

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Neurochemical and functional characterization of the ischaemic/reperfused retina

Daniel Sun

Department of Optometry and Vision Science University of Auckland Auckland, New Zealand

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Optometry

February, 2007

Author's statement _____

The experiments carried out within this thesis are entirely my original work. Where other materials, or another person's work has been used due acknowledgement has been made within the main body of the thesis. The thesis is less than 100,000 words, exclusive of tables, figures and bibliography.

Daniel Sun February, 2007

Acknowledgements ____

First and foremost, my deepest thanks to both my mentors Michael Kalloniatis and Algis Vingrys. Thank you very much for your guidance, support and persistence throughout so many years together. I could not have asked for better teachers in life and science.

I would also like to thank the other members of the Retinal Networks Laboratory, who have provided endless hours of humour, inspiration and support, including Monica Acosta, Rebecca Hu, Jacqui Chua and Sarah Holehouse.

To the members of the Visual Functions Lab (University of Melbourne), Bang Bui, Peter Yee, Chris Nguyen, Anne Weymouth, Zheng He, and Trung Dang, thank you for taking me into the lab so well. Your humour and collegial spirit within the lab have been amazing. A very special thanks to Alex Jaworski and Jo Battista for their friendship and laughter within the lab and outside.

Lastly, to my family - my dad, mum, brother, sister, and our newest member Elmo. After all these years, here it is!!

Abstract_

Ischaemic cell death has been implicated in a number of retinal diseases, including glaucomatous neuropathy, proliferative diabetic retinopathy and a range of vascular diseases. The cascade of events leading to cell death involves both cellular metabolic changes and a functional component. However, it is yet unknown how long these changes persist, whether all cell classes are affected, and the characteristics of recovery. Moreover, there have been few studies correlating the neurochemical changes with the ensuing functional changes.

The aim of this thesis was to track the metabolic and functional recovery of the ischaemic rat retina, given the premise that: (1) amino acid neurochemistry reflects metabolic integrity and cellular identity, and; (2) the permeation of a cation channel probe called agmatine reflects channel functionality. Quantitative pattern recognition analysis of overlapping amino acid and agmatine expression profiles were used to provide a statistically robust classification of cells according to metabolic and functional characteristics. This classification was spatially complete and with single cell resolution. Finally, the electroretinogram was used to also assess retinal function and corroborate the observed neurochemical changes. These measures were taken at intervals for up to two weeks of reperfusion.

The results show that by 48 hours of reperfusion, amino acid metabolism had returned to near normal levels, although cell classes were missing, and there was persistant cation channel gating anomalies. Immunocytochemical labeling identified a preferential loss of cone bipolar cells, with all remaining rod bipolar cells showing increased cation channel gating. The electroretinogram and agmatine experiments showed that this dysfunction is likely due to abnormal glutamate release from pre-synaptic photoreceptors, detected by changes in post-synaptic agmatine permeation, and not due to the presence of anomalous metabotropic glutamate receptors. Cholinergic amacrine cells demonstrated persistant neurochemical labeling, but did not show cationic flux following stimulation by glutamate agonists. In conclusion, the retina shows remarkable recovery in the amino acid metabolism, although functional changes persist. Finally, structural integrity or immunocytochemical labeling does not necessarily imply that cells maintain functional receptors, or that neurotransmitter release is normal secondary to disease.

Table of contents _____

Author's statement	ii
Acknowledgements	iii
Abstract	iv
Table of contents	v
List of figures	x
List of tablesx	iii

Chapter 2: Literature review

2.1 Introduction	5
2.2 Anatomical and physiological organization	6
2.2.1 Through retinal elements	6
2.2.2 Lateral retinal elements 1	2
2.3 The metabolome – micro and macromolecules1	7
2.3.1 Micro and macromolecules1	7
2.3.2 Metabolomics – a study of the metabolome1	8
2.4 Retinal amino acid neurochemistry2	0
2.4.1 Amino acid immunoreactivity and metabolism2	1
2.4.2 Amino acid changes following ischaemia/reperfusion2	9
2.5 Energy production	2
2.5.1 Glycolysis	2
2.5.2 The tri-carboxylic acid cycle	3
2.5.3 Alternative substrates – the role of glycogen	5
2.5.4 Energy cost of glutamate transmission	6
2.6 Classifying retinal neurons using amino acids	8
2.6.1 General classification strategies using micro and macromolecular markers 3	8
2.6.2 Signature hypothesis	9
2.6.3 Quantifying multivariate data using pattern recognition techniques	0
2.6.4 Pattern recognition analysis of amino acid immunoreactivities 4	0
2.6.5 Cellular heterogeneity demonstrated by classification using anatomical and	
functional features4	1
2.7 Glutamate receptors4	2
2.7.1 NMDA receptors	3

