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ABSTRACT.

Status epilepticus (SE) is a serious neurological disorder, characterised by prolonged

and/or frequent seizure activity. Following SE, a selective and delayed neuronal death

(DND) occurs in limbic regions of the brain, particularly in the hippocampus. The

objective of this thesis was to investigate the molecular basis of SE-induced DND in the

Wistar rat hippocampus.

Following the induction of SE, moribund (i.e. dead/dying) neurons were identified by

histological staining, DNA fragmentation and an increase in activated microglia.

Clusterin, a glycoprotein implicated in apoptotic cell death was also observed to

accumulate in the soma and axons of moribund neurons 72-144 hr following SE.

Morphological evidence suggested that dying neurons exhibited many of the classical

features of apoptosis (i.e. apoptotic body formation, oligo-nucleosomal DNA

fragmentation and rapid phagocytosis of debris) and therefore raised the possibility that

SE-induced DND might be programmed (i.e. requiring de novo protein synthesis).

To investigate this hypothesis I have examined the temporal and anatomical expression

of a number of proteins which may have a critical role in SE-induced DND. The

expression of the inducible transcription factors (lTFs) was examined as they couple

extracellular stimulation to the transcription of late effector gene(s), resulting in long-term

phenotypical changes in the neuron and therefore, they may couple SE-inducing

stimulation with DND. A high correlation was shown between neurons which exhibited

a delayed and prolonged ITFP expression and those which were selectively vulnerable

to SE-induced DND (e.g. CA1 and CA3 pyramidal cells and dentate hilar neurons).

However, administration of the protein synthesis inhibitor anisomycin following the

induction of SE reduced the ITFPs expression, but resulted in an increase in SE-induced

DND after 48 hr. However, the levels of brainderived neurotrophic factor (BDNF)-like

immunoreactivity were also shown to attenuate at this time after this procedure. Thus,

protein synthesis inhibitors administered following SE may attenuate the level of trophic

support and promote cell death.
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To further investigate the role of the ITFPs in nerve cell death, etoposide, a DNA

topoisomerase ll inhibitor, which is known to facilitate apoptosis was infused into the

hippocampus. The results suggested that a complex ITFP expression occurred which

preceded nerve cell death. Moreover, this nerve cell death occurred earlier (12-24 hrl

and was not anatomically selective. Furthermore, folfowing the etoposide infusion,

clusterin was expressed in the hippocampal pyramidal cells, in the dentate hilar neurons

and in the dentate granule cells, however the latter exhibited the strongest BDNF-like

immunoreactivity.

In summary, circumstantial evidence suggests that the ITFPs may form a critical

component in the cascade of events which couple toxic stimulation to nerve cell death.

However, this thesis demonstrates that the ITFPs have a complex role in DND, as

although the ITFPs may be sufficient to induce DND, they may not always be necessary

(e.g. in the absence of sufficient trophic support).
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ABBREVIATIONS.

3ssdRtp 3ssd"o*yadenosine 5'-[a+hio]triphosphate

AED anti-epileptic drug

AHS Ammon's horn sclerosis

AMPA a-amino-3-hydroxy-5-methyl4-isoxazole proprionic acid

ANf anisomycin (2-[pmethoxybenzyll-3,4-pynolidinediol 3-acetate)

ANOVA analysis of variance

AP anterior posterior

AP-1 activator protein-l

ATP adenosine triphosphate

p-AP B-amyloid protein

B-APP B-amyloid precursor protein

BDNF brainderived neurotrophic factor

bFGF basic fibroblast growth factor

bp base-pair

BSA bovine serum albumin

CA1-3 Cornu Ammonis 1-3

Ca2+ calcium ion

CaBP calcium binding proteins

cAMP cyclic adenosine monophosphate

Cdk cyclin dependent kinases

cDNA complementary DNA

CHS continuous hippocampal stimulation

CHS/ANl continuous hippocampal stimulation followed by an anisomycin

infusion (icv)

CHSA/EH continuous hippocampal stimulation followed by a vehicle infusion

(icv)

CHX cycloheximide

CNS central nervous system

DAB 3,3'diaminobenzidine.4 hydrochloric acid

DAC l,Zdiacylglycerol
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hr

dH:zO distilled water

DMSO dimethyl sulfoxide

DNA deoxyribonueleic acid

DND delayed neuronal death

DPM disi,rltergrations per minute

DTT dithiothreitol

EDTA elhylene diaminetetra acetate

EEC electrsencephalograph

FP-l fusisn protein-l

FP-2 fusion protein-2

G0, Gl, G2 gap 0, 1,,2 phase (of cell cycle)

GABA f-ar,rrinobutyric acid

CAP 43 growth associated protein"it3

HzOz hydrogen peroxide

Hl hypoxic-ischemia

hour

HSP heat*hock protein

lB4 isolectin-B4

ICE interleultin-lfconv,erting enzyrne

i.c,v. intracerebroverrtricular

IGF insulinrlike growth factors

Ins{l,4,5)F, itnositol-t,4,Striphosphate

ITF 'induejble transcription factor

ITFP indueible transcription factor protein

ip i'ntraperitoneal

kb kilobase

kg kilograms

L lateral

LEC late effector genel

LECP late efJector gene protein

mL- milli-litres

M mitosis phase (oJ cett eyele)

MAP kinase rnitogen-activated protein kinase
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min minute

MK-801 dizocili'pine maleate or (+)-S-methyl-lQ11dihydro-sHdi-

benzola, djclrcl ohepten e5, I -i m i ne maleate

mRNA messenger ribonucleic acid

NGF nerve growth factor

NMD,{ N-methyl-D-aqpartate

NT neurotrophin

PB phosphate buffer

PBS phosphate buffered saline

PC12 pheochromoq/toma cell line

PCD programmed cell death

PCP phenryclidine

PFA paraformaldehyde

PKA protein kinase A

PKC protein kinase C

PMSF phenylmethylsulfonyl fluoride

PNS peripheral nervous system

Rb retinoblastoma gene

RNAase ribonuclease

S DNA synthesis phaser (of cefl cy.cle)

SAPK stress activated protein kinase

SE status epilepticus

SCP-2 sulphated glycoprotein-2

SOD super oxide dismutase

SSC standard saline-citrate

TAE trisnacetate/EDTA buffer

TBS tris buffered saline

TBsr tris bufferted saline containing 0.05% (v/v) Tween-2O

TdT terminal deoxynucleotidyl transferase

TGF transforming growth factor

TLE temporal lobe epilepsy

TNF tumour necrosis factor

trk tyrosine.kinase-linked neurotrophic receptor
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TUNEL(+) TdT-mediated dUTP-biotin nick end labelling posiwe staining

V ventral

vlv volume/volume

VSCC voltage-sensitive calcium channel

w/v weight/volume




