

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Studies on the GH/IGF axis in the infant rat brain following hypoxic ischemic injury

Arjan Scheepens BSc (Hons)

Research Centre for Developmental Medicine and Biology Department of Paediatrics School of Medicine University of Auckland New Zealand

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of Health Science, University of Auckland, 1999.

Abstract

Brain injuries, be they hypoxic, ischemic, traumatic or neurodegenerative result in permanent neurological deficit and presently there are few or no therapeutic interventions available. Recent research into how and why brain cells die after an insult has elucidated that a significant number of cells die in an apoptotic manner. Following a transient brain injury cells continue to die for upto 5 days after the insult thereby giving a window of opportunity for treatment.

In response to injury, the brain produces a range of neurotrophic hormones including insulin-like growth factor 1 (IGF-I), which are thought to act as endogenous neuroprotective agents. This response occurs earlier and to a greater extent in the young. Studies have shown that the exogenous administration of these neurotrophic hormones after brain injury can prevent some cell death, likely through an inhibition of apoptosis. In these studies a well characterised model of HI brain injury in the juvenile rat was used to investigate the response of the IGF-I and growth hormone (GH) axes to brain injury.

The action and transport of IGF-I is partly regulated by six binding proteins (IGFBP1-6) for which the response of IGFBP 1-5 to neural injury has been shown. The starting point therefore is a description of the response of IGFBP-6 to HI brain injury.

Although the GH receptor is widely expressed in the brain on both neurones and glia, no reports have definitively shown the existence of its ligand, GH within the brain. Here I show that the GH receptor is differentially regulated after neural injury and that its immunolocalisation suggests an importation mechanisms for peripheral GH into the injured CNS, via the choroid plexus. Furthermore I show that a GH-like substance is strongly upregulated after injury, specifically associated with stressed and dying neurones and glia. Subsequently, I show that intracerebral infusions of rat GH into the injured rat brain conveys significant protection exclusively to GH receptor bearing neurones.

In summary, these data show a GH-like substance may be acting as a new neurotrophic factor which is upregulated after brain injury and may act as an endogenous neuroprotective agent.

١

"A theory which cannot be endangered, cannot be alive"

W.A.H. Rushton, Biologist.

Acknowledgements

Firstly, I would like to thank my supervisors Dr Chris Williams and Prof. Peter D Gluckman for their input and support during the production of this thesis. Many people contributed their time and intellectual input into the work described here and I would therefore like to thank Prof. Ross G Clark for his invaluable advice, Mr. Ernest Sirimanne for the use of his rat HI model and for personally performing a great number of these for me, Mrs Shirley George for her help with the rat surgeries and histology. For their help with the molecular work described here I would like to thank Dr Maggie Lai for her advice and especially Dr Erica Beilharz for performing some of the GHR/BP immunohistochemistry and for teaching me many of the techniques used. I also thank Mrs Christine Gibson for performing the IGF-I radioimmuno assays.

Apart from these people there were many others indirectly involved with the production of this manuscript including : Mrs Michelle McAnulty-Smith, Dr Bernhard Breier, Prof. Mike Waters, Dr Shinichi Shimasaki, Mr. Mark Vickers, Dr David Batchelor, Dr Jian Guan, Mr. PC Tong, Dr Cathryn Jones, Dr Kathy Mountjoy, all the staff at the animal resource unit, members of the Department of Paediatrics and of the Research Center for Developmental Medicine and Biology at the University of Auckland.

On a personal note, I would like to especially thank my parents Nel and Rudy Scheepens for their continued support during all my years at university and for putting up with me for so long. I would also like to thank my good friends Ms Zahra Champion, Mr. Milne Wright and all my diving buddies for keeping me sane.

"Geloof niet wat je ogen je vertellen. Alles wat je ziet is begrensd. Leer met je gevoel kijken, ontdek wat je eigenlijk aalang weet, en ook jij zult leren vliegen"

Jonathan Livingston Zeemeeuw R Bach and R.Munson, 1970.

Patents arising from this thesis

Neuroprotection

A. Scheepens, Ross C .Clark, Peter D. Gluckman and Chris E. Williams. Provisional New Zealand Patent # NZ331719, Filed 3 September, 1998.

Peer reviewed papers arising from this thesis

1) Alterations in the neural growth hormone axis following hypoxic ischemic brain injury. Arjan Scheepens, Ernest Sirimanne, Erica Beilharz, Bernhard H. Breier, #Mike J. Waters, Peter D. Gluckman and Chris E. Williams.

Brain Research - Molecular Brain Research. Jan 1998, In press.

2) Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury.

