(0.261) 

0.299 
(0.290) 

Female 4.561 
(3.524) 

5.019 
(4.088) 

5.955 
(4.371) 

T*Block -1.838 ** 
(0.896) 

-0.199 
(0.871) 

-5.289 *** 
(1.703) 

TNI*Block -0.179 
(0.689) 

-1.291 
(1.103) 

-8.134 *** 
(2.866) 

Constant 11.72 
(10.76) 

6.211 
(12.01) 

25.70 * 
(15.22) 

    
Observations 355 284 213 
Participants 71 71 71 

R2 0.027 0.024 0.084 
Wald χ2 7.61 3.20 19.32 
p > χ2 0.179 0.668 0.002 

    

T*Block = TNI*Block χ2(1) = 2.16 
p = 0.142 

χ2(1) = 0.60 
p = 0.437 

χ2(1) = 0.73 
p = 0.394 

Regressions are run with observations from the dual cue T and TNI treatments.  Regressions are estimated with 
Random Effects GLS.  Standard errors are in parentheses and are clustered by participants.  *, **, *** represent 
significance at the 10%, 5% and 1% levels respectively.  Wald chi-squared tests are presented at the bottom of the 
table. 
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5.5. Reinforcement Learning 

We have previously shown that there is significant learning in the T treatment, and this is 

attributable to the rank-based payoffs that feature in tournaments.  These findings have come 

about by looking at linear time trends and comparing them across treatments.  An alternative 

approach to analyse learning is to look at how people respond to feedback from previous rounds.  

We now begin to look deeper into the processes associated with learning. 

In a cognitively challenging task such as ours, we expect that feedback plays an important role 

in facilitating learning.  In this section, we focus on absolute feedback on forecast errors and how 

it is utilised to improve forecasts in subsequent rounds. In the following section we will look at 

the role relative feedback has on learning. 

In studying how absolute feedback affects performance, we look at how participants process 

the forecast error feedback that they receive and whether this improves forecasts in latter rounds.  

This is the essence behind reinforcement learning.  Reinforcement learning is founded upon the 

premise that if a decision receives ‘good’ feedback, then the same decision will be more likely 

played again in the future.  Feedback therefore reinforces the decision.  Likewise, bad decisions 

will less likely be played again. 

Theoretical models of reinforcement learning are presented in Roth and Erev (1995) and Erev 

and Roth (1998).39  They model monetary payoffs as the reinforcing event, where higher payoffs 

in the previous period will result in a higher propensity to replay the decision which had led to 

the increased earnings in the first place.  In these models, the choice of payoffs as the reinforcing 

feedback is appropriate in the context of strategic games, where payoffs serve as the sole measure 

of whether a strategy played is good or bad.  Payoffs are less appropriate in the forecasting task 

that we use, especially when payoffs vary with different pay schemes.  Instead we will consider 

forecast errors as the reinforcing feedback, whereby forecast errors measure performance. 

In the early stages of the game, when people begin to make forecasts by trial and error, the 

forecast error feedback that they receive at the end of the round is very valuable.  Since forecast 

                                                 

39  For related work, see Feltovich (2000), Erev, Bereby-Meyer, and Roth (1999) and Bereby-Meyer and Roth (2006). 
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errors reflect how accurate forecasts are, they also indicate how good the ‘trial’ is, and in turn the 

performance of the forecast rule that is used.  If forecast errors are low, then people may choose 

to stick with the same forecast rule for future rounds, or may only make minor refinements.  On 

the other hand, if forecast errors are high, then there is reason for people to trial another 

forecasting rule, with the process continuing until they find a satisfactory rule.40  Throughout this 

process of reinforcement, we would expect favourable feedback to improve future outcomes.  In 

the context of the forecasting game, lower forecast errors in the past would be expected to improve 

future forecasts. 

Since we do not actually observe the forecasting rules that participants formulate to base their 

forecasts upon, we are not able to directly apply the reinforcement learning models of Roth and 

Erev to the forecasting task.  While we are not able to fully exploit the theory, we can nevertheless 

test for signs of reinforcement learning in each of the treatments.  In particular, we can see which 

treatment makes the most of prior forecast error feedback, and how it translates to improvements 

in forecasts.  Given that we have previously found that the T treatment exhibits significant 

learning over time, we would also expect participants in the T treatment to show better 

reinforcement learning. 

According to reinforcement theory, greatest weight is placed on the most recent piece of 

feedback.  We begin by looking at how the forecast errors in round 𝑡𝑡 − 1 affect forecast errors in 

round 𝑡𝑡 in each treatment.  Panel A of Table 5.9 presents a regression of forecast errors against 

its first lag, interacted by treatment.41  Other regressors include the treatment dummies, trait 

anxiety and gender.  The regression is run with pooled, single and dual cue data over rounds 6 to 

20.  A series of Wald chi-squared tests that relate to the lagged forecast errors across treatments 

are presented at the bottom of the table. 

  

                                                 

40  There is an inherent trade-off between ‘exploring’ and ‘exploiting’, to use the words of Merlo and Schotter (1999).  If a participant is satisfied 
that the forecasting rule is good enough, then they would stop searching for a better rule and start to exploit the rule which they have formulated. 

41  Levin, Lin, and Chu (2002) panel unit root tests run for each single and dual cue treatment rejects the presence of a unit root in the data (p = 
0.000 in all tests).  This suggests stationarity of the panels. 
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Table 5.9 Reinforcement Learning: Effect of First Forecast Error Lag 

Dep Var: 
Forecast Error 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 

    

PR (base) (base) (base) 

PRWL -0.694 
(2.052) 

0.385 
(1.918) 

0.573 
(3.013) 

T -0.213 
(2.202) 

-0.739 
(1.952) 

1.136 
(3.463) 

Trait Anxiety 0.112 
(0.103) 

-0.095 
(0.094) 

0.187 
(0.186) 

Female 6.045 *** 
(1.333) 

1.056 
(1.198) 

9.528 *** 
(2.053) 

L1 PR*Error 
0.293 *** 
(0.062) 

0.164 *** 
(0.059) 

0.238 *** 
(0.071) 

L1 PRWL*Error 
0.150 *** 
(0.053) 

0.046 
(0.035) 

0.063 
(0.059) 

L1 T*Error 0.319 *** 
(0.065) 

0.214 ** 
(0.090) 

0.236 *** 
(0.080) 

Constant 6.076 
(4.535) 

12.25 *** 
(4.098) 

7.901 ** 
(8.096) 

    
Observations 3180 1620 1560 
Participants 212 108 104 

R2 0.111 0.028 0.090 
Wald χ2 85.10 18.56 46.28 
p > χ2 0.000 0.010 0.000 

    
L1 PR*Error = 

L1 PRWL*Error 
χ2(1) = 3.07 
p = 0.080 

χ2(1) =2.95 
p = 0.086 

χ2(1) = 3.52 
p = 0.061 

L1 PRWL*Error = 
L1 T*Error 

χ2(1) = 4.09 
p = 0.043 

χ2(1) = 2.98 
p = 0.084 

χ2(1) = 2.99 
p = 0.084 

L1 PR*Error = 
L1 T*Error 

χ2(1) = 0.08 
p = 0.772 

χ2(1) = 0.21 
p = 0.649 

χ2(1) = 0.00 
p = 0.983 

Regressions are estimated with Random Effects GLS.  Standard errors are in parentheses and are clustered by 
participants.  *, **, *** represent significance at the 10%, 5% and 1% levels respectively.  Wald chi-squared tests 
are presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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We focus our attention on the coefficients of the lagged forecast error for each treatment.  

The first observation from the regressions is that – significant or not – every coefficient on the 

lagged forecast errors, across treatments and across different regression models, has a positive sign.  

The direction of the estimated coefficients is consistent with reinforcement learning.  Higher 

forecast errors in the previous round are associated with higher forecast errors in the present round.  

Conversely, feedback about better forecasts in the previous round drive further improvements in 

forecasts in the present round. 

There is evidence to show that reinforcement learning occurs in every treatment, though to 

varying degrees.  In model 1, the pooled regression, the lagged forecast error terms are significantly 

different to zero in all treatments.  The coefficient for the PRWL treatment is smaller in 

magnitude than in the PR and T treatments; these differences are statistically significant at 

conventional levels.  In fact when the regressions are replicated with the single and dual cue tasks 

separately, the lagged forecast error for the PRWL treatment is no longer significant in either 

regression.  The coefficients on the PR and T lagged error terms continue to be strongly 

significant. 

In terms of the degree of learning, both the PR and T treatments show greater reinforcement 

than the PRWL treatment, since they have larger coefficients.  The Wald chi-squared tests at the 

bottom of Table 5.9 show that while there are no differences in reinforcement learning between 

the PR and T treatments, the learning in these treatments is significantly better than the PRWL 

treatment in all three regression models.   

Given that the PR and PRWL treatments differ only in terms of the relative feedback provided 

in the PRWL treatment, the difference in reinforcement learning that we observe between these 

treatments is attributable to the relative feedback.  We see that the process of reinforcement is 

slower in the PRWL treatment compared to the PR treatment.  This suggests that the provision 

of relative feedback impedes reinforcement learning.  A possible explanation is that the provision 

of relative feedback distracts the participant from focusing on historical forecast errors.  Since 
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relative feedback relates to benchmarking, it provides no reinforcement value per se. 42  An 

increased focus on relative feedback reduces the focus on previous forecast errors, reducing the 

effectiveness of reinforcement learning.  We will revisit this point in the following section. 

We also observe that there is greater reinforcement in the T treatment than in the PRWL 

treatment.  Both feature relative feedback, but incentives differ.  Although relative feedback 

crowds out reinforcement learning, the rank-based feedback seem to shift emphasis back to 

forecast errors.  Since there is more to gain (lose) from performing well (poorly), there are greater 

incentives in place to encourage T participants to perform.  With greater incentives to perform, 

they will make better use of the feedback that will assist them to do so. 

We further investigate reinforcement learning by looking at the effect of deeper forecast error 

lags.  As time progresses, the stock of feedback accumulates.  If the PR and T treatments exhibit 

better reinforcement than other treatments, we expect to see them utilise more information that 

they have at their disposal to assist them with their forecasts.  Table 5.10 shows how five forecast 

error lags affect present round forecasts in different treatments.  These regressions pool single and 

dual cue treatments in order to increase the sample size we have to work with.  The different 

regression models represent each of the PR, PRWL and T treatments. 

The random effects regressions that are run in Table 5.10 are done so in two stages for each 

treatment.  In the first stage, forecast errors are regressed only against the controls of trait anxiety 

and gender.  Residuals from the first stage regression are calculated, then put through a second 

stage regression against five forecast error lags. 43  The first lag is labelled as L1, the second lag L2 

and so on.  The reason why regressions are run in two stages is so that in the second stage 

regressions, the coefficient of determination (R2) measures the fit of the regression models that is 

attributable solely to the five lagged forecast error values, excluding the contribution by the first 

stage variables.  This way, the R2 is an aggregated measure of how well these five lags jointly 

                                                 

42  Although relative feedback provides no information over and above forecast error feedback that is useful for reinforcement, it may spur learning 
through other channels.  We cover this point in more detail in the following section. 

43  The choice of the number of lags is an arbitrary decision.  Since we want to look at how much prior information was utilised in the learning 
process, we want to include as many lags as feasible.  However, the trade-off is a reduced number of observations available for analyses.  We believe 
five lags forms a nice balance. 
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influence the choice of forecast errors.  The coefficients on these lagged forecast error terms are 

quantitatively similar when the lags, trait anxiety and gender are included in a standard single-

stage regression (results suppressed). 

Table 5.10 Reinforcement Learning: Effect of Five Forecast Error Lags 

Dep Var: 
Forecast Error 

PR PRWL T 
Model 1 Model 2 Model 3 

    
First Stage Regression 

Trait Anxiety 0.435 
(0.347) 

-0.037 
(0.180) 

0.115 
(0.252) 

Female 
8.706 ** 
(3.940) 

6.465 *** 
(2.263) 

10.31 *** 
(3.783) 

Constant 
-2.336 

(13.846) 
13.80 * 
(7.426) 

10.10 
(10.74) 

    
R2 0.034 0.020 0.029 

Wald χ2 5.04 8.27 7.44 
p > χ2 0.080 0.016 0.024 

    
Second Stage Regression 

L1 Forecast Error 0.129 
(0.099) 

0.072 * 
(0.039) 

0.157 *** 
(0.050) 

L2 Forecast Error 0.037 
(0.037) 

0.038 
(0.045) 

0.045 
(0.028) 

L3 Forecast Error 
0.157 *** 
(0.049) 

0.090 *** 
(0.027) 

0.132 *** 
(0.030) 

L4 Forecast Error 0.121 ** 
(0.054) 

0.212 *** 
(0.030) 

0.197 *** 
(0.036) 

L5 Forecast Error 0.125 *** 
(0.047) 

0.073 ** 
(0.030) 

0.117 *** 
(0.031) 

Constant -12.19 *** 
(1.271) 

-8.186 *** 
(1.267) 

-14.71 *** 
(1.357) 

    
Observations 1020 1095 1065 
Participants 68 73 71 

R2 0.186 0.102 0.207 
Wald χ2 503.7 95.51 119.9 
p > χ2 0.000 0.000 0.000 

The first stage regression regresses forecast errors against trait anxiety and gender.  Residuals are calculated 
and run in the second stage regression against five forecast error lags.  Both regression stages are estimated 
with Random Effects GLS across rounds 6 to 20.  Standard errors are in parentheses and are clustered by 
participants.  *, **, *** represent significance at the 10%, 5% and 1% levels respectively. 
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We focus on the second stage regression output which shows the coefficients on the five lags 

of forecast errors.  The first thing to point out is that the coefficient on the first lag is substantially 

smaller than those presented earlier in Table 5.9.  Given there is a positive correlation between 

forecast errors and their lagged values, the coefficients reported in Table 5.9 have incorporated 

the effect of these deeper lags.  Of the first period lags, the one for the T treatment takes on the 

largest value as before.  We also see that the first forecast error lag in the PR treatment is still large, 

but is now insignificant. 

It is interesting to see that the second forecast error lag is insignificant in all of the treatments 

at conventional levels, though is only marginally so in the T treatment (p = 0.112), especially 

when deeper lags have a significant effect on forecasts.  The third and fourth lagged errors 

influence current round forecasts in all treatments.  The fifth lag has a smaller effect, though is 

still significant in all treatments. 

We use the R2 in the second stage regression as an aggregated measure of how effective 

participants in each treatment utilise the stock of feedback at their disposal to assist them with 

the task.  The second stage R2 is highest in the T treatment, with a value of 0.207.  This is 

followed by the fit of 0.186 for the PR treatment.  These R2 coefficients for the PR and T 

treatments are much higher than that for the PRWL treatment, at 0.102.  This tells us that 

reinforcement learning is more effective in the PR and T treatments.  Result 5.2 summarises this: 

Result 5.2. 

Reinforcement learning occurs under tournaments.  Players under 

tournaments are more likely to utilise past performance feedback to improve 

future performance than in other treatments. 

The fact that the T treatment shows better reinforcement learning than other treatments 

corroborates with various strands of evidence that relates to learning in the T treatment.  Better 

reinforcement would lead to forecasts that are more accurate and consistent over time.  Again this 

would be attributable to the nature of rank-dependent payoffs in tournaments as opposed to the 

relative feedback, given that the reinforcement learning is greater in the PR treatment than in the 

PRWL treatment when relative feedback is provided.   
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While greater reinforcement learning in the T treatment explains our previous results that the 

T treatment exhibits better learning, we note that the better reinforcement in the PR treatment 

does not seem to have much impact on learning.  In the PR treatment, the trends indicate that 

forecast errors decrease – although it is not statistically significant in most regression models.  

Despite this, there is no evidence that forecasts become more consistent in the PR treatment.   

5.6. Effect of Winning 

Most of the previous emphasis in this chapter has been on whether relative feedback has any effect 

on performance.  More specifically by comparing the PR and PRWL treatments, we are looking 

at the effect that the provision of relative feedback has on performance and learning.  In this 

section we pose a closely related research question: what effect does the content of relative feedback 

have on performance?  In other words, how does the receipt of winning feedback influence future 

performance relative to those who receive losing feedback?   

This is similar to the distinction made by Blanes i Vidal and Nossol (2011) of anticipation 

and revelation effects of feedback.  In the period when the provision of feedback had been 

announced, but before the feedback revealed, would people increase their performance in order 

to be ranked favourably and accordingly receive favourable feedback?  This is the ex ante 

anticipation effect.  The ex post revelation effect relates to how participants respond to past 

feedback.  In this section we will focus on the revelation effect to see whether winning improves 

future performance.  Answering this requires us to restrict ourselves to the PRWL and T 

treatments, since they are the only treatments that provide feedback on relative performance. 

One avenue which relative feedback may motivate performance is through the competency 

evaluation aspect of Cognitive Evaluation Theory (Deci & Ryan, 1985).  People are intrinsically 

motivated to perform when they receive favourable feedback which suggests that they are adept, 

while their intrinsic motivation falls when the feedback is unfavourable.  The binary nature of 

the relative feedback that we provide facilitates studying the effect of this feedback, since there is 

no ambiguity in assessing whether the feedback is favourable or not.  If this aspect of Cognitive 

Evaluation Theory is borne out in the data, we would expect participants who receive the context-

loaded feedback of “win” to perform better in subsequent rounds relative to those who receive 

the feedback of “lose”. 
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The random rematching of participants also facilitates studying the effects of winning versus 

losing.  When participants play with different people in each round, we avoid situations where a 

partner dominates the other for the entire duration of play.  In these cases, we may expect the 

losing partner to simply give up due to the unfavourable matchup.  With random rematching, 

participants who have lost a round do not necessarily expect to consistently lose in successive 

rounds.  Given this, we expect most participants to experience a mix of both wins and losses 

throughout the game, with few people at either extreme who wins or loses consistently. 

Figure 5.3 shows the distribution of the proportion of games that participants have won over 

rounds 6 to 20, by treatment.  The horizontal axes show the proportion of post-intervention 

rounds won, with a bin width of ten percentage points.  The vertical axes show the proportion of 

participants in each treatment who have attained the particular win rate.  The histograms show 

that in each treatment, the peak lies in the centre with 60-70% of participants winning 40-70% 

of their games.  Since most people experience both wins and losses, the effect of winning over 

losing – if the effect exists – should be more reliable under random rematching than we would 

expect under a fixed matching protocol. 

There are two primary links that need to be distinguished.  The first is how winning or losing 

affects competency and the effort to perform.  This link is well supported by the psychology 

literature on intrinsic motivation.  The second is how this affects performance. 

To study the first link, we employ the competency variable which was elicited from the post-

experiment questionnaire.  See Section 3.4 for details.  A higher competency score represents 

higher self-reported competency.  We look at the correlation of the self-reported competency 

score with the proportion of the 15 post-intervention rounds for which each participant has won.  

Table 5.11 presents an ordinary least squares regression of competency against treatment 

dummies, and the percentage of rounds won interacted by treatment.  The second regression 

model also includes trait anxiety and gender as controls. 

In Table 5.11 we observe self-reported competency scores to be significantly lower in the T 

treatment than in the PRWL treatment.  This is true for both single and dual cue treatments.  

These differences widen as we introduce controls in model 2.  There are no gender differences in 

how competent participants feel.  Higher trait anxiety suppresses feelings of competency. 
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The proportion of games won has a significant impact on how people self-report their 

competency.  As expected, the more games that a participant has won, the higher they will rate 

their own competency.  Regression model 1 shows that in the single cue task, the average PRWL 

participant rates himself 0.131 points more competent if his winning record improves by a single 

percentage point, compared to 0.261 in the T treatment.  However an F-test shows that this 

difference is not statistically significant with a p-value of 0.165; the significance changes to 0.018 

when trait anxiety and gender are included as controls.  The dual cue task also shows that the T 

treatment reports higher competency than the PRWL treatment given the same level of 

improvement, and the difference is significant (F(1,141) = 6.43; p = 0.012). 

 

Figure 5.3 Histogram of Participants’ Win Rates, by Treatment 
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Table 5.11 Regression of Competency Scores and Win Record 

Dep Var: 
Competency Model 1 Model 2 

   

SC PRWL (base) (base) 

SC T -8.995 * 
(5.223) 

-13.44 *** 
(4.914) 

DC PRWL -2.253 
(3.637) 

-2.114 
(3.764) 

DC T 
-12.25 *** 

(3.700) 
-14.02 *** 

(3.896) 

SC PRWL * Win Percent 
0.131 ** 
(0.054) 

0.112 ** 
(0.057) 

SC T * Win Percent 0.261 *** 
(0.076) 

0.325 *** 
(0.067) 

DC PRWL * Win Percent 0.177 *** 
(0.043) 

0.158 *** 
(0.046) 

DC T * Win Percent 0.324 *** 
(0.040) 

0.350 *** 
(0.046) 

Trait Anxiety  -0.225 *** 
(0.072) 

Female  
-0.031 
(1.038) 

Constant 
21.14 *** 
(3.091) 

31.57 *** 
(4.494) 

   
Observations/Participants 149 139 

R2 0.402 0.471 
   

SC T = 0 
F = 2.97 

p = 0.087 
F = 7.48 
p = 0.007 

DC PRWL = DC T 
F = 12.80 
p = 0.001 

F = 16.33 
p = 0.000 

SC PRWL * Win Percent = 
SC T * Win Percent 

F = 1.95 
p = 0.165 

F = 5.79 
p = 0.018 

DC PRWL * Win Percent = 
DC T * Win Percent 

F = 6.43 
p = 0.012 

F = 9.45 
p = 0.003 

Regressions are estimated with OLS.  Robust standard errors are in parentheses.  *, **, *** 
represent significance at the 10%, 5% and 1% levels respectively.  F tests are presented at the 
bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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Despite reporting lower levels of competency overall, the self-reported competency scores of 

T participants are much more responsive to their winning record than PRWL participants.  The 

responsiveness of competency scores to the record of winning for the single and dual cue T 

treatments are almost twice the magnitude than for the corresponding PRWL treatments.  This 

is best explained by the fact that in the T treatment, the proportion of wins can be interpreted as 

not only the number of wins, but also the number of instances for which participants have been 

paid the winning prize.  In other words, the rank-dependent payoffs seem to have an additional 

effect on competency over and on top of the frequency of winning, increasing its saliency. 

