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Abstract: This study presents a novel approach to the vehicle routing problem by focusing on 

greenhouse gas emissions and fuel consumption aiming to mitigate adverse environmental effects 

of transportation. A time-dependent model with time windows is developed to incorporate speed 

and schedule in transportation. The model considers speed limits for different times of the day in 

a realistic delivery context. Due to the complexity of solving the model, a simulated annealing 

algorithm is proposed to find solutions with high quality in a timely manner. Our method can be 

used in practice to lower fuel consumption and greenhouse gas emissions while total route cost 

is also controlled to some extent. The capability of method is depicted by numerical examples 

productively solved within 3.5% to the exact optimal for small and mid-sized problems. 

Moreover, comparatively appropriate solutions are obtained for large problems in averagely one 

tenth of the exact method restricted computation time. 
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1 Introduction 

The essentiality of transportation in distribution activities of logistic systems makes the vehicle 

routing problem (VRP) a combinatorial question of great importance. The VRP originated in 1959 

as an integer programming problem (Dantzig, and Ramser, 1959) and aims to find the optimal 

delivery plan for a fleet of vehicles serving a number of customers. The most common forms of 

this problem include a central depot and a number of vehicles required to deliver orders to 

customers at minimum cost. Apart from technical imperatives and operational constraints, the 

possible sequences of service in VRP increase exponentially with the total number of customers. 

Thus, when more customers are added to the problem, the computation required to find the 

solution takes an exponentially longer time. Consequently, acquiring the optimal solution to a 

VRP is an NP-complete problem (Renaud et al., 1996). Hence, the researchers are interested in 

developing methods to find high quality solutions from realistic modelling approaches to specific 

operational constraints of transportation challenges (Lahyani, 2014). 

Equally essential to major issues of logistics are the questions of sustainability for transportation 

operations. Sustainable logistics requires consideration of environmental issues as well as 

economic efficiency. Research on green transportation is gaining more importance due to the 

severity of environmental concerns and the undeniable part of transportation activities in them. 

Transportation is the most substantial factor in depletion of energy resources on Earth. As such, 

one of the motivations for analyzing VRP stems from the necessity of adopting sustainable 

practices in transportation planning. To illustrate this point one may consider fossil fuels and their 

precise utilization. It can make a significant difference not only in environmental imperatives such 

as control of greenhouse gas (GHG) emissions and global warming, but also in economic 

performance of transportation systems under new environmental regulations such as carbon taxes. 

Moreover, the responsible use of energy resources, propagated by environmental campaigners as 

the first step towards mitigation of air pollution, requires organizations to amend their 

transportation policies to prevent future catastrophic events. Therefore, in addition to being an 

optimization problem of high complexity, the VRP is essential from a sustainability viewpoint. 

Vehicle routing is also a problem of significant financial importance. Considering economic 

issues as another aspect of sustainability, VRP deals with a crucial point of industry where a slight 

improvement in productivity can have far reaching effects on monetary saving from 

organizational financial resources to national budgets. It is worthy of mention that approximately 

one tenth of the cost of a finished product is attributed to the costs of transportation activities of 

its production life cycle (Akerman et al., 2000). Moreover, according to the annual State of 

Logistics report in 2014, an amount of money equal to 5% of the US gross domestic product is 

spent on their transportation activities. 77.2% of this amount is attributed to trucking-related 

activities rather than other modes of transportations (Gilmore, 2014). Such statistics place 

transportation planning in a crucial niche to be investigated by analytical models of optimization.  

Transportation systems’ efficiency enhancement is the main objective of green VRP which aims 

to control pollutant factors and optimize routing. The fuel cost of diesel vehicles makes up a large 

proportion of total cost in green VRPs (Xiao et al., 2012). As road transportation is the primary 

source of carbon dioxide emission (Bektaş, and Laporte, 2011), the reduction of emitted GHG is 

also considered as a part of the objective function in such problems (Erdoğan, and Miller-Hooks, 

2012). Transport plays a crucial role in economic development, yet it is the largest consumer of 

energy resources and the most important factor in global pollution. Therefore, there is an inherent 

tradeoff within the approaches taken by VRP researchers to prioritizing environmental and 
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economic factors. Eco-friendly policies obtained from green optimization models, in most cases, 

contradict the optimal solution of classical models comprising of one-sided economic objectives. 

