

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Cooling, M. T., Nickerson, D., Nielsen, P., & Hunter, P. (2016). Modular Modelling
with Physiome Standards. Journal of Physiology, 594(23), 6817-6831.
doi:10.1113/JP272633

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

This is the peer reviewed version of the article above which has been published
in final form at 10.1113/JP272633

This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for self-archiving.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1113/JP272633
http://dx.doi.org/10.1113/JP272633
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.sherpa.ac.uk/romeo/issn/1749-8198/
http://www.sherpa.ac.uk/romeo/issn/0022-3751/

This is an Accepted Article that has been peer-reviewed and approved for publication in the The
Journal of Physiology, but has yet to undergo copy-editing and proof correction. Please cite this
article as an 'Accepted Article'; doi: 10.1113/JP272633.

This article is protected by copyright. All rights reserved.

Modular Modelling with Physiome Standards

Michael T. Cooling*,1 David P. Nickerson1, Poul M. F. Nielsen1,2, Peter J. Hunter1

1Auckland Bioengineering Institute, the University of Auckland, New Zealand.
2Department of Engineering Science, the University of Auckland, New Zealand.
* To whom correspondence should be addressed.

Key Points
x� The complexity of computational models is increasing, supported by research in modelling

tools and frameworks. But relatively little thought has gone into design principles for
complex models.

x� We propose a set of design principles for complex model construction with the Physiome
standard modelling protocol CellML.

x� By following the principles, models are generated that are extensible and are themselves
suitable for reuse in larger models of increasing complexity.

x� We illustrate these principles with examples including an architectural prototype linking, for
the first time, electrophysiology, thermodynamically-compliant metabolism, signal
transduction, gene regulation, and synthetic biology.

x� The design principles complement other Physiome research projects, facilitating the
application of virtual experiment protocols and model analysis techniques to assist the
modelling community in creating libraries of composable, characterised, and simulatable
quantitative descriptions of physiology.

Abstract
The ability to produce and customise complex computational models has great potential to have a
positive impact on human health. As the field develops towards whole-cell models and linking such
models in multi-scale frameworks to encompass tissue, organ, or organism levels, reuse of previous
modelling efforts will become increasingly necessary.

Any modelling group wishing to reuse existing computational models as modules for their own work
faces many challenges in the context of construction, storage, retrieval, documentation, and analysis
of such modules. Physiome standards, frameworks, and tools seek to address several of these
challenges, especially for models expressed in the modular protocol CellML.

Aside from providing a general ability to produce modules, there has been relatively little research
work on architectural principles of CellML models that will enable reuse at larger scales. To
complement and support the existing tools and frameworks, we develop a set of principles to
address this consideration. The principles are illustrated with examples that couple

This article is protected by copyright. All rights reserved.

electrophysiology, signalling, metabolism, gene regulation, and synthetic biology, together forming
an architectural prototype for whole cell modelling (including human intervention) in CellML. Such
models illustrate how testable units of quantitative biophysical simulation can be constructed.

Finally, future relationships between modular models so constructed and Physiome frameworks and
tools are discussed, with particular reference to how such frameworks and tools can in turn be
extended to complement and gain more benefit from the results of applying the principles.

Abbreviations
ATP, adenosine triphosphate; GFP, green fluorescent protein; IP3, inositol trisphosphate; NFAT,
nuclear factor of activated T-cells; SBML, Systems Biology Markup Language; SED-ML, Simulation
Experiment Description Markup Language.

Introduction
The complexity demanded of computational models is increasing, both in terms of the detail
required at a given spatial or temporal scale, and in terms of the number of scales to be considered.
Recent initiatives focus on describing and exploring large numbers of interacting processes such as
interacting pathways (Büchel et al., 2013). Models that address whole-cell level complexity, a goal of
Systems Biology for some time (Snoep et al., 2006), are now being constructed (Karr et al., 2012).

With the increase in complexity comes difficulties in communicating the meaning of model
components, maintaining such models in the light of new biophysical information, and extending
them to deal with new physiological scenarios of interest. Reuse of existing models, particularly in
combination with other models to form mathematical descriptions that simulate more complex and
realistic biophysical situations, will in the near future become less of ‘an advantage’ and more of ‘a
necessity’.

Over the last decade, the associated sub-field of model representation has developed. Community
standards such as CellML (Cuellar et al., 2003) and SBML (Hucka et al., 2003) have addressed some
of the issues in model communication by virtue of their functions as XML-based model exchange
protocols. Such declarative protocols focus on the mathematical representation of entities of
interest and the relationships between them. In contrast to procedural approaches such as object-
oriented programming, they separate the solver from the model, thereby allowing flexibility in
model simulation - important as large-scale models are constructed from many smaller-scale efforts.
CellML in particular is used in cellular and physiological modelling and allows modular construction
of models via component instances and encapsulation hierarchies, and is accepted by many journals
as a community standard.

Despite this work, a modeller who today wishes to construct a complex model in an efficient fashion
still faces several challenges. Ideally, their model could be composed of modules from existing
models, with perhaps a few additional modules as required. They will, therefore, want some way to
find existing models that cover their own area of interest, and be appraised of, or at least have
access to information to readily discern, what physiological conditions the models do and do not
cater for. The larger model will need to be assembled from different modules, so the modules will
need to be connectable in some fashion, and making those connections should be computer-assisted
and automated as much as possible. The modeller must ensure that the final model behaves

This article is protected by copyright. All rights reserved.

appropriately enough to facilitate investigation of the research question at hand, so ideally it would
be easy to test input-output responses for the module components, either separately or in concert,
to both confirm model development directions and aid ‘debugging’. The behaviour of the resulting
model should also be readily presentable to facilitate validation, and ultimately the validation
process should itself be automated where possible. Finally, the resulting model should be able to be
treated, in future model building efforts, as a reusable module itself, with information about the
assumptions and physiological coverage of the model readily discernable by future re-users. While
not all of these goals are achievable today, a number of research projects have led to the
development of tools and frameworks to begin to address these challenges.

A key enabler is the Physiome Model Repository (models.physiomeproject.org, see Yu et al. (2011))
which provides an online centre for groups of researchers to develop models, either publically or
privately, with full provenance information (Miller et al., 2011). Model versions can be ‘released’ via
public ‘exposures’, and may contain links to other models within the repository. These links provide
a dynamic mechanism for reuse of models from the community of modellers during the composition
of new models.