We have established the first link that winning improves players’ self-reported competency 

scores.  This means that the winning/losing feedback is not simply ignored by participants.  When 

winners perceive themselves as being more competent than losers, how does the greater perception 

of competency affect forecast errors?  It is not easy to answer this question directly.  The only 

measure of competency that we have at our disposal was elicited at the conclusion of the final 

round.  It is quite plausible that participants who have made better forecasts in the experiment 

report higher competency, for which we introduce simultaneity in our regressions if we allow 

competency to have an effect on forecast errors à la Cognitive Evaluation Theory.  This 

endogeneity does not allow us to look at the second link directly, especially when we do not have 

instrumental variables at our disposal to disentangle the effects.  Although we cannot study this 

second link directly, we can approximate this second link by studying how winning in a particular 

round affects forecast errors in the future. 

We study the immediate motivating effect of winning versus losing by utilising a dummy 

variable denoted as “Win” which takes the value of 1 if the participant has won or the value of 0 

if the participant has lost.  It therefore looks at the marginal effect of winning over losing.  This 

dummy identifies instances when someone has won at the observation level, rather than identify 

individual participants according to their ability.  Since practically all participants have 

experienced both wins and losses, this allows us to get a direct and reliable indication of how 

winning affects performance relative to losing, irrespective of their ability. 
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Table 5.12 Effect of Winning on Forecast Errors 

Dep Var: 
Forecast Errors 

Pooled Single Cue Dual Cue Pooled Single Cue Dual Cue 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
       

Piece Rate 
Win Lose 

(base) (base) (base) (base) (base) (base) 

Tournament 5.051 ** 
(2.475) 

0.654 
(1.446) 

7.220 * 
(3.720) 

5.003 * 
(2.669) 

-0.563 
(2.004) 

9.795 ** 
(4.337) 

Lagged Win 0.468 
(0.989) 

-1.881 * 
(0.987) 

-0.096 
(1.964) 

   

Lagged 
PRWL*Win 

   
0.369 

(1.346) 
-2.983 ** 
(1.331) 

2.259 
(2.627) 

Lagged T*Win    
0.468 

(1.462) 
-0.555 
(1.445) 

-3.013 
(3.029) 

Trait Anxiety 0.022 
(0.162) 

-0.155 
(0.136) 

-0.029 
(0.245) 

0.022 
(0.162) 

-0.163 
(0.137) 

-0.015 
(0.246) 

Female 8.449 *** 
(2.224) 

1.367 
(1.611) 

11.39 *** 
(3.293) 

8.445 *** 
(2.223) 

1.380 
(1.619) 

11.38 *** 
(3.258) 

Constant 10.21 
(6.873) 

16.63 *** 
(5.458) 

18.12 * 
(10.56) 

10.27 
(6.937) 

17.50 *** 
(5.627) 

16.39 
(10.84) 

       

Observations * 2003 1064 939 2003 1064 939 

Participants 144 76 68 144 76 68 

R2 0.033 0.014 0.041 0.033 0.015 0.045 

Wald χ2 16.66 6.51 15.76 17.43 8.41 16.11 

p > χ2 0.022 0.164 0.003 0.004 0.135 0.007 

       

L.PRWL*Win 
= L.T*Win 

   χ2(1) = 0.00 
p = 0.960 

χ2(1) = 1.51 
p = 0.219 

χ2(1) = 1.69 
p = 0.193 

* Data pertaining to one dual cue PRWL participant has been removed.  Due to random matching, individual observations for which 
players are matched with the removed participant are also removed for purposes of analysing the effect of winning.  Regressions are 
estimated with Random Effects GLS.  Standard errors are in parentheses and are clustered by participants.  *, **, *** represent significance 
at the 10%, 5% and 1% levels respectively.  Wald chi-squared tests are presented at the bottom of the table, with bold typeface indicating 
significance at the 10% level or better. 

 

Regressions are run with forecast errors against this lagged variable, allowing us to study the 

immediate motivating effect of winning over losing.  Table 5.12 presents these regressions for the 

pooled, single and dual cue data.  Models 1 to 3 are regressed with the lagged win variable, while 

models 4 to 6 split this effect by treatment. 
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In model 1 of Table 5.12 when single and dual cue treatments are pooled, there is no evidence 

to show that winning the previous round affects current round forecasts.  The lagged win variable 

is again insignificant in the dual cue regression of model 3.  However in the single cue task, we 

see that immediately following a win, forecast errors are estimated to improve by 1.881 points 

relative to losers, with a p-value of 0.057.   

We look deeper into this by interacting the lagged win variable by treatment.  In the analogous 

single cue regression in model 5, we see that this is driven by the PRWL treatment.  In the single 

cue PRWL treatment, a previous round win is associated with an improvement of almost 3 

forecast error points in the round that follows.  A previous round win has no significant effect for 

the single cue T treatment.  In the dual cue task, the lagged PRWL*Win and T*Win variables 

are have different signs, with a win improving performance in the T treatment while reducing 

performance in the PRWL treatment.  However, both coefficients are not significantly different 

from zero, and a pairwise Wald test cannot reject the null that these effects are identical (p = 

0.193).  The aggregated results in the pooled regression of model 4 also shows that previous round 

wins have no effect on forecast errors. 

Although there is some evidence to suggest that winning is associated with improved forecast 

errors in the single cue PRWL treatment, this does not appear to be a broader result.  Winning 

has no effect on PRWL participants in the dual cue task, nor for participants in the T treatment.  

On the balance of the evidence, winning does not have an effect on forecast errors. 

A possible explanation for this is that winning in one particular round does not necessarily 

equate to higher competency evaluation.  In other words, one observation of winning might not 

be salient enough in itself to induce greater feelings of competency, and as a result has no effect 

on forecasts.  This is especially true given that most participants experience a mix of both wins 

and losses. 

To examine this possibility, we repeat the regressions in Table 5.12 but instead use a measure 

of each participant’s entire history of winning as a regressor.  We define a participant’s win record 

to be a rolling measure of the percentage of prior post-intervention rounds for which they have 

won.  For example, if in round 9 a participant has won two of the three prior rounds, then his 

win record is 66.67%.  The win record is updated every round as the wins or losses accumulate.  
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If the participant loses in round 9, then his win record at the beginning of round 10 would reflect 

two wins and two losses, so his win record will fall to 50%.  This rolling metric accounts for the 

entire history of winning and losing for each participant at each point in time.  By comparison, 

the lagged win variable incorporates information about winning and losing only from the 

previous round.  Table 5.13 shows the effect of this win record variable on forecast errors in a 

series of regressions. 

Table 5.13 Effect of Win Record on Forecast Errors 

Dep Var: 
Forecast Errors 

Pooled Single Cue Dual Cue Pooled Single Cue Dual Cue 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
       

Piece Rate Win 
Lose 

(base) (base) (base) (base) (base) (base) 

Tournament 5.010 ** 
(2.482) 

0.669 
(1.431) 

7.185 ** 
(3.607) 

3.617 
(4.334) 

-0.436 
(2.922) 

8.329 
(7.201) 

Win Record 0.009 
(0.034) 

-0.036 
(0.023) 

-0.039 
(0.061) 

   

PRWL*Win 
Record 

   
-0.005 
(0.040) 

-0.046 
(0.031) 

-0.029 
(0.068) 

T*Win Record    
0.023 

(0.055) 
-0.023 
(0.034) 

-0.052 
(0.098) 

Trait Anxiety 0.017 
(0.163) 

-0.148 
(0.138) 

-0.042 
(0.237) 

0.012 
(0.165) 

-0.153 
(0.139) 

-0.039 
(0.241) 

Female 8.520 *** 
(2.208) 

1.066 
(1.627) 

11.07 *** 
(3.116) 

8.563 *** 
(2.190) 

1.128 
(1.633) 

11.03 *** 
(3.067) 

Constant 10.21 
(6.833) 

17.28 *** 
(5.337) 

20.81 ** 
(10.27) 

11.12 
(7.289) 

17.97 *** 
(5.711) 

20.21 * 
(11.59) 

       

Observations * 2015 1064 951 2015 1064 951 

Participants 144 76 68 144 76 68 

R2 0.032 0.016 0.050 0.031 0.016 0.051 

Wald χ2 16.76 5.40 16.96 18.36 5.40 18.50 

p > χ2 0.002 0.248 0.002 0.003 0.370 0.002 

       

PRWL*Win Rec = 
T*Win Rec 

   χ2 = 0.17 
p = 0.678 

χ2 = 0.24 
p = 0.627 

χ2 = 0.04 
p = 0.847 

* Data pertaining to one dual cue PRWL participant has been removed.  Due to random matching, individual observations for which 
players are matched with the removed participant are also removed for purposes of analysing the effect of winning.  Regressions are 
estimated with Random Effects GLS.  Standard errors are in parentheses and are clustered by participants.  *, **, *** represent significance 
at the 10%, 5% and 1% levels respectively.  Wald chi-squared tests are presented at the bottom of the table, with bold typeface indicating 
significance at the 10% level or better. 
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Regression models 1 to 3 for the pooled, single and dual cue series shows that the rolling win 

record does not have any effect whatsoever on forecast errors.  This is also true in regression 

models 4 to 6 where this variable is interacted by treatment.  The history of winning does not 

affect forecast errors for both PRWL and T treatments.  The evidence corroborates with the 

previous finding with the lagged win variable, that by and large, winning has no effect on forecast 

errors.  In other words, participants in both PRWL and T treatments are forward-looking and do 

not worry about what has happened in the past.  We state this finding as Result 5.3: 

Result 5.3. 

Relative performance feedback has no influence on learning.  A players’ 

knowledge of whether they have won or lost does not impact their future 

performance. 

Comparing the PRWL treatment to the T treatment in models 4 to 6 of Tables 5.12 and 

5.13, the historical effects of both winning in the prior round and of the rolling win record are 

no different across treatments.  When interpreting this, we should bear in mind that the difference 

between the treatments lie in the payoffs – piece rates versus the rank-dependent payoffs – while 

are matched in terms of the feedback provided to participants.  Following from the different 

payoffs, the implications of winning are different across these treatments.  In the PRWL treatment, 

winning has no impact on payoffs per se.  On the other hand, winning in the T treatment is 

associated with receiving the higher monetary prize.  In this sense, the winning in the T treatment 

can also be interpreted as an instance for which a participant receives the higher prize rather than 

the smaller one.   

Bearing this in mind, the interpretation of the effect across treatments can be any combination 

of two different explanations.  The first interpretation is that people respond to past feedback in 

an identical manner under both piece rates and rank-dependent payoffs.  This follows from the 

treatment differences.  The second interpretation of the result is that the additional saliency of 

winning in the T treatment, the knowledge of receiving the winning prize, has absolutely no 

effect on future performance.  Given the very nature of tournaments and that the prizes are tied 

to winning or losing, these two different effects cannot be disentangled. 

It should be noted that while the winning/losing feedback has no effect on performance, it is 

not ignored altogether.  The fact that participants in the PRWL and T treatments condition their 
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self-reported competency on their win record suggests that winning makes people feel better 

about their ability, although this does not translate into better performance in the forecasting task.   

Despite Cognitive Evaluation Theory suggesting that winning should motivate people to 

perform vis à vis losing, in a sense it is also unsurprising that it has no effect on performance.  

Unlike feedback on forecast errors which can be used to verify whether a particular forecasting 

rule is working or not, feedback on winning or losing does not assist with the process of learning.  

Relative feedback merely facilitates benchmarking.  This is similar to the point made by Kluger 

and DeNisi (1996) in their meta-analysis of the effect of feedback, where they conclude that 

feedback only improves performance if it provides information about how to go about performing 

the task at hand. 

The finding that historical feedback on winning and losing has no effect on performance lends 

support to a bigger picture.  We have previously attributed the learning in the T treatment to the 

rank-dependent payoffs intrinsic to tournaments.  Relative feedback does not appear to play any 

role in participants’ learning.  The null finding presented here that the event of winning does not 

affect future forecast performance adds another line of support to this claim.   

5.7. Summary and Discussion 

This chapter focused on the temporal dimension of learning across treatments.  Of the treatments, 

the T treatment stands out in terms of their superior learning.  Forecast accuracy improves at a 

significantly faster rate than any other treatment.  Not only are forecasts becoming increasingly 

accurate in the T treatment, we find evidence that these forecast errors are becoming increasingly 

consistent too.  Both the improved accuracy and consistency of forecasts in the T treatment 

constitute strong evidence for learning.  This is exactly what we would expect when participants’ 

own forecast rules converge to the underlying relationship of cues to the actual stock price.  In 

no other treatment do we see consistent signs of learning.  The learning in the T treatment is 

robust to various specifications and estimation methods. 

Why does the T treatment learn significantly better than other treatments?  The answer lies 

in the rank-dependent payoffs characteristic of tournaments.  This is supported by two 

independent strands of evidence.  The first line of support comes from pairwise treatment 
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comparisons of the time trends.  Comparing the learning of the T and S treatments, we see that 

the T treatment learns significantly better – this is attributable to the performance pay of 

tournaments.  Refining this further, by comparing the T and PR treatments, we still see the T 

treatment to show better learning.  Both treatments pay based on performance, but according to 

rank-payoffs and piece rates respectively.  Given that the T treatment shows better learning, the 

tournament schemes motivate learning more than piece rates. 

We narrow this down further by comparing the PRWL and T treatments.  Both treatments 

provide identical feedback, but differ only by the pay scheme.  Again the T treatment shows better 

learning, ruling out the effect relative feedback has on learning.  Learning is no different between 

the PR and PRWL treatments, suggesting once again that relative feedback has no influence on 

learning patterns.  Ruling out the effect relative feedback has on learning, the significant learning 

in tournaments is therefore attributable to its rank payoffs. 

The second strand of evidence to support the claim that rank-dependent payoffs motivate 

learning in the T treatment is unequivocal.  By comparing the T and TNI treatments we can 

directly infer the effect relative performance feedback has on learning.  Both these treatments are 

based on tournaments, but the TNI treatment withholds any feedback that relates to winning or 

losing, including earnings feedback.  We see that the rate of learning is identical in both 

treatments.  This means that the relative feedback has no effect on learning, and in turn it is the 

rank payoffs that drive learning.  The winner-take-all nature of the rank incentives means that 

people are much more motivated to win, for losing will yield no return.   
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6. Results: Ability of Players 

The previous results have focused on overall treatment effects and learning across treatments, 

where analyses had mainly been conducted at the aggregate level.  While the aggregate results 

provide a broad overview of the data, it may not necessarily be a faithful reflection of it when 

there is a large degree of heterogeneity in participants’ ability and traits.   

Different effects for people of different ability may exist, which would be masked by the 

aggregate results.  Heterogeneity of effects could potentially explain why many of the treatment 

dummy coefficients reported earlier in the regressions in Chapter 4, although large in magnitude, 

were insignificant and had very large standard errors. 

In this chapter, we disaggregate analyses by players’ ability.  Most of the analyses presented 

here rely on the categorisation of two groups of participants, each with similar ability.  We refer 

to these groups as ‘high’ and ‘low’ performers.  Details relating to how these groups are defined 

are presented below in Section 6.1.  Having defined these two ability categories, we conduct 

analyses along two dimensions.  The first dimension of analyses looks at how participants perform 

across treatments within each category of high and low performers.  This allows us to distinguish 

the effect of treatment interventions for people of different ability.  We can, in turn, compare 

these findings to the aggregate results reported earlier to see its composition.  Along this 

dimension of analyses we will also look at learning across treatments for both high and low 

performers. 

The second dimension of analyses directly compares the performance of high and low 

performers in each treatment.  In comparing high and low performers, we focus on performance 

dynamics – how high performers learn in relation to low performers.  This allows us to infer 

whether the gap in performance between them narrows or widens over time.  This chapter is 

primarily structured along the two dimensions of analyses.  However, before we proceed with 

analyses, we start by outlining how high and low performers are categorised. 

6.1. Defining Ability 

Since this chapter focuses on ability, we ought to discuss how we identify and measure people’s 

ability.  We measure a player’s ability by how they performed across the first five rounds of play.  
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Since the first five rounds of play are identical across treatments, they are not influenced by the 

treatment interventions that come into play after round 5.  Furthermore, since these are initial 

rounds, they are less likely to be influenced by learning.  For these reasons, the performance over 

rounds 1 to 5 serve as a good proxy for each participant’s underlying ability. 

More specifically, we define ability to be the median forecast error of subjects across the first 

five rounds of play.  It is more appropriate to use the median over the mean to define ability, 

since the median is robust to outliers which may arise from bad trials in these early rounds.  We 

will simply refer to this median statistic as ability from here onwards.  Earlier in Chapter 4, the 

average ability and its distribution were presented in Table 4.1 and Figure 4.1 respectively.  From 

these, which will not be reproduced here, we can see that there are no differences in participants’ 

ability across treatments in both the single cue (χ2 = 1.60, p = 0.659, n = 166) and the dual cue 

task (χ2 = 2.04, p = 0.564, n = 146), based on Kruskal Wallis tests. 

With this measure of ability, we in turn define two groups of participants: high and low 

performers.  We distinguish high performers from low performers according to a median 

performance split.  Participants whose ability is higher than or equal to the median forecast error 

across all participants in each of the single and dual cue tasks are considered to be high performers, 

and the others are low performers.  Since higher ability is represented by smaller forecast error 

values, if the within-subject median forecast error of a participant is lower than or equal to the 

median threshold, then we classify him to be a high performer.  Low performers have a median 

forecast error higher than this median threshold.  The median threshold for each version of the 

forecasting game is the median forecast error across both dimensions of participants and time 

over the first five rounds of play.  Accordingly, the median threshold is defined at the task level 

and does not vary by treatment.  These forecast error thresholds are 8 in the single cue task and 

21 in the dual cue task. 

Table 6.1 shows how high and low performers are split across treatments.  We see that in 

most treatments, the proportions of high and low performers within each treatment are similar, 

with a slightly larger proportion of high performers than low performers.  A series of two-sided 

binomial tests run for each treatment shows that in all but one treatment, there are no differences 

between the proportions of high and low performers.  In most treatments, high and low 
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performers are well balanced.  However in the single cue S treatment, there is a significantly 

higher proportion of high performers than low performers at the margin (64% vs 36%), with a 

p-value of 0.088.   

Table 6.1 Distribution of High and Low Performers by Median Split, by Treatment 

 High 
Performers 

Low 
Performers Total Binomial Test 

Single Cue     

PR 23 (55%) 19 (45%) 42 (100%) p = 0.644 

PRWL 23 (55%) 19 (45%) 42 (100%) p = 0.644 

T 24 (60%) 16 (40%) 40 (100%) p = 0.268 

S 27 (64%) 15 (36%) 42 (100%) p = 0.088 

     
Dual Cue     

PR 21 (54%) 18 (46%) 39 (100%) p = 0.749 

PRWL 19 (54%) 16 (46%) 35 (100%) p = 0.736 

T 18 (47%) 20 (53%) 38 (100%) p = 0.871 

S 18 (53%) 16 (47%) 34 (100%) p = 0.864 
Number of high/low performing participants, by treatment.  Proportions relative to treatment size are in parentheses.  The 
last column shows two-sided binomial tests of whether there are any differences in the proportions of high and low 
performers in each treatment; bold typeface indicates significance at the 10% level or better. 