ν

2.7.2 Localization of NMDA receptors
2.7.3 AMPA receptors
2.7.4 KA receptors
2.7.5 Localization of AMPA/KA receptors
2.8 Excitotoxicity and ischaemic cell death
2.8.1 Origins of excitotoxic glutamate
2.8.2 Increase in extracellular glutamate levels during ischaemia
2.8.3 Release of other amino acids and neuroactive substances during ischaemia 59
2.8.4 A possible secondary excitotoxic event during reperfusion
2.8.5 Ischaemia changes cation channel activity60
2.8.6 Acute and delayed cell death during ischaemia
2.8.7 Glutamate injury alone does not account for all the excitotoxic damage64
2.8.8 Neuroprotection by interruption of function related processes - cation flux 65
2.8.9 Necrosis or apoptosis
2.9 Animal models of retinal ischaemia
2.9.1 Selective neuronal death caused by ischaemia69
2.9.2 Choice of ischaemic time
2.10 Agmatine
2.10.1 How agmatine works in the retina76
2.10.2 Agmatine permeates ionotropic and metabotropic glutamate receptors78
2.10.3 Polysynaptic effects do not corrupt pharmacological agmatine signals80
2.10.4 What do differences in agmatine responses mean?
2.10.5 Mapping cation channel activity with agmatine - applications
2.11 The electroretinogram
2.11.1 Components of the electroretinogram
2.11.2 Origins of the a-wave
2.11.3 Origins of the b-wave
2.11.4 The oscillatory potentials
2.11.5 Scotopic threshold responses
2.11.6 Isolating the rod and cone response - the twin flash paradigm91
2.12 Aims of the study

Chapter 3: Materials and methods

3.1 Introduction

3.1.1 In vivo ischaemic model	95
3.1.2 Intra-vitreal agmatine injections	
3.1.3 In vitro incubations	96
3.1.4 Experimental design and sampling	
3.2 Basic antibodies and fixation	
3.2.1 Basic fixation	
3.2.2 Basic antibodies	
3.2.3 Antibody coupling methods	
3.3 Post-embedding immunocytochemistry	
3.4 Basic indirect fluorescent immunocytochemistry	
3.5 Controls for immunohistochemistry	
3.6 Post-embedding immunocytochemistry	
3.6.1 Tissue fixation and processing	
3.6.2 Post-embedding immunocytochemistry	
3.6.3 Antibody visualization	
3.7 Indirect fluorescence immunocytochemistry	
3.7.1 Tissue fixation and processing	
3.7.2 Indirect immunofluorescence image capture and cell counts	
3.7.2 Indirect immunofluorescence image capture and cell counts3.8 Agmatine time and concentration	
3.8 Agmatine time and concentration	
3.8 Agmatine time and concentration3.9 Pattern recognition analysis	
3.8 Agmatine time and concentration3.9 Pattern recognition analysis	
 3.8 Agmatine time and concentration	
 3.8 Agmatine time and concentration	
 3.8 Agmatine time and concentration 3.9 Pattern recognition analysis. 3.9.1 Quantitative analysis of data from multispectral space 3.9.2 Isodata algorithm (migrating means clustering algorithms) 3.9.3 Statistics of pattern recognition analysis 3.9.4 Unsupervised classification. 	
 3.8 Agmatine time and concentration 3.9 Pattern recognition analysis. 3.9.1 Quantitative analysis of data from multispectral space. 3.9.2 Isodata algorithm (migrating means clustering algorithms) 3.9.3 Statistics of pattern recognition analysis 3.9.4 Unsupervised classification. 3.9.5 Steps in pattern recognition analysis 	112 113 115 115 117 119 120 120 120 123
 3.8 Agmatine time and concentration 3.9 Pattern recognition analysis. 3.9.1 Quantitative analysis of data from multispectral space. 3.9.2 Isodata algorithm (migrating means clustering algorithms) 3.9.3 Statistics of pattern recognition analysis 3.9.4 Unsupervised classification. 3.9.5 Steps in pattern recognition analysis 3.9.6 Nomenclature 	
 3.8 Agmatine time and concentration 3.9 Pattern recognition analysis. 3.9.1 Quantitative analysis of data from multispectral space. 3.9.2 Isodata algorithm (migrating means clustering algorithms) 3.9.3 Statistics of pattern recognition analysis 3.9.4 Unsupervised classification. 3.9.5 Steps in pattern recognition analysis 3.9.6 Nomenclature 3.9.7 Data presentation 	
 3.8 Agmatine time and concentration 3.9 Pattern recognition analysis. 3.9.1 Quantitative analysis of data from multispectral space 3.9.2 Isodata algorithm (migrating means clustering algorithms) 3.9.3 Statistics of pattern recognition analysis 3.9.4 Unsupervised classification 3.9.5 Steps in pattern recognition analysis 3.9.6 Nomenclature 3.9.7 Data presentation 	
 3.8 Agmatine time and concentration 3.9 Pattern recognition analysis. 3.9.1 Quantitative analysis of data from multispectral space 3.9.2 Isodata algorithm (migrating means clustering algorithms) 3.9.3 Statistics of pattern recognition analysis 3.9.4 Unsupervised classification 3.9.5 Steps in pattern recognition analysis 3.9.6 Nomenclature 3.9.7 Data presentation 3.10 Electroretinographic procedures 3.10.1 Mydriasis and dark adaptation 	
 3.8 Agmatine time and concentration	
 3.8 Agmatine time and concentration	