The ApiNATOMY framework (de Bono et al., 2012) uses links between model elements and
ontologies to provide efficient and accurate model search and retrieval in order to facilitate reuse. In
addition, it is also possible to automate the sending of retrieved models to a numerical simulator so
that the modeller can discover not simply what models are available but what quantitative
behaviour is available (de Bono et al., 2015).

The cardiac electrophysiology Web Lab initiative (Cooper et al., 2016) provides an automated
method for simulating models according to well-defined protocols (each being a ‘virtual
experiment’) and testing the behaviour of the models against defined expected behaviour – in a
similar manner to automated unit-testing frameworks for software development. Where the
protocols represent some real-world experimental conditions, with care this system can also be used
to identify whether a given model behaves ‘properly’ in a physiological sense. Thus, after some initial
setup, violation or compliance of assumptions can largely be checked automatically.

OpenCOR (Garny and Hunter, 2015) is a desktop-based software package that allows a modeller to
construct, simulate and interact with CellML models. The focus here is on the user experience and
providing a usable gateway to the various frameworks and protocols. Via an extensible system of
plugins, it is also capable of providing an interface for interacting with PMR and virtual experimental
protocols (such as the Simulation Experiment Description Markup Language (SED-ML), as discussed
below) and for linking model elements to ontologies by providing an interface for annotation with
metadata.

SemGen (Neal et al., 2015) provides an interface to the SemSim framework that enables more
complex annotations to be made. SemGen allows the modeller to use this metadata for visual
module definition and combination where module interfaces are defined dynamically, guided by the
modeller and biological and physical information encompassed in metadata provided by OpenCOR
or SemGen (Neal et al., 2014).

Underpinning these tools is a set of standards that allow the various software components to
interoperate and to help ensure clarity about what model components represent. The CellML

This article is protected by copyright. All rights reserved.

Metadata Framework (Cooling and Hunter, 2015) connects model components with biophysical
concepts such as proteins and metabolites, cellular components, and anatomical features. SED-ML is
used to clearly define virtual experiments, including which models to simulate, simulation
parameters, and which model results are of particular interest and can be considered ‘output’
(Waltemath et al., 2011).

These standards provide the connections between models and tools and ontologies, but what of the
models themselves? We observe that, beyond providing a general composition framework,
comparatively little thought has been given thus far to the structural design of models within those
frameworks. Many models found in journals are monolithic and not designed with reuse in mind.
Others are modular within their own contexts but require refactoring to reuse. As in wider
engineering or construction, as construct size and complexity increases, design principles will be
necessary to ensure a consistent, understandable and extensible aggregation of concepts in encoded
mathematical models. Such principles would be applicable to modelling in general but particularly
relevant to cardiac models which have reached a level of sophistication and complexity that justifies
careful thinking about the design principles used and model formulation.

For example, the CellML protocol embodies a relatively small number of concepts for model
representation that a modeller is free to choose from. This freedom can stimulate innovation but
can also result in models that require modifications to integrate. CellML has a proven track record in
multi-scale simulations (Nickerson, 2006), and integrated physiology modelling (Beard et a., 2012).
Models have been published in the domains of cellular electrophysiology (Nickerson et al., 2008a),
signal transduction (Cooling et al., 2007), metabolism (Wimalaratne et al., 2009), cell contraction
(Terkildsen et al., 2008), and synthetic biology (Cooling et al., 2010). Although these models are in
some sense mathematically compatible, and were all architected with extension and reuse in mind,
the style of model structure differs between them. There was no clear set of CellML design principles
that would lead to modellers being able to easily recombine models from all the domains without
significant refactoring. In order to construct larger models, such as whole-cell models and models
that allow investigation of the physiological context of the cell, it is necessary to restructure some or
all of them according to some set of common CellML design principles. What should these principles
be? How can we structure our models to facilitate reuse in complicated contexts?

Here we develop a set of design principles that yield models that are more easily reused and
extended, in order to support complex, more physiologically-relevant model development. Example
models are constructed from these principles. The first example provides a relatively simple
illustration in an intracellular signalling context. The second example provides a more complex
illustration linking one example from each of several different subdomains including
electrophysiology, thermodynamically-sensitive metabolism, signal transduction, gene regulation,
and synthetic biology. This second example is an architectural prototype for an approach towards
whole-cell modelling (albeit limited to compartmentalised ODE-based formulations), as it covers a
‘core set’ of domains for whole-cell modelling with genetic human intervention, and is also used to
demonstrate some of the practical considerations in providing harnesses for model testing and
characterisation.

All models and components are available in the online collaborative repository for computational
physiological models: the Physiome Repository (http://models.physiomeproject.org), providing a

This article is protected by copyright. All rights reserved.

publicly extensible library of modelling modules across multiple domains to facilitate complex
cellular model construction.

Design Principles for Modularity in CellML
There are some similarities between mathematical models and software. Both are encoded into sets
of character strings, representing relationships and/or processes. Some have commented that model
composition challenges are equivalent to those in software composability (Bartholet et al., 2004). As
the software field matured, concerns such as those outlined above were met by giving careful
thought to the design and structure of code and languages. Inspired by this, and informed by our
collective experience in modelling scenarios in the domains above, we here propose a set of
modelling design principles to guide reusable and extensible model development.

Our design principles can be grouped into three categories: those dealing with the structuring of
mathematics into modules; those dealing with specifying interfaces between those modules; and
those dealing with the definition of units and ‘data’ for the modules – specifically model parameters
and initial conditions. Each category will be explained in turn. These principles can be applied
fruitfully in any order and combination to new model construction, or to the wrapping or refactoring
of legacy monolithic models to enhance model extension.

Module Structures
Many models have constructs that are repetitions of the same biophysics represented with the same
mathematical formulation but with different parameters. For example, consider a simple reaction
where two reactants D and E combine to form F (and the stoichiometry of all reactants and products
is 1). If another reaction in the model similarly combines G and H to form I, then both of these
reactions will use the same mathematical formulation, more generally as J = a * b * kf, where J
represents the flux of the reactions (in, for example, microliters per second), kf is a rate constant,
and a and b are reactant concentrations. This commonality suggests the opportunity for reuse. In
the field of software engineering, it has been found that modularisation on the basis of design
decision is fruitful, rather than on the basis of mere function or process sequence which might at
first seem more natural (Parnas, 1972). How to represent common biophysical processes
mathematically is the modeller’s design decision here. This decision may in many cases only need to
be made once for many instances of the same biophysics. But, this principle is not limited to
representations of biophysics. Thus, while we will also consider modularisation by function below,
these considerations lead us to our first principle: 1) common mathematics should be abstracted into

separate modules and reused wherever possible.

