Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
Studies of Nylon/PC blends

Dylan Dae Bong Jung

A thesis submitted in partial fulfilment of requirements for the degree of
Master of Engineering

Supervised by
Associate professor George Ferguson
Senior lecturer Allan Easteal

Department of Chemical & Material Engineering
University of Auckland
Private Bag 92019
Auckland
New Zealand

February 1997
Abstract

This report presents an investigation of the interchange reactions and morphology in a partially miscible blend composed of bisphenol-A-polycarbonate and Nylons with and without polycaprolactone by the use of DSC, SEM and DMTA.

DSC results show that NY6 is faster than NY66 in interchange reaction with PC and incorporation of polycaprolactone improves the compatibility of NY66 with PC. At longer heat treatment time, T_gs of both component polymers approach each other, which suggests that interchange reaction occurs between two immiscible homopolymers, making them homogenize and resultant block and graft copolymers serve as a link between two polymers.

The general features of incompatible and biphasic system were displayed by Scanning Electron Microscopy in the morphology of the NY66/PC blends without polycaprolactone. In Nylon-rich blends, there is less gap between globule PC and matrix NY66, while PC-rich blends have a clear gap between the boundaries of NY66 and PC. The formation of voids can be explained considering the different volume contraction occurring during the thermal transitions of the two polymers. Polycaprolactone changes the morphology of NY66/PC blend, in which distributed globule sizes become small and deviation of the globule sizes is decreased. This implies that polycaprolactone serves as a thermodynamic plasticizer controlling the particle size, and it can reduce the melt viscosity of the PC.

Two kinds of mode, 3-point bending and tensile mode, were used in Dynamic Mechanical Thermal Analysis. Two T_gs are present in most compositions except those between 20/80 and 5/95 (NY66/PC wt%), in which T_g of NY66 was not detected. T_g of PC was decreased largely in 95/5. These results may explain immiscibility in most compositions and partial miscibility of each abundant proportion of component, which maybe enable an interchange reaction. Polycaprolactone shows a huge effect in lowering T_gs of NY66/PC blend.
Acknowledgements

The work described in this thesis was carried out at the Department of Chemical & Material Engineering and the Department of Chemistry, University of Auckland, under the supervision of Associate Professor George Ferguson in Chemical & Material Engineering and Senior Lecturer Allan Easteal in Chemistry.

I would like to thank them for their help and guidance during this research.

I would like to thank Mr. Clive Stirling and Dr. Neville A Miller at Industrial Research Limited for manufacture of Test-specimens.

I wish to express my gratitude for the help and trouble Technician Peter Buchanan in the Department of Chemistry.

Finally, I would like to express my thanks and appreciation to my wife and sons for their support during my studies.
Table of Contents

ABSTRACT..i
ACKNOWLEDGEMENTS ..ii
TABLE OF CONTENTS ..iii
LIST OF FIGURES ..vii
LIST OF TABLES ..xii
NOTATION AND TERMINOLOGY ..xiii

CHAPTER 1. LITERATURE REVIEW OF POLYMER BLENDS1

1. Compatibilization and reactive blending ... 2
 1-1. Introduction ... 2
 1-2. Compatibilization mechanisms ... 3
 1-3. Methods of compatibilization ... 5
 1-3-1. Thermodynamic miscibility .. 6
 1-3-2. Addition block and graft copolymers .. 8
 1-3-3. Addition of functional polymers ... 10
 1-3-4. Reactive blending .. 11
 1-4. Future trends ... 12

2. Rheology of polymer blends ... 15
 2-1. Introduction ... 15
 2-2. Experimental measuring data obtained in simple flow fields 16
CHAPTER 2. A CALORIMETRIC STUDY OF THE INTERCHANGE REACTIONS OF NY/PC BLENDS .. 25

1. Introduction ... 25

2. Experimental ... 29
 2-1. Materials ... 29
 2-2. Blend preparation .. 30
 2-3. Thermal treatment ... 30

3. Results and Discussion .. 31
 3-1. NY6/PC(50/50 wt%) blend .. 31
 3-2. NY66/PC(50/50 wt%) blend .. 35
 3-3. NY66/PC(20/80 wt%) blend .. 39
 3-4. NY66/PC(80/20 wt%) blend .. 42
 3-5. NY66/PC(polycaprolactone)(50/50(5 wt% based on PC) wt%) blend 45

