
 

Libraries and Learning Services 
 

University of Auckland Research 
Repository, ResearchSpace 
 

Version 

This is the Accepted Manuscript version. This version is defined in the NISO 
recommended practice RP-8-2008 http://www.niso.org/publications/rp/  

 

Suggested Reference 

Abbasi, H., Bennet, L., Gunn, A. J., & Unsworth, C. P. (2017). Robust wavelet 
stabilized footprints of uncertainty for fuzzy system classifiers to automatically 
detect sharp waves in the EEG after hypoxia ischemia. International Journal of 
Neural Systems, 27(3). doi:10.1142/S0129065716500519 

 

Copyright 

Items in ResearchSpace are protected by copyright, with all rights reserved, 
unless otherwise indicated. Previously published items are made available in 
accordance with the copyright policy of the publisher. 

© World Scientific Publishing Company 

For more information, see General copyright, Publisher copyright, 
SHERPA/RoMEO. 

 

 

 

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1142/S0129065716500519
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.worldscientific.com/page/authors/author-rights
http://www.sherpa.ac.uk/romeo/issn/0129-0657/


International Journal of Neural Systems 

World Scientific Publishing Company 

1 

ROBUST WAVELET STABILIZED ‘FOOTPRINTS OF UNCERTAINTY’ FOR FUZZY 

SYSTEM CLASSIFIERS TO AUTOMATICALLY DETECT SHARP WAVES IN THE EEG 

AFTER HYPOXIA ISCHEMIA 

HAMID ABBASI 

Department of Engineering Science, The University of Auckland 

Auckland, New Zealand 

h.abbasi@auckland.ac.nz 

LAURA BENNET 

Department of Physiology, Faculty of Medical and Health Sciences  

The University of Auckland 

Auckland, New Zealand 

l.bennet@auckland.ac.nz 

 ALISTAIR J. GUNN 

Department of Physiology, Faculty of Medical and Health Sciences  

The University of Auckland 

Auckland, New Zealand 

aj.gunn@auckland.ac.nz 

CHARLES P. UNSWORTH* 

Department of Engineering Science, The University of Auckland 

Auckland, New Zealand 

c.unsworth@auckland.ac.nz 

 

Currently, there are no developed methods to detect sharp wave transients that exist in the latent phase after hypoxia-

ischemia (HI) in the Electroencephalogram (EEG) in order to determine if these micro-scale transients are potential 

biomarkers of HI. A major issue with sharp waves in the HI-EEG is that they possess a large variability in their sharp 

wave profile making it difficult to build a compact ‘Footprint of Uncertainty’ (FOU) required for ideal performance 

of a Type-2 Fuzzy logic system (FLS) classifier. In this article, we develop a novel computational EEG analysis 

method to robustly detect sharp waves using over 30 hours of post occlusion HI-EEG from an equivalent, in utero, 

preterm fetal sheep model cohort. We demonstrate that initial wavelet transform (WT) of the sharp waves stabilizes 

the variation in their profile and thus permits a highly compact FOU to be built, hence, optimizing the performance 

of a Type-2 FLS. We demonstrate that this method leads to higher overall performance of 94%±1 for the clinical 

64Hz sampled EEG and 97%±1 for the high resolution 1024Hz sampled EEG that is improved upon over 

conventional standard wavelet 67%±5 and 82%±3 respectively and fuzzy approaches 88%±2 and 90%±3 respectively 

when performed in isolation. 

Keywords: EEG, Hypoxic-Ischemic Encephalopathy (HIE), High frequency micro-scale seizures, sharp wave 

detection, Type-2 Fuzzy, Wavelet transform, Machine learning, Automatic detection 
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1. Introduction 

Hypoxia-ischemia (HI) at birth can lead to acute HI 

encephalopathy (HIE) and ultimately to brain injury. The 

risk of injury is much higher in babies born preterm 1-3. 

Importantly, injury evolves over time, and many brain 

cells die over hours to days after an HI insult 3, 4. This 

delay in injury offers a window of opportunity for 

neuroprotective treatments. Pre-clinical animal studies in 

term fetuses and neonates have shown that after a severe 

HI insult, there is restoration of oxidative metabolism in 

a ‘latent’ phase lasting around 6 hours. This is followed 

by a secondary loss of oxidative metabolism lasting 

around 48-72 hours, during which time most brain cells 

die 2, 4. The timing of these phases is broadly similar for 

the preterm brain 5, 6. Cerebral hypothermia is now used 

clinically for term infants with evidence of moderate to 

severe HIE 2, 4, 7, but animal studies show that it is only 

effective if started during the latent phase of recovery 2, 4. 

Clinically, despite starting cooling early after birth, only 

one baby in every 6-8 benefits from hypothermia 7. This, 

largely, reflects the fact that many babies are born with 

brain injury which has evolved beyond the latent phase 6. 

However, currently, we do not have reliable biomarkers 

which can allow us to determine the phase of injury and 

thus which babies will benefit from treatment 6. Such 

biomarkers would also help refine the use of hypothermia 

for term infants, and for the development of new 

neuroprotection therapies for term and preterm babies. 