It is natural to group biological processes and entities into functional modules. One of the guiding
principles of good modules is that they exhibit high cohesion (Stevens et al., 1974) – that is, they
have a well-defined set of responsibilities that are strongly related, and all responsibilities of that
kind in the larger system reside in that module. One of the strongest forms of cohesion is ‘functional
cohesion’ which in software engineering can be considered in terms of deriving output data from
input data in a particular way. In a computational biology model, we propose that this could be
considered in terms of outputs based on biological processes. For example: a single reaction
component may be considered as transforming concentrations of reactants and rate constants into
fluxes of products. A ‘calcium handing’ component may derive a calcium flux or transient based on
various inputs such as channel shear stresses, voltage changes, stored calcium levels, etc. Some of

This article is protected by copyright. All rights reserved.

the elements of a functional module may be functional modules in their own right e.g. some lower-
level biological process such as a particular channel, or a calcium store. Such modules could
conceivably be reused in different ways, depending on how the larger-scale components are
partitioned. Rather than building large, tightly cohesive structures, as is common in monolithic
model construction, we propose constructing larger functional modules from smaller modules in a
nested fashion, in what may be termed a composition hierarchy. Simply put: 2) build large, cohesive

functional modules from smaller, cohesive functional modules. Ideally, the smallest cohesive
modules (at the leaves of the compositional hierarchy) would be at the level of individual species
and ‘atomic processes’ (such as a particular reaction). However, if one is refactoring an existing
module that contains a ‘lumped parameter’ formalism, practically speaking it may not be easy or
even possible to arrive at quite that level of detail.

High cohesion of modules tends to be accompanied by low coupling – a reduction in the number and
kind of connections between modules. While connections between mathematical modules may not
be undesirable per se, care should be taken that such connections do not reflect assumptions that
one module makes about the inner workings of another. In this we reflect, and have surely been
forewarned by, the citing of similar concerns during the beginnings of software engineering (Parnas,
1971). It is sometimes tempting, if the modeller knows that a module needs to communicate with
another, to embed target module-specific mechanisms in the source or target module. In our
experience, the most common scenario is where several modules need to communicate in order to
produce some result, for example in the production of a sum of fluxes of a second messenger which
has many possible sources and sinks. We can avoid other-module-specific mechanisms by ensuring
that, instead of attempting to encode the connection in one of a set of components, we 3) form

separate modules to handle multi-module communication.

Module Interfaces
Consideration of highly cohesive, loosely coupled modules leads naturally to the concept of
‘information hiding’ where the inner workings of a module are simply not accessible to other
modules. When done well, this ‘separation of concerns’ (Dijkstra, 1982) allows parts of a model to be
reformulated without affecting other parts. But it is possible to hide information that could become
important if the module were used in other contexts. It is helpful to distinguish between design
decisions of a mathematical nature (which likely can be hidden), and information of a biological
nature (such as the concentration of a particular metabolite, or density of a receptor on a
membrane). In the latter case, it is often difficult to be certain that that information would not be
useful elsewhere in the wider model – new relationships between biological entities are uncovered
as scientific research continues, and the scope of encompassing models may change over time.
Hiding that kind of information may lead to the module having to be redesigned later, or, in the
worst case, a larger model may unwittingly include the same biological entity more than once. For
these reasons we propose that modellers 4) expose information relating to the amounts and rates of

change of biological entities.

Mathematical modelling languages may allow, or even demand, the definition of units for
parameters and variables. In such cases, it is common for modules that have been created by
different researchers and/or for different purposes to expose parameters or variables that one
would wish to connect, at different scales or in different units (that may or may not be dimensionally
consistent with one another). A conversion may be necessary, and a decision may need to be made

This article is protected by copyright. All rights reserved.

on where to do the conversion. Rather than selecting one module or the other, and thus coupling
them to the conversion, we instead advocate that modellers 5) use separate modules to perform unit

conversions. This could be considered somewhat analogous to the ‘Adaptor Pattern’ in software
engineering (Gamma et al., 1994).

Module Units and Data
Models typically require many parameters and initial conditions, each set of which may be specific to
a virtual biological scenario or experiment. Coupling these ‘data’ tightly with the mathematical
modules that utilise them may make it difficult for these data to be changed without unintended
side-effects, and may lock the modules into describing one particular scenario. These undesirable
effects can be reduced by ensuring that we 6) separate all parameter and initial condition definitions

from the mathematical modules and place them in their own dedicated modules. This parallels the
notion of ‘data independence’ developed for ‘Structured Modeling’ of decision support systems
(Geoffrion, 1991), especially if one considers a complex mathematical model to be a system for
decision support, be it decisions on what scientific hypothesis to adopt or what set of real
experiments to plan next, with multiple simulations as ‘what-if’ analyses on how the biology may be
functioning. Following this principle makes it easier to find and alter parameter values when refining
virtual experimental conditions. It also facilitates the potential replacement of parameter values
with additional modules should a constant need to be replaced with a variable governed by some
new process.

For protocols that allow the definition of new units, the question of where, in a large model, to
define them arises. In Principle 2) we advocated a composition hierarchy where leaf nodes are,
ideally, individual biological entities and processes. Since such leaf nodes should be able to be
recombined into different higher-level compositions, it seems logical that units should be defined at
the simplest level of module in which they are used – thus keeping the simpler modules cohesive
with respect to their units. Unit definitions themselves represent a design decision, and as such
could be considered a module in their own right. Hence if the modelling language allows it, we
propose that modellers 7) define units at the lowest level of the composition hierarchy possible.

Some unit and parameter or initial condition definitions may be common across many models; units
may be defined according to the SI system of units and some parameters may in fact be universal
constants. In both cases it seems helpful to define these once and promote consistency amongst
models and modules within models by advocating that modellers 8) use standard unit and universal

constant modules where possible.

Summary of the Design Principles
For ease of reference, the set of design principles is reproduced below, in the order to be discussed.

1. Common mathematics should be abstracted into separate modules and reused wherever
possible.

2. Build large, cohesive functional modules from smaller, cohesive functional modules.

3. Form separate modules to handle multi-module communication.

4. Expose information relating to the amounts and rates of change of biological entities.

This article is protected by copyright. All rights reserved.

5. Use separate modules to perform unit conversions.

6. Separate all parameter and initial condition definitions from the mathematical modules and
place them in their own dedicated modules.