Beilharz EJ, Russo VC, Butler G, Baker NL, Connor B, Sirimanne ES, Dragunow M, Werther GA, Gluckman PD, Williams CE, **Scheepens A**. Brain Research - Molecular Brain Research. 59(2) p119-134 Aug 31, 1998.

3) Asphyxial brain injury - the role of the IGF system.

Gluckman, P. D., Guan, J., Williams, C., Scheepens, A., Zhang, R., Bennet, L., and Gunn, A. Molecular & Cellular Endocrinology 140, p95-99 1998.

Conference/book chapters arising from this thesis

The role of IGF-I in perinatal encephalopathy.
 Scheepens, A., Sizonenko, S.V., Williams, C.E. and Gluckman, P.D
 Perinatal Endocrinology Congress, Siena, September, 1998.(in press)

2) The potential of IGF-I as a neuronal rescue agent. Gluckman, P.D., Williams, C.E., Guan, J., Scheepens, A., Zhang, R., Russo, V. and Werther, G. IGFs in the Nervous System, Milan, Italy.

E.E. Müller (ed) Springer-Verlag, Milan, Italy. pp96-104, 1998.

3) The IGF system in the brain - response to injury and therapeutic potential.
Gluckman, P. D., Guan, J., Scheepens, A., and Williams, C. E.
4th international symposium of Insulin-like Growth Factors, Tokyo Oct 1997.

Conference abstracts

 Growth hormone, a new role for an old friend.
 Arjan Scheepens, Ernest Sirimanne, Bernhard H. Breier, Ross G. Clark, Chris E. Williams and Peter D. Gluckman. (Poster presentation, P2-467)
 Endo 99, 81st Annual meeting of the endocrine society, San Diego, CA, June 12-15, 1999.

2) A new role for neural growth hormone.
Arjan Scheepens (oral presentation)
Think tank, Growth Hormone in the brain.
Pharmacia & Upjohn, March 28-29, 1999, Hartwell House, Aylesbury, UK.

3) The role of the IGF system after neural injury.

C.Williams, J.Guan, S.Skinner, **A.Scheepens**, V.Russo, G.Werther, R.Clark and P.Gluckman. The 7th biennial IGF symposium, Melbourne, Oct. 1998.

List of abbreviations

aFGF	acidic fibroblast growth factor
AIDS	acquired immune deficiency syndrome
ALS	acid labile subunit
AMPA	α-Amino-3-hydroxy-5-Methyl-4-Proprionate
ATP	adenosine triphosphate
BBB	blood brain barrier
BDHC	benzidine dihydrochloride
BDNF	brain derived neurotrophic factor
bFGF	basic fibroblast growth factor
bp	base pair
BP	binding protein
BSA	bovine serum albumin
CA	cornu ammonis
CBF	cerebral blood flow
CBS	carbonate buffered saline
CNS	central nervous system
cpm	count per minute
cRNA	complementary ribonucleic acid
CSF	cerebrospinal fluid
CTP	cytidine triphosphate
DAB	di-amino benzidine
DEPC	diethylpyrocarbonate
DNA	deoxy ribonucleic acid
DND	delayed neuronal death
DTT	dithio three-atol
ECM	extra cellular matrix
EDTA	
EGF	ethylene diamine tetra acetic acid
FGF	epidermal growth factor
GABA	fibroblast growth factor
GFAP	gamma amino butyric acid
GH	glial fibrillary acidic protein growth hormone
GHBP	0
GHR	growth hormone binding protein
GHR/BP	growth hormone receptor
GHRH	growth hormone receptor / binding protein
GHS	growth hormone releasing hormone
GHS-R	growth hormone secretagogue
GPE	growth hormone secretagogue receptor
GRF	glycine-proline-glutamate (N-terminal tripeptide of IGF-I)
GTP	growth hormone releasing factor
hGH	guanidine triphosphate
HI	human growth hormone
HRP	hypoxic-ischemic
ICE	horse radish peroxidase
ICE	interleukin converting enzyme
IEGs	intra cerebro ventricular
IGF	immediate early genes
101	insulin-like growth factor