 

The fact that there is a treatment with different properties highlights the merits of this 

categorisation.  In the aggregate results, the single cue S treatment might have only outperformed 

other treatments because of the higher proportion of high performing participants.  With the 

categorisation of high and low performers, we can isolate this effect by seeing how people of 

similar ability perform across treatments.  In this regard, the different proportions of high and 

low performers in a particular treatment is not relevant.  Rather, it is more important to check 

that a) there are no systematic differences in ability across treatments within each ability category, 

and b) that there is sufficient distinction in ability levels for high and low performers for each 

treatment.  
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Table 6.2 Average Forecast Errors for High and Low Performers by Treatment 

Single Cue Task High 
Performers 

Low 
Performers 

High Perf = 
Low Perf 

    
PR 

(n = 42) 
7.09 [6] 
(8.59) 

21.39 [13] 
(19.50) 

|z| = 5.54 
p = 0.000 

PRWL 
(n = 42) 

8.64 [6] 
(14.85) 

18.63 [13] 
(17.87) 

|z| = 5.55 
p = 0.000 

T 
(n = 40) 

8.36 [5.5] 
(14.08) 

20.39 [13] 
(25.53) 

|z| = 5.33 
p = 0.000 

S 
(n = 42) 

9.00 [5] 
(18.96) 

21.21 [14] 
(21.57) 

|z| = 5.35 
p = 0.000 

    

PR = PRWL = T = S χ2(3) = 0.94 
p = 0.817 

χ2(3) = 0.47 
p = 0.925 

 

 

Dual Cue Task High 
Performers 

Low 
Performers 

High Perf = 
Low Perf 

    
PR 

(n = 39) 
24.21 [11] 

(34.60) 
47.72 [29.5] 

(53.18) 
|z| = 5.34 
p = 0.000 

PRWL 
(n = 35) 

18.24 [10] 
(22.49) 

42.75 [30.5] 
(39.91) 

|z| = 5.04 
p = 0.000 

T 
(n = 38) 

23.67 [14.5] 
(27.65) 

41.48 [31.5] 
(32.48) 

|z| = 5.27 
p = 0.000 

S 
(n = 34) 

19.16 [11] 
(25.58) 

40.58 [30.5] 
(33.44) 

|z| = 4.98 
p = 0.000 

    

PR = PRWL = T = S χ2(3) = 5.14 
p = 0.162 

χ2(3) = 1.91 
p = 0.591 

 

Mean forecast errors of high and low performers by treatment and version of task.  Median values are in square 
brackets, representing average ability.  Standard deviations are in parentheses.  Averages taken across subjects and 
rounds, in rounds 1 to 5.  A series of Kruskal Wallis test with subject median forecast errors (ability) in the first 
five rounds is shown in the below the descriptive statistics for each treatment.  Wilcoxon Rank Sum tests of the 
difference in subject median forecast errors in the first five rounds between high and low performers in each 
treatment are presented in the last column.  Bold typeface indicates significance at the 10% level or better. 

 

Table 6.2 displays descriptive statistics for high and low performers’ forecast errors in the first 

five rounds by treatment.  There we see that forecast errors are remarkably similar across 

treatments within each category of ability.  A series of Kruskal Wallis tests of each participant’s 

ability (median forecast errors) across treatments, displayed below the descriptive statistics for 
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each treatment, shows that there are no significant differences in ability across treatments for each 

ability category. 

From the descriptive statistics presented in Table 6.2, it is also clear that the ability of high 

performers is better than that for low performers in every treatment for both single and dual cue 

tasks.  These are supported by a series of ranksum tests of participant ability (median forecast 

error of participants) between high and low performers, conducted for each treatment.  These 

tests are presented in the last column of Table 6.2 and show stark differences in ability, with p-

values for each treatment to be 0.000. 

6.2. Ability and Treatment Effects 

6.2.1. Hypotheses 

In this section, we compare participants’ forecast errors across treatments within the categories of 

high and low performers.  Before proceeding with formal analyses, we discuss the various a priori 

effects that we would expect to occur.  In some instances, these effects differ by player ability. 

The first cluster of effects are brought about by the pay schemes of piece rates, tournaments 

and salaries if players were motivated solely by the respective monetary payoffs.  We first focus 

on the effects for high performers.  Under piece rates, players are paid according to their 

individual performance in each round.  High performers would therefore be expected to exert a 

high level of effort under a piece rate scheme.  According to the Piece Rate Equivalence property 

of tournaments, we would also expect tournaments to induce a similar level of effort from high 

performers.44  Under fixed salaries, players are not rewarded for the effort that is exerted, so it 

follows that high performers would exert minimal effort.  In other words, if participants are 

motivated solely by money, high performers would perform better in performance pay schemes 

– piece rates and tournaments – than under the performance invariant pay scheme of salaries.  

                                                 

44  The property of Piece Rate Equivalence did not consider agents of different ability.  By a simple extension, we would expect the property to 
continue to hold in particular circumstances even when ability is defined.  Under a two player symmetric tournament where each player has an 
ability of α, under Piece Rate Equivalence, we would expect equilibrium effort levels to be identical to an α ability player facing a piece rate. 
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We would, therefore, expect forecast errors to be higher in the S treatment than in the PR and T 

treatments, with no difference in forecast errors between the latter treatments. 

For low performers, we would expect similar effects if money was their sole consideration.  

Low performers under piece rates and tournaments would exert the same effort.  This effort would 

be considered to be ‘high’, although lower than that of high performers due to the higher marginal 

cost of effort.  Under fixed salaries, low performers would again exert minimal effort.  For low 

performers who are motivated only by monetary payoffs, as with high performers, we would 

expect better performance under piece rates and tournaments than under salaries.  

The second cluster of effects come about from the degree of control that is associated with 

each pay scheme.  According to Cognitive Evaluation Theory, the intrinsic motivation of people 

falls as they are exposed to situations that are considered to be controlling, reducing their 

perceived autonomy.  In turn, lower intrinsic motivation leads to lower performance.  

Performance pay schemes are considered to be highly controlling as they require people to 

perform well in order to receive large payoffs.  The performance requirement is more stringent 

under tournaments than piece rates, since to achieve higher earnings under tournaments, players 

need not only to improve their performance, but to improve it such that it is higher than their 

partner’s performance.  Tournaments are therefore more controlling than piece rates are.  Salaries 

are least controlling, since they are invariant to performance.  As such, there is no extrinsic 

pressure for them to perform.  If we rank the treatments in terms of their degree of control, we 

observe that the S treatment is least controlling, followed by the PR, and with the T treatment 

being the most controlling.  Accordingly, if this control effect is prominent, then we would expect 

best performance in the S treatment, second in the PR treatment and worst in the T treatment.  

The effect of control does not distinguish between people of different ability, so we would expect 

the same effects for both high and low performers. 

The third effect focuses on relative feedback and people’s desire to win.  Comparing the PR 

and PRWL treatments, although both pay according to piece rates, we would expect both high 

and low performers in the PRWL treatment to perform better than their counterparts in the PR 

treatment.  Assuming that people have preferences for winning, we would expect both high and 
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low performers in the PRWL treatment to exert greater effort in order to improve (reduce) their 

chances of winning (losing).   

The fourth effect that we might encounter relates to the competency evaluation aspect of 

relative feedback.  Relative performance feedback allows players to assess their performance 

against that of their random partner.  According to Cognitive Evaluation Theory, a person would 

be more (less) intrinsically motivated if they receive (un)favourable feedback, which suggests that 

they are (not) competent at the task that they are undertaking.  High performers in the PRWL 

treatment, whom we expect to receive winning feedback more often than losing feedback, would 

be more motivated to perform than high performers in the PR treatment upon receiving this 

favourable feedback.  On the other hand, intrinsic motivation falls when relative feedback is 

unfavourable, for which we would expect low performers in the PRWL treatment to be less 

motivated than low performers in the PR treatment, and as a result have lower performance.   

These various effects, for which some play out in different directions, make it difficult to make 

a priori predictions about how high and low ability players perform in each treatment.  We 

proceed with analysis of how high and low ability players perform across treatments without 

listing formal hypotheses. 

6.2.2. Results 

Tables 6.3 and 6.4 present random effects estimates of two regression specifications for each of 

the pooled, single and dual cue data series for a total of 6 regression models in each of the tables 

for high and low performers respectively.  In the first regression specification, forecast errors are 

regressed against treatment dummies (with PR serving as the reference category), participants’ 

trait anxiety and gender as controls, as well as an aggregate linear trend.  The second specification 

replaces the aggregate time trend with individual trends interacted by treatment, but is otherwise 

identical.  These two regression equations are repeated for each of the pooled, single and dual cue 

series – yielding six regressions in each table.  These six regressions are in turn repeated separately 

for high and low performers in Tables 6.3 and 6.4 respectively.  Panel B of each table presents 

Wald tests of cross-treatment comparisons.  
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Table 6.3 Regressions of Treatment Effects for High Performers 

Panel A: Regression Results 

Dep Var:  
Forecast Errors 

Pooled Single Cue Dual Cue 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
       

PR (base) (base) (base) (base) (base) (base) 

PRWL -0.964 
(2.104) 

-3.401 
(3.409) 

-0.077 
(1.141) 

1.513 
(1.820) 

-0.569 
(2.631) 

-5.771 
(4.929) 

T 1.341 
(2.841) 

1.424 
(4.104) 

-0.009 
(1.139) 

0.881 
(2.110) 

4.745 
(3.104) 

5.774 
(5.622) 

S -0.416 
(2.038) 

-3.198 
(3.513) 

0.698 
(1.135) 

2.323 
(2.072) 

-0.309 
(3.104) 

-6.198 
(5.867) 

Trait Anxiety -0.092 
(0.110) 

-0.092 
(0.110) 

0.072 
(0.051) 

0.072 
(0.051) 

-0.382 ** 
(0.186) 

-0.382 ** 
(0.186) 

Female 5.837 *** 
(1.719) 

5.837 *** 
(1.720) 

0.180 
(0.807) 

0.180 
(0.808) 

9.851 *** 
(2.553) 

9.851 *** 
(2.556) 

Round -0.240 *** 
(0.060) 

 
-0.050 
(0.047) 

 
-0.464 *** 

(0.113) 
 

PR*Round  
-0.346 *** 

(0.124) 
 

0.038 
(0.100) 

 
-0.652 *** 

(0.183) 

PRWL*Round  
-0.158 
(0.107) 

 
-0.085 
(0.064) 

 
-0.252 
(0.230) 

T*Round  
-0.352 ** 
(0.138) 

 
-0.030 
(0.113) 

 
-0.731 *** 

(0.240) 

S*Round  
-0.132 
(0.105) 

 
-0.088 
(0.092) 

 
-0.199 
(0.226) 

Constant 17.85 *** 
(4.685) 

19.23 *** 
(5.138) 

4.917 ** 
(2.203) 

3.784 
(2.541) 

36.41 *** 
(7.654) 

38.86 *** 
(8.008) 

       
Observations 2355 2355 1275 1275 1080 1080 

Participants 157 157 85 85 72 72 

R2 0.027 0.028 0.004 0.004 0.054 0.056 

Wald χ2 31.14 32.69 5.55 7.16 38.07 49.30 

p > χ2 0.000 0.000 0.475 0.621 0.000 0.000 
Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the participant level.  
*, ** and *** represents the 10%, 5% and 1% level of significance respectively. 
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Panel B: Wald Chi-Squared Hypothesis Tests 

 
Pooled Single Cue Dual Cue 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
       

PRWL = 0 χ2 = 0.21 
p = 0.647 

χ2 = 1.00 
p = 0.318 

χ2 = 0.00 
p = 0.946 

χ2 = 0.69 
p = 0.406 

χ2 = 0.05 
p = 0.829 

χ2 = 1.37 
p = 0.242 

PRWL = T χ2 = 0.76 
p = 0.382 

χ2 = 1.86 
p = 0.173 

χ2 = 0.01 
p = 0.939 

χ2 = 0.10 
p = 0.747 

χ2 = 1.57 
p = 0.211 

χ2 = 4.43 
p = 0.035 

T = 0 χ2 = 0.22 
p = 0.637 

χ2 = 0.12 
p = 0.729 

χ2 = 0.00 
p = 0.994 

χ2 = 0.17 
p = 0.676 

χ2 = 1.26 
p = 0.262 

χ2 = 1.05 
p = 0.304 

S = 0 χ2 = 0.04 
p = 0.838 

χ2 = 0.83 
p = 0.363 

χ2 = 0.38 
p = 0.539 

χ2 = 1.26 
p = 0.262 

χ2 = 0.01 
p = 0.921 

χ2 = 1.12 
p = 0.291 

T = S χ2 = 0.46 
p = 0.498 

χ2 = 1.62 
p = 0.203 

χ2 = 0.40 
p = 0.528 

χ2 = 0.44 
p = 0.507 

χ2 = 1.20 
p = 0.273 

χ2 = 3.59 
p = 0.058 

       
PR*Round = 

PRWL*Round 
 χ2 = 1.30 

p = 0.254 
 χ2 = 1.06 

p = 0.304 
 χ2 = 1.85 

p = 0.174 
PRWL*Round = 

T*Round 
 χ2 = 1.23 

p = 0.267 
 χ2 = 0.18 

p = 0.670 
 χ2 = 2.08 

p = 0.149 
PR*Round = 

T*Round 
 χ2 = 0.00 

p = 0.973 
 χ2 = 0.20 

p = 0.656 
 χ2 = 0.07 

p = 0.793 
PR*Round = 

S*Round 
 χ2 = 1.73 

p = 0.188 
 χ2 = 0.84 

p = 0.359 
 χ2 = 2.43 

p = 0.119 
T*Round = 
S*Round 

 χ2 = 1.62 
p = 0.203 

 χ2 = 0.16 
p = 0.691 

 χ2 = 2.62 
p = 0.106 

Bold typeface indicates statistical significance at the 10% level or better. 

 

Focusing first on the overall treatment effects amongst high performers, represented by the 

treatment dummies in Table 6.3, we see that the treatment interventions have little effect for high 

performers.  Amongst the treatment dummies – PRWL, T and S – none are statistically 

significant from zero in each of models 1 to 6, suggesting that these treatments do not differ from 

the PR treatment which serves as the reference category.  Using the Wald chi-squared tests shown 

in Panel B to make pairwise treatment comparisons, we see that there are no differences across 

treatments in models 1 to 5 across the various treatments.  In regression model 6, the dual cue 

task which allows for treatment-specific learning, we find evidence that the T treatment performs 

worse than both the PRWL and S treatments (p = 0.035 and p = 0.058 respectively). 
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The absence of cross-treatment differences in performance suggests two things.  First, pay 

schemes have little influence over the performance of high ability players.  By comparing the 

performance pay schemes in a pairwise manner, we see that piece rates and tournaments perform 

similarly – shown by the insignificant T dummy in every regression in Table 6.3.  In addition, 

we find that high performers perform similarly in both PR and S treatments.  The forecast errors 

between the T and S treatments are no different in the pooled and single cue regressions.  In the 

dual cue task in model 5, we again find no statistical differences between the T and S treatments, 

but we do indeed observe that the T treatment performs worse than the S treatment once different 

rates of learning are accounted for in the dual cue task (p = 0.058). 

The second thing that the results show is that high ability players are unresponsive to the 

provision of relative feedback.  This is shown by the insignificant coefficient on the PRWL 

dummy, with the PR treatment serving as the reference category.  The finding that both PR and 

PRWL treatments perform similarly suggests that feedback on relative performance does not 

affect high performers.  This could be interpreted in various ways.  The first interpretation is that 

capable players simply do not care about relative feedback because the feedback is redundant in 

affirming these high performers of their own ability.  An alternative interpretation is that the 

relative feedback works to motivate these high performers, but the higher motivation does not 

translate to significant improvements to forecasts, since it is increasingly difficult to improve upon 

already accurate forecasts.  The latter interpretation bears some credibility when the PRWL 

coefficients in Table 6.3 are compared across the single and dual cue tasks.  Since the dual cue 

task is the more difficult one with higher forecast errors, there is greater scope to improve forecasts 

vis à vis the single cue task.  Although none of the coefficients are statistically significant, we see 

that the coefficients on the PRWL dummy in the dual cue task with and without treatment-

round interactions (-0.569 and -5.771 in models 5 and 6 respectively) are both negative and are 

larger in magnitude than the corresponding estimates for the single cue task (-0.077 and 1.513 

in models 3 and 4).   

We now turn our attention to learning for high performers.  In model 1 of Table 6.3, the 

round coefficient is negative and statistically significant when single and dual cue tasks are pooled.  

This suggests that high performers, overall, exhibit learning.  Regression models 3 and 5 replicate 

the regression but only with single and dual cue data respectively.  The linear trends in models 3 
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and 5 show that the overall learning by high performers is driven by participants in the dual cue 

task, with a larger downward trend than in the single cue task, where the trend is not significant.   

In the even-numbered regression models of Table 6.3, we disaggregate the time trends by 

treatment.  While the estimated trends are negative for each treatment in each regression model, 

they are only statistically significant in the pooled and dual cue PR and T treatments.  We 

elaborate on learning in Section 6.3. 

These findings for high performers differ from the aggregate results, Results 4.1 to 4.5.  The 

aggregate results from Chapter 4 found that relative feedback improved performance, the PRWL 

treatment outperformed the T treatment, and that the S treatment performed better than both 

the PR and T treatments.  The only finding that persists with high performers is the Piece Rate 

Equivalence result: tournaments perform no differently to piece rates.   Since most of the results 

for high performers do not resemble the aggregate findings, we can infer that the aggregate results 

are driven by low performers. 

Table 6.4 presents the analogous regressions for low performers.  The findings are similar to 

the aggregate results.  First by comparing the different pay schemes, we see that the T dummy is 

insignificant in every regression model, suggesting that the T treatment performs similarly to the 

reference PR treatment.  It is interesting to note that in each of the pooled, single and dual cue 

regressions – despite being insignificant – the T dummy is negative in the odd-numbered 

regression models where all treatments share a common time trend, but the same coefficient 

becomes positive with a much larger magnitude when treatment-specific trends are included in 

the even-numbered regression models.  We will touch on this shortly when we discuss learning. 

Amongst low performers, the S treatment performs particularly well.  The S treatment 

dummy is negative and statistically significant in the pooled regression models, showing forecast 

errors for low performers to be approximately 8 points lower in the S treatment than in the PR 

treatment.  In models 3 and 5, the S dummy is insignificant at conventional levels, but only 

marginally so at the 10% level, with p-values of 0.104 and 0.132 respectively.  Wald tests 

presented in Panel B of Table 6.4 shows that the S treatment also performs better than the T 

treatment.    
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Table 6.4 Regressions of Treatment Effects for Low Performers 

Panel A: Regression Results 

Dep Var:  
Forecast Errors 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

Piece Rate (base) (base) (base) (base) (base) (base) 

Piece Rate Win 
Lose 

-7.532 * 
(4.186) 

-9.112 
(5.713) 

-2.232 
(3.075) 

-7.122 
(6.590) 

-8.284 
(6.102) 

-7.248 
(9.255) 

Tournament -0.101 
(4.962) 

5.498 
(5.309) 

-0.199 
(3.430) 

0.665 
(5.554) 

-0.920 
(7.438) 

9.626 
(7.803) 

Salary -7.971 * 
(4.217) 

-8.755 * 
(4.629) 

-4.650 
(2.862) 

-7.038 
(4.883) 

-9.663 
(6.407) 

-8.843 
(7.343) 

Trait Anxiety 0.206 
(0.180) 

0.206 
(0.180) 

-0.179 
(0.159) 

-0.179 
(0.159) 

0.249 
(0.264) 

0.249 
(0.264) 

Female 8.271 *** 
(2.611) 

8.271 *** 
(2.613) 

3.223 
(2.218) 

3.223 
(2.222) 

3.887 
(3.912) 

3.887 
(3.918) 

Round 0.016 
(0.131) 

 
-0.221 
(0.144) 

 
0.253 

(0.221) 
 

PR*Round  
0.088 

(0.271) 
 

-0.354 
(0.254) 

 
0.530 

(0.457) 

PRWL*Round  
0.210 

(0.318) 
 

0.023 
(0.407) 

 
0.450 

(0.504) 

T*Round  
-0.343 * 
(0.200) 

 
-0.420 *** 

(0.164) 
 

-0.282 
(0.335) 

S*Round  
0.148 

(0.251) 
 

0.170 
(0.140) 

 
0.467 

(0.470) 

Constant 12.95 * 
(7.695) 

13.89 * 
(7.741) 

23.13 *** 
(7.854) 

24.85 *** 
(8.589) 

21.04 * 
(12.06) 

17.45 
(12.87) 

       
Observations 1890 1890 945 945 945 945 

Participants 126 126 63 63 63 63 

R2 0.034 0.035 0.022 0.024 0.018 0.020 

Wald χ2 13.92 19.93 11.02 17.36 5.27 9.65 

p > χ2 0.031 0.018 0.088 0.043 0.510 0.380 
Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the participant level.  
*, ** and *** represents the 10%, 5% and 1% level of significance respectively. 
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Panel B: Wald Chi-Squared Hypothesis Tests 

 
Pooled Single Cue Dual Cue 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
       

PRWL = 0 χ2 = 3.24 
p = 0.072 

χ2 = 2.54 
p = 0.111 

χ2 = 0.53 
p = 0.468 

χ2 = 1.17 
p = 0.280 

χ2 = 1.84 
p = 0.175 

χ2 = 0.61 
p = 0.434 

PRWL = T χ2 = 3.52 
p = 0.061 

χ2 = 5.75 
p = 0.017 

χ2 = 0.59 
p = 0.441 

χ2 = 1.81 
p = 0.178 

χ2 = 1.95 
p = 0.162 

χ2 =2.93 
p = 0.087 

T = 0 χ2 = 0.00 
p = 0.984 

χ2 = 1.07 
p = 0.300 

χ2 = 0.00 
p = 0.954 

χ2 = 0.01 
p = 0.905 

χ2 = 0.02 
p = 0.902 

χ2 = 1.52 
p = 0.217 

S = 0 χ2 = 3.57 
p = 0.059 

χ2 = 3.58 
p = 0.059 

χ2 = 2.64 
p = 0.104 

χ2 = 2.08 
p = 0.150 

χ2 = 2.27 
p = 0.132 

χ2 = 1.45 
p = 0.229 

T = S χ2 = 3.94 
p = 0.047 

χ2 = 8.16 
p = 0.004 

χ2 = 3.47 
p = 0.062 

χ2 = 4.06 
p = 0.044 

χ2 = 2.50 
p = 0.114 

χ2 = 5.55 
p = 0.019 

       

PR*Round = 
PRWL*Round 

 χ2 = 0.08 
p = 0.771 

 χ2 = 0.61 
p = 0.434 

 χ2 = 0.01 
p = 0.907 

PRWL*Round = 
T*Round 

 χ2 = 2.16 
p = 0.142 

 χ2 = 1.02 
p = 0.314 

 χ2 = 1.46 
p = 0.227 

PR*Round = 
T*Round 

 χ2 = 1.63 
p = 0.201 

 χ2 = 0.05 
p = 0.826 

 χ2 = 2.05 
p = 0.152 

PR*Round = 
S*Round 

 χ2 = 0.03 
p = 0.871 

 χ2 = 0.40 
p = 0.527 

 χ2 = 0.01 
p = 0.923 

T*Round = 
S*Round 

 χ2 = 2.34 
p = 0.126 

 χ2 = 1.35 
p = 0.246 

 χ2 = 1.68 
p = 0.195 

Bold typeface indicates statistical significance at the 10% level or better. 