The green optimization models have been developed under the incentive of aggravating air 

pollution, to incorporate the GHG emissions produced by different sources in a comprehensive 

delivery planning. This makes a novelty in approaching VRP with green imperatives. The mobile 

sources and, particularly, the road transportation are substantial causes of air pollution, overall in 

respect to carbon dioxide, nitric oxide and volatile organic compound emitted.  Therefore, 

comparative investigation of strategies to reduce the adverse impacts of transportation activities 

on the environment is a priority for research. 

Due to the indispensable role of freight transportation optimization in reducing environmental 

pollutants (Bauer et al., 2010), it is important to reconsider different parameters of VRP objective 

functions for gaining effective solutions to the problem. In what follows, different approaches of 

modifying the VRP explored by contemporary researchers are delineated after a brief background 

discussion on the origins of such problems. 

2 Literature Review 

An evolution from rudimentary forms of the problem to a variety of sophisticated models 

associated with different assumptions is evident in VRP literature. Analysis of a large scale 

Traveling Salesman Problem (TSP) was believed to be the precursor of VRP (Dantzig et al., 

1954). However, the first research to tackle a problem with multiple vehicles was investigated in 

1964 (Clarke, and Wright, 1964) and the first appearance of the exact terminology goes back to 

1977 (Golden et al., 1977). Having the basic concepts institutionalized, Golden introduced 

probabilistic models of VRP (Golden, and Stewart, 1978) that were extended to uncertain vehicle 

routing models. Common parameters of uncertainty in VRP were customer demand, travel time, 

and cost (Gendreau et al., 1996; Lecluyse et al., 2009; Mendoza et al., 2010; Rei et al., 2010). A 

specific type of the problem, referred to as the Solomon Problems, assumes time windows for 

serving the customers, incurring a penalty if the product is not delivered within the predefined 

time window (Solomon, 1987). For a review of algorithms developed to solve VRP with time 

windows, one may refer to (Bräysy et al., 2004). Another specific type of the problem deals with 

situations where the information may change through the execution of the delivery. Dynamic 

VRP models can be reviewed in (Pillac et al., 2013). 

It is common for the conceptual formulation of basic VRP models to be built on the distance 

between customers. However, ignoring time and speed restricts the models from being realistic 

when observed from a transportation planning viewpoint. In an attempt to remove this issue, 

Malandraki introduced time-dependent VRP models in which speed varies according to the time 

of day (Malandraki, and Daskin, 1992). Time-dependent VRP was then investigated more 

rigorously by (Soler et al., 2009), who incorporated time windows into the model. More realistic 

ramifications of this type of problem were recently developed by (Hashimoto et al., 2010) 

(Kritzinger et al., 2012), and (Kok et al., 2012). They focused on hard and soft time windows, 

impacts of traffic information, and congestion avoidance in time-dependent VRP with time 

windows. Time and speed were required by these ramifications for measurements such as fuel 

consumption and emissions of GHG. So, the recent approach contributed to the research area by 

providing a foundation for investigating not only real world transportation systems, but also green 

concepts.  
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Although green VRP has many more aspects to be investigated, only the two mentioned are to be 

discussed with respect to their relation to the present study. The other aspects, including VRP in 

reverse logistics, waste collection, end-of-life goods collection, and simultaneous distribution and 

collection, can be reviewed in (Govindan et al., 2015; Pokharel, and Mutha, 2009; Sbihi, and 

Eglese, 2007). 