3.10.7 Signal filtering and optimization	128
3.10.8 Rod and cone isolation of the electroretinogram	129
3.10.9 Waveform analysis	130
3.10.10 Curve fitting and parameter optimization	133
3.10.11 Statistical analysis	134

Chapter 4: Metabolic and functional profiling the normal rat retina

4.1 Introduction
4.2 Materials and methods
4.3 Results
Amino acid immunocytochemistry140
Cationic flux characterized by agmatine labeling143
Combined amino acid and agmatine mapping $-rgb$ images144
Metabolic and functional profiling using pattern recognition analysis145
Bivariate profiles
Neurochemical truth points confirm the metabolic and functional profiles of
horizontal cells, AII amacrine cells, cholinergic amacrine cells and rod bipolar
cells
Pattern recognition analysis of amino acid immunoreactivities alone,
excluding agmatine167
4.4 Discussion168
Retinal metabolomics and cell classification169
A comparison of classes with other species170
Functional profiles as assessed by AGB permeation170

Chapter 5: Metabolic and functional profiling the ischaemic/reperfused rat retina

5.1 Introduction	174
5.2 Materials and methods	175
5.3 Results	176
Amino acid and agmatine gating changes across periods of reperfusion	176
Were there any cell classes preferentially affected by the ischaemic insult	
at 48 hours of reperfusion?	178
Changes in agmatine gating at 48 hours of reperfusion	193
Do the cell classes at 48 hours of reperfusion correlate with cell classes	

in the normal retina, and does the amino acid content return to normal?193
Bivariate plots of cell classes at 48 hours of reperfusion195
5.4 Discussion
Preferential loss of cell classes with a particular amino acid profile201
Agmatine gating revealed functional changes that persisted despite a
recovery in amino acid immunocytochemistry