Electroencephalographic (EEG) monitoring is 

increasingly used to assess the neurological well-being of 

newborn infants 3. Two lead amplitude-integrated EEG 

(aEEG) recordings are most commonly used to assess 

newborn EEG. Although aEEG readily identifies large 

amplitude seizures it does not readily allow for detection 

of more subtle low amplitude high frequency events 3 

which our preclinical animal studies have shown are 

important 3, 6. A number of other pre-clinical and clinical 

studies have been conducted on existence of HI transients 

along the EEG which have shown a correlation between 

events and outcomes 8-10. Our pre-clinical observations in 

preterm fetal sheep after asphyxia, using raw signals 

from two lead EEG recordings, have shown that high 

frequency epileptiform transients (spikes, sharps and 

slow-waves) 5, 11, 12 occur primarily in the latent phase 

peaking around 2-3 hours after the end of HI 5, 13, 14 and 

that numbers of latent phase transients correlate with 

neurological outcome 5, 6. Thus, transient identification 

and quantification in the latent phase of injury may 

provide useful biomarkers for identifying and assessing 

preterm infants who have been exposed to HI (Figure 1). 

The present study addresses ways of automatic detection 

of sharp wave epileptiform transients in the EEG after HI. 

In contrast, the majority of research to date has focussed 

on automatic diagnosis of neurological disorders 15 as 

well as automatic detection of spike waves for seizure 

detection, in the epileptic EEG, summarized in papers 

involving prediction with linear and nonlinear methods 
16, wavelet methods 17, 18, spike sorting techniques 19, 

kernel methods 20, 21 and neural network prediction 22-24 

with some cot side systems being available 25. HI induced 

seizures have been studied in several animal models, 

reviewed in 26 with morphological operators being used 

to improve automated spike wave detection in seizures 27 

and unsupervised methods 28 from the HI EEG of the 

neonatal rat. We have previously reported the utility of 

short-time Fourier (STFT), Haar and Reverse Bi-

orthogonal wavelet transform (WT) and Type-2 fuzzy 

logic system (FLS) classifiers for spike transient 

identification 11, 12, 29, 30 in the EEG sampled at 64Hz from 

preterm fetal sheep. 

Automated detection methods since 2011 have been 

reported to improve the accuracy of seizure detection in 

the HI EEG of human neonates 31. These studies have 

demonstrated that quantitative EEG (qEEG) measures 

such as relative delta power, skewness, kurtosis, 

amplitude, and discontinuity can be used to separate 

between HIE grades. A neonatal HI EEG research group, 

Temko et.al, have applied support vector machines 

(SVMs) to discriminate between seizure and non-seizure 

EEG epochs 32, 33, and probabilistic modelling to improve 

the prediction of seizures in the EEG of neonates exposed 

to HI 34, 35. 

 

Fig. 1.  The latent phase of injury after a hypoxic insult. 
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By contrast, our work differs by being concerned in the 

identification of HI sharp wave epileptiform transients in 

the latent phase of the EEG, before high amplitude 

seizures occur. There is no current method for the 

accurate identification and quantification of sharp wave 

transients in the EEG after HI. Fetal sheep EEG data are 

often collected at a relatively low sampling rate of 64Hz, 

which could also limit the accurate detection and 

quantification of transients 5, 11, 12, 29.  This is in 

comparison to human models which use the clinical 

sample rates of 64Hz have been employed in 36, 37 and 

recently higher sample rates of 256Hz employed in 32, 33. 

We have recently presented preliminary results of how 

the WT-Type-2-FLS method can detect sharp wave 

transients at a conference 38. This paper presents, for the 

first time, a WT-Type-2-FLS method to accurately detect 

and quantify epileptiform sharp wave transients in the 

EEG recorded after HI and determines a suitable wavelet 

for both typical clinical 64Hz sampling of the EEG and 

high, research-based sampling at 1024Hz.  

Current work is performed using over 30 hours of data 

collected after HI induced by a period of umbilical cord 

occlusion from a cohort of preterm-equivalent, 

anaesthetized fetal sheep, studied in utero. This provided 

more than 5000 individual sharp waves for analysis, 

which is larger than studied in most previous studies 39. 

We demonstrate that a significant performance gain can 

be achieved using the developed WT-Type-2-FLS 

method over standalone wavelet or fuzzy methods. 