Research on vehicle routing with fuel consumption efficiency was quite limited in comparison to 

classical VRP. Such models were developed to account for speed, load, and distance, as three 

main factors of fuel consumption, to help obtain effective solutions. Kara et al. were the first to 

investigate an energy minimizing VRP (Kara et al., 2007). In their suggested model, links were 

associated with load weight cost in addition to distance cost though there was no formulation 

provided for fuel consumption. A similar, basic load weight assumption without fuel consumption 

formulation for a multi-depot problem was later investigated in (Zhang et al., 2011). The idea of 

formulating fuel consumption was previously suggested by (Sambracos et al., 2004). Later, it was 

studied by subsequent research articles such as (Marasš, 2008). In addition to load weight cost 

and distance cost, Kou incorporated speed as an additional factor of fuel consumption into 

modelling a time-dependent VRP (Kuo, 2010). Xiao suggested a linear function of vehicle load 

to be embodied in the objective function of a fuel consumption VRP (Xiao, Zhao, Kaku, and Xu, 

2012).  

Minimizing the emissions of GHG was another green approach to the study of VRP. GHG 

emissions were implicitly included in the minimization of total distance travelled in classical VRP 

models. However, responding to transportation challenges encouraged researchers to develop 

models through which investigation of GHG emissions is more precise. The models that address 

GHG emissions were built upon the technical building blocks of green transportation, including 

the pollutant emission estimation method of (Pronello, and André, 2000), the technical report on 

carbon dioxide emission by (McKinnon, 2007), and the truck freight transportation external costs 

estimation by (Forkenbrock, 2001). Palmer integrated GHG emission, travel time, and travel 

distance into a model designed to investigate the impact of vehicle speed on GHG emissions. This 

model resulted in a potential decrease of 5% in emitted gases (Palmer, 2007). This approach was 

continued by Sbihi and Eglese, who studied the impacts of traffic on fuel consumption. They 

focused on the idea that if the engine works at the optimal rotation per minute, the GHG emitted 

would decrease. 

Contradiction between green policies and economic productivity was expected. Improvement in 

GHG emissions in such models came hand-in-hand with longer routes and slower service (Sbihi, 

and Eglese, 2007). From a similar approach, Maden varied speed according to the time of day in 

a duration minimizing model that resulted in a potential decrease in GHG emissions of 7% 

(Maden et al., 2010). Varying speed in different scenarios was then studied by (Fagerholt et al., 

2010), who optimized fuel consumption and emitted GHG in a model with time windows. The 

first sophisticated research paper to explicitly minimize the GHG emitted was developed by 

(Ubeda et al., 2011), considering both economic and environmental objectives. It was evident 

according to the numerical results that using larger freight vehicles can reduce GHG emissions. 

Multi-objective models of the green VRP was later investigated by (Faulin et al., 2011). Noise 

pollution was incorporated in their model alongside air pollution and the total distance, the 

previously suggested terms of the objective function. In a more recent research study, Longo 

suggested a comprehensive simulation method that optimizes the routes in a sustainable supply 

chain design model to reduce carbon dioxide as one of the three sustainability aspects taken into 

account (Longo, 2012). 



A Green Perspective on Capacitated Time-dependent Vehicle Routing Problem 

 

 
 

3 Notation and Problem Statement 

This section discusses the assumptions and other details of the problem to be investigated in this 

study. Consider that a fleet of vehicles is going to serve a number of customers in predefined time 

windows. The start point and the finish point of the routes are both warehouses, and vehicles are 

limited to load constraints. Different speed limits are assumed with respect to different times of 

day to incorporate traffic regulations into the problem. In what follows, the notation used for the 

mathematical formulations are delineated. O.W. is used as shorthand for otherwise. Indices, 

parameters and variables are as follows. 