IGFBP	insulin-like growth factor binding protein
IGFBP-RP	insulin-like growth factor binding protein-related protein
IGF-R	insulin-like growth factor type I receptor
IGF-IIR	insulin-like growth factor type II receptor
IgG	immunoglobulin class G
IL	interleukin
ip	intra peritoneal
IQ	intelligence quotient
IR	immunoreactivity
IRR	insulin-related receptor
IRS	insulin receptor substrate
JAK	janus associated kinase
Kd	kilo Dalton
KPBS	potassium phosphate buffered saline
LDTN	latero-dorsal thalamic nucleus
LIF	leukemia inhibitory factor
M	molar
MAP	mitogen activated protease
MBP	myelin basic protein
MCA	middle cerebral artery
MCAO	
MFB	middle cerebral artery occlusion median forebrain bundle
MIP	
M6P-R	macrophage inhibitory protein
MMP	mannose-6-phosphate receptor
NBQX	matrix mettaloproteases
NGF	2,3-dihydroxy-6-nitro-7-sulfamoyl-benzy(F)-quinoxaline
NHPP	nerve growth factor
NIH	National Hormone and Pituitary Program
NO	National Institute of Health
NT	nitric oxide
mRNA	neurotrophin
NMDA	messenger ribonucleic acid
PBS	N-methyl-d-aspartate
PCD	phosphate buffered saline
PCR	programmed cell death
PDGF	polymerase chain reaction
PKC	platelet-derived growth factor
PL	protein kinase C
PNS	placental lactogen
	peripheral nervous system
PRL	prolactin
PRL-R PSA	prolactin receptor
	prostate specific antigen
rb	recombinant bovine
RCDMB	Research Centre for Developmental Medicine and Biology
rh	recombinant human
RIA	radioimmuno assay
RNA	ribonucleic acid
Rnasin	RNase inhibitor
RPA	RNase protection assay
rr	recombinant rat
RT	room temperature
RT-PCR	reverse transcriptase-polymerase chain reaction

sc SS SSC SDS SEM STAT SRIF TBS TGF-β1 TNF	sub cutaneous somatostatin standard saline citrate sodium dodecyl sulphate standard error of the mean signal transducers and activators of transcription somatostatin release inhibitory factor tris buffered saline transforming growth factor beta 1 tumour necrosis factor
	tumour necrosis factor
tRNA TSS	transfer ribonucleic acid
TTP UTP UTR	transcription start site thymidine triphosphate uridine triphosphate untranslated region

List of figures

Page:	
Figure 1.1 Thionin stained sections after HI	
Figure 1.2 Acid fuchsin stained sections after HI5	
Figure 1.3 In situ end-labeling of brains 5 days after the moderate injury	
Figure 1.4 In situ end-labeling of brains 5 days after the severe injury	
Figure 1.5 Histograms illustrating the distribution of neuronal	
Figure 1.6 Structure of human IGF/Insulin receptors	
Figure 1.7 Structure of human IGF-I protein	
Figure 1.8 Structure of the rat IGF-I gene	
Figure 1.9 Primary structure of the human GH protein	
Figure 1.10 Brief summary diagram of GH and IGF-I action and control	
Figure 2.1 Design of the ICV injection caps	
Figure 3.1: Immunohistochemical and in situ analysis of IGFBP-6 expression after severe HI62	
Figure 3.2 Histogram showing relative abundance of IGFBP-6 mRNA after severe HI	
Figure 4.1: GHR/BP immunoreactivity after HI	
Figure 5.1: Graph showing somatogenic effect	
Table 5.1 : Table showing the effect of peripheral rbGH treatment on plasma and CSF IGF-I levels77	
Figure 5.2: Graph showing the effect of peripheral rbGH treatment on plasma and CSF IGF-I levels77	
Figure 5.3 : Effect of HI and peripheral GH treatment on brain weight	
Figure 5.4 : Effect of peripheral GH treatment on infarct size	
Figure 5.5: Graph showing animals grouped by temporally defined neuronal survival score	
Table 6.1: Cross reactivities for the guinea pig anti rGH antibody 85	
Figure 6.1: GH immunoreactivity after HI	
Figure 6.2 :GH immunoreactivity after HI	
Table 6.2: Table summary of GH-IR after HI brain injury	
Figure 6.3 : Controls for immunohistochemical localisation of GH90	
Figure 7.1: Diagram illustrating the neuronal scoring procedure	
Figure 7.2: Effects of rrGH or rbGH ICV treatment on serum metabolites after moderate HI98	
Figure 7.3: Graph showing effect on brain weight of ICV rrGH or rbGH following HI	
Figure 7.4: Effect of ICV rrGH or rbGH on serum and CSF IGF-I	
Figure 7.5 : Effect of ICV rrGH or rbGH on neuronal score in the cortex and hippocampus100	
Figure 7.6: Effect of ICV rrGH or rbGH on the neuronal survival in the thalamus and striatum101	