4. Conclusions .. 49
4. Conclusions .. 101

CHAPTER 5. SUMMARY AND CONCLUSIONS. ... 102

1. General ... 102

2. Mechanisms of Interchange Reaction... 102

3. Conclusions .. 105

4. Recommendations for further work .. 107

REFERENCES .. 108
List of Figures

CHAPTER 1. LITERATURE REVIEW OF POLYMER BLENDS......................... 1

Figure 1-1. Summary of the factors contributing to end-use properties in melt compounded blends, highlighting the role of compatibilizers(*) ... 4

Figure 1-2. Schematic phase diagram for binary blends showing LCST and UCST behaviour. ... 7

Figure 1-3. Schematic diagram showing location of block and graft copolymers at phase interfaces ... 8

Figure 1-4. Microstructure of polymer blends and alloys ... 16

Figure 1-5. Schematic of types of deformation: (a) tensile (b) shear (c) three-point bending ... 17

Figure 1-6. Schematic diagram of simple shearing flow... 20

CHAPTER 2. CALORIMETRIC STUDY OF THE INTERCHANGE REACTION OF NY/PC BLENDS .. 25

Figure 2-1. View of Differential Scanning Calorimeter .. 26

Figure 2-2. Melting and crystallization temperatures of NY6/PC(50/50 wt%) at different heat treatment times .. 33

Figure 2-3. Melting and crystallization heats of NY6/PC(50/50 wt%) at different heat treatment times. ... 34

Figure 2-4. Glass transition temperatures of NY6/PC(50/50 wt%) with the change of heat treatment time .. 34
Figure 2-5. Melting and crystallization temperatures of NY66/PC(50/50 wt%) at different heat treatment times .. 38

Figure 2-6. Melting and crystallization heat of NY66/PC(50/50 wt%) at different heat treatment times. ... 38

Figure 2-7. Glass transition temperatures of NY66/PC(50/50 wt%) with the change of heat treatment time. ... 39

Figure 2-8. Melting and crystallization temperatures of NY66/PC(20/80 wt%) at different heat treatment times .. 41

Figure 2-9. Melting and crystallization heat of NY66/PC(20/80 wt%) at different heat treatment times. ... 41

Figure 2-10. Glass transition temperatures of NY66/PC(20/80 wt%) with the change of heat treatment time. ... 42

Figure 2-11. Melting and crystallization temperatures of NY66/PC(80/20 wt%) at different heat treatment times. .. 44

Figure 2-12. Melting and crystallization heat of NY66/PC(80/20 wt%) at different heat treatment times. ... 44

Figure 2-13. Glass transition temperatures of NY66/PC(80/20 wt%) with the change of heat treatment time. ... 45

Figure 2-14. Melting and crystallization temperatures of NY66/PC(P-cap) at different heat treatment times. .. 48

Figure 2-15. Melting and crystallization heat of NY66/PC(P-cap) at different heat treatment times. ... 48

Figure 2-16. Glass transition temperatures of NY66/PC(P-cap) with change of heat treatment time. ... 49
CHAPTER 3. MORPHOLOGY OF THE NT66/PC BLENDS 51