 Sets and indices 

Set of vertices 𝑉 = {𝑣0, 𝑣1, … , 𝑣n+1} 
Set of edges 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} 

Set of customers 𝐶 = {𝑣1, 𝑣2, … , 𝑣𝑛} 

Set of available freight vehicles 𝐾 = {1,2, … , 𝑘} 
Set of different speed levels ℜ = {1,2, … 𝑟} 

 

Parameters 

Constant cost of fuel 𝑐𝑓 

Cost of one gram GHG emitted 𝑒 
Edge constant coefficient 𝛼𝑖𝑗 

Distance between customer 𝑖and 𝑗 𝑑𝑖𝑗 

Weight of unloaded vehicle 𝑤 
Freight vehicle constant coefficient 𝛽 

Bounds of speed for speed level 𝑟 [𝑙𝑟 , 𝑢𝑟] 
Average speed for speed level 𝑟 𝑣

𝑟
 

𝑖th customers demand 𝑞𝑖 
Vehicle maximum capacity 𝑞𝑚𝑎𝑥 

Time window for serving 𝑖th customers [𝑎𝑖 , 𝑏𝑖] 
Service duration for 𝑖th customers 𝑔𝑖 

 

Decision Variables 

Equals to one if vehicle 𝑘 passes the distance between customer 𝑖 and 𝑗 O.W. 
equals to zero 

𝑥𝑖𝑗
𝑘  

The load carried in edge 𝑖 to 𝑗 𝑓𝑖𝑗 

Start time for serving 𝑖th customers by vehicle 𝑘 𝑦𝑖
𝑘 

Equals to one if the freight vehicle passes from 𝑖 to 𝑗 with a speed 

within [𝑙𝑟 , 𝑢𝑟] O.W. equals to zero 
𝑧𝑖𝑗

𝑟  

Consider 𝐺 = (𝑉, 𝐴) as a directed graph comprising of a set of vertices 𝑉 = {𝑣0, 𝑣1, … , 𝑣n+1} and 

a set of edges 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}. 𝑣0 and 𝑣n+1 represent the warehouses where the freight 

vehicle of 𝑞𝑚𝑎𝑥  capacity is placed. The other vertices are representative of customers. So, the set 

of customers is a subset of vertices excluding the warehouses 𝐶 = {𝑣1, 𝑣2, … , 𝑣𝑛}. Each customer 

𝑣𝑖has its demand 𝑞𝑖 and service duration 𝑔𝑖 while obviously these two parameters equal zero for 

each of two warehouses. Customer 𝑖  expects to receive the service within a specified time 

window [𝑎𝑖 , 𝑏𝑖]. The distance between customer 𝑖 and customer 𝑗 are quantified by 𝑑𝑖𝑗. Finally, 

upper and lower speed bounds [𝑙𝑖 , 𝑢𝑖] are assumed for a vehicle passing through each edge. 
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According to the speed and total weight, each freight vehicle emits a certain level of GHG when 

it passes through an edge. Each gram of GHG emitted is associated with an approximated cost 

equal to e with respect to its environmental consequences. Although GHG emissions are also 

subjected to parameters such as road slope and gravitational acceleration, they can be controlled 

by specifying factors such as speed and load carried. This model assumes that all the customers 

will be served. 

4 Mathematical Model Formulation 

GHG emissions, represented by 𝐸, are in a direct relationship with the fuel consumption rate, 

represented by 𝐹, so a linear function (4.1) is deployed to calculate it according to the GHG-

specific emission index parameters 𝛿
1

, 𝛿
2
. 

(4.1) 𝐸 = 𝛿1𝐹 + 𝛿2 

In contrast to the simplicity of relationship between 𝐸 and 𝐹, the fuel consumption rate itself is 

difficult to calculate. Barth and Boriboonsomsin suggest an approximation formula with eight 

parameters as shown in (4.2). In the suggested formula, 𝐾 stands for the engine friction factor, 𝑁 

for engine speed, 𝑉 for engine displacement, 𝑃𝑡 for the tractive power requirement in watts, 𝜀 for 

the combined efficiency of the transmission and final drive, 𝑃𝑎 for engine power demand, 𝜂 for 

the indicated engine efficiency, and 𝑈  for a constant coefficient (Barth, and Boriboonsomsin, 

2009).  