2. Data Acquisition 

2.1. Experimental procedures 

All the animal procedures for acquisition of the data sets 

were approved by the Animal Ethics Committee of the 

University of Auckland and in accordance with the 

Animal Welfare Act (1999) of New Zealand. Data used 

in this study were obtained from preterm fetal sheep at 

0.7 gestation (equivalent to a 27-30 week human in terms 

of brain maturation) 40. Under general anesthesia and 

using aseptic techniques, five fetal sheep were 

instrumented with catheters and electrodes as previously 

described 5, 13. For the purposes of this study, 4 EEG 

electrodes (two on the left side of the head, two on the 

right side of the head), plus a ground electrode were used 

in the measurement of fetal EEG (made in-house from 

AS633-5SSF wire; Cooner Wire, Chatsworth, CA, 

USA). These electrodes were placed through burr holes 

onto the dura over the parasagittal parietal cortex (5 and 

10 mm anterior to bregma and 5 mm lateral). A standard 

montage was not used rather one electrode was used to 

measure the potential difference relative to the second 

electrode on the left side of the head, and similarly this 

was performed for the two electrodes on the right side of 

the head. The data sets used in the study were drawn from 

the differential set of electrodes on the left side of the 

head. Burr holes were filled with surgical bone wax and 

the electrodes secured with cyanoacrylate glue. A 

reference electrode was sewn over the occiput. We use 

EEG recorded from the extradural space because the 

fetus is highly active and suspended in an electrolyte 

solution similar to plasma, that is to say, the amniotic 

fluid. In this unique environment extradural recordings 

provide a far superior signal to surface recordings with 

minimal movement artifact. We anticipate that higher-

frequencies recorded on the extradural surface may have 

greater resolution than surface EEG, as suggested by 41. 

These issues are much less important in the postnatal 

environment where preterm infants are not able to move 

much. A silicone occluder was placed around the 

umbilical cord, for later inflation to produce HI. Fetuses 

were returned to the uterus, and ewes and their fetuses 

were allowed five days to recovery from surgery and 

anesthesia before experiments began. Fetuses were 

studied at 103.4±0.6 days (term =147 days).  On the day 

of experiment fetal HI was induced by complete 

occlusion of the umbilical cord for 25 minutes 5, 13. The 

occluder was then released, fetuses returned to normoxic 

conditions, and the fetal EEG was studied during the first 

6 hours of recovery (the latent phase). 

2.2. Data collection 

EEG data were continuously recorded through two 

channels using Labview (Labview for Windows, 

National Instruments, TX, USA) and digitized at a 

sampling frequency of 1024 Hz. For reliable high 

resolution EEG sampling, EEG signals were recorded via 

leads through a head-stage with an overall gain of 10,000 

which aided primary noise reduction of the signal. 

Analogue signals were then processed with a 6th order 

low-pass Butterworth anti-aliasing filter, with cutoff 

frequency of 512 Hz and a high-pass filter of 1.6 Hz. EEG 

signals were saved at 1024 Hz. Since the study was 

conducted in utero there was no need to have an 

additional notch filter to filter out 50Hz. The recorded 

data were then decoded and extracted into Matlab for 

analysis.  In order to compare the performance of the 

WT-Type-2-FLS to typical sampling rates in fetal sheep 
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studies, the data was then down sampled to 64Hz 

digitally with a second anti-aliasing filter with cutoff 

frequency of 32Hz. The data sets were zero-meaned and 

noise removed using a finite impulse response (FIR) 

band-pass digital filter of order 100 with a stop-band 

frequency range of 0.05 ≤ ω ≤ 0.13. A sample section of 

the EEG from the latent phase of recovery containing HI 

spikes, sharp waves, slow waves and compounds of these 

transients (known as complexes) are shown in figure 

2(A). HI sharp wave transients in the fetal sheep model 

differ slightly from the conventional sharp wave 

definition in conventional human EEG 42. HI sharp wave 

transients in the fetal sheep models have been defined in 

general to have amplitude >10μV and a duration between 

70 and 250ms 43. However, the amplitude of HI sharp 

wave transients in the fetal sheep model has been known 

to vary, being observed to be >25μV in the early latent 

phase 44 and >50μV under maternal dexamethasone 45. 

From the definitions stated above and from our 

preliminary investigations 38 we found that an amplitude 

of 20μV served to suppress noise and identify the most 

number of sharp waves that occur in HI EEG of the fetal 

sheep model. Hence, the HI sharp wave transients in the 

fetal sheep model in both data sets were identified 

manually by an expert to these criteria. In addition, sharp 

wave transients that existed in complexes were also 

identified by the expert in order to enable more robust 

FOUs to be built to detect sharp waves that appeared in 

more complicated regions of the data. 

Table 1, highlights the total number of sharp waves 

identified by an expert (namely sum of the correct 

detections and the missed patterns by the algorithm) in 

the whole of the latent phase of each sheep used in the 

study. 

Figure 2(A) highlights a typical section of post-HI EEG 

that contains typical spike, sharp wave, slow wave and 

complex wave transients. Figure 2(B-C) shows the sharp 

wave profiles in the EEG of all the sheep for 1024Hz and 

64Hz, respectively. Note that the sharp waveforms in 

figures 2(B-C) have considerable variance. From this we 

postulated that using only a wavelet transform may lead 

to a poor sharp wave detection performance. In addition, 

the large variance of the sharp waveforms would rule out 

the use of a Type-1-FLS classifier. While a Type-2-FLS 

classifier would be the most appropriate choice we 

postulated that the large FOU space built to envelope the 

sharp waves would also result in a poor performance for 

detection if a Type-2 fuzzy system was used in isolation. 

Table 1.  The total number of identified sharp waves by an 

expert along the entire latent phase of each sheep. 