7. Define units at the lowest level of the composition hierarchy possible.

8. Use standard unit and universal constant modules where possible.

Examples
This section describes two example models formulated from model modules that were constructed
using the principles. The first is a relatively simple example model in a signalling context by which
the application of the principles can be described. The second example, which reuses parts from the
first example, shows how the principles can be used to define an architectural prototype for whole-
cell modelling. This ‘Core Domains’ example provides more advanced examples of reuse that
following the design principles facilitates.

Signalling Model Example
We apply the principles to the construction of a signal transduction model. This endothelial cell
model combines the shear-stress sensitive channels of Kang et al., (2007) with the calcium handling
of Planck et al. (2006) to form a model for calcium dynamics on shear-stress from blood flow, as
shown in Figure 1.

Figure 1 goes about here

The model can be simulated in OpenCOR (all example models and their components are available
online; please see the Supplementary Information for more details on retrieving and simulating the
models). Please note that while these are quantitative models, the actual parameter values and
scales of the output are not particularly important here; our contribution lies in how such models
can be structured and composed. Broad qualitative behaviour is shown in order to illustrate some of
the different kinds of models may be composed, but this work is not concerned with parameter,
variable or output value accuracy per se in this or in further models considered here.

Model modules are implemented as CellML components, which encompass module variables and,
optionally, mathematics. Components for a model can be distributed among multiple files and
copies of components from other files can be made in-memory using what is known as a CellML
import (more details can be found in Cuellar et al. (2003)). The import feature is used to implement
Principle 1 (abstraction of common mathematics), as reusable mathematics can be defined once and
then copies made for each required use of those mathematics, as shown in Figure 2.

Figure 2 goes about here

Principle 2 (a compositional hierarchy of modules) was followed by considering the natural division
between larger scale processes related to shear-stress, calcium-handling, and calmodulin activation.
A schematic of the component hierarchy is shown in Figure 3.

Figure 3 goes about here

This article is protected by copyright. All rights reserved.

Large scale processes are constructed from aggregations of finer-grained components that represent
particular biological entities or processes, implemented using CellML’s group construct (Cuellar et
al., 2003). Large scale processes could themselves be included in even larger models, as will be
shown in a later example. Variables that are required inputs or outputs at lower levels become
candidate input or output variables at higher levels – design decisions where achieving high
cohesiveness and low coupling should, in general, be priorities.

Principle 3 (separate modules for multi-module communication) is implemented as a separate
component for each species that participates in more than one process. The aggregation of the
resulting fluxes is handled in components with a ‘_delta’ suffix as shown in Figure 4. As shown in that
figure, it may also include multiplication by factors to account for different volumes between
compartments. The output of this component is fed into components that would be interested in
the net rate of change (via CellML connections (Cuellar et al., 2003)), such as the component that
implements the species of interest.

Figure 4 goes about here

Principle 4 (exposing entity information) is implemented by considering what entity amounts and
rates of change exist in the model. These are then exposed in the interfaces of the higher-level
components that encompass them. The ‘Calcium_Handling’ component exposes ‘Ca_if’ and ‘J_Ca_if’
– the current intracellular calcium concentration and the rate of change of that species, respectively.
Similar values are exposed for other entities. Those values can simply be ‘read’ via connections (from
higher level components as will be shown in the example models) without having to understand the
inner workings of the source component. For example, the ‘Calmodulin_Activation’ component uses
the ‘Ca_if’ value from ‘Calcium_Handling’ as an input (the source of the dotted line between the two
components in Figure 3A). A more subtle requirement is revealed by considering that the activation
of calmodulin decreases the free intracellular calcium concentration, and this ‘drain’ on calcium
should be reflected in the ‘Calcium_Handling’ component. Hence, in addition to exposing values to
be read, the higher level components also provide input variables ‘J_<species>_External’ to
represent fluxes contingent on a species from processes external to that component. In the case
mentioned above, the flux of calmodulin activation is connected to a ‘J_Ca_if_External’ variable
exposed by the ‘Calcium_Handling’ component (noted in Figure 3A by the bidirectional arrow), so
that the free intracellular calcium flux summation can include it. Additional fluxes could be
connected by summing them in a separate component first, then passing that component’s output
to the ‘_External’ variable. In general, each biological entity likely to be of interest should have
exposed, in any component that encapsulates it, the current concentration and the current flux, and
take as inputs both the initial value and a net flux from processes external to the immediate parent
component or its immediate ancestors.

Additional components are also used to perform unit conversions (Principle 5), necessary here as the
amount of IP3 (inositol trisphosphate) in the system is handled differently between the Kang et al.
and Planck et al. models. In the former, it is a dimensionless construct, whereas the latter considers
the IP3 concentration. This is handled relatively simply by a component at the top level of the
hierarchy, that performs a multiplication of the dimensionless value from the ‘Shear_Stress_to_IP3’
component by a concentration scaling factor, before passing the result to the ‘Calcium_Handling’
component.

This article is protected by copyright. All rights reserved.

Each of the components requires parameters or initial conditions, pertaining to the low-level
components that they encompass. Following Principle 6 (separation of initial conditions and
parameters from mathematics), these sets are each housed in their own component which is then
connected to the components representing those processes and entities, as shown in Figure 5.

Figure 5 goes about here

In CellML, units are housed in models that encompass the components we have mentioned, their
units and connections between components at that level. Following Principle 7, units are defined not
at the top level, but at the lowest level possible (see Figure 6), ensuring that every level has the units
that it needs to be well defined.

Figure 6 goes about here

Additionally, all unit definitions have been collected in a single file that serves as an evolving
‘standard library’ of units for intracellular models, thus implementing the unit-related aspect of
Principle 8.

Note that CellML allows some flexibility with respect to where models and components are stored
on the file system. Here our discussion centred on how to organise components following the
principles defined earlier, independently of where the components are stored on the file system. We
do, however, note an inherent design trade-off in having many files and thus being able to locate
components easily, but also having then to work between perhaps a great many files at once, which
may make enhancing and maintaining the models more difficult without a suitable tool.

Core Domains Example
Having devised the implementation of the principles in CellML, we now apply them to the
construction of a more complex model with modules from multiple domains, in an effort to illustrate
how structured whole-cell modeling might occur. Our simplified model, the ‘Core Domains’ model,
does not contain all the processes in a cell, rather it contains some processes from each of several
domains that one might expect in a whole cell model, in order to demonstrate the architecture.
More processes could be added in a similar fashion to achieve the desired level of cellular
complexity.