 

It is interesting to see low performing S players outperform their low performing counterparts 

in the PR and T treatments, who are paid for their performance.  If participants are motivated 

solely by money, then we would expect PR and T subjects to outperform S players, who would 

be expected to shirk.  This is not the case.  The finding that S players perform better can be 

explained by the higher degree of autonomy players have under salaries compared to piece rates 

and tournaments, which are considered to be more controlling.  Cognitive Evaluation Theory 

predicts S participants to have higher intrinsic motivation than those in PR and T treatments – 

which in turn leads to higher performance.  The fact that low performers have smaller forecast 

errors in the S treatment compared to the PR and T treatments suggests that this intrinsic 



156 

motivation effect overpowers the extrinsic motivation effect brought about by monetary 

incentives. 

We have found that the choice of pay scheme impacts the performance of low performers.  

The next question is whether low performers are affected by the provision of relative performance 

feedback.  Since PR serves as the reference treatment in the regressions, the coefficient on the 

PRWL dummy variable identifies the effect of feedback provision.  From Table 6.4, we can see 

that the PRWL dummy has a large negative coefficient in most regression models.  In the pooled 

regressions, it is statistically significant in model 1, and marginally misses out on 10% significance 

in model 2 with a p-value of 0.111.  Broken down by the individual tasks, the PRWL dummy is 

no longer significant in regression models 3 to 6, although the coefficient continues to be negative 

and in the case for models 4 to 6, the coefficients are similar in magnitude to the estimates from 

the pooled regressions.  The single and dual cue regressions of models 3 to 6 in Table 6.4 are 

likely to be concealing the underlying effect which the pooled regressions show, since the number 

of observations in these regressions are spread thin. 

With evidence to show that the PRWL treatment performs better than the PR treatment, this 

means that low performers perform better when relative feedback is present.  We previously also 

found that low performers in the PR and T treatments had similar forecast errors.  These two 

findings jointly suggest that the result of Piece Rate Equivalence of tournaments for low 

performers is masking compositional differences, where a component effect includes relative 

feedback motivating performance.  Having controlled for relative feedback, do low performers 

continue to perform similarly in piece rates and tournaments?  In other words for low performers, 

how does the PRWL treatment perform relative to the T treatment?  Wald tests in Panel B of 

Table 6.4 show forecast errors of low performers to be smaller in the PRWL treatment than in 

the T treatment.  Like the aggregate findings reported earlier in Chapter 4, the primary reason 

why tournaments perform like piece rates is due to the competitive nature of tournaments.  When 

this element of competition is introduced to piece rates, Piece Rate Equivalence no longer holds, 

with piece rate incentives being superior to rank-dependent rewards. 

The findings presented for the low performers in Table 6.4 reflect the aggregate results 

reported earlier in Chapter 4, before distinction was made between high and low ability 
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participants.  Since high performers do not respond to treatment interventions, it means that the 

aggregated results are driven by low performers.  Result 6.1 summarises the main finding: 

Result 6.1. 

Treatment effects are driven by low performers.  High performers have 

similar performance across treatments.  On the other hand for low 

performers, performance is higher in the PRWL and S treatments than in 

the PR and T treatments. 

In terms of learning for low performers, from Table 6.4, we do not observe any learning for 

low performers overall.  The common trend for each of the pooled, single and dual cue treatments 

are statistically insignificant in regression models 1, 3 and 5 respectively.  This contrasts with the 

common downward trend we found for high performers in Table 6.3.  When we allow for 

different trends by treatment, we only observe learning for low performers in the T treatment. 

We elaborate on the issue of learning in a number of ways in the following sections.  We 

disaggregate the common trend by treatment, while also expanding analyses of learning to the 

round 11 to 20 time horizon.  In later sections, rather than comparing the trends across 

treatments, we compare the trends across high and low performers for each treatment – touching 

upon the notions of bifurcation and catching up. 

6.3. Learning 

Having explored how treatment interventions affect the performance of high and low performers 

overall, we now pay closer attention to learning.  Within each group of high and low performers, 

how do the treatment interventions influence learning?  The aggregated learning results presented 

earlier in Chapter 5 showed us that learning only occurred in the T treatment – none of the other 

treatments showed any signs of learning.  We now look at how the earlier reported learning results 

differ by high and low performers. 

Tables 6.5 and 6.6 present time trends for estimated high and low performers respectively.  

Similar to how results were presented earlier in Chapter 5, we only report on the slopes for each 

treatment’s trend line while suppressing the other coefficients in a larger regression specification.  

These other regressors include the treatment dummies, as well as the trait anxiety and gender of 

each participant.  The odd-numbered regression models in Tables 6.5 and 6.6 are identical to the 
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even-numbered regressions in Tables 6.3 and 6.4, replicated to facilitate comparison with other 

regression models.  These regressions are run over rounds 6 to 20, the post-intervention rounds.  

We carry over an earlier argument made about allowing an arbitrary five rounds for participants 

to familiarise themselves with the treatment interventions in the PRWL and T treatments.  For 

this reason we also look at learning across rounds 11 to 20.  The even-numbered regression models 

in Tables 6.5 and 6.6 are run over rounds 11 to 20. 

Beginning with high performers in Table 6.5, in model 1 we see that there is a significant 

downward trend for the PR and T treatments across rounds 6 to 20.  These two trends are similar 

in magnitude and are not statistically different from one another (p = 0.973).  Interestingly, while 

these trend coefficients are statistically different from zero and the estimated trends for PRWL 

and S treatments are not, pairwise Wald tests do not show the PR or T trends to be different to 

the PRWL or S trends.  Looking deeper, models 3 and 5 provide some disaggregation by 

replicating the regression specification of model 1 with single and dual cue data.  From these, it 

appears that this learning is driven by dual cue participants, where we observe a similar pattern 

of learning.  Dual cue PR and T participants exhibit significant learning, while the trends for 

PRWL and S are insignificant.  On the other hand, in regression model 3, there is no learning 

for any of the single cue treatments across rounds 6 to 20. 

If we track the learning of high performers across a different time period, rounds 11 to 20, 

the pattern of learning across treatments differ substantially from the round 6-20 horizon.  In 

regression model 2 of Table 6.5, we look at learning across rounds 11 to 20 when single and dual 

cue tasks are pooled together.  Learning occurs in each of the four treatments, with statistically 

significant time trends for each treatment.  A series of Wald tests show that learning does not vary 

by treatment.  Looking at regression model 4, it is clear that this pattern of universal learning in 

every treatment is attributable to the single cue task, where we again observe significant rates of 

learning for high performers in each of the treatments.  Amongst these trends, the trend for the 

PRWL treatment is largest in magnitude, and is statistically different to the PR trend (p = 0.055).  

Across rounds 11 to 20 in the dual cue task, although the estimated trend coefficients are negative 

in each of the treatments, they are only statistically significant in the T treatment.  
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Table 6.5 Regressions of Learning for High Performers 

Dep Var:  
Forecast Errors 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 

       

PR*Round -0.346 *** 
(0.124) 

-0.381 ** 
(0.184) 

0.038 
(0.100) 

-0.602 *** 
(0.136) 

-0.652 *** 
(0.183) 

-0.204 
(0.310) 

PRWL*Round -0.158 
(0.107) 

-0.644 ** 
(0.308) 

-0.085 
(0.634) 

-1.055 *** 
(0.193) 

-0.252 
(0.230) 

-0.120 
(0.640) 

T*Round -0.352 ** 
(0.138) 

-0.761 *** 
(0.171) 

-0.030 
(0.113) 

-0.755 *** 
(0.194) 

-0.731 *** 
(0.240) 

-0.768 *** 
(0.298) 

S*Round -0.132 
(0.105) 

-0.539 * 
(0.276) 

-0.088 
(0.092) 

-0.812 *** 
(0.238) 

-0.199 
(0.226) 

-0.121 
(0.586) 

       
Observations 2355 1570 1275 850 1080 720 

Participants 157 157 85 85 72 72 

R2 0.028 0.031 0.004 0.052 0.056 0.059 

Wald χ2 32.69 46.81 7.16 90.33 49.30 27.29 

p > χ2 0.000 0.000 0.621 0.000 0.000 0.001 
       

PR*Round = 
PRWL*Round 

χ2 = 1.30 
p = 0.254 

χ2 = 0.54 
p =0.462 

χ2 = 1.06 
p = 0.304 

χ2 = 3.67 
p = 0.055 

χ2 = 1.85 
p = 0.174 

χ2 = 0.01 
p = 0.906 

PRWL*Round = 
T*Round 

χ2 = 1.23 
p = 0.267 

χ2 =0.11 
p = 0.741 

χ2 = 0.18 
p = 0.670 

χ2 = 1.19 
p = 0.274 

χ2 = 2.08 
p = 0.149 

χ2 = 0.84 
p = 0.359 

PR*Round = 
T*Round 

χ2 = 0.00 
p = 0.973 

χ2 = 2.28 
p = 0.131 

χ2 = 0.20 
p = 0.656 

χ2 = 0.42 
p = 0.519 

χ2 = 0.07 
p = 0.793 

χ2 = 1.72 
p = 0.190 

PR*Round = 
S*Round 

χ2 = 1.73 
p = 0.188 

χ2 = 0.23 
p = 0.634 

χ2 =0.84 
p = 0.359 

χ2 = 0.58 
p = 0.445 

χ2 = 2.43 
p = 0.119 

χ2 = 0.02 
p = 0.901 

T*Round = 
S*Round 

χ2 = 1.62 
p = 0.203 

χ2 = 0.47 
p = 0.494 

χ2 = 0.16 
p = 0.691 

χ2 = 0.03 
p = 0.854 

χ2 = 2.62 
p = 0.106 

χ2 = 0.97 
p = 0.326 

Partial results only.  Other coefficients that are suppressed include: treatment dummies, trait anxiety, gender and the constant term.  Models 
1, 3 and 5 are replicated from models 2, 4 and 6 of Table 6.3.  Regressions are estimated with a Random Effects GLS procedure.  Forecast 
errors in parentheses and are clustered by participant.  *, **, *** represent significance at the 10%, 5% and 1% levels respectively.  Wald χ2 
tests are presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 
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Table 6.6 Regressions of Learning for Low Performers 

Dep Var: 
Forecast Errors 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 

       

PR*Round 0.088 
(0.271) 

-0.027 
(0.432) 

-0.354 
(0.254) 

-0.800 *** 
(0.232) 

0.530 
(0.457) 

0.747 
(0.792) 

PRWL*Round 0.210 
(0.318) 

0.030 
(0.661) 

0.023 
(0.407) 

-0.269 
(0.685) 

0.450 
(0.504) 

0.415 
(1.235) 

T*Round -0.343 * 
(0.199) 

-0.791 ** 
(0.344) 

-0.420 *** 
(0.164) 

-1.830 *** 
(0.340) 

-0.282 
(0.335) 

0.029 
(0.478) 

S*Round 0.148 
(0.251) 

-0.000 
(0.605) 

-0.170 
(0.140) 

-1.217 *** 
(0.334) 

0.467 
(0.470) 

1.216 
(1.075) 

       
Observations 1890 1260 945 630 945 630 

Participants 126 126 63 63 63 63 

R2 0.035 0.033 0.024 0.043 0.020 0.017 

Wald χ2 19.93 25.03 17.36 84.58 9.65 6.15 

p > χ2 0.018 0.003 0.043 0.000 0.380 0.725 
       

PR*Round = 
PRWL*Round 

χ2 = 0.08 
p = 0.771 

χ2 = 0.01 
p = 0.943 

χ2 = 0.61 
p = 0.434 

χ2 = 0.54 
p = 0.463 

χ2 = 0.01 
p = 0.907 

χ2 = 0.05 
p = 0.821 

PRWL*Round = 
T*Round 

χ2 = 2.16 
p = 0.142 

χ2 = 1.22 
p = 0.270 

χ2 = 1.02 
p = 0.314 

χ2 = 4.17 
p = 0.041 

χ2 = 1.46 
p = 0.227 

χ2 = 0.08 
p = 0.771 

PR*Round = 
T*Round 

χ2 = 1.63 
p = 0.201 

χ2 = 1.92 
p = 0.166 

χ2 = 0.05 
p = 0.826 

χ2 = 6.25 
p = 0.012 

χ2 = 2.05 
p = 0.152 

χ2 = 0.60 
p = 0.438 

PR*Round = 
S*Round 

χ2 = 0.03 
p = 0.871 

χ2 = 0.00 
p = 0.972 

χ2 = 0.40 
p = 0.527 

χ2 = 1.05 
p = 0.306 

χ2 = 0.01 
p = 0.923 

χ2 = 0.12 
p = 0.725 

T*Round = 
S*Round 

χ2 = 2.34 
p = 0.126 

χ2 = 1.29 
p = 0.255 

χ2 = 1.35 
p = 0.246 

χ2 = 1.65 
p = 0.199 

χ2 = 1.68 
p = 0.195 

χ2 = 1.02 
p = 0.313 

Partial results only.  Other coefficients that are suppressed include: treatment dummies, trait anxiety, gender and the constant term.  Models 
1, 3 and 5 are replicated from models 2, 4 and 6 of Table 6.4.  Regressions are estimated with a Random Effects GLS procedure.  Forecast 
errors in parentheses and are clustered by participant.  *, **, *** represent significance at the 10%, 5% and 1% levels respectively.  Wald χ2 
tests are presented at the bottom of the table.  Bold typeface indicates a Wald test to be significant at the 10% level or better. 

 

Comparing the patterns of learning for high performers across the different time horizons, we 

see that they are clearly different.  The pooled regressions of models 1 and 2 of Table 6.5 show 

that while learning occurs only in the PR and T treatments over rounds 6 to 20, there is evidence 

for learning in all treatments over rounds 11 to 20.  The discrepancies in these trends can be 

attributed back to the single cue task, where the differences in learning across each of these time 



161 

horizons is stark.  On the other hand, as we can see in models 5 and 6, learning in the dual cue 

task across rounds 11 to 20 are more reminiscent of the learning across rounds 6 to 20. 

We now turn our attention to learning for low performers.  In the pooled regressions for low 

performers in model 1 of Table 6.6, learning occurs in the T treatment but not in other 

treatments.  Forecast errors for low performers in the T treatment improve on average by 0.343 

points every round.  It is interesting to note that this rate of learning for low performing T 

participants is similar to that of high performers (-0.352 in model 1 of Table 6.5).  We see a 

similar pattern of learning in the single cue task in model 3, where the T treatment again stands 

out by being the only treatment that exhibits learning.  Although there is no statistical evidence 

to suggest that learning occurs in any of the treatments in regression model 5 for low performers 

in the dual cue task across rounds 6 to 20, a closer look at the trend coefficients show that the 

trend is downward sloping in the T treatment, while is upward sloping and with a larger 

magnitude in each of the other treatments.  Despite being insignificant, this reinforces the basic 

pattern of learning in each of the pooled and single cue regressions in models 1 and 3. 

Across rounds 11 to 20, the overall pattern of learning for low performers is similar to that 

across rounds 6 to 20.  In regression model 2 of Table 6.6, we see once again that learning occurs 

only in the T treatment.  In fact, learning in the T treatment across rounds 11 to 20 occurs at 

more than twice the rate of that across rounds 6 to 20 (-0.791 in model 2 vs -0.343 in model 1).  

Looking at the composition of this learning, regression models 4 and 6 look at the trends 

associated with single and dual cue treatments separately.  In the single cue task, model 4 shows 

that there is significant learning in the PR, T and S treatments for low performers across rounds 

11 to 20.  Amongst these significant trends, the trend for the T treatment is the steepest and with 

the highest level of significance.  In other words, even though there is learning in most treatments, 

the rate of learning is highest in the T treatment.  Learning occurs at a significantly faster rate in 

the T treatment compared to both the PR treatment (p = 0.012) and PRWL treatment (p = 

0.041), but is not statistically different to the S treatment (p = 0.199).  In the dual cue task, 

regression model 6 reveals that there is no learning for low performers in any of the four 

treatments. 
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To summarise, there are consistent signs of learning for high performers in the PR and T 

treatments, and also for low performers in the T treatment.  This is stated as Result 6.2: 

Result 6.2. 
There is learning for high performers in the PR and T treatments.  Learning 

is also observed for low performers in the T treatment. 

We focus on learning amongst both high and low performers in the T treatment.  For both 

high and low performers, there is learning in the T treatment across both round 6 to 20 and 11 

to 20 time periods.  The fact that there is learning for both high and low performers further 

suggest that the rank-dependent payoffs of tournaments underpin this learning.  The rank 

incentives reward players for winning with a high $1 prize while punishes players for losing with 

zero monetary earnings every round.  These incentives seem to work symmetrically for both high 

and low performers.  Insomuch high performers strive to win by improving their forecast errors, 

low performers also have the incentive to improve their performance to avoid losing.45 

Similar to how we attributed learning in tournaments to the rank dependent payoffs earlier 

in Chapter 5, we attribute learning here for both high and low performers in the T treatment to 

these rank payoffs.  Consistent with what we have found earlier in Chapter 5 on learning, where 

there was no learning associated with the PRWL treatment, we find here that neither high nor 

low performers improve their forecasts over time.  The absence of learning in the PRWL 

treatment is not masked by compositional differences by high and low performers.  Comparing 

the linear trends for PR and PRWL treatments for both high and low performers, we see that, by 

and large, there is no difference in learning between these two treatments.  This suggests that 

winning/losing feedback has no influence on learning over time.  Rather, its motivating effect is 

one off and remains uniform over time. 

  

                                                 

45  See Dutcher et al. (2015) for more about the motives of striving to win and avoiding the loss. 
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6.4. High and Low Performers within Treatment 

The previous sections of this chapter have studied treatment differences within the categories of 

high and low performers separately, first in terms of the overall effect and then in terms of learning.  

We now look at the data from another angle, analysing the differences in performance between 

high and low performers within treatments. 

Recall that high performers were defined to have smaller forecast errors than low performers 

across the first five rounds of play (see Section 6.1 for more details).  This however does not 

necessarily mean that high performers will continue to outperform low performers across the 

post-intervention rounds.  Performance differences across post-intervention rounds could be 

attributable either to asymmetric effects of the treatment interventions on high or low performers, 

or due to differences in learning across treatments.  The former was addressed in Section 6.2 

while the latter in Section 6.3.  We now analyse differences in learning between high and low 

performers.  As such the focus on this section will be on learning, as opposed to the overall 

performance differences between high and low performers. 

In looking at how high and low performers learn relative to one another, we touch upon the 

concepts of bifurcation and catching up.  These terms refer to how the performance spread 

between high and low performers change over time.  Bifurcation occurs when the performance 

gap between high and low performers widens over time.  This may arise if high performers 

improve their performance and/or low performers drop out, or if the rate of learning is greater 

for high performers than for low performers.46  On the other hand, catching up refers to instances 

when the performance gap diminishes. 

In analysing bifurcation and catching up, we confine our focus to the PRWL and T treatments, 

since these two treatments feature the element of competition.  It is the knowledge of relative 

performance or ability that drives bifurcation or catching up behaviours.  This is in line with the 

                                                 

46  The term bifurcation was first coined by Müller and Schotter (2010) to describe the bimodal effort chosen by players, depending on their 
ability – high ability players tend to exert effort higher than equilibrium, while low ability players choose effort of zero.  We adopt a slightly 
different definition of bifurcation whereby we focus on the performance spread between high and low performers across time.   
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literature, where these concepts are studied exclusively in the context of contests and tournaments.  

We now review the relevant literature before proceeding with analyses. 

6.4.1. Literature Review 

Both bifurcation and catching up effects feature prominently in the literature.  These effects first 

appeared in Schotter and Weigelt (1992) in their study of uneven tournaments.  In a Bull et al. 

(1987) tournament game, fixed pairs select numerical effort numbers which are costly to players.  

A high cost subject was matched with a low cost partner for the entire duration of 20 rounds, 

where these high and low cost players represent low and high ability players respectively.  Both 

players know the effort costs of the other, so they also know whether or not they are disadvantaged.  

They found that a large proportion of disadvantaged participants chose effort values close to zero, 

while their partners chose higher-than-equilibrium effort values.  Schotter and Weigelt (1992) 

attributed the dropout behaviour of low ability players to two factors: their partners choosing 

high effort values, and also to unfavourable draws of luck when random numbers were augmented 

to the effort values.  If the low ability player feels he cannot defeat the high ability player, or that 

it will be too costly in terms of effort to do so, he will opt to ‘drop out’ to minimise the effort he 

exerts.  Bifurcation therefore appears to be conditioned behaviour based on how the game plays 

out.  The authors do not offer any explanation as to why high ability players exert higher than 

equilibrium effort.   