Animal number 1 2 3 4 5 

Sharps waves 449 243 598 1062 2834 

 

In this paper, we demonstrate how the initial application 

of a suitably chosen wavelet transform can be used to 

stabilize the transformed sharp wave profiles 

considerably. This then allows for a robust FOU to be 

built that can be subsequently passed to a Type-2-FLS 

classifier resulting in high performance in comparison to 

the direct application of wavelet and fuzzy methods 

separately to the original sharp waves in post-HI EEG 

recordings. 

3. Methods 

In this section, we introduce wavelet transform (WT) 

methods and fuzzy logic system (FLS) classifiers. This is 

followed by an overview of our developed WT- Type-2 

FLS classifier and the feature extraction necessary to 

provide reliable identification of sharp waves in high and 

low frequency sampled post-HI EEG signals. 

 
      (A) 

 

 
                       (B)                                                                (C) 

Fig. 2.  (A) Sample Spikes and Sharp waves during the latent phase of 

recovery after HI EEG, (B) Sharp profiles from 5 sheep at 64Hz 

sampling, (C) Sharp profiles from 5 sheep at 1024Hz sampling. 
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3.1.  The Wavelet Transform 

The Wavelet Transform (WT) is a flexible time-

frequency multi-resolution technique that can decompose 

a signal into different frequency scales 46, 47. Wavelet 

techniques have broad application in medical and 

biomedical fields such as monitoring fetal and adult heart 

rate variability, ECG feature extraction and diagnostic 

assessment and frequency decomposition of ultrasound 

images 47-49. They have been extensively applied to 

analysis of epileptiform activity 17, brain MRI 50, 

diagnosis of ADHD 51, Alzheimer’s diseases 52-55 and 

autistic spectrum disorder 56. Although, some recent 

works, based on the metaheuristics and enhanced 

probabilistic neural network, have shown enhancements 

for combination of classifiers and cluster ensembles 57-60, 

but wavelet techniques are highly useful for many facets 

of signal processing, such as: edge detection, 

approximation, compression, de-noising and 

classification 61. The Continuous Wavelet Transform 

(CWT) of a signal 𝑠(𝑡) is defined as 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑠(𝑡)𝜑∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

           (1) 

Where 𝜑(𝑡) represents a basis function known as the 

‘Mother wavelet’, “*” denotes complex conjugate, and 

𝑎, 𝑏 are the dilation and translation factors of the mother 

wavelet 61, 62. The two key properties of wavelets are 

‘dilation’ where the mother wavelet becomes “stretched” 

to different scales and “translation” where the scaled 

wavelet is shifted in time. It is the “dilating and 

translating” of a chosen mother wavelet that allows one 

to correlate it with similar hidden events in a signal. This 

discloses the frequency and location of the desired event 

in time and helps one to detect specific shape profiles. 

3.2. Justifying an appropriate wavelet basis 

Initial determination of an appropriate wavelet family 

was made by visually inspecting the similarity that a 

wavelet had to a sharp wave. On observation of a typical 

sharp profile, Daubechies and Gaussian wavelet families 

intuitively came to mind. We then narrowed this choice 

down further, by determining which wavelet in the 

family provided the highest cross-correlation 63 and the 

lowest minimum Shannon entropy 61 to the sharp wave at 

both 64Hz and 1024Hz sampling rates. For 

completeness, this was performed on the Daubechies and 

Gaussian wavelet families 64 for the wavelets with 

vanishing moments 1-3 with software written in Matlab. 

The normalised cross-correlation was determined for 

every sharp wave profile against each individual wavelet 

in the Daubechies and Gaussian wavelet families, for 

vanishing moments 1-3. The ‘average normalized cross-

correlation’, figure 3(A) was then determined for each 

individual wavelet in the Daubechies and Gaussian 

wavelet families, for vanishing moments 1-3 from all the 

normalized cross-correlations of every sharp wave 

profile. The Minimum Shannon entropy criterion 61, S, 

was also used to assess how similar the wavelets in the 

Daubechies and Gaussian wavelet families, figure 3(B), 

for vanishing moments 1-3 were to the sharp waves. 

As one can observe from Figure 3(A) and figure 3(B) 

both the Gaussian 2 and Daubechies 2 wavelet provided 

the highest cross-correlations and minimum Shannon 

entropies for both the 1024Hz and 64Hz versions of the 

sharp wave signals. It was found that scale 15 of 

Daubechies 2 corresponded to the temporal length of the 

64Hz sharp waves and scale 32 corresponded to the 

temporal length of the 1024Hz sharp waves. Thus, we 

would hypothesis that Gaussian 2 and Daubechies 2 

wavelets would be reasonable and logical choice for 

sharp wave detection. This is also in agreement with the 

‘general rule of thumb’- that the number of vanishing 

moments of the wavelet should tally with the same 

number of vanishing moments as a sharp wave 

respectively (namely, 2). In section 4.1, we initially 

assess how the Gaussian 2, scale 32 and Daubechies 2, 

scale 15 wavelets perform (i.e. a wavelet-only approach) 

when directly applied at different magnitude threshold 

values (0-4-0.7) in the 64Hz and 1024Hz sampled HI 

EEG. 