This example, shown in Figure 7, considers an electrically active cell with one ion channel (an L-type
calcium channel from Nickerson et al. (2008b)). The channel is sensitive to pH and ATP (adenosine
triphosphate), hence is also sensitive to the myosin ATPase activity as implemented in the metabolic
models of (Vanlier et al., 2009). The resulting intracellular calcium flux signals calmodulin activation
(reusing a high level component from the Signalling Example model) which in turn activates
calcineurin and cycling of the transcription factor NFAT (nuclear factor of activated T-cells) between
nucleus and cytoplasm (model from Cooling et al. (2009)). This transcription factor binds to a
promoter of a variant of a GFP (green fluorescent protein)-producing synthetic biology device
(modified here to represent a eukaryotic system). The extensible nature of the components is used
to our advantage by additionally attaching a stimulus current on the virtual plasma membrane, to
depolarise the cell leading to a calcium signal and subsequent increase in GFP signal (Figure 7). In
order to readily demonstrate time courses showing key activities, several rate constants were scaled

This article is protected by copyright. All rights reserved.

in this example. The model can be run in OpenCOR (please see the Supplementary Information for
more details).

Figure 7 goes about here

Exploiting Principle 2, it is possible to structure the large composite models so that they can be run
and simulated by themselves without modification, as well as being connected to a larger model.
That is, it is possible to define a model composed of the ‘main’ component and some parameter and
time components, and also define a larger model that connects different parameters (and perhaps
uses outputs from other components for those parameters). An example of this is shown in Figure
8A. The former model can be thought of as a ‘test harness’ for the ‘main’ component, allowing an
exploration and debugging if necessary of that model with different parameters, before attempting
to simulate the complete model.

Figure 8 goes about here

We extend this to a more complex test harness. We have included a
‘Calcium_to_Calcineurin_Activation’ model that incorporates both the ‘Calcineurin_Activation’
component (used in the Core Domains model) and a separate implementation of intracellular
calcium, which is set to increase steadily over time. When this model is run, it effectively tests the
calcineurin activation component, generating a characterising sigmoidal activation curve (Figure 8B).
This is useful for testing the dynamic range of the model with a given set of parameters,
independently from any larger model, aiding parameterisation and debugging.

This example of a complex harness also illustrates how Principle 2 helps to resolve conflicts between
two models. Both the Core Domains model and the described test harness implement intracellular
calcium. If a biological entity or process is implemented in both models as a constant parameter
value, then it is simply a matter of choosing which parameter to use from the two possibilities
(facilitated by Principle 6). If, as in this case, the processes and entities are implemented as
components, then only one component for each conflicting element can be chosen. Principle 2
means that sub-components of the components of interest can be separated out, and desired
components connected together, allowing conflict resolution.

Principle 4 is more completely implemented in this model such that the top level model is provided
an interface similar to its children. All the children’s input and output variables are similarly exposed
at the next level up, unless a sibling component provides or exclusively consumes that information.
The notion of time and the parameters and initial conditions are always exposed as inputs to be
provided by higher level modules. This means that not only can a module be run or tested by itself,
but this entire Core Domains model can be incorporated into a future larger model (including, for
example, extracellular detail, other cells or tissue-level effects) in exactly the same way as its
children have been incorporated into it.

Universal constants are separated from the mathematics (Principle 8), in the
‘mohr_taylor_newell_2008_subset’ model, using values derived from Mohr et al. (2008).

When building components from scratch, it is easy to apply the principles from the beginning.
However, some advantages can still be gained from legacy models by applying only some of the

This article is protected by copyright. All rights reserved.

principles to wrap existing structures. The Core Domains example imports the L-type calcium
channel model from Nickerson et al. (2008b) largely unchanged. The processes in the metabolic
model (from Vanlier et al., 2009) are also partly retained in their original monolithic form. However,
in both cases care has been taken here to wrap the components in the interfaces appropriate for
implementing Principles 4 and 6, demonstrating that they can take advantage of the modular
architecture of the larger model and be thus usefully included. Principle 8 was also followed with
units being imported from our evolving standard units file. These principles are relatively easy to
apply to existing modules to facilitate composability of higher level models without necessarily
having to refactor all the processes as Principle 2 would require. This could also be a useful strategy
if the advantages of following Principle 2 were not needed in a particular situation. For example, if
there are no common species or processes that change over time between one model and any
foreseeable model that connects to or encompasses it, then the ability to resolve such a collision by
importing only non-overlapping components would not be needed.

Finally note that while parameter and initial conditions are separated from the rest of the model
(Principle 6), their source is flexible and not necessarily centralised. For example, the synthetic
biology modules are designed to be transferred with embedded parameters, and the
‘ExampleDevice’ component maintains this custom - if run by itself it uses the embedded parameters
from its children. By contrast, the Core Domains model defines all parameters centrally and passes
them down to its children, including ‘ExampleDevice’. Either, or combinations of the two, are valid
options made possible by following the principles.

Discussion
The scope and complexity demanded of mathematical models increases as the field moves towards
whole-cell, multi-scale, and clinically-relevant modelling. Therefore, the ability to design model
structures such that their compositional utility is increased will become more important. Modelling
work that follows the principles described here will therefore have a greater chance of directly
contributing to new discoveries as the biological modelling field increases in scope.

Following the principles, CellML models are structured in a considered, coherent fashion, aiding the
understandability and communicability of the models (once the design is understood). This, and the
separation of parameters from the mathematics of the model, provides a high level of
maintainability as cohesive modules - whether they represent low-level mathematical constructs,
simple biological constructs, or complex biological scenarios - can be readily found and considered in
isolation. Additionally, parameters can be changed without having to alter the modules themselves.
The model design also provides reuse without modification, as shown in our examples by the
calmodulin activation module. Importantly, the design greatly increases extensibility; models can be
subsumed into other or larger models without modification, even (if desired) while they continue to
be part of still other models.

We validated the principles’ utility in a series of example models, culminating in the successful
composition of a model covering several key intracellular domains central to whole-cell modelling.
While the principles are important in this work, rather than the model per se, that example is, to our
knowledge, also the first model to incorporate all of these cellular domains together, reflecting the
utility of the principles.

This article is protected by copyright. All rights reserved.

Elements of the principles can be found in earlier work. For example, Principles 1 and 7 unify
approaches advocated in Cooling et al. (2007), Nickerson et al. (2008b) and Wimalaratne et al.
(2009). Cooling et al. (2007) also advocated an early, CellML-specific version of Principle 3, and
Terkildsen et al. (2008) noted the importance of what we have developed into Principle 5. Elements
of some of the principles are perhaps used by modelling groups already. Here we present principles
that are coherent as a set, together with detailed examples, to enable better reuse and extension of
models from different domains.