Bifurcation behaviour also appears in Müller and Schotter (2010).  In their experiment, fixed 

groups of four participants played in a contest for 50 rounds.  Similar to a tournament, players 

selected costly effort numbers which were ranked within the group and prizes awarded 

accordingly.  Unlike Schotter and Weigelt (1992) where ability was determined by a fixed cost 

parameter, Müller and Schotter (2010) allowed the ability of a player to change every round, with 

a random draw of a continuously distributed cost parameter every round.  On average, 

participants’ effort levels are consistent with the theoretical predictions.  However, bifurcation 

shows up at the individual level when the data is disaggregated.  Effort levels are stepped: effort 

levels are high when ability is high, but falls sharply to zero when ability falls below a certain 

threshold.   
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On the other hand, the catching up effect is observed in a number of different studies.  While 

Schotter and Weigelt (1992) observed bifurcation, they also found evidence of catching up, with 

low ability players exerting higher-than-optimal effort while high ability players exert effort lower 

than equilibrium.  Subsequent research has shown that this catching up behaviour is conditioned 

by feedback on relative performance, with players coming to realise that they are falling behind 

their peers (Kuhnen & Tymula, 2012; Ludwig & Lünser, 2012; Charness et al., 2014; Fu, Ke, 

& Tan, 2015; Eriksson et al., 2009).  Kuhnen and Tymula (2012) suggests that this effect is 

anchored to expectations.  Players who received a lower-than-expected rank improves their rank 

in subsequent rounds, while those with a higher-than-expected rank subsequently receive lower 

ranks. 

The catching up effect is closely associated with peer effects, where people want to ‘keep up 

with the Joneses’.  Falk and Ichino (2006) show that students who were asked to stuff envelopes 

individually had better performance when they were asked to do so in the presence of a partner 

in the same room, compared to when they were working alone in the room.  The idea is that 

when the ‘peer’ is introduced, people are likely to behave so that they do not compare 

unfavourably with him.  An example of this is based on the postcode lottery in the Netherlands.  

Kuhn et al. (2011) find that when a household wins the lottery and receives a new BMW car as 

a prize, households in the surrounding neighbourhood are more likely than households in non-

winning neighbourhoods to purchase a new car in the following six months.  Another example is 

that of peer salaries.  Card et al. (2012) contacted employees from three University of California 

campuses and notified them of a publicly accessible web portal which allowed them to compare 

the salaries of all employees at the university – allowing them to benchmark their salaries against 

their colleagues.  The authors followed up with a survey.  The respondents who were notified of 

such comparison and were paid less than their peer group reported lower job satisfaction and 

greater intentions to find a new job, compared to the control group who were not given details 

of this salary comparison website.  See also peer effects in Feltovich and Ejebu’s (2014) life-cycle 

savings experiment. 

The bifurcation and catching up effects are conditioned upon players’ perceived chances of 

winning.  In most of the studies cited above, players were provided information which allowed 

them to assess their chances of winning.  For example, in Schotter and Weigelt (1992) players 
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know whether or not they are impaired by an unfavourable cost parameter.  In other studies, the 

provision of relative feedback allow players to assess their chances of winning based on prior 

rounds of play.  The ex-ante knowledge or ex-post feedback seems to be driving the bifurcation 

and catching up effects.  For example, if a player finds out that they are disadvantaged, they are 

less likely to win and as a result may give up by exerting minimal effort.   

Fershtman and Gneezy (2011) support the notion that behaviour is conditioned upon 

feedback.  In their study of quitting in tournaments, male high school students were asked to run 

in two 60 metre races.  In the first, students ran individually with neither competition nor rewards.  

In the second race, students ran the race while competing with another student with a similar 

first run time, either directly or indirectly.  In the direct race, the pair ran on the same track side 

by side, so that both could observe the pace and progress of the other.  In contrast, students 

competing indirectly ran individually on the track by themselves.  They won if they had a faster 

running time than their partner, who also ran individually.  Running individually in the indirect 

race does not allow players to gauge the speed and progress of their partners.  The winner of each 

of the direct or indirect races received either a high or low reward, or none at all; the loser received 

nothing.   

Two findings from their paper are relevant here.  First, quitting behaviour is mainly observed 

amongst those who were offered large tournament prizes, with the incidence of quitting in 

tournaments much lower with low rewards or with no rewards at all.  Second and more 

interestingly, quitting was observed only amongst students who ran in the direct race, where 

students could observe the progress of their partner.  Quitting did not occur in any of the indirect 

races with no, small or large tournament rewards.  This suggests that feedback is necessary to 

induce dropping out. 

While the effects of bifurcation and catching up are conditioned upon feedback and 

knowledge of the competitor’s ability, it is natural to think that repeated interactions are also 

necessary to bring about these effects.  For a low ability player, working harder may only be an 

optimal strategy for a player if they know that they will be matched with the same partner in the 

following round.  If this low ability player is matched with a higher ability partner in the following 

round, then working harder is not likely to be effective in securing a win.  Similarly, low 
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performers may not feel the need to drop out if there is a possibility they will be matched with 

someone of lower ability in subsequent rounds.  Random rematching allows us to reduce the 

effect of such conditioning. 

Since bifurcation and catching up are expected to be less likely to happen under the protocol 

of random rematching, if either of these effects are indeed observed, then we can infer that these 

effects are especially salient.  With the example of catching up, if it occurs even under random 

rematching, then that means that low performers are motivated to improve their performance 

relative to others, even under the knowledge that they will face a different partner and their 

improvement in performance might be inadequate to win.  If this occurs under random 

rematching, then we can infer that catching up arises from a player’s innate desire to converge, 

rather than from a rational assessment of whether or not they are likely to win. 

Random rematching allows us to study the effects of bifurcation and catching up without 

players forming predisposed beliefs from prior play that they are bound to win (lose).  As such, 

we would expect a lower incidence of drop out behaviour from low performers under random 

rematching than under fixed matching.  In this regard, we would more likely observe catching up 

than bifurcation. 

While most studies cited here employ a fixed matching protocol, two papers provide some 

insight into the effects associated with the different matching protocols: fixed matching and 

random rematching.  Müller and Schotter (2010) include a treatment where groups were 

rematched each round.  They find bifurcation persists even with random rematching.  On the 

other hand, Ludwig and Lünser (2012) find evidence for catching up when relative feedback is 

provided in two-stage tournaments, with rematching after each two-stage round.  Both papers 

provide evidence for the aforementioned effects even with random rematching.  

A caveat must be made here with regard to the experimental design of these two papers.  In 

both Müller and Schotter (2010) and Ludwig and Lünser (2012), the rematching across each 

round was restricted to a smaller fixed pool of participants within the session.  In Müller and 

Schotter (2010), each session was split into pools of 8 participants and 2 groups of four were 

constructed within these fixed pools for each of 50 rounds.  Similarly Ludwig and Lünser (2012) 

matches 3 pairs within fixed pools of 6 players for each of 30 rounds.  Given the limited 
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rematching and the relatively long time horizon in each of these studies, players will inevitably 

encounter players whom they have played with before, partially undermining the very purpose of 

rematching.  The rematching procedures of Müller and Schotter (2010) and Ludwig and Lünser 

(2012) are therefore inadequate to address the question of whether bifurcation or catching up 

effects rely on repeated encounters brought about by a fixed matching protocol.   

Our experiment allow us to answer this question.  Participants in our study are randomly 

rematched with another participant after each round.  To this end, we will proceed by studying 

the patterns of learning for high and low performers and see how they learn relative to each other. 

6.4.2. Results 

We analyse the effects of bifurcation and catching up in three different ways.  First, we study the 

dynamics of how forecast errors change for high and low performers in the PRWL and T 

treatments.  Second, we calculate the between-subjects standard deviation of forecast errors in 

each round and see how it changes over time.  This measures the dispersion of forecast errors 

across subjects; if bifurcation (catching up) is present, then such dispersion should increase 

(decrease) over time.  Third, we examine the margin of winning between winners and losers and 

see how it changes over time.  We discuss each of these in separate parts below. 

Forecast Error Trends for High and Low Performers 

We begin analysis of bifurcation and catching up by observing how forecast errors for high and 

low performers change over time.  Tables 6.7 and 6.8 present regressions of participants’ forecast 

errors against a dummy variable which indicates whether a participant is classified as a high 

performer or not (low performers as the reference category), the trait anxiety and gender of the 

participant, as well as time trends for both high and low performers.  Table 6.7 shows the 

regression estimates run over the single cue PRWL and T treatments, while Table 6.8 repeats the 

same regressions over the dual cue treatments.  For each regression table, models 1 and 2 are run 

for the PRWL treatment over rounds 6 to 20 and rounds 11 to 20 respectively, while models 3 

and 4 are run for the T treatment over the same periods.  At the bottom of the tables are Wald 

tests of the difference in the estimated trends between high and low performers.  Despite the 
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different ways in which the regressions are run, we note that the linear time trends estimated in 

Tables 6.7 and 6.8 are identical to those reported earlier in Tables 6.5 and 6.6. 

Before discussing the time trends, we first discuss the coefficient on the dummy variable for 

high performers.  In most of the regression models across Tables 6.7 and 6.8, this dummy is 

insignificant, suggesting that forecast errors for both high and low performers are similar in these 

treatments.  This is the case for the single cue PRWL treatment as well as the dual cue PRWL 

and T treatments.  High performers do indeed outperform low performers in the single cue T 

treatment in models 3 and 4 of Table 6.7.   

The finding that high performers do not actually outperform low performers in the post-

intervention rounds in most treatments is particularly interesting because they have been defined 

to have better performance than low performers in the pre-intervention rounds (see Section 6.1).  

This suggests disproportionate improvement in forecasts by low performers relative to high 

performers.  In fact, if we compare the coefficients on the treatment dummies across Tables 6.3 

and 6.4 for high and low performers, we see that – despite many of the coefficients being 

insignificant – the coefficients for low performers tend to be negative and are larger in magnitude 

than the analogous coefficients for high performers.  The disproportionate effect that treatment 

interventions have on low performers can, at least in part, explain this finding. 

We now return to comparing the rates of learning between high and low performers. In 

models 1 and 2 of Table 6.7, the single cue PRWL treatment, we see that there is no learning 

amongst both high and low performers across rounds 6 to 20, where the estimated trends for high 

and low performers are close to zero in model 1.  A Wald test of these differences confirm that 

they are not different to one another (p = 0.795).  Across rounds 11 to 20, model 2 is slightly 

different for the single cue PRWL treatment.  While we continue to see no learning for low 

performers, we now observe significant learning for high performers.  Despite this, a Wald test 

suggests that the trends are identical (p = 0.272). 
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Table 6.7 Regressions of Forecast Error Trends between  
High and Low Performers, by Single Cue Treatments 

Dep Var:  
Forecast Errors 

Single Cue PRWL Single Cue T 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 
Model 1 Model 2 Model 3 Model 4 

     

Low Performers (base) (base) (base) (base) 

High Performers 
-4.058 
(4.923) 

7.104 
(10.02) 

-12.13 *** 
(3.471) 

-23.63 *** 
(7.800) 

Trait Anxiety 0.155 
(0.107) 

0.184 
(0.147) 

-0.361 ** 
(0.156) 

-0.325 * 
(0.186) 

Female -1.265 
(1.433) 

-0.632 
(1.732) 

0.807 
(2.055) 

0.211 
(2.321) 

Low Performers * 
Round 

0.023 
(0.409) 

-0.269 
(0.687) 

-0.420 ** 
(0.165) 

-1.830 *** 
(0.343) 

High Performers * 
Round 

-0.085 
(0.064) 

-1.055 *** 
(0.194) 

-0.030 
(0.114) 

-0.755 *** 
(0.197) 

Constant 6.427 
(8.172) 

9.872 
(14.44) 

34.12 *** 
(8.133) 

56.48 *** 
(12.75) 

     
Observations 615 410 525 350 
Participants 41 41 35 35 

R2 0.028 0.035 0.096 0.130 
Wald χ2 22.11 68.33 16.85 50.02 
p > χ2 0.001 0.000 0.005 0.000 

     
Low Perf*Round = 
High Perf*Round 

χ2 = 0.07 
p = 0.795 

χ2 = 1.21 
p = 0.272 

χ2 = 3.79 
p = 0.052 

χ2 = 7.41 
p = 0.007 

Regressions are estimated with Random Effects GLS.  Standard errors in parentheses are clustered at the participant 
level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 

 

In the single cue T treatment in model 3 of Table 6.7, we observe that low performers 

significantly improve their forecast errors over time across rounds 6 to 20, while high performers 

show no sign of learning.  Low performers improve forecast errors on average by 0.42 points every 

round, significant at the 5% level.  Since there is significant learning for low performers but not 

for high performers, it follows that the performance gap between the two groups diminishes over 

time, whereby low performers catch up.  This is supported by a Wald test of the differences in 

the rates of learning between high and low performers (p = 0.052).    
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Table 6.8 Regressions of Forecast Error Trends between 
High and Low Performers, by Dual Cue Treatments 

Dep Var:  
Forecast Errors 

Dual Cue PRWL Dual Cue T 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 
Model 1 Model 2 Model 3 Model 4 

     

Low Performers (base) (base) (base) (base) 

High Performers 
0.674 

(8.438) 
-1.776 
(22.19) 

-5.284 
(7.707) 

0.487 
(11.23) 

Trait Anxiety -0.017 
(0.255) 

-0.198 
(0.264) 

-0.109 
(0.329) 

-0.107 
(0.345) 

Female 7.514 *** 
(2.892) 

8.443 *** 
(2.962) 

9.882 * 
(5.129) 

11.33 ** 
(5.192) 

Low Performers * 
Round 

0.450 
(0.508) 

0.415 
(1.245) 

-0.282 
(0.337) 

0.029 
(0.481) 

High Performers * 
Round 

-0.252 
(0.233) 

-0.120 
(0.646) 

-0.731 *** 
(0.241) 

-0.768 ** 
(0.300) 

Constant 18.61 
(10.53) 

26.40 
(19.20) 

38.19 ** 
(16.16) 

32.07 * 
(18.43) 

     
Observations 480 320 540 360 
Participants 32 32 36 36 

R2 0.063 0.077 0.049 0.058 
Wald χ2 33.57 40.01 24.59 22.63 
p > χ2 0.000 0.000 0.000 0.000 

     
Low Perf*Round = 
High Perf*Round 

χ2 = 1.58 
p = 0.209 

χ2 = 0.15 
p = 0.703 

χ2 = 1.18 
p = 0.278 

χ2 = 1.97 
p = 0.160 

Regressions are estimated with Random Effects GLS.  Standard errors in parentheses are clustered at the participant 
level.  *, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are 
presented at the bottom of the table, with bold typeface indicating significance at the 10% level or better. 

 

Across rounds 11 to 20, regression model 4 also shows that the forecast errors of low 

performers catches up to those of high performers over time in the single cue T treatment.  Here 

both high and low performers show significant learning over time, but the rate of learning is 

much higher for low performers than for high performers.  Low performers improve their 

forecasts on average by 1.83 points each round, while the average improvement is only 0.76 points 

for high performers.  These rates of learning between high and low performers are significantly 
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different from each other (p = 0.007).  Since low performers exhibit a faster rate of improvement 

than high performers, it follows that the performance gap between high and low performers 

diminishes.  While the pattern of learning is different across rounds 6 to 20 as it is across rounds 

11 to 20, both of these patterns support the notion of catching up in the single cue T treatment. 

We now look at the rates of learning of high and low performers in the dual cue PRWL and 

T treatments in Table 6.8.  For the dual cue PRWL treatment in models 1 and 2, we see that the 

rates of learning for both high and low performers are statistically insignificant.  Although 

insignificant, we do see that the time trend for low performers is positive while it is negative for 

high performers.  Overall, we do not find the performance gap between high and low performers 

to change over time in the dual cue PRWL treatment. 

In the dual cue T treatment, there is significant learning for high performers but not for low 

performers across rounds 6 to 20.  This suggests that bifurcation occurs, where the rate of learning 

is greater amongst high performers than for low performers.  The difference in learning, however, 

does not appear to be statistically significant according to a Wald test (p = 0.278).  Across rounds 

11 to 20 in the dual cue T treatment in model 4, we continue to see significant learning for high 

performers while no learning for low performers. 

Overall, there are no consistent signs of learning in the PRWL treatment in both single and 

dual cue tasks for both high and low performers.  Accordingly, the performance gap between high 

and low performers remains stagnant across the post-intervention rounds.  It appears that 

feedback on relative performance itself has no effect on learning for both high and low performers.  

The disutility associated with losing does not seem to encourage low performers to improve their 

performance over time, nor does it seem to provide the impetus for them to reduce it.47  This is 

not to say that relative feedback has no effect whatsoever, since we previously found that the 

introduction of relative feedback lowered the forecast errors of low performers while having no 

effect on high performers.  However, this effect appears to be one-off.  A possible interpretation 

                                                 

47  This could potentially be explained by the piece rates inherent in the PRWL treatment.  Since players are motivated by money, amongst other 
sources of motivation, they would not want to reduce their performance for it would lead to low monetary earnings. 
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is that relative performance feedback is not salient enough to continuously motivate performance 

over time, hence we find neither bifurcation nor catching up. 

In tournaments, where payoffs are tied to winning and losing, we observe both bifurcation 

and catching up.  Compared to the PRWL treatment, it appears the additional saliency brought 

about by rank payoffs are important.  In the single cue task, learning occurs at a faster rate 

amongst low performers compared to high performers.  As a result, forecast errors between high 

and low performers diminishes over time.  In the dual cue task the opposite occurs.  Bifurcation 

takes place, where we observe learning for high performers but not for low performers. 

The different effects according to task difficulty in the T treatment can be explained by the 

following.  While low performers strive to win, it is much easier for low performers to do so by 

trying harder and improving their forecasts in the single cue task rather than in the dual cue task.  

The results support this, with learning amongst low performers in the single cue task but not for 

low performers in the dual cue task.  For high performers, it appears that there is less scope for 

them to further improve in the single cue task compared to the dual cue task.  The pattern of 

learning for high performers across tasks lends support to this. 

Between-Subject Forecast Error Variability 

We have touched upon the bifurcation and catching up effects by looking at how high and low 

performers learn relative to each other in the PRWL and T treatments.  In this section, we study 

bifurcation and catching up at an aggregated level with the between-subject standard of forecast 

errors, without having to identify groups of high and low performers.   

The between-subject standard deviation of forecast errors is defined in the spirit of Falk and 

Ichino (2006), where they study peer effects.  Since participants only ever play against other 

participants in the same session, we calculate this variable at the session level, so it yields a single 

observation per round for each session of each treatment.  It necessary means that we will be 

working with few observations, so analyses stemming from this will have low statistical power.  

Nevertheless, it gives us a better understanding of bifurcation and catching up.  If the between-

subjects standard deviation falls, there is lower dispersion of forecast errors between participants 

– indicating the convergence of forecast errors.   
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The between-subjects forecast error standard deviation observations are regressed in a basic 

ordinary least squares model against a linear time trend, over rounds 6 to 20 and over rounds 11 

to 20.  The regressions are run separately for each session.  The estimated trends are presented in 

Table 6.9, with the constant term in each regression suppressed for presentation purposes.  Each 

cell shows the estimated time trends in each session of the respective treatment, run separately in 

different regressions. 

In Table 6.9 across rounds 6 to 20, the between-subjects standard deviations do not show any 

significant trend in any of the PRWL and T sessions in either single or dual cue tasks.  In the 

single cue PRWL treatment, one session has a positive trend while the other has a negative trend.  

Both sessions of the dual cue PRWL treatment have a trend that slopes upwards.  By comparison, 

all sessions of the T treatment – in both single cue and dual cue tasks – are fitted with a negative 

trend across rounds 6 to 20.  Although insignificant, this points towards catching up in the T 

treatment, where between-subject variability diminishes. 

It is perhaps unsurprising that the estimated trends are not statistically significant given the 

small number of observations used to estimate them: 15 observations over rounds 6 to 20 for 

each session.  However, if a trend is significant, then it means that the effect is especially salient. 

Over rounds 11 to 20, with even fewer observations to work with, we see some evidence of 

conformity.  With the trend lines starting from a different base, we now see the between-subjects 

standard deviation falling significantly over time in both sessions of the single cue T treatment.  

In the single cue T treatment, forecast errors of participants in each session converge to that of 

other participants, with between-subjects standard deviation reducing by 1.166 and 1.608 

forecast error points over each round in the respective sessions.  The trends for both sessions of 

the dual cue T treatment also have a negative sign, but are insignificant.   
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Table 6.9 Time Trend of Between-Subject Standard Deviation of Forecast Errors 

Dep Var:  
Between Subjects Std Dev 

of Forecast Errors 

Rounds 6-20 Rounds 11-20 

Session 1 Session 2 Session 1 Session 2 

     

SC PRWL 1.054 
(1.153) 

-0.223 
(0.387) 

1.854 
(2.388) 

-1.033 
(0.957) 

SC T -0.372 
(0.462) 

-0.033 
(0.353) 

-1.166 ** 
(0.462) 

-1.608 * 
(0.730) 

     

DC PRWL 0.244 
(0.686) 

0.281 
(0.587) 

-0.209 
(1.549) 

0.736 
(1.079) 

DC T -0.540 
(1.112) 

-0.401 
(0.400) 

-0.338 
(1.699) 

-0.894 
(0.786) 

     
Observations 15 15 10 10 

Between subjects standard deviation of forecast errors in each session regressed with a time trend.  Each coefficient is estimated 
under a separate regression.  The constant term in each regression is suppressed.  OLS regression with robust standard errors.   