3.3. Fuzzy Inference Systems 

Fuzzy logic systems (FLS) 65 provide a framework to 

embed human observed priories via a set of logic rule-

bases 65 known as Type-1 and Type-2 Fuzzy Logic 

Systems (FLS) 65, 66. FLSs have been used in biomedical 

classification of epileptic seizure and spike sorting 

applications 29, 67-71 as well as diagnosis of autism 

spectrum disorder and ADHD 72, 73. Fuzzy Logic Systems 

(FLS) 47, 74, 75 are structured on a set of primary IF-THEN 

logical rules which are used to embed the knowledge of 

an expert into the FLS’s Membership Functions (MFs). 

In such a system, each rule maps multiple inputs from 

input MFs to one or more outputs on output MFs. Type-

1 FLS are very specific and do not accommodate 

variance of the signal of interest well, which is a common 
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problem in real-world data and when noise is present. 

The Type-2 FLS overcomes the issues encountered in 

Type-1 FLS by employing a Footprint of Uncertainty 

(FOU), namely a region which accounts for the variance 

that exists in the signal of interest 65, 66. In this study, the 

FOU consists of all the MFs that represent a collection of 

sharp waves identified by an expert. Thus, a typical 

format of a Type-2 fuzzy Multi Input Single Output 

(MISO) rule for a Type-2 fuzzy classifier for the 

detection of sharp waves is represented as: 

𝐼𝑓 𝑓(𝐿𝑀𝐹) ≤ 𝑓(𝑊(𝑠𝑖𝑔𝑛𝑎𝑙)) ≤ 𝑓(𝑈𝑀𝐹),         

               𝑇ℎ𝑒𝑛      𝐶𝑙𝑎𝑠𝑠 𝑖𝑠 ‘Sharp wave detected’             

                  𝐸𝑙𝑠𝑒       𝐶𝑙𝑎𝑠𝑠 𝑖𝑠 ‘Not Sharp wave’                 (2) 

Where, 𝐿𝑀𝐹 and 𝑈𝑀𝐹 are the lower and upper Type-2 

input MFs, respectively 76. Several Type-2 Fuzzy rules 

are then defined by an expert in the rule-base of the 

purposed Type-2 FLS classifier. In this study, these rules 

are executed, known as ‘firing, on the wavelet 

decomposition of the post-HI EEG and the output of the 

Type-2 FLS classifier identifies whether a detection of a 

sharp-wave has occurred. 

3.4. The WT-Type-2-Fuzzy classifier 

In this article, we hypothesize that the wavelet transform 

of the raw sharp waves will provide a more robust FOU 

than a FOU based directly on the raw sharp wave profiles 

themselves, hence, significantly improving the 

performance of Fuzzy Type-2 classifier. As will be 

discussed later in section 4.2, the FOUs built from the 

sharp waves directly had large variance and were not 

robust. Thus, we hypothesise that stable FOUs could be 

obtained by performing an initial wavelet transformation 

using an appropriate wavelet basis and using the 

transformed signal to indirectly build compact FOUs. 

Thus, all that would be necessary would be to visually 

identify a suitable wavelet scale that provided a smooth 

compact transformation. 

3.5. Performance measures 

For the sensitivity and selectivity criteria 12, equations 3 

to 5 were used to evaluate the performance of the WT-

Type-2-FLS classifier, defined as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100                            (3) 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100                            (4) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)

2
       (5) 

A true positive (TP) is defined as a transient that is 

detected by both the algorithm and an expert. A false 

positive (FP) detection occurs when the algorithm detects 

another transient which is not a sharp wave and not 

specified by an expert. Finally a sharp wave that is 

identified by an expert but not detected by the algorithm 

is deemed to be a false negative (FN). 

4. Results 

In this section, we present performance results for the 

detection of sharp waves in the post-HI EEG of the 

preterm fetal sheep using the following methods: 

(i) Conventional Wavelet Performance – performance of 

Gaussian 2, scale 32 and Daubechies 2, scale 15 wavelets 

applied directly to the post-HI EEG of the fetal sheep for 

varying magnitude threshold values (detailed in section 

4.1). 

(ii) Conventional Type-2 Fuzzy Performance – performance of 

Type-2-Fuzzy classifier applied to FOUs built directly from 

the raw sharp waves themselves of the post-HI EEG of the 

fetal sheep (detailed in section 4.2).  

 

Fig. 3. (A) Cross correlation results for both the Gaussian and 
Daubechies wavelet families at 64Hz (dotted lines-orange squares) and 

1024Hz (solid lines-blue circles); (B) Average Minimum Shannon 
Entropy for both the Gaussian and Daubechies and wavelet families at 

64Hz (dotted lines-orange squares) and 1024Hz (solid lines-blue 

circles). 
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(iii)Performance of the developed WT- Type-2-Fuzzy classifier 

where the FOUs are indirectly built up from the wavelet 

transformations of the sharp waves of the post-HI EEG of 

the fetal sheep (detailed in section 4.3). 