While the most gain is in following all the principles, trade-offs in resulting code complexity (due to
fine granularity and interface construction) against extensibility and clarity must be weighed by the
modeller. A model of small scope that is to be put together quickly to explore some idea, or
constructed as a learning exercise, and crucially is not intended to be significantly built upon or
shared, may, if all the principles were followed, accrue too great an ‘overhead cost’ for the extra
effort and structure to be worthwhile. We demonstrate that even partial application of the
principles can yield gains, in particular in wrapping existing models that are differently structured.
Complete refactoring can be an iterative process to be conducted if required, given the modelling
situation at hand. There are also trade-offs with the set of principles. For example, in Principle 4,
there is a potential tension between reducing coupling and designing larger module-module
interfaces. If one wishes to reduce the coupling that this principle promotes, a viable compromise
may be to connect a second, removable component which presents a reduced interface to other
components rather than the full interface of the original component - somewhat analogous to the
‘Façade Pattern’ known in object-oriented software design (Gamma et al., 1994). The principles are
named as such as we hope to facilitate thought rather than replace it.

While we are concerned with CellML in this work, commonalities and differences between these
principles and those possible in other modelling paradigms would be an interesting area of research.
This includes protocols that are semantically close to CellML (such as SBML) and those that share a
more distant common ancestor, such as object oriented programming.

Models of physiology are concerned with biophysical mechanisms and quantification of behaviour.
CellML is a powerful modelling protocol for representing such models. Our principles greatly
facilitate the potential for CellML models to have a longer life cycle than one or two modelling
studies. For example, the response of cells to external signals, and the feedback from those cells to
the wider physiological environment, can be modelled in greater detail by the careful construction of
smaller models which are later combined to yield more detailed representations of the workings of a
cell. While CellML has been used to provide a library of components in Synthetic Biology (Cooling et
al., 2010), libraries of CellML components for the various domains needed by systems of
physiological complexity that interoperate without modification have not been constructed. In part,
this is because a coherent set of design principles that covers all domains did not exist. Hierarchies of
small, cohesive, loosely-coupled modules allow the iterative and partitioned development of cellular
physiology models and their validation. As more biophysical details emerge from physiological
research, ‘swapping out’ older modules for modules embodying new knowledge will be facilitated.
Separation of the data from the model allows easier application of models to new physiological
scenarios. Models that can be recombined without modification and do not have to be partially
recoded for new questions of interest will, as a resource, facilitate the reuse of physiological studies
at the model level.

This article is protected by copyright. All rights reserved.

Realising the full potential of the principles will depend on the interaction of the resulting models
with Physiome tools, frameworks, and standards. PMR already has facility for linking ‘workspaces’
together so that enhancements to a component model can influence higher level models if desired.
This functionality has already been demonstrated in previous work (Cooling et al., 2010) and, as in
that work, components from the Core Domains Model provide the seed of an extensible CellML
module library, available to the international modelling community.

Retrieving the modules from PMR via ApiNATOMY would rely on thorough annotation of the
modules with links to appropriate anatomical and biophysical concepts. While that is not the focus
of this work, many of the required elements exist, as briefly described in the Introduction.
Development of a standard annotation process to complement the standard metadata framework is
a current research project.

The principles do not directly address the content of the models. It is possible to completely follow
the principles and still connect models together that do not make good sense. Unresolved
duplications of entities or processes, missing processes, or not updating the notions of species or
processes based on new additions are all still entirely possible. In the Core Domains model, for
example, if more electrophysiological modules are added that impact potassium ions, their impact
on the potassium ion species in the metabolic model, and vice versa, must be considered. The
principles make it easier to address these modelling considerations, but the fact that they may exist
in a particular model is still up to the model builder to realise. Appropriate tagging of components
with metadata and automated model ‘sanity checking’ will help. The enhancement of model
generation tools, whether metadata-driven or not, such that the resulting models follow the design
principles above, is likely to be of great practical benefit to the builders of complex models.
Annotation will also facilitate the modules’ inclusion in SED-ML-defined experimental protocols.

As the number of reusable model modules grows, tools such as the Cardiac Electrophysiology Web
Lab will become valuable in both testing the assumptions and behaviour of the modules, and check
that the relevant assumptions hold when the modules are composed with others. Characterisation
of modules’ behaviour would be valuable to modellers searching for components to reuse, and
future work to determine how best to define and present these characterisations is likely to be
beneficial to the modelling community. Extending the information available on a given module to
include sensitivity analysis will also benefit both search and model composition.

Separation of the model parameters from the mathematical relationships provides clear entry points
for parameter modification by virtual experiment protocols. It will similarly facilitate parameter
modification from tools and platforms that use clinical information to constrain and contextualise
mathematical models (Nickerson et al., 2016).

Tools such as SemGen may generate CellML models from user directives at the biophysical level, or
from semantically-driven model composition. Another development that may assist with
composition is the recent application of bond graphs to intracellular modelling (Gawthrop et al.,
2015). This provides a method for sketching the main players in a system and the effort or flows
between them, and generating mathematical models that are automatically appropriately
constrained by, for example, mass, charge, or Gibbs free energy. This will provide implicit biophysical
constraints on signalling, metabolic, electrophysiological, and other models. Future developments

This article is protected by copyright. All rights reserved.

may include the generation of CellML code from such models. Whether models are crafted by hand
or generated algorithmically, as in the above two examples, following the principles described above
will help ensure that they are maintainable as testable modules that can be directly reused in the
composition of simulatable quantitative descriptions of larger systems.

References
Bartholet RG, Brogan DC, Reynolds PF & Carnahan JC (2004). In search of the philosopher's stone:
Simulation composability versus component-based software design. Proc. Fall Sim. Interop.
Workshop 2004, Simulation Interoperability Standards Organization: Orlando, FL.

Beard DA, Neal ML, Tabesh-Saleki N, Thompson CT, Bassingthwaighte JB, Shimoyama M & Carlson BE
(2012). Multiscale Modeling and Data Integration in the Virtual Physiological Rat Project. Ann
Biomed Eng 40, 2365-2378.

Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, Mittag F, Schubert, M, Glont
M, Golebiewski M, van Iersel M, Keating S, Rall M, Wybrow M, Hermjakob H, Hucka M, Kell DB,
Muller W, Mendes P, Zell A, Chaouiya C, Saez-Rodriguez J, Schreiber F, Laibe C, Drager A & Le Novere
N (2013). Path2Models: Large-scale generation of computational models from biochemical pathway
maps. BMC Syst Biol 7; DOI: 10.1186/1752-0509-7-116.