 

Margin of Winning 

The third analytical method which we use to study bifurcation and catching up is the margin of 

winning in the PRWL and T treatments – the treatments that feature competition.  We look at 

how the margin of winning changes across time in these treatments.  It should be noted that 

participants only learn of whether they win or lose, rather than the margin by which they win or 

lose.  Despite this, the winning margin nevertheless serves as a latent measure of performance 

spread.  If forecast errors converge, then we would expect the margin of winning to shrink.  If 

this does indeed happen, we not only take this as stronger evidence to support catching up, but 

also evidence to support a stronger notion of it, given that the margin of winning is not actually 

observed by players themselves. 

We calculate the winning margin as the absolute difference between the forecast errors of 

winners and losers in each matched pair in the PRWL and T treatments.  Since winning is zero 

sum, the margin of winning is equivalent to the margin which the loser loses by.  There is a 
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unique observation for each randomly rematched pair for each of the 15 post-intervention rounds 

in the PRWL and T treatments. 

Table 6.10 Margin of Winning in PRWL and T Treatments 

Dep Var: 
Margin of 
Winning 

Pooled Single Cue Dual Cue 
Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 Rds 6-20 Rds 11-20 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

PRWL (base) (base) (base) (base) (base) (base) 

T 9.855 * 
(5.145) 

20.30 * 
(12.09) 

3.507 
(4.318) 

11.11 
(12.11) 

16.67 * 
(8.98) 

34.89 
(21.27) 

PRWL*Round 
0.215 

(0.251) 
0.047 

(0.601) 
0.064 

(0.316) 
-0.485 
(0.673) 

0.454 
(0.391) 

0.812 
(1.02) 

T*Round -0.207 
(0.283) 

-1.006 ** 
(0.503) 

-0.142 
(0.162) 

-1.155 *** 
(0.406) 

-0.231 
(0.527) 

-0.987 
(0.912) 

Constant 13.14 *** 
(3.130) 

16.03 * 
(8.990) 

9.087 *** 
(3.507) 

18.32 * 
(9.549) 

17.24 *** 
(5.300) 

11.55 
(15.96) 

       
Observations 1155 770 615 410 540 360 

Pairs 77 77 41 41 36 36 
R2 0.008 0.011 0.001 0.015 0.016 0.016 

Wald χ2 6.31 6.80 1.18 12.19 9.25 6.92 
p > χ2 0.097 0.078 0.758 0.007 0.026 0.075 

       
PRWL*Round 

= T*Round 
χ2 (1)= 1.24 
p = 0.265 

χ2 (1)= 1.80 
p = 0.179 

χ2 (1)= 0.34 
p = 0.561 

χ2 (1)= 0.73 
p = 0.394 

χ2 (1)= 1.09 
p = 0.297 

χ2 (1)= 1.73 
p = 0.188 

The margin of winning is the abs difference between forecast errors of winners and forecast errors of their matched partners.  Regressions are 
estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the participant level.  *, ** and *** 
represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared test are presented at the bottom of the table. 

 

With the PRWL treatment serving as the reference category, Table 6.10 regresses the winning 

margin against a dummy for the T treatment, and time trends represented by PRWL*Round and 

T*Round representing how the margin of winning changes over time in each of these treatments.  

A positive trend indicates bifurcation where the margin widens, while a negative trend indicates 

catching up.  Regressions are run over rounds 6 to 20 and also across rounds 11 to 20 for the 

pooled, single and dual cue data respectively. 

In every regression model in Table 6.10, the margin of winning in the T treatment is wider 

than in the PRWL treatment.  This is shown by the significant T dummy in models 1, 2 and 5.  
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In each of the regression models, the PRWL*Round coefficients are insignificant, suggesting that 

the winning margin in the PRWL treatment does not change over time.  The coefficient on the 

T*Round interaction is negative in every regression model and is statistically significant in the 

pooled and single cue regressions across rounds 11 to 20, as shown in models 2 and 4.  It shows 

that the winning margin reduces by approximately a single forecast error point every round in 

the T treatment, showing convergence of forecast errors between winners and losers.  Wald tests, 

however, do not show any differences in how the margin of winning changes between treatments. 

In summary, there is evidence that shows that forecast errors of participants converge to one 

another in the T treatment in the single cue task.  Under each of the three methods to study 

bifurcation and catching-up – trends for high and low performers, forecast error variation, and 

the margin of winning – the performance gap between high and low performers diminishes over 

time in the single cue T treatment.  We state this as Result 6.3 below: 

Result 6.3. 
The performance of low performers catches up to high performers in the 

single cue T treatment.   

In the dual cue T treatment, while the analyses of within-subjects standard deviation and 

winning margins also point in the same direction as in the single cue task towards catching up, 

there is no statistical evidence to support this.  This differs slightly from what we found earlier 

looking at the rates of learning of high and low performers, where we found evidence of 

bifurcation in the dual cue T treatment.  The difference in findings for the dual cue T treatment 

is entirely attributable to the different methodology involved in analysis.  However, the fact that 

catching up in the single cue treatment is re-affirmed under different analytical methodologies 

points towards its robustness. 

There are no signs of bifurcation nor catching up in the PRWL treatment.  Taken together, 

it suggests that these effects comes about not through the provision of relative feedback per se, 

but rather from the rank-based payoffs that feature in tournaments.   
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6.5. Summary and Discussion 

In this chapter, we made the distinction between high and low performers and conducted analyses 

along two main dimensions.  We first compared, separately, the forecast errors of high and low 

performers across different treatments.  High performers performed similarly to one another in 

each of the treatments, suggesting that treatment interventions have little effect on people of 

higher ability.  Low performers, on the other hand, performed significantly better in the PRWL 

and S treatments compared to the PR and T treatments, with no differences in performance 

between the two.  The findings for low performers mirror what we have found earlier in aggregate 

in Chapter 4, where we found that participants in the PRWL and S treatments had lower forecast 

errors than those in the PR and T treatments.  In other words, the overall results are driven by 

low performers. 

In terms of learning, earlier in Chapter 5 we found that learning is present only in the T 

treatment.  We repeat similar analyses looking at how forecast errors change over time for high 

and low performers.  There is evidence of learning in the T treatment for both high and low 

performers across rounds 6 to 20, as well as across rounds 11 to 20.  We also observe learning 

amongst high performers in the PR treatment that was not present at the aggregate level when 

we analysed learning in Chapter 5.   

While the first dimension of analyses focused on cross-treatment comparison within high and 

low performers, the second dimension took a different perspective and directly compared learning 

between high and low performers within treatments.  In particular, we placed emphasis on 

performance spread by looking for signs of bifurcation and catching up.  Bifurcation refers to the 

performance spread widening over time, while catching up refers to the spread narrowing.   

In looking at performance spread, we do so in three ways: first, by comparing the forecast 

error trends for high and low performers; second, by seeing how between-subjects standard 

deviation of forecast errors change over time; and third, by seeing whether the margin of winning 

diminishes or widens over time. 

First, by comparing the time trends of high and low performers, we find no learning for both 

high and low performers in the PRWL treatment.  This suggests that the performance gap 
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between high and low performers does not change over time.  In the T treatment, both 

bifurcation and catching up effects are observed.  Catching up occurs in the single cue T treatment, 

while bifurcation occurs in the dual cue T treatment. 

Second, by tracking how between-subjects standard deviations for each round in each session 

changes over time, we observe catching up in both sessions of the T treatment in the single cue 

task.  While the forecast error spread also seems to reduce over time in each of the dual cue T 

sessions, the trends are not statistically significant.  We also do not find evidence of any changes 

in spread in any of the PRWL sessions. 

The third and final analytical method looks at the difference in forecast errors between 

winning participants and their losing partners and how these change over time.  We again find 

that the margin of winning reduces in the single cue T treatment.  In the dual cue T treatment, 

and also in both single and dual cue PRWL treatments, the margin of winning does not change 

over time. 

Each of these three distinct methods of analysing bifurcation and catching up effects point 

towards catching up in the single cue T treatment.  There are mixed findings for the dual cue T 

treatment, depending on the analytical method.  Neither bifurcation nor catching up was 

observed in the single and dual cue PRWL treatments. 

The catching up effect that we observe in the single cue T treatment is particularly strong.  

First, because it persists even though random rematching discourages it.  Second, we know the 

effect is particularly strong because participants in our study do not actually observe the 

performance of their partners – only of winning and losing – so low performers would not know, 

based on their experience derived from play, how much extra effort to exert to adequately improve 

their chances of winning.  This additional source of uncertainty would be expected to discourage 

extra effort to be exerted by low performers.  Yet we observe that the margin of winning 

diminishes in the single cue T treatment, even though such margin is unobservable by players.  

Third, since our task is cognitively challenging – even in the single cue task – higher effort does 

not necessarily improve forecast accuracy.  So the fact that we do indeed observe better 

performance by low performers indicates a particularly large outlay of effort by them.  
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7. Results: Gender 

Previously in our regressions, we controlled for participants’ gender and found that it had a large 

influence on our results, where female participants did not perform as well as their male 

counterparts.  From the baseline regressions in Table 4.4, the estimated coefficients on the gender 

dummy were larger in magnitude than the coefficients on the treatment dummies, suggesting 

that the gender of a participant has a larger impact on their performance than the treatment 

interventions.  Here we look closer at the effect gender has on our results. 

In this chapter, we break down gender differences in performance and try to pinpoint the 

reason why they occur.  Is it due to inherent gender differences in participants’ ability, or due to 

gender differences in treatment effects, which we had not previously allowed for?  We distinguish 

these two effects by looking at whether performance differences exist in the first five rounds of 

play, and whether or not they carry over to the post-intervention rounds.  For example, if pre-

intervention gender differences do not exist in a particular treatment, but arise post-intervention, 

then these post-intervention gender differences must be due to differences in how treatment 

interventions affect participants of different gender. 

7.1. Pre-Intervention Gender Differences in Performance 

We first look for gender differences in performance across the first five rounds of play, the pre-

intervention rounds.  This allows us to ascertain whether or not there are any systematic 

differences in participants’ ability that is associated with gender.  If these differences in ability are 

present, we can mitigate its influence on our results by controlling for it. 

By looking at overall gender differences in each of the single and dual cue tasks over the pre-

intervention rounds, rounds 1 to 5, we see that women do not perform as well as men do.  Table 

7.1 presents basic regressions of forecast errors in the first five rounds of play against a single 

dummy variable representing women (men as the reference category) for each of the pooled, 

single and dual cue tasks.  Here we do not distinguish between the different treatments.  From 

these regressions, forecast errors are larger for women than for men in each of the pooled and 

single cue regressions, where the female gender dummy is highly significant at the 1% level.  For 
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the dual cue task in regression model 3, the gender dummy continues to be large and positive but 

is not statistically significant, with a p-value of 0.113. 

Table 7.1 Pre-Intervention Gender Differences in Forecast Errors 

Dep Var:  
Forecast Errors 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 

    

Male (base) (base) (base) 

Female 8.045 *** 
(2.042) 

4.757 *** 
(1.706) 

5.044 
(3.185) 

Constant 
17.95 *** 
(1.307) 

11.24 *** 
(1.092) 

28.79 *** 
(2.220) 

    
Observations 1465 765 700 
Participants 293 153 140 

R2 0.018 0.016 0.004 
Wald χ2 15.51 7.77 2.51 
p > χ2 0.000 0.005 0.113 

Regressions are estimated with Random Effects GLS over rounds 1 to 5.  Standard errors are in 
parentheses and are clustered at the participant level.  *, ** and *** represents the 10%, 5% and 1% 
level of significance respectively. 

 

It is not surprising that women do not perform as well as men.  It is well documented that 

women underperform men in complex problem solving tasks, while the differences are much less 

apparent under simple arithmetic (Hyde et al., 1990).  Women would therefore be expected to 

underperform men in our forecasting task, which is cognitively challenging. 

Narrowing down by treatment, we observe that pre-intervention gender differences are not 

present in every treatment.  Table 7.2 looks at gender differences in each of the treatments, where 

forecast errors across the first five rounds of play are regressed against gender-treatment 

interaction terms.  With two categories representing gender (male and female) and four categories 

for treatment (PR, PRWL, T and S), the full interaction is represented by seven interaction terms 

plus the reference category (male PR).   
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Table 7.2 Regressions of Pre-Intervention Gender Differences 
in Forecast Errors, by Treatment 

Dep Var: 
Forecast Errors 

Pooled Single Cue Dual Cue 
Model 1 Model 2 Model 3 

    

Male PR (base) (base) (base) 

Female PR 8.846 
(5.397) 

-0.494 
(4.084) 

25.39 * 
(7.931) 

Male PRWL -4.391 
(3.334) 

-3.685 
(3.213) 

-0.428 
(5.635) 

Female PRWL 
1.686 

(3.494) 
0.906 

(3.446) 
2.826 

(5.232) 

Male T -1.380 
(4.113) 

-2.142 
(4.144) 

6.301 
(6.840) 

Female T 4.284 
(3.302) 

-0.916 
(3.490) 

6.580 
(4.075) 

Male S -6.826 *** 
(3.165) 

-6.710 ** 
(2.902) 

1.483 
(5.331) 

Female S 5.025 
(3.293) 

6.413 
(4.251) 

2.233 
(4.321) 

Constant 21.15 *** 
(2.313) 

14.69 *** 
(2.782) 

27.24 *** 
(3.029) 

    
Observations 1465 765 700 
Participants 293 153 140 

R2 0.025 0.034 0.018 
Wald χ2 25.10 32.99 6.51 
p > χ2 0.001 0.000 0.482 

    

Female PR = 0 χ2(1) = 2.69 
p = 0.101 

χ2(1) = 0.01 
p = 0.904 

χ2(1) = 3.76 
p = 0.052 

Male PRWL = 
Female PRWL 

χ2(1) = 2.93 
p = 0.087 

χ2(1) = 3.14 
p = 0.077 

χ2(1) = 0.26 
p = 0.610 

Male T = Female T χ2(1) = 1.87 
p = 0.171 

χ2(1) = 0.11 
p = 0.742 

χ2(1) = 0.00 
p = 0.967 

Male S = Female S χ2(1) = 13.83 
p = 0.000 

χ2(1) = 15.62 
p = 0.000 

χ2(1) = 0.02 
p = 0.889 

Regressions are estimated with Random Effects GLS over rounds 1 to 5.  Standard errors in parentheses 
are clustered at the participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance 
respectively.  Wald chi-squared tests are presented at the bottom of the table, with bold typeface 
indicating significance at the 10% level or better. 
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In Table 7.2, we see that the coefficients on the female interactions for each treatment are 

consistently larger than those for the corresponding male interaction terms, suggesting that 

women tend to perform worse across the first five rounds.  However, these gender differences in 

performance are not always statistically significant.  At the bottom of the regression table, we 

present a series of Wald chi-squared tests of gender differences for each treatment.  In the pooled 

regression in model 1, women perform significantly worse than men in the PRWL and S 

treatments – and marginally misses significance in the PR treatment, with a p-value of 0.101.  In 

the single cue task in model 2, we again observe pre-intervention gender differences in 

performance across the first five rounds of play in the PRWL and S treatments.  In the dual cue 

task, pre-intervention gender differences only occur in the PR treatment. 

It should be noted that we do not observe significant gender differences in the T treatment 

over the first five rounds of play in each of the pooled, single and dual cue regressions.  We will 

come back to this finding shortly.   

The observation that gender differences in performance occur in some treatments but not 

others can only be attributed to sampling variation.  This is because treatments – at least the PR, 

PRWL and T treatments – are identical in the first five rounds of play.  As such there is no other 

plausible explanation.   

7.2. Post-Intervention Gender Differences in Performance 

Having examined pre-intervention gender differences in performance, we now proceed to 

analysing gender performance differences across rounds 6 to 20, the post-intervention rounds.  

Table 7.3 present regressions of post-intervention gender differences when the single and dual 

cue treatments are pooled together.  We opt to pool the data to improve statistical power, 

especially when we are disaggregating analyses at the gender level.  From the regression table, 

model 1 regresses forecast errors against the seven gender-treatment interaction terms (with male 

PR serving as the reference category) and a linear time trend denoted by ‘Round’.  Regression 

model 2 builds on the previous regression by additionally controlling for participants’ ability.  

Ability, as was defined earlier in Chapter 6, is the median forecast error for each participant across 

the first five rounds.  As with forecast errors, higher values of this ability variable indicates lower 

ability.  Regression model 3 interacts ability by gender.  Panel B of Table 7.3 consists of three 
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series of hypothesis tests.  The first series tests for gender differences within each treatment.  The 

second and third series of tests looks for treatment differences amongst male and female 

participants respectively.   

In model 1 of the regressions in Table 7.3, we see that female participants perform worse than 

male participants across the post-intervention rounds in every treatment.  The first set of Wald 

tests in Panel B of the table show that these gender differences are highly significant in each of 

the four treatments, with gender differences significant at the 5% level in the PR treatment, and 

at the 1% level in each of the other treatments.   

In regression model 2 of Table 7.3, we additionally control for the ability of participants.  

Since gender differences in ability are present in some treatments, we control for the ability and 

see whether post-intervention gender differences persist or not.  Given that there are post-

intervention gender differences in all treatments, if gender differences are no longer significant 

when ability is controlled for in particular treatments, then the post-intervention gender 

differences in these treatments are merely artefacts from earlier rounds.  On the other hand, if 

gender differences persist, then they cannot be explained by gender differences in initial ability.  

In this case, gender differences would be associated with gender differences in treatment effects, 

where the treatment interventions have different effects on participants of different gender. 

In model 2 of the regressions, we no longer find significant gender differences in the PR, 

PRWL and S treatments after ability has been controlled for – with ability being highly significant.  

Given that gender differences in ability have been observed in these treatments, the finding that 

post-intervention differences dissipate when ability is controlled for suggests that post-

intervention gender differences in these treatments are carried over from the pre-intervention 

rounds. 
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Table 7.3 Regressions of Post-Intervention Gender Differences in Forecast Errors 

Panel A: Regression Results 

Dep Var: 
Forecast Errors Model 1 Model 2 Model 3 

    

Male PR (base) (base) (base) 

Female PR 7.820 ** 
(3.856) 

2.678 
(2.474) 

1.198 
(2.688) 

Male PRWL 
-2.884 
(2.056) 

-0.689 
(1.687) 

-0.881 
(1.626) 

Female PRWL 
3.509 

(2.617) 
2.096 

(2.093) 
0.775 

(2.315) 

Male T -1.373 
(2.544) 

-1.382 
(1.744) 

-1.382 
(1.709) 

Female T 10.10 *** 
(3.656) 

7.095 ** 
(3.214) 

5.706 * 
(3.199) 

Male S -2.480 
(2.398) 

0.199 
(1.759) 

-0.036 
(1.741) 

Female S 4.425 * 
(2.400) 

3.299 
(2.104) 

1.990 
(2.361) 

Round 
-0.126 * 
(0.066) 

-0.126 * 
(0.066) 

-0.126 * 
(0.066) 

Ability  
0.624 *** 
(0.055)  

Male Ability   0.569 *** 
(0.067) 

Female Ability   0.651 *** 
(0.068) 

Constant 16.78 *** 
(1.910) 

7.117 *** 
(1.774) 

7.966 *** 
(1.597) 

    
Observations 4395 4395 4395 
Participants 293 293 293 

R2 0.033 0.154 0.155 
Wald χ2 46.80 193.8 245.1 
p > χ2 0.000 0.000 0.000 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses 
are clustered at the participant level.  *, ** and *** represents the 10%, 5% and 1% level of significance 
respectively. 
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Panel B: Wald Chi-Squared Tests of Hypotheses 

 Model 1 Model 2 Model 3 
    

Males vs Females    

Female PR = 0 χ2(1) = 4.11 
p = 0.043 

χ2(1) = 1.17 
p = 0.279 

χ2(1) = 0.20 
p = 0.656 

Male PRWL =  
Female PRWL 

χ2(1) = 7.78 
p = 0.005 

χ2(1) = 2.37 
p = 0.124 

χ2(1) = 0.56 
p = 0.454 

Male T =  
Female T 

χ2(1) = 9.44 
p = 0.002 

χ2(1) = 7.72 
p = 0.005 

χ2(1) = 5.07 
p = 0.024 

Male S =  
Female S 

χ2(1) = 8.38 
p = 0.004 

χ2(1) = 2.65 
p = 0.104 

χ2(1) = 0.77 
p = 0.379 

    
Male Ability = 
Female Ability   χ2(1) = 0.73 

p = 0.393 
    

Treatment Effects: 
Male    

Male PRWL = 0 χ2(1) = 1.97 
p = 0.161 

χ2(1) = 0.17 
p = 0.683 

χ2(1) = 0.29 
p = 0.588 

Male PRWL =  
Male T 

χ2(1) = 0.47 
p = 0.494 

χ2(1) = 0.25 
p = 0.614 

χ2(1) = 0.14 
p = 0.705 

Male T = 0 χ2(1) = 0.29 
p = 0.589 

χ2(1) = 0.63 
p = 0.428 

χ2(1) = 0.65 
p = 0.419 

Male S = 0 χ2(1) = 1.07 
p = 0.301 

χ2(1) = 0.01 
p = 0.910 

χ2(1) = 0.00 
p = 0.983 

Male T = Male S χ2(1) = 0.19 
p = 0.662 

χ2(1) = 1.17 
p = 0.280 

χ2(1) = 0.84 
p = 0.360 

    
Treatment Effects: 

Female    

Female PR = 
Female PRWL 

χ2(1) = 1.17 
p = 0.280 

χ2(1) = 0.05 
p = 0.815 

χ2(1) = 0.03 
p = 0.866 

Female PRWL = 
Female T 

χ2(1) = 3.04 
p = 0.082 

χ2(1) = 2.36 
p = 0.124 

χ2(1) = 2.32 
p = 0.128 

Female PR = 
Female T 

χ2(1) = 0.23 
p = 0.629 

χ2(1) = 1.56 
p = 0.211 

χ2(1) = 1.62 
p = 0.203 

Female PR = 
Female S 

χ2(1) = 0.78 
p = 0.378 

χ2(1) = 0.06 
p = 0.803 

χ2(1) = 0.10 
p = 0.751 

Female T =  
Female S 

χ2(1) = 2.44 
p = 0.119 

χ2(1) = 1.36 
p = 0.243 

χ2(1) = 1.31 
p = 0.252 

Bold typeface indicates statistical significance at the 10% level or better. 
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In the T treatment, we continue to see men performing significantly better than women.  