Figure 3-1. Schematic diagram of a Scanning Electron Microscope.......................... 53
Figure 3-2. View of Sigma-blade Compounder. ... 55
Figure 3-3. View of Piston Injection Molding Machine. .. 56
Figure 3-4. SEM micrograph of NY66/PC (70/30 wt%) without polycaprolactone........ 61
Figure 3-5. SEM micrograph of NY66/PC (50/50 wt%) without polycaprolactone........ 62
Figure 3-6. SEM micrograph of NY66/PC (30/70 wt%) without polycaprolactone........ 63
Figure 3-7. SEM micrograph of NY66/PC (70/30 wt%) without polycaprolactone after
 extraction of PC with methylenechloride... 64
Figure 3-8. SEM micrograph of NY66/PC (50/50 wt%) without polycaprolactone after
 extraction of PC with methylenechloride... 65
Figure 3-9. SEM micrograph of NY66/PC (30/70 wt%) without polycaprolactone after
 extraction of PC with methylenechloride... 66
Figure 3-10. SEM micrograph of NY66/PC (95/5 wt%) with polycaprolactone............ 67
Figure 3-11. SEM micrograph of NY66/PC (90/10 wt%) with polycaprolactone........... 68
Figure 3-12. SEM micrograph of NY66/PC (80/20 wt%) with polycaprolactone........... 69
Figure 3-13. SEM micrograph of NY66/PC (70/30 wt%) with polycaprolactone........... 70
Figure 3-14. SEM micrograph of NY66/PC (60/40 wt%) with polycaprolactone........... 71
Figure 3-15. SEM micrograph of NY66/PC (50/50 wt%) with polycaprolactone........... 72
Figure 3-16. SEM micrograph of NY66/PC (40/60 wt%) with polycaprolactone........... 73
Figure 3-17. SEM micrograph of NY66/PC (30/70 wt%) with polycaprolactone........... 74
Figure 3-18. SEM micrograph of NY66/PC (20/80 wt%) with polycaprolactone........... 75
Figure 3-19. SEM micrograph of NY66/PC (10/90 wt%) with polycaprolactone........... 76
Figure 3-20. SEM micrograph of NY66/PC (5/95 wt%) with polycarolactone 77

Figure 3-21. SEM micrograph of NY66/PC (95/5 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 78

Figure 3-22. SEM micrograph of NY66/PC (90/10 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 79

Figure 3-23. SEM micrograph of NY66/PC (80/20 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 80

Figure 3-24. SEM micrograph of NY66/PC (70/30 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 81

Figure 3-25. SEM micrograph of NY66/PC (60/40 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 82

Figure 3-26. SEM micrograph of NY66/PC (50/50 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 83

Figure 3-27. SEM micrograph of NY66/PC (40/60 wt%) with polycaprolactone after extraction of PC with methylenechloride ... 84

Figure 3-28. SEM micrograph of NY66/PC (40/60 wt%) with polycaprolactone after extraction of NY66 with trifluoroethanol .. 85

Figure 3-29. SEM micrograph of NY66/PC (30/70 wt%) with polycaprolactone after extraction of NY66 with trifluoroethanol .. 86

Figure 3-30. SEM micrograph of NY66/PC (20/80 wt%) with polycaprolactone after extraction of NY66 with trifluoroethanol .. 87

Figure 3-31. SEM micrograph of NY66/PC (10/90 wt%) with polycaprolactone after extraction of NY66 with trifluoroethanol .. 88
Figure 3-32. SEM micrograph of NY66/PC (5/95 wt%) with polycaprolactone after extraction of NY66 with trifluoroethanol. ... 89

Figure 3-33. SEM micrograph of NY66/PC (50/50 wt%) without polycaprolactone........ 90

CHAPTER 4. THERMOMECHANICAL ANALYSIS ... 91

Figure 4-1. View of Dynamic Mechanical Thermal Analysis unit. 92

Figure 4-2. Rheometric (Polymer Laboratories) DMTA. (a) Measurement Unit (b) Types of Sample Clamps and Measuring Modes .. 93

Figure 4-3. (a) Sinusoidal stress and the strain response curve, showing the phase angle lag, due to the viscoelastic behaviour. (b) The relationship between the complex modulus... 95

Figure 4-4. T_g against composition in the first heating scan of 3-point bending mode. ... 99

Figure 4-5. T_g against composition in tensile mode.. 101

CHAPTER 5. SUMMARY AND CONCLUSIONS ... 102

Figure 5-1. Interchange reaction between active amino terminal group and carbonate group. .. 104

Figure 5-2. Interchange reaction between inner amide group and carbonate group......... 104

Figure 5-3. Thermal reaction of urethane and isocyanate groups. 105
List of Tables

CHAPTER 2. CALORIMETRIC STUDY OF THE INTERCHANGE REACTION OF NY/PC BLENDS ... 25

Table 2-1. Transition temperatures and heats for pure polymers.. 31
Table 2-2. Transition temperatures and heats for NY6/PC(50/50 wt%) blend. 32
Table 2-3. Transition temperatures and heats for NY66/PC(50/50 wt%) blend. 36
Table 2-4. Transition temperatures and heats for NY66/PC(20/80 wt%) blend. 40
Table 2-5. Transition temperatures and heats for NY66/PC(80/20 wt%) blend. 43
Table 2-6. Transition temperatures and heats for NY66/PC (polycaprolactone(50/50(5) wt%) blend) .. 46