Cooling M, Hunter P & Crampin EJ (2007). Modeling Hypertrophic IP3 Transients in the Cardiac
Myocyte. Biophys J 93, 3421-3433.

Cooling MT, Hunter P & Crampin EJ (2009). Sensitivity of NFAT cycling to cytosolic calcium
concentration: implications for hypertrophic signals in cardiac myocytes. Biophys J 96, 2095-2104.

Cooling MT, Rouilly V, Misirli G, Lawson J, Yu T, Hallinan J, Wipat A (2010). Standard virtual biological
parts; a repository of modular modelling components for synthetic biology. Bioinformatics 26, 925-
931.

Cooling MT & Hunter PJ (2015). The CellML Metadata Framework 2.0 Specification. J Integr
Bioinform 12, 260; DOI: 10.2390/biecoll-jib-2015-260.

Cooper J, Scharm M & Mirams GR (2016). The Cardiac Electrophysiology Web Lab. Biophys J 110,
292-300.

Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP & Hunter PJ (2003). An Overview of
CellML 1.1, a Biological Model Description Language. Simulation 79, 740-747.

de Bono B, Grenon P & Sammut SJ (2012). ApiNATOMY: a novel toolkit for visualizing multiscale
anatomy schematics with phenotype-related information. Hum Mutat 33, 837–848.

de Bono B, Safaei S, Grenon P, Nickerson DP, Alexander S, Helvensteijn M, Kok JN, Kokash N, Wu A,
Yu T, Hunter P & Baldock RA (2015). The Open Physiology workflow: modelling processes over
physiology circuitboards of interoperable tissue units. Front Physiol 6; DOI:
10.3389/fphys.2015.00024.

Dijkstra E (1982). On the role of scientific thought. In: Selected Writings on Computing: A Personal
Perspective. Dijkstra E (Ed). New York: Springer-Verlag, 60–66.

This article is protected by copyright. All rights reserved.

Gamma E, Helm R, Johnson R & Vlissides J (1994). Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley.

Garny A & Hunter PJ (2015). OpenCOR: a modular and interoperable approach to computational
biology. Front Physiol 6; DOI: 10.3389/fphys.2015.00026

Gawthrop PJ, Cursons J & Crampin EJ (2015). Hierarchical bond graph modelling of biochemical
networks. Proc R Soc A 471; DOI: 10.1098/rspa.2015.0642.

Geoffrion AM (1991). FW/SM: A Prototype Structured Modeling Environment. Mngmnt Sci 37, 1513-
1538.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-
Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC,
Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio
D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC,
Shapiro BE, Chimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J & Wang J (2003). The
systems biology markup language (SBML): a medium for the representation and exchange of
biological network models. Bioinformatics 19, 524-531.

Kang HG, Shim EB & Chang KS (2007). A New Multiphysics Model for the Physiological Responses of
Vascular Endothelial Cells to Fluid Shear Stress. J Physiol Sci 57, 299-309.

Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI &
Covert MW (2012). A whole-cell computational model predicts phenotype from genotype. Cell 150,
389-401.

Miller AK, Yu T, Britten R, Cooling MT, Lawson J, Cowan D, Garny A, Halstead MDB, Hunter PJ,
Nickerson DP, Nunns G, Wimalaratne SM & Nielsen PMF (2011). Revision history aware repositories
of computational models of biological systems. BMC Bioinformatics 12; DOI: 10.1186/1471-2105-12-
22.

Mohr PJ, Taylor BN & Newell DB (2008): CODATA recommended values of the fundamental physical
constants: 2006. Rev Mod Phys 80, 633-730.

Neal ML, Cooling MT, Smith LP, Thompson CT, Sauro HM, Carlson BE, Cook DL & Gennari JH (2014). A
reappraisal of how to build modular, reusable models of biological systems. PLoS Comput Biol 10;
DOI: 10.1371/journal.pcbi.1003849.

Neal ML, Carlson BE, Thompson CT, James RC, Kim KG, Tran K, Crampin EJ, Cook DL & Gennari JH
(2015). Semantics-based composition of integrated cardiomyocyte models motivated by real-world
use cases. PloS One 10; DOI: 10.1371/journal.pone.0145621.

Nickerson DP, Nash M, Nielsen P, Smith N & Hunter P (2006). Computational multiscale modeling in
the IUPS Physiome Project: Modeling cardiac electromechanics. IBM J Res Dev 50, 617-630.

Nickerson DP, Corrias A & Buist ML (2008a). Reference descriptions of cellular electrophysiology
models. Bioinformatics 24, 1112-1114.

This article is protected by copyright. All rights reserved.

Nickerson D & Buist M (2008b). Practical Application of CellML 1.1: The integration of new
mechanisms into a human ventricular myocyte model. Prog Biophys Mol Bio 98, 38-51.

Nickerson D, Atalag K, de Bono B & Hunter PJ (2016). The Physiome Project, openEHR Archetypes
and the Digital Patient. In: The Digital Patient: Advancing Healthcare, Research and Education, D
Coombes, J Sokolowski & C Banks (Eds). Wiley, Chapter 9.

Parnas, DL (1971) Information Distribution Aspects Of Design Methodology. IFIP Congress 339-344.

Parnas DL (1972) On the Criteria to be Used in Decomposing Systems into Modules. Comm ACM 15,
1053-1058.

Plank MJ, Wall DJ & David T (2006). Athersclerosis and calcium signalling in endothelial cells. Prog
Biophys Mol Bio 91, 287-313.

Snoep J, Bruggeman F, Olivier BG & Westerhoff HV (2006). Towards building the silicon cell: a
modular approach. Biosystems 83, 207–216.

Stevens WP, Myers GJ & Constantine LL (1974). Structured design. IBM Sys J 13, 115-139.

Terkildsen JR, Niederer S, Crampin EJ, Hunter P & Smith NP (2008). Using Physiome standards to
couple cellular functions for rat cardiac excitation-contraction. Exp Physiol 93, 919-929.

Vanlier J, Wu F, Qi F, Vinnakota KC, Han Y, Dash RK, Yang F & Beard DA (2009). BISEN: Biochemical
Simulation Environment. Bioinformatics 25: 836-837.

Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle
S, Snoep JL & Le Novere N (2011). Reproducible computational biology experiments with SED-ML–
the simulation experiment description markup language. BMC Syst Biol 5; DOI:10.1186/1752-0509-5-
198.

Wimalaratne SM, Halstead MDB, Lloyd CM, Cooling MT, Crampin EJ & Nielsen PF (2009). Facilitating
modularity and reuse: guidelines for structuring CellML 1.1 models by isolating common biophysical
concepts. Exp Physiol 94, 472-85.