From Table 7.2, there were no significant gender differences in the pre-intervention rounds.  As 

such, we continue to observe post-intervention gender differences in performance irrespective of 

whether ability has been controlled for or not. 

Given that we had not found any gender differences in performance in the first five rounds 

of play in the T treatment, it is interesting that we find such differences in the post-intervention 

rounds.  This is explained by gender differences in how players respond to the tournament pay 

scheme introduced after round 5.  Women perform significantly worse under tournaments than 

men, and is not attributed to gender differences in forecasting ability.  At a later point, we 

investigate whether gender differences in competitiveness could be driving this result. 

Regression model 3 of the regressions in Table 7.3 show identical results to those in model 2.  

Model 3 is similar to model 2, but instead interacts players’ ability by gender.  This regression 

specification allows ability to affect the performance of male and female participants in different 

ways, even if the ability of male and female participants is identical.  We find that both male and 

female ability interactions are highly significant, but are not different from one another.  

Accordingly, the pattern of results do not differ much between regression models 2 and 3. 

Our main finding is summarised as Result 7.1 below: 

Result 7.1. 

Post-intervention gender differences in performance occur in all treatments.  

Other than for the T treatment, these gender differences can be explained by 

gender differences in ability. 

It is interesting to point out a general pattern in the results that we find.  In treatments where 

there were initial gender differences in ability, and where post-intervention gender differences 

exist, these post-intervention differences are explained solely by gender differences in ability.  In 

addition to this, in the T treatment, we observe post-intervention gender differences even though 

they were not present pre-intervention.  These differences are associated with gender differences 

in how men and women respond to the treatment interventions, namely interventions associated 

with competition. 
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7.3. Gender Differences in Treatment Effects 

In the previous section, we looked at gender differences in performance in each of the treatments 

and found that post-intervention gender differences in some treatments were associated with 

gender differences in how participants responded to these treatment interventions.  We now 

proceed by comparing forecast errors across treatments, for men and women separately.  We again 

refer back to the estimated gender-treatment interacted dummies from Table 7.3, but now we 

compare dummies across treatments for each gender.  The appropriate hypothesis tests are 

presented in Panel B of the tables. 

From the regressions in Table 7.3, there are no differences in the performance of male 

participants across treatments in each of the regression models.  This suggests that men are 

unaffected by the treatment interventions that take place.   

Earlier we found that women in the T treatment performed worse than their male 

counterparts.  From model 1 of Table 7.3, we observe that women in the T treatment tend to 

perform worse than women in other treatments.  A Wald test shows that female T participants 

perform significantly worse than female PRWL participants, with a p-value of 0.082.  This level 

of significance, however, drops once players’ ability is controlled for in models 2 and 3, with the 

p-value of 0.124 in model 2.   

7.4. Why Women Perform Worse in the T Treatment 

We have found that women perform significantly worse than men in the T treatment across the 

post-intervention rounds.  These gender differences are not attributable to initial differences in 

players’ ability, but rather to gender differences that relate to the treatment intervention.  In this 

section of the chapter, we focus on the competition aspect of the T treatment and investigate 

possible reasons why women perform worse than men.  In particular, we investigate whether 

gender differences in competitiveness are driving gender differences in performance. 

A reason why women do not perform as well as men in the T treatment is because women are 

typically less competitive than men.  In an experiment where participants are given the choice to 

be remunerated by piece rates or by a tournament-based scheme, Niederle and Vesterlund (2007) 

found that 73% of men selected tournaments, while only 35% of women did so.  In our 
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experiment, although participants do not face the decision of tournament entry, if women do 

indeed shy away from competition, they may do so by exerting less effort when they are 

exogenously assigned to a tournament – as in our T treatment.  As men embrace competition, 

we would expect them to exert higher effort than women. 

While tournament entry decisions do not feature in our experiment, we proxy participants’ 

competitiveness by their trait anxiety, which we had elicited from the pre-task questionnaire.  

Trait anxiety measures how prone participants are to stress and situations that make them anxious.  

According to Segal and Weinberg (1984), trait anxiety is correlated with competitiveness such 

that lower levels of competitiveness are represented by higher levels of trait anxiety.  They also 

find that women report higher levels of trait anxiety than men do. 

In analysing the effect that competitiveness has on people’s performance in the T treatment, 

we once again draw on the ex-post distinction of ‘winners’ and ‘losers’ that we first introduced in 

Section 4.3.1.  Winners are defined to be participants who have won more than half of the post-

intervention rounds against their random partner – in other words, those who have won eight or 

more of the fifteen post-intervention rounds.  On the other hand, losers have lost more rounds 

than they have won. 

Table 7.4 Classification of Winners and Losers by Gender 

 
Winners Losers 

Male Female Male Female 
     

Pooled T 20 18 12 25 
SC T 12 8 9 10 
DC T 8 10 3 15 

Count of ‘winners’ and ‘losers’ by gender in the T treatment.  Winners are participants who have won 8 or 
more of the 15 post-intervention rounds, while losers have won 7 or less.  The sum of all male and female 
winners and losers roughly sum to the number of participants in each treatment.  There are discrepancies 
because a small number of participants did not provide gender information in the post-task questionnaire. 

 

Table 7.4 shows how male and female participants in the T treatment are classified as winners 

and losers.  Consistent with the gender differences that we found earlier in the chapter, we find 

clear differences in how winners and losers are classified.  There tend to be a smaller incidence of 

female winners than male winners, and a greater incidence of female losers than male losers.  A 
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series of Probit regressions, which we do not present, show that women are less likely than men 

to be winners. 

We investigate the effect of competitiveness on winners’ and losers’ performance in Table 7.5.  

The table presents three regression specifications for both winners and losers.  In the first 

specification, we regress forecast errors against the gender dummy (male as the reference category).  

The second specification additionally controls for trait anxiety, allowing us to assess the effect of 

competitiveness.  The third specification regresses against gender as well as the gender interactions 

of trait anxiety, allowing trait anxiety to have different effects according to participants’ gender.  

We run these regressions separately for winners and losers, so regression models 1 to 3 in Table 

7.5 are for winners in the T treatment, while models 4 to 6 are for losers.  As we did before, we 

pool the single and dual cue observations for each treatment to improve statistical power.   

Table 7.5 Regressions of Winners’ and Losers’ Forecast Errors against Trait Anxiety 

Dep Var: 
Forecast Errors 

Winners Losers 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       

Male (base) (base) (base) (base) (base) (base) 

Female 4.506 
(3.205) 

2.549 
(3.057) 

-36.13 * 
(20.62) 

14.45 ** 
(6.212) 

13.15 ** 
(6.035) 

9.655 
(31.71) 

Trait Anxiety  
0.399 * 
(0.223) 

  
0.348 

(0.439) 
 

Male × Tr Anx   
-0.281 
(0.428) 

  
0.299 

(0.334) 

Female × Tr Anx   
0.618 *** 
(0.230) 

  
0.387 

(0.756) 

Constant 11.62 *** 
(1.818) 

-4.348 
(9.604) 

24.48 
(18.61) 

17.38 *** 
(3.872) 

4.625 
(18.20) 

6.525 
(15.13) 

       
Observations 570 525 525 555 540 540 
Participants 38 35 35 37 36 36 

R2 0.013 0.026 0.042 0.035 0.034 0.034 
Wald χ2 1.98 3.43 7.70 5.41 4.81 5.04 
p > χ2 0.160 0.180 0.053 0.020 0.090 0.169 

       

Male × Tr Anx = 
Female × Tr Anx 

  χ2 = 3.42 
p = 0.065 

  χ2 = 0.01 
p = 0.915 

Regressions are estimated with Random Effects GLS over rounds 6 to 20.  Standard errors in parentheses are clustered at the participant level.  
*, ** and *** represents the 10%, 5% and 1% level of significance respectively.  Wald chi-squared tests are presented at the bottom of the table, 
with bold typeface indicating significance at the 10% level or better. 
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In model 1 of Table 7.5, we find that female winners tend to have larger forecast errors than 

for male winners, although the difference is not statistically significant.  In model 2, we find that 

higher trait anxiety significantly worsens the performance of T winners.  When we distinguish 

the effects for male and female winners, we find that trait anxiety affects female players but not 

male players.  The Wald test accordingly shows that trait anxiety affects male and female winners 

differently. 

From model 3 of Table 7.5, the significant effect of trait anxiety for female T winners 

confirms competiveness as one of the factors that could be driving gender performance differences 

in the T treatment.  While men are not affected by their self-reported levels of trait anxiety, 

women perform worse as their trait anxiety levels increase.  Since higher levels of trait anxiety is 

associated with lower competitiveness, our findings here show that the performance of women is 

lower if they are less competitive, or conversely, that the performance of women is higher as they 

are more competitive.  In fact, from model 3 of Table 7.5, the trait anxiety effect is so salient that 

once it is interacted by gender, the Female dummy is now negative and significant – indicating 

that female winners in the T treatment actually outperform male winners once the effect of 

competitiveness is controlled for. 

In models 4 to 6, we focus on gender differences for losers in the T treatment.  Regression 

models 4 and 5 show women performing worse than men.  The gender difference is no longer 

significant when gender-interacted trait anxiety terms are included in model 6 – although both 

trait anxiety terms are insignificant.  Overall, it appears that competitiveness has little effect on 

the performance of losers. 

In review, we find evidence that gender differences in competitiveness are driving gender 

differences in performance for certain people.  For winners in the T treatment, competitiveness 

has no effect for men, while significantly affects the performance of women, where lower levels 

of competitiveness leads to lower performance. 

Result 7.2. 
Gender differences in how competitiveness affects players can, at least in part, 

explain the post-intervention gender differences in the T treatment.  
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Competitiveness, however, cannot fully explain the gender differences that we observe in the 

T treatment.  The elicited trait anxiety scores, which we use to proxy competitiveness, does not 

seem to affect T losers. 

7.5. Summary and Discussion 

This chapter has found that there exist post-intervention gender differences in performance in all 

treatments, when the data is pooled.  In most treatments, these post-intervention gender 

differences are accounted for by differences in ability.  However in the T treatment, post-

intervention gender differences in performance cannot be explained by ability.  Rather, these 

differences are attributed to the differential effects the T treatment intervention have on 

participants of different gender. 

Competition is a central element in the T treatment.  As such, we ask whether gender 

differences associated with competitiveness could explain the post-intervention gender 

performance differences that we observe in the T treatment.  With participant’s self-reported trait 

anxiety scores as a proxy of their underlying competitiveness, we find that competitiveness can 

partially explain the gender performance differences that we observe. 
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8. Conclusion 

8.1. Summary 

This thesis studied the effect payoffs and feedback has on the performance of experimental 

workers in a cognitively challenging forecasting task.  Our three initial research questions were: 

1) which of the three pay schemes of piece rates, tournaments and salaries bring about the best 

performance from workers; 2) what role do relative performance feedback and rank-dependent 

payoffs have on the performance of tournaments; and 3) and how do the different pay schemes 

and relative performance feedback impact on learning? 

These three research questions were addressed in an experiment with a real-effort forecasting 

task, where participants were asked to predict the underlying price of a hypothetical stock based 

on the observation of two numerical cue values for each of twenty rounds.  There are two versions 

of the task: the single cue task has one of the cue values fixed at a particular value in every rounds, 

while both cue values change in the dual cue task.  Forecast errors, the absolute difference between 

the predicted value and the actual underlying stock price, are our primary measure of performance 

in this task, where they indicate the accuracy of the prediction. 

Our experimental treatments vary along two dimensions of pay schemes and feedback.  We 

study three different pay schemes: piece rates, winner-takes-all tournaments and salaries.  Piece 

rates pay players more for better individual performance.  Tournaments pay a fixed prize to the 

winner of a matched pair, while the loser receives nothing.  Salaries pay players a pre-announced 

fixed payment irrespective of their performance. 

Treatments also differ in terms of the feedback that is provided to players.  In the default 

feedback protocol, players only observe their forecast errors at the end of every round, allowing 

them to gauge their individual performance.  The other feedback protocol provides additional 

information about whether players have performed better or worse than a random partner.  This 

feedback is context-loaded, informing players whether or not they have ‘won’ or ‘lost’.  This 

relative feedback simulates competition between players. 

Our treatments are as follows.  The Piece Rate (PR) treatment pays participants a piece rate 

on their forecast errors and does not provide relative performance feedback to them.  The Piece 
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Rate Win Lose treatment (PRWL), pays participants piece rates while providing such feedback.  

This feedback has no effect on the piece rate payoffs in the PRWL treatment.  The PR and PRWL 

treatments differ only in terms of whether relative feedback is provided or not.  In the 

Tournament (T) treatment, players are randomly matched with a partner, and is subsequently 

rematched every round.  The player who has the smaller forecast error of the two ‘wins’ while 

their partner ‘loses’.  The winner receives $1 for winning, while the loser receives nothing.48  

Feedback is identical in the PRWL and T treatments, but differ in terms of pay scheme.  The 

Salary (S) treatment pays participants a pre-announced amount of $20, so payoffs do not depend 

on performance. 

Our results show that in terms of pay schemes, salaries perform particularly well – with 

forecast errors lower in the S treatment than in both the PR and T treatments.  This finding is 

consistent with Cognitive Evaluation Theory (Deci & Ryan, 1985).  We also find that 

tournaments perform similarly to piece rates, commensurate to the Piece Rate Equivalence 

property of tournaments (Lazear & Rosen, 1981).   

Decomposing tournaments, we find that the mere act of competing motivates performance, 

where the PRWL treatment performs better than the PR treatment.  Controlling for this effect 

and looking solely in terms of payoffs, we also find that tournaments no longer perform as well 

as piece rates.  The PRWL treatment performs better than the T treatment, suggesting that the 

rank-dependent payoffs are not as effective as piece rates in eliciting effort.  This suggests that 

competition plays a crucial role in motivating performance under tournaments, where it appears 

that it is driving Piece Rate Equivalence. 

Our results show that, overall, the PRWL and S treatments perform particularly well 

compared to the PR and T treatments.  When we disaggregate our results by ability, we find that 

most of these effects are borne out by low performers.  Forecast errors of high performers do not 

differ across treatments.   

                                                 

48  We also have the Tournament-No-Info (TNI) treatment, whereby players engage in tournament play as in the T treatment, but have relative 
feedback withheld from them.  During play, they are unaware of how they are performing relative to their partners.  Relative feedback is provided 
only at the end of the game.  We only have data for the TNI treatment for the dual cue task. 
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When we turn our attention to performance dynamics, we find that learning is only present 

in the T treatment.  This is represented by both improved forecast accuracy and forecast 

consistency over time.  The learning under tournaments is attributed to the stark differences in 

payoffs between winning and losing, which provide a strong impetus for players to improve their 

performance, in turn improving their chances of winning.  In the single cue T treatment, the rate 

of learning is significantly higher amongst low performers than high performers, where we observe 

significant catching up and convergence of performance. 

In contrast, while the provision of relative feedback motivates performance, it does not affect 

players’ learning.  Winning improves players’ perceptions of competency, but has no influence 

on their future performance.  The PRWL treatment does not exhibit any learning.   

When analysing effects by gender, we find that women perform significantly worse than men 

in every treatment.  In most treatments, these post-intervention differences in performance can 

be explained by differences in participants’ ability.  However, this is not the case for the T 

treatment, where post-intervention gender differences in performance are observed while the 

corresponding differences in ability are absent.  This gender performance difference in the T 

treatment is attributed to women reacting adversely to the T treatment intervention.  Such gender 

differences in performance in the T treatment can, in part, be explained by female participants 

‘shying away’ from competition by reducing their performance. 

8.2. Implications for Productivity 

Our study has important implications for the productivity of workers.  Based on our findings, 

there are readily available tools for managers to improve worker productivity.  The easiest way to 

do so is by introducing an element of competition.  This competition can be simulated by 

feedback on how well a worker is performing compared to his peers.  As such, it is a relatively 

cost-effective way to improve worker performance.  The motivating effect associated with relative 

feedback kicks in immediately and remains constant over time.  This feedback, however, does 

not spur learning – meaning that it is well suited for short term positions, or positions with high 

turnover.  It is also suited to jobs where the task is mechanical and there is little scope for learning 

and long term improvement. 
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Tournaments are more appropriate if learning is particularly valued.  We found that although 

tournaments did not perform well overall, it is associated with a high rate of learning.  In long 

tenured positions, tournaments will enable workers to be most productive.  If the task at hand is 

not overly difficult, tournaments are especially effective in motivating low performing workers to 

learn and perform.  There is a caveat however.  While men perform particularly well under 

tournaments, women underperform.   

Aside from relative performance feedback, productivity can be improved by paying workers a 

fixed salary instead of performance pay schemes.  Neither piece rates nor tournaments perform 

as well as a flat salary.  However, like the provision of feedback, the motivating effects of salaries 

are not dynamic.   

8.3. Limitations and Directions for Future Research 

Our study utilised a laboratory experiment to study the effect of pay schemes and feedback on 

the productivity of experimental workers.  The design of the experiment restricts the scope of our 

analyses and affects how the findings are interpreted.  Here we reflect on our experiment and 

discuss things that – with the benefit of hindsight – we might have done differently.  These also 

indicate areas where future research could be directed. 

One limitation of our study is the number of participants that took part in our experiment.  

In places, results pointed in the direction that we would expect, but were nevertheless insignificant 

at conventional levels.  In some instances, these coefficients were large in magnitude but were also 

accompanied by large standard errors.  A larger number of observations would have reduced these 

standard errors, making our results more salient.   

Another limitation of our study is that our focus is on final performance, rather than effort.  

There is therefore an inherent disconnect with theoretical models, where agents are modelled to 

exert effort and effort in turn leads to performance via a production function.  It is empirically 

possible that our interventions increase effort but this does not translate into higher performance.  

Upon reflection, we could potentially proxy effort by measuring the duration of time a participant 

takes before they make their forecast.  This amount of time can be thought of as the time which 

participants have devoted towards thinking and processing the available information to them, 
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with the goal of making an accurate forecast.  To our knowledge, there are few studies that study 

the effect of incentives and feedback on both effort and performance. 

A significant part of our analyses was dedicated to learning.  Our experiment consisted of 20 

rounds, for which 15 studied the effects associated with the treatment interventions.  It would 

have been appropriate to study learning over a longer time horizon.  A longer time horizon would 

also provide a greater number of observations to work with. 
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Appendix 1. Participant Recruitment Message 

 
To: Students at the University of Auckland  
 
My name is Tony So. I am a Ph.D. student in the Department of Economics. I am writing to 
invite you to take part in a research project that I am currently working on. In order to recruit 
participants for my study I am approaching students at the University and I am making this 
announcement in a number of different courses with the permission of the course instructor. The 
findings of this study will be published in scholarly journals at a date in the future.  
 
The University of Auckland is providing the funds for this study. I have received approval from 
the University of Auckland Human Participants Ethics Committee to undertake this project. 
 
Your participation in this study is completely voluntary and you are free to withdraw at any point 
during the study if you wish to do so. You do not have to provide a reason for your withdrawal 
and you will not incur any penalty for doing so.  
 
Your participation in the study will not have any effect on your grade for the course. You do not 
need any discipline-specific knowledge in order to take part.  
 
My research looks at individual decision making under conditions of uncertainty. I will provide 
you with more detailed instructions and explain the task that you will be expected to perform if 
you sign up to take part.  
 
There will be a financial remuneration for your participation. You will get $5.00 just for showing 
up but in order to get this you must arrive on time. You can expect to make around $20.00 in 
total for participating in one session. The actual amount will vary based on the decisions you 
make in the experiment. However you cannot lose money and everyone will make a positive sum 
of money. On average participants will make around $20.00. The money that you make in the 
session is private information and will not be revealed to any other participant. We encourage 
you to not reveal this information to any other participant.  
 
Each of you will take part in only one session of the study which will last about 90 minutes. The 
experiments will be run in a University Computer Lab (listed below). You will be in a group with 
other participants. Once all participants signed up for a session have assembled, I will read you 
the instructions describing what you have to do. After the instructions are read to you, and all 
questions answered, I will ask you to make a decision for a number of rounds.  
 