 

4.1. Conventional Wavelet Performance 

We initially assessed how the Gaussian 2, scale 32 and 

Daubechies 2, scale 15 wavelets performed when directly 

applied at different magnitude threshold values in the 

64Hz and 1024Hz sampled HI EEG.  Results from the 

wavelet-only approach are presented in figure 4. 

Figure 4 shows the average overall performance, using 

the recordings from all 5 sheep, of the wavelet-only 

approach for different threshold levels for the 

Daubechies 2, scale 15 wavelet applied to the 64Hz EEG 

(dotted line-red squares) and the Gaussian 2, scale 32 

wavelet applied to the 1024Hz EEG (solid line-blue 

circles). It can be seen that the average overall 

performance increases to a maximum of 67.4%±4.7 for 

the Daubechies 2, scale 15 wavelet of the 64Hz EEG and 

82.1%±3.0 for the Gaussian 2, scale 32 wavelet of the 

1024Hz EEG when the threshold value is 0.5 and 

decreases thereafter. Hence, the best detector of sharp 

waves using a standard wavelet-only approach would be 

the Gaussian 2, scale 32 wavelet when used on a 1024Hz 

sampled EEG. It was found that higher numbers of false 

positives (FP) and false negatives (FN) contributed to the 

reduced overall performance of the wavelet-only method. 

4.2. Conventional Type-2 Fuzzy Performance  

FOUs were constructed directly from sharp waves by 

defining an envelope around the mean to build an FOU, 

for all the different combinations of the sheep cohort, 

shown in Figure 5(A) for the 64Hz sampled EEG, and 

Figure 5(B) for the 1024Hz sampled EEG. 

FOUs constructed directly from the sharp waves did not 

provide stable and consistent FOUs, as shown in figure 

5(A-B), which should lead to a low performance of the 

Type-2-FLS classifier due to large variance in the FOU. 

Figure 10(A), highlights the low performance expected 

of the Type-2-FLS using the FOU’s defined using 1,2,3 

and 4 sheep (where the method of building a robust FOU 

is described in detail in section 4.4) due to the large 

variance FOU’s of Figure 5(A-B). 

4.3. The Developed WT-Type-2-Fuzzy Performance 

Smooth compact transformations were observed for the 

Gaussian 2 wavelet at scale 3 for the 64Hz sampled post-

HI EEG, figure 6(B) and at scale 32 for the 1024Hz 

sampled post-HI EEG, figure 6(H). For the Daubechies 2 

wavelet, smooth compact transformations were observed 

at scale 3 in the 64Hz sampled post-HI EEG, figure 7(C), 

however, no smooth compact support was observed for 

the 1024Hz sampled post-HI EEG, figure 7(F-H).  

FOUs were then built from wavelet transformations of 

the sharp waves for the scales that were identified as 

having smooth compact wavelet transformations. Figure 

8 shows the FOUs obtained from the Gaussian 2 

transformations for scale 3 at 64Hz and scale 32 at 

1024Hz. As can be seen, the FOUs built from the wavelet 

transformations of the sharps, figure 8(B), are highly 

compact and should result in a good Type-2 FLS 

performance. Figure 9(A) shows the FOUs obtained from 

the Daubechies 2 transformation for scale 15 at 64Hz. As 

can be seen the FOUs built from this selected scale is also 

highly compact and should result in a good Type-2 FLS 

performance. We have also included the FOU of a highly 

irregular wavelet transformation, figure 9(B), which 

corresponds to Daubechies 2, scale 32 at 1024Hz shown 

in figure 7(H), to highlight how this leads to a non-stable 

FOU which should yield a poor classification 

performance. The developed WT-Type-2-Fuzzy system 

then took particular features from the FOUs, described 

above, to build a fuzzy rule-base that could be then 

passed to the Type-2-Fuzzy classifier. We define 2 

features of the FOU: the function that defines the 

envelope of the upper bounds of all the wavelet 

transformed sharp waves, denoted as the Upper 

Membership Function (UMF), and the function that 

defines the envelope of the lower bounds of all the 

wavelet transformed sharp waves, denoted as the Lower 

Membership Function (LMF).  In this manner, the 

wavelet transformed (𝑊) EEG was passed to the Type-

2-Fuzzy classifier and performance was measured 

against an experts prior identification of the sharps waves 

in the EEG. 

4.4. Building a robust FOU 

We next addressed the question of how many sharp 

waves are necessary to build a suitable FOU that was 

sufficiently reliable to predict the unseen sharp waves to 

a high degree of accuracy. In addition, one consideration 

of the nature of this work is the experimentally difficulty, 

expense and time required to obtain data from the sheep 

model in utero (described in section 2.2). Thus, obtaining 

an FOU from as few sheep as possible would be highly 
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desirable. Our approach to tackling this issue was to build 