This article is protected by copyright. All rights reserved.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
M.T.C. conceived the work, led the discussions that developed the principles, developed the
example models, and drafted the manuscript. D.P.N. contributed to the developed of the principles
and the example models, and revised the manuscript. P.M.F.N. motivated a preliminary study,
contributed to the development of the principles, and revised the manuscript. P.J.H. conceived the
work and revised the manuscript. All authors have approved the final version of the manuscript,
agree to be accountable for all aspects of the work, and qualify for authorship.

Funding
Portions of this work were supported by a Marsden Fast-Start Grant from the Royal Society of New
Zealand UOA1007 to M.T.C. M.T.C. was also supported by the Maurice Wilkins Centre for Molecular
Biodiscovery, and the Aotearoa Foundation. D.P.N. was supported by the Maurice Wilkins Centre for
Molecular Biodiscovery, and the Virtual Physiological Rat Project, NIH grant P50-GM094503. P.J.H.
was supported by a Marsden Grant from the Royal Society of New Zealand UOA1205.

Acknowledgements
The authors thank E. J. Crampin, A. Garny, C. M. Lloyd, H. Nielsen, J. Terkildsen, S. M. Wimalaratne,
and particularly A. K. Miller, for fruitful discussions.

Supporting Information
To assist readers who wish to more fully explore the example models, we provide the following
additional information:

1. S1-InstructionsForObtainingAndSimulatingExampleModels.docx – provides guidance on how
to obtain the example models and simulate them in OpenCOR.

2. S2-AdditionalDetailsOfOutputTracesForSignallingExample.docx – provides full modelling
details of the input and output for the traces shown in the Signalling Example.

3. S3-AdditionalDetailsOfOutputTracesForCoreDomainsExample.docx - provides full modelling
details of the input and output for the traces shown in the Core Domains Example.

This article is protected by copyright. All rights reserved.

Figures and Legends

Figure 1 - Biological schematic of the Signalling Model Example. Shear stress sensed by receptors (Rtau) leads to IP3
production and store calcium release. Calcium is also transferred between the extra- and intra-cellular compartments via stress-
sensitive calcium channels, calcium/sodium exchanger, a calcium pump, a basal calcium leak, and capacitative calcium entry.
Calcium leads to activation of calmodulin (CaM). Representative traces of Rtau, free intracellular calcium, and activated
calmodulin over a 25 second simulated time period are shown (please see the Supplementary Information for more details on
the traces).

Figure 2 - Common template components being imported to form biological entities (A) and processes (B).
Squares are CellML components, and arrows show the direction of the import: for example, ‘Ca_if’ is an imported instance of
‘Template_Species_uM’. Ca_if and Ca_st are free and store calcium respectively, ‘CaM’ is calmodulin, and the ‘_star’ suffix
denotes the activated version.

This article is protected by copyright. All rights reserved.

Figure 3 - The biological component hierarchy of the Signalling Example model. (A) shows the top level of the hierarchy,
with large cohesive modules (dotted lines indicate general flow of information; free intracellular calcium modulates both IP3
generation and calmodulin activation). (B) shows the nested nature (brackets indicate encapsulation relationships) of the
Calcium_Handling module, which are constructed from smaller cohesive components representing sub-modules. Similar sub-
hierarchies could be drawn for Shear_Stress_to_IP3 and Calmodulin_Activation components.

Figure 4 - Variables of the ‘Ca_st_delta’ component, which handles multi-module communication between Ca_st (store
calcium) and other components, with respect to flux. Arrows represent input or output on variables listed by name. The
component includes ‘input’ variables for fluxes (positive or negative) from store re-sequestration and release processes, as well
as any external processes (see the example models for more details). There is also a variable for converting between different
volumes (in this case, cytoplasm/store). The net flux is component output, named ‘JNet’. The ‘Ca_st’ component will use ‘JNet’
to update the total amount of calcium in the store, across a given time interval.

Figure 5 - Parameters and initial conditions are placed in their own components, here for each high level biological
component. Each has their own parameter set, but the separation allows for parameters to come from other sources too.
Shear_Stress_to_IP3 can run using its own parameters, however when linked with other modules (such as Calcium_Handling)
it may be more appropriate for some parameters to come from that source instead. Following Principle 6 allows such
“parameter collisions” to be resolved by the model builder.

Figure 6 - Units reuse. Units (triangles) are defined at the lowest level and imported into the models (circles) housing low-
level components so that those components can be reused in other models along with consistent and expected unit information
(solid arrows show unit import directions). Units for higher level modules (‘Calcium_Handling’, in this case) may be (dotted
arrows) imported from lower levels or from other ‘child’ models. Additionally, following Principle 8, we include a ‘Units_’ model
that houses standard units providing a library of such units for many models to use promoting inter-model consistency. Higher
level constructs can import all units directly from that common source, reducing coupling that the former strategy would incur.

This article is protected by copyright. All rights reserved.

Figure 7 - Biological schematic of the Core Domains model. The membrane is depolarised at t=50 (voltage trace shown,
scale is mV), resulting in calcium influx (trace shown in µM) through L-type calcium channels (electrophysiology). The channels
are sensitive to pH and [ATP], both of which are influenced by myosin ATPase reaction (metabolism). Calcium activates
calmodulin and calcineurin (trace of ratio of active calcineurin-calmodulin complex shown), leading to NFAT cycling (signalling).
NFAT (trace shown in nM) is a transcription factor for a sample ‘device’ (gene regulation and synthetic biology) resulting in
mRNA production that is translated outside the nucleus to form a GFP signal (trace shown in nM), which increases as the
membrane is depolarised. Please see the Supplementary Information for more details.

This article is protected by copyright. All rights reserved.

Figure 8 - (A) Model aggregation and reparameterisation. Here all models (rounded boxes) are complete and simulatable in
their own rights. Components (squares) imported (dotted arrows) from ‘NFAT_Cycling’ and ‘Calcinerin_Activation’ form part of
the higher level model ‘CaN_to_DNAReady_NFAT’, which includes parameter components related to the child components by
default, but could equally source parameter values from other components. ‘Calcium_to_Calcinerin_Activation’ model imports
the ‘Calcineurin_Activation components’, but also includes a calcium species whose concentration varies over time, hence
replaces the constant calcium concentration parameter with the output of the ‘Ca’ component. (B) Output of the
’Calcium_to_Calcineurin’ model. The trace of activated calcineurin proportion for increasing calcium concentration is shown
(calcineurin and calmodulin concentrations are fixed in that model).