Chapter 6: Alterations in photoreceptor-bipolar cell signaling following

ischaemia/reperfusion

Chapter 7: Summary & discussion

7.1 Summary	& discussion	 	 233

References	 35

List of figures_____

Chapter 2: Literature review

Figure 2.1 Schema of retinal organization
Figure 2.2 Schema showing the terminals of a cone and rod photoreceptor7
Figure 2.3 Bipolar cell types across different species
Figure 2.4 Parallel processing in the mammalian retina16
Figure 2.5 Relationship between the 'omics' sciences
Figure 2.6 The transamination pathways
Figure 2.7 The neuronal-glial interaction in glutamate production and turnover23
Figure 2.8 The neuronal-glial interaction in GABA production and turnover25
Figure 2.9 The diverse fates of pyruvate
Figure 2.10 The many fates of amino acid degradation
Figure 2.11 Topology of an AMPA receptor subunit
Figure 2.12 Q/R editing of the GluR2 subunit
Figure 2.13 Modes of glutamate release during ischaemia and the influx of Ca^{2+}
Figure 2.14 Changes in transmembrane ionic pumps during ischaemia61
Figure 2.15 Changes in ion concentrations during ischaemia
Figure 2.16 The workings of AGB within the retina78
Figure 2.17 Subcomponent waveforms of the ERG
Figure 2.18 Standard parameters used to describe the ERG waveform

Chapter 3: Materials and methods

Figure 3.1	Immunogold labeling102
Figure 3.2	Deposition of silver ions around colloidal gold particles103
Figure 3.3	Jablonski diagram104
Figure 3.4	Fluorescence detection
Figure 3.5	The absorption/excitation and emission spectra of Alexa Fluor105
Figure 3.6	Satellite images taken through different spectral filters
Figure 3.7	Similiarities between satellite imaging and multispectral analysis of serial
	amino acid sections114
Figure 3.8	Two dimensional multispectral space115
Figure 3.9	Information classes versus spectral classes
Figure 3.10	Classification of like pixels from multiple channels116

.11 Clustering by iterative optimization	Figure 3.11
.12 An example theme map derived from pattern recognition analysis	
.13 An example univariate probability density distribution	Figure 3.13
.14 An example bivariate probability density plot	Figure 3.14

Chapter 4: Metabolic and functional profiling of the rat retina

Figure 4.	1 Silver intensified immunogold labeling of sections for various amino
	acids and endogenous gated AGB permeation142
Figure 4.2	2 The amino acid and AGB immunoreactivities shown as a summary
	rgb image or in their original greyscale format
Figure 4.3	A summary theme map showing the theme classes derived from the
	pattern recognition analysis of the rat retina149
Figure 4.4	Univariate signature histograms for photoreceptors and bipolar cells
	Univariate signature histograms for horizontal and amacrine cells
	Univariate signature histograms for ganglion cells, displaced amacrine,
	and Müller cells
Figure 4.7	Characteristic bivariate fingerprints for a representative class from each
	of the major cell groups163
Figure 4.8	Micrographs of vertical frozen sections labeled for AGB and
	macromolecular markers
Chapter 5: Meta	bolic and functional profiling of the ischaemia/reperfused retina
	Silver intensified immunogold labeling for various amino acids and AGB in
	the normal and reperfused retina180
Figure 5.2	Temporal profiles of amino acid content for various cell types across
	reperfusion periods
Figure 5.3	The amino acid and AGB immunoreactivities shown as a summary
	rgb image across reperfusion periods184
Figure 5.4	Univariate signature histograms for photoreceptors, bipolar, horizontal,
	ganglion and displaced amacrine cells
Figure 5.5	Univariate signature histograms for amacrine cells and Müller cells

Figure 5.7	Two examples illustrating a cell class that showed a high Pearsons
	correlation coefficient, and one that did not
Figure 5.7	Bivariate fingerprint plots for a representative class from each of the
	major cell groups
Chapter 6: Alter	ations in photoreceptor-bipolar cell signaling following
ischae	emia/reperfusion
Figure 6.1	Micrographs of vertical frozen sections through the normal rat retina and the
	48 hour reperfused retina
Figure 6.2	Bar graphs depicting the change in the number of functional types of
	AGB labeled bipolar cells across reperfusion periods
Figure 6.3	Representative examples of scotopic single flash ERG findings for the
	control and reperfused group of animals
Figure 6.4	Change in the parameters of the ERG waveform across reperfusion
	periods
Figure 6.5	Micrographs of vertical frozen sections through the normal and
	48 hours reperfused retina following incubation in medium containing
	APB or KA
	Micrographs of vertical frozen sections through the normal and
	48 hour reperfused retina incubated in medium containing KA and
	double labeled for AGB and PV or ChAT