CHAPTER 4. THERMOMECHANICAL ANALYSIS 91

Table 4-1. T_gs of the polycaprolactone-added NY66/PC blends (based on 5 wt% PC) measured by 3-point bending mode... 98
Table 4-2. T_gs of the polycaprolactone-unadded NY66/PC blends measured by 3-point bending mode. ... 100
Table 4-3. T_gs of NY66/PC blends measured by tensile mode. 100
Notation and Terminology

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b</td>
<td>Depth, width</td>
</tr>
<tr>
<td>ΔC</td>
<td>Overall difference in the total heat capacity of the two cells, and</td>
</tr>
<tr>
<td></td>
<td>can be subdivided into instrument and sample contributions</td>
</tr>
<tr>
<td>ΔC_E</td>
<td>Difference between the two cells in the empty state (subscript E)</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>E</td>
<td>Tensile, or Young’s modulus</td>
</tr>
<tr>
<td>E^*</td>
<td>Complex dynamic modulus</td>
</tr>
<tr>
<td>E'</td>
<td>Storage modulus</td>
</tr>
<tr>
<td>E''</td>
<td>Loss modulus</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
</tr>
<tr>
<td>$G'()$</td>
<td>Storage modulus.</td>
</tr>
<tr>
<td>$G''()$</td>
<td>Loss modulus</td>
</tr>
<tr>
<td>ΔG</td>
<td>Change in free energy on mixing</td>
</tr>
<tr>
<td>H</td>
<td>Enthalpy</td>
</tr>
<tr>
<td>H, W</td>
<td>Distance and width of the plane, respectively</td>
</tr>
<tr>
<td>k</td>
<td>Conversion factor</td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
</tr>
<tr>
<td>LCST or UCST</td>
<td>Lower or upper critical solution temperature</td>
</tr>
<tr>
<td>mC_p</td>
<td>Additional heat capacity due to the presence of a mass m</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>P</td>
<td>Hydrostatic pressure</td>
</tr>
<tr>
<td>ΔQ</td>
<td>Complex heat transfer functions</td>
</tr>
<tr>
<td>S</td>
<td>Entropy</td>
</tr>
<tr>
<td>S</td>
<td>Signal from a DSC</td>
</tr>
<tr>
<td>S</td>
<td>Total stress tensor</td>
</tr>
<tr>
<td>S_{xx}</td>
<td>Ratio of tensile stress</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t, δ</td>
<td>Time and the phase angle</td>
</tr>
<tr>
<td>tan δ</td>
<td>Loss tangent</td>
</tr>
<tr>
<td>v_x</td>
<td>Constant speed at x direction</td>
</tr>
<tr>
<td>y</td>
<td>Deflection</td>
</tr>
</tbody>
</table>

Δ	Differential nature of the signal, which may be a differential power or temperature
δ	Unit vector
ε	Tensile strain or elongation
γ	Shear strain
γ	Shear rate (the dot is Newton’s notation for the time derivative)
$\dot{\gamma}_E$	Rate of elongation (or elongation rate)
γ_0, σ_0	Maximum values of strain and stress, respectively
η	Viscosity
\(\eta_E \)
Elongation viscosity

\(\eta(\dot{\gamma}) \)
Viscosity function

\(\eta'(\omega) \)
Dynamic viscosity

\(\sigma \)
Extra stress tensor

\(\sigma \)
Normal tensile stress

\(\sigma_{xy} = \sigma_{yx} \)
Shear stress

\(\sigma_{xx}, \sigma_{yy} \text{ and } \sigma_{zz} \)
Normal stresses.

\(\tau \)
Tangential, shearing stress

\(\nu \)
Poisson’s ratio

\(\omega \)
Circular frequency

\(\psi_1(\dot{\gamma}), \psi_2(\dot{\gamma}) \)
First and second normal stress coefficients, respectively

Subscript

\(E, S, C\)
Empty pan, sample and calibrant, respectively

\(x, y, z\)
Direction of flow, direction perpendicular to the flow and the neutral direction.