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ABSTRACT

Several studies have shown that non-cycling cells are resistant to the cytotoxic effects
induced by amsacrine (m-AMSA; 4’-(9-acridinylamino)methanesulphon-m-anisidide).  This
resistance may limit the activity of m-AMSA and related 9-anilinoacridine antitumour
agents against solid tumours. The biochemical mechanism(s) for this resistance have been
investigated using spontaneously transformed Chinese hamster fibroblast (AA8 cells) in
log- and plateau-phase spinner cultures. In early plateau phase most cells entered a
growth-arrested state with a G, -G, DNA content and showed a marked decrease in sensitivity
to cytotoxicity after a 1-h exposure to m-AMSA or its solid tumour-active analogue,
CI-921. Studies with radiolabelled m-AMSA demonstrated that changes in sensitivity to
m-AMSA-induced cell killing were not due to a difference in uptake or retention of drug by
log- and plateau-phase cells, and there was no significant metabolism of drug by either
log- or plateau-phase cells. Thus, after a 1-h exposure to [3H]-m-AMSA at 37°C, a small
proportion (1%) of cell-associated radioactivity was covalently bound to macromolecules,
but most of the cell-associated radioactivity represented unchanged m-AMSA. There was no
evidence for any oxidative metabolism to reactive quinoidal species in these tumour cells.
However, studies with a fluorescence assay for DNA unwinding indicated that plateau-phase
cells were 3 to 4 times less sensitive to m-AMSA-induced DNA breakage than log-phase
cells, and changes in sensitivity to m-AMSA-induced DNA breakage correlated with changes
in sensitivity to cell killing by m-AMSA as cell progressed from log to plateau phase,
Further studies showed that the decrease in sensitivity to m-AMSA-induced DNA strand
breakage correlated with a decrease in sensitivity to covalent DNA-protein complex
formation in plateau-phase cells after m-AMSA treatment. Combined with evidence that the
DNA lesions rapidly disappeared from both log- and plateau-phase cells following the
removal of m-AMSA (half-time approx. 4 min), this indicated that the lesions detected by
the FADU assay probably arose from the stimulation of DNA-topoisomerase II (topo II)
cleavable complex formation by m-AMSA. K'/SDS precipitation assays with [32P] 3’-end-
labelled pBR322 DNA indicated that nuclear extracts containing topo II activity from
plateau-phase cells were 3- to 4-fold less sensitive to stimulation of DNA-topo II complex
formation by m-AMSA than nuclear extracts from log-phase cells.  This change in
sensitivity to m-AMSA-induced DNA-topo II complex formation was therefore similar to that
observed with intact cells. However, P4 unknotting assays indicated that topo II activity
in nuclear extracts from plateau-phase cells was only 2-fold lower than that in nuclear
extracts from log-phase cells. Resistance to treatment with m-AMSA may therefore reflect
a decrease in topo II activity and/or a decrease in sensitivity of topo II enzymes to

stimulation of cleavable complex formation by m-AMSA in non-cycling cells.
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PREFACE

Despite the availability of a steadily increasing number of drugs for the treatment of
cancers, most common tumours remain refractory to treatment with existing chemotherapeutic
agents (Tattersall, 1981). Although significant advances toward the cure of cancer by
chemotherapy have been achieved with cytotoxic agents directed toward some haematopoietic
tumours and some rapidly growing tumours, these relatively responsive tumours represent
only a small proportion of human cancers. The majority of human cancers are relatively
slow-growing solid tumours which respond poorly to existing chemotherapeutic agents
(Kennedy er al., 1980).

The present studies were performed under the supervision of Dr W.R. Wilson in the Section
of Oncology, Department of Pathology, in association with the Auckland Cancer Research
Laboratories, University of Auckland School of Medicine. These studies form part of a
wider series of investigations intended to elucidate factors responsible for the
resistance of solid tumours toward antitumour agents, particularly those related to the
9-anilinoacridine antitumour drug, amsacrine (m-AMSA), which was developed at the Auckland

Cancer Research Laboratories.

The development of m-AMSA represented a significant achievement since this compound was
the first synthetic DNA intercalating agent to be selected for clinical trial as an
antitumour agent. However, while m-AMSA has proved to have useful therapeutic activity
against leukaemias, early clinical trials with this compound indicated that it was
ineffective or only marginally effective against a wide range of solid tumours (see
section 1.3). A component of the research programme at the Auckland Cancer Research
Laboratories is therefore now directed toward the search for analogues of m-AMSA with
improved therapeutic activity against a broader spectrum of tumours, including both
leukaemias and solid tumours. This search currently follows an essentially empirical
strategy by seeking correlations ‘ between physicochemical properties and biological
activity of drugs (Denny er al., 1982). However, it is intended that investigations
providing further information on factors limiting the activity of these drugs against
solid tumours may provide a more clearly defined basis for the rational design of m-AMSA

analogues with broad spectrum antitumour properties.

One of the major factors limiting the use of m-AMSA in the treatment of solid tumours may
be its poor activity against non-cycling cells (Denny er al., 1983c). There is now

considerable evidence from in vitro studies to suggest that non-cycling cells are much
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less sensitive to m-AMSA than cycling cells (see section 1.6.2). Evidence that
non-cycling cells may also provide a limitation to successful treatment of tumour cells
in vivo has recently been provided by the demonstration that a variant of the Lewis lung
tumour with an elevated proportion of non-cycling cells shows enhanced resistance to

m-AMSA analogues in mice (Baguley et al., 1985).

This thesis examines possible biochemical mechanisms for resistance of non-cycling cells
to m-AMSA and investigates whether the resistance of non-cycling cells is also observed
with a related 9-anilinoacridine derivative, CI-921, which has demonstrated promising
activity against experimental solid tumours. The thesis commences with a comprehensive
literature review, which is intended to provide an appreciation of the many factors which
may be important in determining the resistance of tumours to antitumour drugs. Since
mechanisms of resistance of non-cycling cells to m-AMSA may be related to the mode of
action of this compound, the review also provides a detailed discussion of the mechanism

of cytotoxicity of m-AMSA and related 9-anilinoacridine antitumour drugs.

The experimental section of this thesis is presented in chapters 2 to 5. Chapter 2
describes studies performed to characterize an in vitrro model for non-cycling tumour
cells, which was produced by growing transformed Chinese hamster ovary fibroblasts (AAS
cells) to high density (plateau phase) in spinner culture. This chapter also contains
results from investigations comparing the differences in sensitivity of cells from log-
(cycling) and plateau-phase (non-cycling) cultures to both m-AMSA and CI-921. Chapter 3
reports investigations of the metabolism of m-AMSA in log- and plateau-phase AA8 cells.
The metabolism of m-AMSA has not previously been studied in tumour cells. These
investigations therefore required the development of an HPLC method which would be capable
of detecting several different potential metabolites.  Studies performed to characterize
this HPLC system are described in detail. Chapter 4 reports studies of the uptake and
retention of m-AMSA in log- and plateau-phase AA8 cells. Chapter 5 contains results from
a series of studies performed to compare the amounts of m-AMSA-induced DNA damage in log-
and plateau-phase cells and to investigate the mechanisms for the reduced amounts of DNA

breakage observed in plateau-phase cells.

The thesis concludes with a general discussion which considers the significance of the

material presented in this thesis and includes proposals for future research.
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