separate FOU’s from the whole latent phases of sheep 1, 

2, 3 and 4. The constructed FOUs could then be tested 

out on the remaining sheep whose latent phase was not 

used in building the FOU’s.  For example, the top row of 

Figure 5(A) depicts the FOU’s constructed from the raw 

sharp waves that existed in the entire latent phase for each 

of the 5 sheep. Thus, the FOU for sheep fetus 1 in figure 

5(A) could be considered to be our training set and the 

prediction performance of this FOU could be estimated 

by essentially validating it on the average number of 

sharps correctly detected in the latent phases of the 

remaining sheep fetus’s 2, 3, 4 and 5. In addition, this 

approach could be ‘bootstrapped’ 77, 78 by then using the 

FOU of sheep fetus 2 and validating it on the average 

number of sharps correctly detected in the latent phases 

of the remaining sheep 1, 3, 4, and 5. Furthermore, 

FOU’s were then constructed of 2 sheep, 3 sheep and 4 

sheep (as shown in figure 5, rows 2-4) and tested on the 

remaining sheep and permutating in a similar manner as 

described above for 1 sheep. The bootstrapped results 

from using the raw sharp wave profiles (Figure 5) as well 

as the wavelet transformed envelopes (Figures 8 and 9) 

are given in sections 4.2 and 4.3 for the different FOUs, 

respectively. 

5. Discussion 

Figure 10(A) highlights the Type-2-FLS classifier’s 

overall bootstrapped performance, using training sets 

consisting of 1-4 sheep, when passed the FOUs built from 

 
      Fig. 5. Typical FOUs defined for the Type-2-FLS using all the raw sharp waves for all the different combinations of the sheep cohort for: 

                 (A) 64Hz sampled EEG, (B) 1024Hz sampled EEG. 

 

Fig. 4. The Average Overall Performance (for 5 sheep) using a standard 

wavelet-only approach for different threshold values.  
Gaussian 2, scale 32 wavelet applied to 1024Hz EEG (solid line-blue 

circles), Daubechies 2, scale 15 applied to 64Hz EEG (dotted line-red 

squares). 
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the raw sharp waves themselves (where the dotted line 

represents the 64Hz sampled EEG and the solid line the 

1024Hz EEG). Similarly, Figure 10(B) highlights how 

the Type-2-FLS overall bootstrapped performance, using 

training sets consisting of 1-4 sheep,  when passed the 

FOUs built from the wavelet transformed sharp waves 

(where the dotted lines again represents the 64Hz 

sampled EEG and the solid lines the 1024Hz EEG). It can 

be seen that the Type-2-FLS classifier performance 

improved in all cases as the FOUs were built by 

increasing the sheep cohort to 4. 

The best performing Type-2-FLS classifier occurred 

when the FOUs were built from Gaussian 2, scale 32 

wavelet transformations of the sharps waves for a 

1024Hz sampled EEG. This provided an excellent overall 

performance of 97%±1, as shown in Figure 10(B). This 

was followed by a Type-2-FLS classifier, where the 

FOUs were built from Daubechies 2, scale 15, wavelet 

transformations of the sharp waves for a 64Hz sampled 

EEG, with an overall performance of 94%±1, Figure 

10(B).  It should be noted that both these Type-2-FLS 

classifiers were the ones identified as having the most 

stable compact wavelet transformed FOU in Figures 8(B) 

and 9(A) respectively. The third performing Type-2-FLS 

classifier used FOUs built from Gaussian 2, scale 3, 

wavelet transformations of the sharp waves for a 64Hz 

sampled EEG, with an overall performance of 93%±1, 

Figure 10(B). The fourth and fifth performing Type-2-

FLS classifiers, were the ones where the FOUs were built 

from raw sharps waves for the 1024Hz and 64Hz 

sampled EEGs, with overall performance of 90%±3 and 

88%±2, respectively, Figure 10(A). The sixth performing 

Type-2-FLS classifier involved FOUs built from 

Daubechies 2, scale 32, wavelet transformations of the 

sharp waves from the 1024Hz sampled EEG, with an 

overall performance of 83%±2, Figure 10(B). As 

mentioned in 4.3, this corresponded to a highly irregular, 

non-stable FOU that should yield a poor classification 

performance. 

For standard equivalent wavelet-only detection, 

described in Section 4.1 - Figure 4, the performance was 

found to be 67%±5 for the Daubechies 2, scale 15 

wavelet for the 64Hz EEG compared to the 94%±1 for a 

WT-Type-2-FLS classifier, where the FOUs were built 

from Daubechies 2, scale 15, wavelet transformations of 

the sharps waves for the 64Hz sampled EEG. Similarly, 

for wavelet-only detection, the performance was found to 

be 82%±3 for the Gaussian 2, scale 32 wavelet of the 

Gaussian 2

 

Fig. 6. (A) A sharp wave sampled at 64 Hz;  Normalized Gaussian 2 

wavelet coefficients of scale 3 (B), 15 (C) and 32 (D) of the 64Hz 

sampled sharp wave; (E) A sharp wave sampled at 1024 Hz; Normalized 

Gaussian 2 wavelet coefficients of scale 3 (F), 15 (G) and 32 (H) of the 
64Hz sampled sharp wave. 