Typically this decision will involve picking a number for each round and entering that number 
using the computer keyboard. Based on the number you pick and the numbers picked by others 
in your group, you will earn a certain amount of money. After a certain number of rounds the 
session will come to an end and you will be paid your earnings in the experiment in cash.  
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There is also no physical or psychological risk or discomfort involved. Participants are free to 
make decisions at their own pace with no pressure on your time. There is no audio or videotaping 
involved.  
 
Only the researchers involved will have access to the data collected during these experiments. 
They will be kept in a locked filing cabinet or as password protected computer files in my office 
to which only we have the keys. The data is collected confidentially. You will never be identified 
by your name. Every participant in the experiment will be assigned an ID number and all the 
data will be filed using that ID number. There is no way to connect you personally to the decisions 
you made in the experiment. All the computer files will be permanently deleted after six years.  
 
Currently we are recruiting participants for the following dates.  
 
[a list of session dates] 
 
All sessions will be held at the CISCO Lab (Lab 05) on Level Zero of the Owen G Glenn 
Building (the business school building), located at 12 Grafton Road. 
 
All sessions will start at 4:00 PM and last for about 90 minutes.  
 
NOTE: Please sign up for ONLY ONE of the following sessions! HOWEVER THESE ARE 
NEW EXPERIMENTS AND YOU CAN SIGN UP FOR THESE EVEN IF YOU HAVE 
PARTICIPATED IN AN EXPERIMENT THIS SEMESTER OR THIS YEAR.  
 
Please click on the following like to sign-up.  
 
[sign up link] 
 
(You should be able to click or “Ctrl+Click” on this link to get to the relevant page. If that does not 
work then cut and paste the URL into your browser window. You will need your UPI and 
NetAccount/Cecil password to access this page.)  
 
Enter your first and last name, email address and choose ONE of the dates from the drop-down 
list. Please do NOT sign up for more than one session. You will be sent a reminder to the email 
address you provide a day before the session you have signed up for.  
 
If you think you need more information before you can participate then please feel free to contact 
me at [contact number] or e-mail me [contact email].  
 
The Head of the Department of Economics is: Professor Basil Sharp, Department of Economics, 
The University of Auckland, Private Bag 92019, Auckland. Telephone: [contact number], e-mail: 
[contact email] 
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN SUBJECTS ETHICS 
COMMITTEE on 28/02/2011, for a period of 3 years, from 28/02/2011, Reference 
2011/007  
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Appendix 2. Instructions for Forecasting Game 

A2.1. General Instructions 

 
The University of Auckland 

 
Instructions for the Experiment 

 
WELCOME. 

PLEASE TURN YOUR CELL PHONES OFF NOW 
 
This is a study examining the manner in which people make decisions.  The University of 
Auckland has provided the funds to conduct this research.  If you follow the instructions and 
make good decisions you might earn a considerable amount of money. 
 
At the beginning of the session each person will be given an Earnings Account with $5.00 in it.  
You will participate in a decision making task for each of 20 rounds.  You will have the chance 
to earn money each round, with your earnings for each round being added to your Earnings 
Account.  At the end of the experiment, the balance of your Earnings Account will be paid to you 
in cash. 
 
[In the Salary treatment, the previous paragraph was replaced by the following: 
 
At the beginning of the session each person will be given an Earnings Account with $5.00 in it.  You 
will participate in a decision making task for each of 20 rounds.  You will be paid $20 for participating 
in the study.  At the end of the experiment, the $20 will be paid to you in cash.] 
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__________________________________________________________________________ 
DESCRIPTION OF THE TASK: 
In each round you will be asked to predict the future value of a fictitious ‘stock’.  The value of 
this stock is unknown to all participants, but you will be able to observe two CUES that can help 
you form your forecast.  These cues can be used to predict the stock’s value much the same way 
that the amount of rainfall and the average temperature can be used to predict the quality of a 
corn crop, the number of unoccupied apartments and student enrolment this year can be used to 
predict next year’s rent increases, or the demand for sports cars can be used to predict their future 
price. 
__________________________________________________________________________ 
In each round you will be shown the values for the two CUES. 
 
NOTE: One of the CUE values will always be fixed at 150 for each of the 20 rounds. 
The other cue value will change each round.  But the relation of the cue values to the 
stock’s price will remain the same. 
 
Example: 
For example let the value of Cue A is fixed at 150.  Suppose the values for the cues in a round 
were given as: 
CUE A = 150 
CUEB = 100 
 
You will be asked to predict the price of the stock given these two cue values. 
The next round one of the cues will take on a different value, such as: 
CUE A = 150 
CUEB = 450 
 
You will then predict that round’s price using these new cue values.  Remember that even though 
the values of the cues change, the underlying relation between the cue values and the stock’s price 
remains the same.  Thus, in order to make accurate forecasts you will need to determine the 
relation between the cues and the price of the stock. 
__________________________________________________________________________ 
YOUR FORECASTING ERROR 
After making your forecast, the computer will calculate the distance between your forecast and 
that round’s actual price (your absolute forecasting error).  This amount will be your forecast 
error. 
 
Example: 
Suppose your forecast was 230.  If the actual price of the stock was 200 then your forecast error 
would be 30: 
Your forecast error = 230 – 200 = 30 
 
Suppose your forecast was 148.  If the actual price of the stock was 200 then your forecast error 
would be 52: 
 
Your forecast error = 200 – 148 = 52 
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__________________________________________________________________________ 
YOUR EARNINGS IN EACH ROUND: 
In each round, your earnings will depend on your forecast error.  Your earnings in each round 
will equal $1 less your forecast error for that round. 
 
That is, your earnings (E) in each round will be given by E = $1.00 – (forecast error). 
 
Example: 
Suppose your forecast error in a particular round is 30.  Then you will earn $0.70 in that round.  
This is because: 
$1.00 – $0.30 = $0.70 
 
Suppose in another round your forecast error is 8.  Then you will earn $0.92 in that round.  This 
is because: 
$1.00 -- $0.08 = $0.92 
 
Note that if your error is 100 or over, then you will earn nothing in that round.  The minimum 
amount you can earn in a round is $0.00. 
 
Suppose in another round your forecast error is 102.  Then you will earn $0.00 because: 
$1.00 --$1.00 = $0.00 
 
 
[This passage was also included in the Salary Treatment:  
Note that your actual earnings for the experiment will be $20.00, regardless of your forecasting 
accuracy.] 
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SPECIFIC INSTRUCTIONS: 
 
Before Round 1: 
You will be shown 10 examples of cues and stock prices.  You will have 5 minutes in which to 
examine these examples. 
 
Round 1: 
At the end of the 5-minute example round you will be shown the first two cue values and asked 
to forecast the price of the stock in Round 1.  You will have 90 seconds to make your forecast. 
 
End of Round 1:  
At the end of the 90 seconds all participants will have entered their forecasts.  After all earnings 
have been calculated you will be shown your results for Round 1.  The computer will then show 
you your earnings for the round, including: 
 

Cue A Cue B Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this 

Round 

Total 
Earnings 

Please record this information on the RECORD SHEET provided to you. 
 
Beginning of Round 2: 
After examining and recording the earnings from round 1, you will be shown the values of CUE 
A and CUE B in Round 2.  You will have 90 seconds to form your forecast. 
 
Subsequent Rounds: 
Each subsequent round proceeds in the same way and will be repeated for each of the 20 rounds.  
In each round, you will make a forecast based on two new cue values.  At the end of round 20, 
you will receive a cash payment in the amount indicated by the earnings account. 
 
[In the Salary treatment, the previous paragraph was replaced by the following: 
 
Each subsequent round proceeds in the same way and will be repeated for each of 20 rounds.  In each 
round, you will make a forecast based on two new cue values.  At the end of round 20, you will receive 
$20.00 in cash. 
 
Note that your actual earnings for the experiment will be $20.00, regardless of your forecasting 
accuracy.  However, we would like you to try and earn as much as possible by forming as accurate 
of forecasts as possible.] 
 
However, after you have finished the first five rounds of play, we will have a pause.  It is possible 
that there will be a change in the way in which you earn money for the subsequent rounds 6 
through 20.  If there is no change then we will tell you so and ask you to simply continue playing 
the game in the same manner as in the first five rounds.  However, if there is a change in payment, 
then we will provide you with further instructions at that point and explain these changes and 
also answer any questions you may have. 
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Do not use calculators.  Your forecasts and your earnings are your private information.  It is 
important that you do not talk or in any way try to communicate with other people during 
the experiment.  If you violate the rules, you will be asked to leave the experiment. 
 

GOOD LUCK!!  
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A2.2. Piece Rate Win Lose Treatment Specific Instructions 

 

THE UNIVERSITY OF AUCKLAND 
 

Rounds 6 to 20 
 
Rounds 6 to 20 are played exactly as rounds 1 to 5 but with the following exceptions: 
 

• Each period you will be paired with another participant in the session today.  Your partner 
will change each round, so you will never be paired with the same partner more than once; 
 

• After you have made your forecast, the computer will compare your forecast error to your 
partner’s forecast error in that round; 
 

• Your results will show whether your forecast error was greater or less than your partner’s 
for that round; 
 

• If your error is less than your partner’s, then you will be told you WIN that round.  If 
your error is more than your partner’s, you will be told you LOST that round.  If your 
error is equal to your partner’s, then the computer will randomly decide the winner and 
loser. 
 

• Your payment will remain unchanged.  That is, each round you will continue to be paid: 
Earnings = $1.00 – Forecast Error 

You will also be shown your partner’s forecast and forecast error at the end of the round.  That 
is, at the end of each round you will observe: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

       
 
 
Example: Suppose the actual price was 210, your forecast was 168, and your partner’s forecast 
was 163.  Your forecast error would be 42 and your partner’s forecast error would be 47.  You 
would see the following results for that round: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

  168 210 42 $0.58 WIN 
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Example: Suppose the actual price was 210, your forecast was 168, and your partner’s forecast 
was 173.  Your forecast error would be 42 and your partner’s forecast error would be 37.  You 
would see the following results for that round: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

  168 210 42 $0.58 LOSE 
 
 
Do you have any questions? 
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A2.3. Tournament Treatment Specific Instructions 

 

THE UNIVERSITY OF AUCKLAND 
 

Rounds 6 to 20 
 
Rounds 6 to 20 are played exactly as rounds 1 to 5 but with the following exceptions: 
 

• You will have an additional $4.00 added to your Earnings Account; 
 

• Each period you will be paired with another participant in the session today.  Your partner 
will change each round, so you will never be paired with the same partner more than once; 
 

• After you have made your forecast, the computer will compare your forecast error to your 
partner’s forecast error in that round; 
 

• Your results will show whether your forecast error was greater or less than your partner’s 
for that round; 
 

• If your error is less than your partner’s, then you will be told you WIN that round.  If 
your error is more than your partner’s, you will be told you LOST that round.  IF your 
error is equal to your partner’s, then the computer will randomly decide the winner and 
loser; 
 

• Your payment will depend upon whether your forecast error is greater or less than your 
partners.  That is, each round you will earn either $1.00 or $0.00.  You will be paid either: 

 
Earnings = $1.00 if you WIN 

Or 
Earnings = 0  if you LOSE 

 
 
Example: Suppose your forecast error was 42 and your partner’s forecast error was 47.  You 
would see the following results for that round: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

    42 $1.00 WIN 
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Example: Suppose your forecast error was 42 and your partner’s forecast error was 37.  You 
would see the following results for that round: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

    42 $0.00 LOSE 
 
Do you have any questions? 
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A2.4. Tournament-No-Info Treatment Specific Instructions 

 

THE UNIVERSITY OF AUCKLAND 
 

Rounds 6 to 20 
 
Rounds 6 to 20 are played exactly as rounds 1 to 5 but with the following exceptions: 
 

• You will have an additional $4.00 added to your Earnings Account; 
 

• Each period you will be paired with another participant in the session today.  Your partner 
will change each round, so you will never be paired with the same partner more than once; 
 

• After you have made your forecast, the computer will compare your forecast error to your 
partner’s forecast error in that round; 
 

• If your error is less than your partner’s, then you will be told you WIN that round.  If 
your error is more than your partner’s, you will be told you LOST that round.  If your 
error is equal to your partner’s, then the computer will randomly decide the winner and 
loser; 
 

• Your payment will depend upon whether your forecast error is greater or less than your 
partner.  That is, each round you will earn either $1.00 or $0.00.  You will be paid either: 

 
Earnings = $1.00 if you WIN 

Or 
Earnings = 0  if you LOSE 

 
 
You will not know whether you won or lost until the end of the 20th round.  That is, at the end 
of each round you will see the following information: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

     
 
At the end of the 20th round, you will see the following information for each round: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

      WIN 
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You will only know whether you won or lost at the end of the 20th round. 
 
Example:  Suppose your forecast error was 42 and your partner’s forecast error was 47.  At the 
end of that round you would observe: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

    42   
 
At the end of the 20th round, you will observe: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

    42 $1.00 WIN 
 
 
 
Example:  Suppose your forecast error was 42 and your partner’s forecast error was 37.  At the 
end of that round you would observe: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

    42   
 
At the end of the 20th round, you will observe: 
 

Cue 
A 

Cue 
B 

Your 
Forecast 

Actual 
Price 

Forecast 
Error 

Earnings 
this round 

WIN or 
LOSE 

    42 $0.00 LOSE 
 
 
Do you have any questions? 
  



211 

A2.5. Instructions for Logging into the Computerised Game 

 
PLEASE FOLLOW THESE INSTRUCTIONS CAREFULLY 
 

• Log onto the computer using your EC account.  You will not be charged for the activity. 
 

• Open the Internet Explorer Browser.  You might need to make sure that you have 
activated your NetLogin. 
 

• In the address bar of the browser, enter the following address: 
http://econresearch6.eco.auckland.ac.nz:8080/gameservlet 

 
• PLEASE NOTE: 

o DO NOT USE THE ‘BACK KEY’ 
o ALWAYS USE THE MOUSE…DO NOT USE THE ENTER KEY 

 
• You should now see a PLAYER LOGIN SCREEN 

 
WAIT 

DO NOT PROCEED UNTIL INSTRUCTED 
 

• When instructed to do so, please enter an identification name in the box at the lower left 
side of the screen. 

NOTE: This name can be anything you like, such as ‘boy’ or ‘max774’ or 
‘ShR1Ely’.  It is the name the computer will use to identify your computer 
throughout the session. 

 
• You should now see a screen showing the Practice Rounds. 

 
WAIT 

DO NOT PROCEED UNTIL INSTRUCTED 
 

  

http://econresearch6.eco.auckland.ac.nz:8080/gameservlet
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A2.6. Pre-Task Questionnaire 

 
 
 
Player ID  ____________ 
 
PLEASE ANSWER ALL OF THE FOLLOWING QUESTIONS 
 
A number of statements which people have used to describe themselves are given below. Read each 
statement and, using the scale below, tick the appropriate number indicating how you generally feel. 
There are no right or wrong answers. Do not spend too much time on any one statement but give the 
answer which seems to describe how you generally feel. 
    1  2           3           4 
           Almost       Sometimes         Often             Almost 
            never                                                always 

 

Al
m

os
t N

ev
er

 

So
m

et
im

es
 

O
fte

n 

Al
m

os
t a

lw
ay

s  

 1 2 3 4 
1. I feel pleasant     
2. I tire quickly     
3. I feel like crying     
4. I wish I could be as happy as others seem to be     
5. I am losing out on things because I can’t make up my mind 
soon enough 

    

6. I feel rested      
7. I am “calm, cool and collected”     
8. I feel that difficulties are piling up so that I cannot overcome 
them  

    

9. I worry too much over something that doesn’t really matter      
10. I am happy     
11. I am inclined to take things hard      
12. I lack self-confidence      
13. I feel secure     
14. I try to avoid facing a crisis or difficulty     
15. I feel blue     
16. I am content     
17. Some unimportant thoughts run through my mind and 
bother me 

    

18. I take disappointments so keenly that I can’t put them out 
of my mind  

    

19. I am a steady person     
20. I get in a state of tension or turmoil as I think over my 
recent concerns and interests 
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A2.7. Post-Task Questionnaire 

 

Player ID  ____________ 
 
PLEASE ANSWER ALL OF THE FOLLOWING QUESTIONS 
 
A) For each of the following statements, please indicate how true the statement is for you using the 
following scale:  
    1 2 3 4 5 6 7  
         Not at all        Somewhat            Very 
              true                             true            true 
 

N
ot

 a
t a

ll 
tru

e 

  

So
m

ew
ha

t t
ru

e 

  

V
er

y 
tr

ue
 

 1 2 3 4 5 6 7 
1. I enjoyed this activity very much        
2. I think I am pretty good at this activity        
3. I put a lot of effort into this activity        
4. I did not feel nervous at all which doing this activity        
5. This activity was fun to do        
6. I think I did pretty well at this activity, compared to 
other participants 

       

7. I did not try very hard to do well at this activity        
8. I felt very tense while doing this activity        
9. I thought this activity was boring        
10. After working at this activity for a while, I felt 
pretty competent 

       

11. I tried very hard on this activity        
12. I was very relaxed doing this activity        
13. This activity did not hold my attention        
14. I am satisfied with my performance at this task        
15. It was important to me to do well at this task        
16. I was anxious while working on this task        
17. I would describe this activity as very interesting        
18. I was pretty skilled at this activity        
19. I did not put much energy into this        
20. I felt pressured while doing this activity.        
21. I thought this activity was quite enjoyable.        
22. This was an activity that I could not do very well.        
23. While I was doing this activity, I was thinking 
about how much I enjoyed it. 
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B) The following items ask about how you felt about the other participants during the session. 
 

N
ot

 a
t a

ll 
tr

ue
 

  

So
m

ew
ha

t 
tr

ue
 

  

V
er

y 
tr

ue
 

 1 2 3 4 5 6 7 
1. I felt really distant to them        
2. I really doubt they and I would ever be friends        
3. I felt I could really trust them        
4. I’d really like the chance to interact with them 
more often 

       

5. I’d really prefer not to interact with them in the 
future 

       

6. I don’t feel like I could really trust them        
7. It is likely that they and I could become friends 
if we interacted a lot 

       

8. I felt close to them        
 
C) How many of the people in this session did you know before the experiment?    _______ 
 
D) Basic information about you: 
 
Your Gender (Male/ Female) ________ 
 
Age:  ______ 
 
Major:   ______________________________________________ 
 
Year in School (e.g., Stage 2) _______________________________ 
 
Ethnicity (Please circle one):  
 Maori   Pacific Island  NZ European 
    Asian   Other _______________ 
 
Country where you were born? __________________ 
 
If you were born outside of New Zealand, at what age did you move here? _________ 
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Appendix 3. Proof of Standardised Forecast Error Properties 

 

A3.1. Standardised Forecast Errors have Zero-Mean 

 

Standardised forecast errors, 𝑧𝑧, are defined to be: 
 

𝑧𝑧𝑖𝑖𝑡𝑡 =
𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒̅𝑒𝑡𝑡
𝜎𝜎𝑡𝑡(𝑒𝑒)

 

 
The mean of this across participants 𝑖𝑖 in any particular round: 
 

𝑧𝑧𝑡̅𝑡 =
1
𝑛𝑛
�𝑧𝑧𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖

 

 

𝑧𝑧𝑡̅𝑡 =
1
𝑛𝑛
��

𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒̅𝑒𝑡𝑡
𝜎𝜎𝑡𝑡(𝑒𝑒)

�
𝑛𝑛

𝑖𝑖

 

 
And since the mean and standard deviation of forecast errors are invariant with individuals 𝑖𝑖, 
 

𝑧𝑧𝑡̅𝑡 =
1
𝑛𝑛
∙

1
𝜎𝜎𝑡𝑡(𝑒𝑒)

∙ ���𝑒𝑒𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖
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𝑧𝑧𝑡̅𝑡 = 0 

∎ 
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A3.2. Standardised Forecast Errors have Unit Standard Deviation 

 

𝜎𝜎𝑡𝑡(𝑧𝑧) = ��(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑡̅𝑡)2
𝑛𝑛

𝑖𝑖

 

 
From previous proof, the mean of standardised forecast errors is zero: 
 

𝜎𝜎𝑡𝑡(𝑧𝑧) = ��(𝑧𝑧𝑖𝑖𝑖𝑖)2
𝑛𝑛

𝑖𝑖

 

 

𝜎𝜎𝑡𝑡(𝑧𝑧) = ���
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𝜎𝜎𝑡𝑡(𝑒𝑒) �

2𝑛𝑛

𝑖𝑖

 

 
Since the standard deviation of forecast errors amongst participants does not differ by participants 
𝑖𝑖, it can be factored out: 
 

𝜎𝜎𝑡𝑡(𝑧𝑧) = ��
1

𝜎𝜎𝑡𝑡(𝑒𝑒)�
2

∙�(𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒̅𝑒𝑡𝑡)2
𝑛𝑛

𝑖𝑖

 

 

𝜎𝜎𝑡𝑡(𝑧𝑧) =
1
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(𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒̅𝑒𝑡𝑡)2

𝑛𝑛

𝑖𝑖

 

 
Substituting in the calculation of 𝜎𝜎𝑡𝑡(𝑒𝑒), and cancelling out the terms: 
 

𝜎𝜎𝑡𝑡(𝑧𝑧) =
1

�∑ (𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒̅𝑒𝑡𝑡)2𝑛𝑛
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