Table of contents

ABSTRACT	п
ACKNOWLEDGEMENTS	
PATENTS ARISING FROM THIS THESIS	
PEER REVIEWED PAPERS ARISING FROM THIS THESIS	
CONFERENCE/BOOK CHAPTERS ARISING FROM THIS THESIS	
CONFERENCE ABSTRACTS	
LIST OF ABBREVIATIONS	
LIST OF FIGURES	
TABLE OF CONTENTS	X
1.0 INTRODUCTION	
1.1 GENERAL INTRODUCTION	
1.2 THE HYPOXIC ISCHEMIC INJURY MODELS	
1.3 THE 21 DAY OLD RAT UNILATERAL HI MODEL	
1.3.1 The moderate HI model	
1.3.2 The severe HI model	
1.4 MECHANISMS OF CELL DEATH AFTER HI BRAIN INJURY	
1.4.1 Necrotic cell death	
1.4.2 Excitotoxic cell death	
1.4.3 Oxidative cell death	
1.4.4 Role of seizures	
1.4.5 Apoptotic cell death	
1.4.6 Role of Macrophage and microglial activation	
1.5 ENDOGENOUS NEUROPROTECTIVE MECHANISMS	
1.6 GROWTH FACTORS IN THE INJURED CNS	
1.6.1 TGF- β_l in the injured CNS	
1.6.2 Basic FGF in the injured CNS	
1.6.3 NGF and related neurotrophins in the injured CNS	
1.7 INSULIN LIKE GROWTH FACTORS	
1.7.1 IGF-I gene and protein structure	
1.7.2 IGF binding proteins	
1.7.2.1 IGFBP-1	
1.7.2.2 IGFBP-2	
1.7.2.3 IGFBP-3	
1.7.2.4 IGFBP-4	
1.7.2.5 IGFBP-5	
1.7.2.6 IGFBP-6	
1.7.3 IGF axis regulation	
1.7.4 IGF axis in the CNS	

1.7.5 IGF axis in the injured CNS	3
1.7.6 Putative mechanisms of IGF-I mediated neuroprotection	34
1.8 THE GROWTH HORMONE AXIS	34
1.8.1 Growth hormone gene and protein structure	34
1.8.2 Growth hormone receptor and binding protein	34
1.8.3 Growth hormone regulation	38
1.8.4 Growth hormone in the CNS	30
1.9 AIMS OF THIS THESIS	
2 MATERIALS AND METHODS	
2.1 Hypoxic Ischemic injury model	
2.2 Stereotaxic rat skull template refinement for ICV injections	46
2.3 Solution preparation	40
2.4 CSF and blood sampling	4)
2.5 Brain collection, processing and storage	49
2.6 Immunohistochemistry	51
2.7 Radioimmunoassay for IGF-I in plasma and cerebral spinal fluid	53
2.7 General statistical design of treatment studies	53
3 RESPONSE OF IGFBP-6 TO HI BRAIN INJURY	
3.1 INTRODUCTION	
3.2 Methods and materials	
3.2.2 Immunohistochemistry	
3.2.3 Northern hybridization	57
3.2.4 In situ hybridization	50
3.2.5 End labeled oligonucleotide in situ	61
3.3 Results	
3.4 DISCUSSION	
4 GHR/BP IMMUNOLOCALISATION IS DIFFERENTIALLY REGULATED FOLLOWING HI IN TH	E
INFANT RAT BRAIN	68
4.1 INTRODUCTION	68
4.2 MATERIALS AND METHODS	69
4.3 Results	70
4.4 DISCUSSION	70
4.5 ACKNOWLEDGMENTS	73
5 SYSTEMIC TREATMENT OF SEVERE HI IN THE JUVENILE RAT WITH BOVINE GROWTH	
HORMONE	74
5.1 INTRODUCTION	74
5.2 Methods and materials	75
5.3 RESULTS	77
5.4 DISCUSSION	82

6 GH IMMUNOREACTIVITY IS STRONGLY UPREGULATED IN REGIONS OF DAMAGE FOLLOW	WING
HI IN THE INFANT RAT BRAIN	
6.1 INTRODUCTION	
6.2 Materials and methods	84
6.3 Results	83
6.4 DISCUSSION	87
	92
7 ICV rrGH BUT NOT rbGH TREATMENT IS STRONGLY NEUROPROTECTIVE FOLLOWING MODERATE HI BRAIN INJURY IN THE RAT	95
7.1 INTRODUCTION	
7.2 MATERIALS AND METHODS	95
7.3 Results	100
7.4 DISCUSSION	103
8 DISCUSSION	
8.1 INTRODUCTION	
8.2 What is the role for IGFBP-6 after HI brain injury?	
8.3 What are the roles of the injury induced versus the endogenously expressed neural GHR/BP?	100
8.4 Does peripheral GH therapy have therapeutic potential for neural injury?	108
8.5 Growth hormone presence in the injured CNS, a new neurotrophic factor?	110
8.6 Altered ligand specificity of the neural GHR.	
8.7 Is the neural GHR different, is it the ligand, or maybe both?	
8.8 Future experiments	. 113
8.9 Pharmacological potential of neural GH therapy	. 114
8.10 Conclusion	115
REFERENCE LIST	