List of tables_____

Chapter 3: Mat	erials and methods
Table 3.1	Concentration and source of antibodies used107
Chapter 4: Met	abolic and functional profiling of the rat retina
Table 4.1	The number of theme classes revealed by including and excluding the
	basal AGB labeling dataset168
Chapter 5: Meta	abolic and functional profiling of the ischaemia/reperfused retina
	A comparison of the number of cell classes segregated in the normal,
	48 hour and two week reperfused retina
Table 5.2	Cell classes discriminated at 48 hours of reperfusion matched to a cell
	class from the normal retina that showed the highest Pearson's correlation
	coefficient195
Chapter 6: Alter	ations in photoreceptor-bipolar cell signaling following
ischa	emia/reperfusion
Table 6.1	Change in the distribution of bipolar cell types following ischaemia/
	reperfusion107

List of abbreviations _____

а		
a	maximum amplitude (μV) of the gabor that describes the oscillatory	
	potentials	
α-KG	α-ketoglutarate	
AAT	aspartate aminotransferase	
AGB	1-amino-4-guanidobutane; agmatine	
ALT	alanine aminotransferase	
AMPA	a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid	
APB	2-amino-4-phosphobutyric acid	
ATP	adenosine tri-phosphate	
Acetyl CoA	acetyl coenzyme A	
BCAT	branched chain aminotransferase	
BSA	bovine serum albumin	
cGMP	cyclic GMP; guanosine 3', 5'-cyclic monophosphate	
ChAT	choline acetyl-transferase; labels cholinergic amacrine cells in the rat	
	retina	
CNS	central nervous system	
ERG	electroretinogram	
GABA	γ-aminobutyric acid	
GABA-T	γ-aminobutyric acid transferase	
GAD	glutamate decarboxylase	
GDH	glutamate dehydrogenase	
GDP	guanosine di-phosphate	
Goα	Go-the alpha subunit; labels ON bipolar cells in the rat retina, including	
	the ON cone and ON rod bipolar cells	
GS	glutamine synthetase	
GTP	guanosine tri-phosphate	
h	frequency (Hz) of the gabor describing oscillatory potentials	
i / I	flash intensity (cd.s/m ²) of the PIII / or PII	
IgGs	immunoglobulins	
iGluR	ionotropic glutamate receptor	
К	sensitivity (log cd.s/m ²) of the PII; intensity of the stimulus at half V_{max}	
	V_{max}	

KA	kainic acid	
LDH	lactate dehydrogenase	
m	peak time (msec) of the gabor that describes the oscillatory potentials	
mGluR	metabotropic glutamate receptor	
mGluR6	the type 6 metabotropic glutamate receptor; expressed in ON rod and	
	ON cone bipolar cells of the rat retina	
NADH	nicotinamide adenine dinucleotide (reduced form)	
NMDA	N-methyl-D-aspartate	
nSTR	negative scotopic threshold response	
OAT	ornithine aminotransferase	
ON cell		
OFF cell		
OPs	oscillatory potentials: oscillating wavelets on the rising phase of the b-	
	wave	
PII	the rising phase of the b-wave, after Granit (1933)	
PIII	(fast PIII), the leading edge of the a-wave, after Granit (1933)	
PAG	phosphate activated glutaminase	
PDE	phosphosdiesterase	
РКСа	protein kinase C the alpha subunit; labels rod bipolar cells in the rat	
	retina	
PNR	proximal negative response	
pSTR	postitive scotopic threshold response	
PV	parvalbumin; labels for AII amacrine cells in the rat retina	
Rm _{PIII}	PIII maximum amplitude (µV)	
σ	semisaturation constant	
S	spread (ms) of the gabor that describes the oscillatory potentials	
S	sensitivity (m ² .cd ⁻¹ .s ⁻³) of the PIII; a constant that scales stimulus	
	luminous energy and accounts for the multiple stages of amplification	
	during phototransduction	
SSAD	succinate semi-aldehyde dehydrogenase	
STR	scotopic threshold response	
t	time (sec) after flash onset of the PIII	
Т	transducin	
TCA	tri-carboxylic acid cycle	

t _d	delay (ms) to the onset of phototransduction
V _{max}	PII maximum response amplitude (μV)

Single letter notation for the amino acids used

E	glutamate
γ	GABA
G	glycine
D	aspartate
Q	glutamate
А	alanine
Т	taurine