Daubechies 2 

 

Fig. 7. (A) A sharp wave sampled at 64 Hz;  Normalized Daubechies 2 
wavelet coefficients of scale 3 (B), 15 (C) and 32 (D) of the 64Hz 
sampled sharp wave; (E) A sharp wave sampled at 1024 Hz; Normalized 
Daubechies 2 wavelet coefficients of scale 3 (F), 15 (G) and 32 (H) of 
the 1024Hz sampled sharp wave. 
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Gaussian 2 Wavelet FOUs 

 
 

Fig. 8. FOUs obtained from: (A) Gaussian 2, scale 3 at 64Hz and (B) the Gaussian 2, scale 32 at 1024Hz 
 

Daubechies 2 Wavelet FOUs 

 
Fig. 9.  FOUs obtained from: (A) Daubechies 2, scale 15 at 64Hz (B) Daubechies 2, scale 32 at 1024Hz 
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1024Hz EEG compared to 97%±1 for a Type-2-FLS 

classifier, where the FOUs were built from Gaussian 2, 

scale 32, wavelet transformations of the sharp waves 

from the 1024Hz sampled EEG. 

Thus, it is evident that the robust performance of the 

Type-2-FLS classifier was dependent on building a 

compact FOUs, strongly supporting our hypothesis that a 

FOU built from a suitable chosen wavelet transformation 

of the sharp waves provides superior performance over 

FOUs built from raw sharp waves alone.  

The work presented here is concerned specifically on the 

automatic detection of sharp wave epileptiform transients 

in the latent phase of the EEG of hypoxic ischemic fetal 

sheep model 38, which differ in amplitude and duration to 

sharp waves detected in conventional human EEG 42. To 

this end the technique is unique and novel as no other 

group to date has developed detection methods 

specifically for this type of sharp wave in this HI animal 

model as human HI EEG has been concerned primarily 

with improving the accuracy of seizure detection in the 

HI EEG of human neonates 31-35, 79, 80.  

The only work to date in this area has been our published 

preliminary results of a more simplified version of the 

WT-Type-2-FLS method at conference level 38. This 

paper presents, for the first time, a WT-Type-2-FLS 

method to accurately detect sharp wave transients in the 

EEG recorded after HI and determines a suitable wavelet 

for both typical clinical 64Hz sampling of the EEG and 

high, research-based sampling at 1024Hz.  

Here we showed that the simplified version of the 

algorithm 38 which only used certain feature points in the 

FOU, rather than the whole envelope which we perform 

in this paper, provided an average overall performance 

rate of 88% for the detection of sharp waves over the 

whole latent phase using a Gaussian 2 wavelet. This is in 

comparison to the 97% obtained here using the whole 

envelope, thus, providing an improvement of 9% over the 

simpler method for 1024Hz sampled EEG. The 

simplified version of the WT-Type-2-FLS method 38 

performed even more poorly for the 64Hz sampled EEG 

providing an average overall performance rate of 37% for 

the detection of sharp waves over the whole latent phase 

using a Gaussian 2 wavelet. The performance was 

dramatically improved upon in the more detailed work 

presented here obtaining a 94% overall performance 

using a Daubechies 2 wavelet and the whole envelope as 

the FOU. Thus, providing an improvement of 57% over 

the simpler method for 64Hz sampled EEG. 

6. Conclusion 

In this article, we demonstrate, for the first time, that it is 

possible to robustly detect sharp wave epileptiform 

transients accurately in over 30 hours of post-HI EEG for 

the in utero preterm fetal sheep. It was shown that this is 

possible through initial wavelet transformation of the 

sharp waves, which serves to stabilize the variation in 

their profile, and thus permits a highly compact FOU to 

be built, which in turn optimized the performance of a 

Type-2 FLS classifier. We demonstrated that this method 

leads to higher overall performance for both a 64Hz 

sampled EEG and a high resolution 1024Hz sampled 

 
Fig. 10. (A) Bootstrapped overall performance of a Type-2-FLS when FOUs were built from the raw sharp wave profiles for the 64Hz (dotted lines-blue 
triangles) and 1024Hz (solid lines-red triangles) sampled EEG; (B) Bootstrapped overall performance of the WT-Type-2-FLS classifiers: using Gaussian 

2 scale 32 (solid lines-blue circles) at 1024Hz, Daubechies 2 scale 15 (dotted lines-yellow rectangles) at 64Hz, Gaussian 2 of scale 3 (dotted lines-green 
triangles) at 64Hz and  Daubechies 2, scale 32 (dotted lines-purple squares) at 1024Hz. 
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EEG, compared with both conventional standard wavelet 

and fuzzy approaches undertaken in isolation. 

This study shows that the developed wavelet stabilized 

FOU method for Type-2-FLS classifiers can be exploited 

for the identification of epileptiform sharp wave 

transients during the latent phase of recovery from severe 

HI in a preterm-equivalent large animal. It should be 

noted that whilst we have optimized the developed 

detection method to identify the particular signatures of 

the sharp wave epileptiform transient in the preterm fetal 

sheep model, since the approach is generic, it would be 

possible to adapt the method to detect other forms of 

epileptiform transient activity and to human models in 

both children and adults. We believe that this highly 

automated approach will be valuable for future studies to 

determine if these micro-scale epileptiform transients are 

biomarkers of HI. 
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