(4.2) 
𝑑𝐹

𝑑𝑡
≈ (𝑘𝑁𝑉 +

𝑃𝑒𝑛𝑔𝑖𝑛𝑒

𝜂
) 𝑈  ,    𝑃𝑒𝑛𝑔𝑖𝑛𝑒 =

𝑃𝑡

𝜀
+ 𝑃𝑎 

In (4.2) 𝑃𝑎 can be expressed as a function of 𝑁. Similarly 𝜀 can be expressed in terms of 𝑁 and 𝑃𝑡. 

Therefore, the power requirement on the engine (𝑃𝑒𝑛𝑔𝑖𝑛𝑒 ) is a function of the tractive power 

requirement (𝑃𝑡). Fuel consumption rate is directly related to 𝑃𝑒𝑛𝑔𝑖𝑛𝑒 , making it dependent on 𝑃𝑡. 

The tractive power requirement is dependent on different parameters such as total weight, vehicle 

speed, and road slope. So, (4.3) is proposed by (Maden, Eglese, and Black, 2010), which uses 𝑣𝑖𝑗 

as the vehicle speed, 𝑤𝑖𝑗  as the vehicle weight, 𝑓𝑖𝑗 as the load weight alongside edge constant 

coefficient 𝛼𝑖𝑗, and freight vehicle constant coefficient 𝛽𝑖𝑗 to approximate power requirement in 

edge (𝑖, 𝑗). 

(4.3) 
𝐹 ≈ 𝑃𝑡 (

𝑑𝑖𝑗

𝑣𝑖𝑗
) ≈ 𝛼𝑖𝑗(𝑤𝑖𝑗 + 𝑓𝑖𝑗)𝑑𝑖𝑗 + 𝛽𝑣𝑖𝑗

2 𝑑𝑖𝑗 

Therefore, the GHG emission in edge (𝑖, 𝑗) can be calculated by 𝛼𝑖𝑗(𝑤𝑖𝑗 + 𝑓𝑖𝑗)𝑑𝑖𝑗 + 𝛽𝑣𝑖𝑗
2 𝑑𝑖𝑗. The 

total GHG emission in the network can be incorporated in the objective function as in (4.4). 

The latter equation is used as the foundation of modelling GHG emissions in what follows. Let 

us continue to define the optimization model by introducing the objective function. As 

demonstrated in (4.4), it aims to minimize the fuel consumption and GHG emission. The capacity 
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of vehicles to be refueled is considered in (4.5). Equation (4.6) guarantees that all of the customers 

are served in the transportation model. Obviously, the vehicles do their next move from the same 

customer whose service is just finished as formulated in (4.7). Warehouses are the start point and 

the finish point of every route and the vehicles arrive to and depart from the warehouses only 

once. These two common routing principles are mathematically stated in (4.8) to (4.10). Time 

window constraints are embodied in (4.11) and (4.12), requiring both the start and finish times of 

the service to be within a predefined range of time. 

Another constraint is formulated in (4.13), arguing that the travel time between two nodes has to 
be within the service time of two customers. This inequality needs more explanation, which will 

be addressed later in this research. Equation (4.14) balances the network flow and (4.15) 

guarantees that the load constraint of the vehicle is not violated. Furthermore, equation (4.16) 

associates a speed to each route. Finally, the types of variables are determined in (4.17) to (4.19). 

(4.4) min ∑ ∑ (𝑐𝑓 + 𝑒)𝛼𝑖𝑗𝑑𝑖𝑗𝑤𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘

+ ∑ ∑ (𝑐𝑓 + 𝑒)𝛼𝑖𝑗𝑓𝑖𝑗𝑑𝑖𝑗

(𝑖,𝑗)∈𝐴𝑘

+ ∑ ∑ (𝑐𝑓 + 𝑒)𝑑𝑖𝑗𝛽(∑(𝑣
𝑟
)2𝑧𝑖𝑗

𝑟 )

𝑟𝜖ℜ(𝑖,𝑗)∈𝐴𝑘

 

s.t. 

(4.5) ∀ 𝑘 ∈ 𝐾 ∑ 𝑞𝑖 ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑣𝑖𝜖𝑐

≤ 𝑞𝑚𝑎𝑥 

(4.6) ∀ 𝑖 ∈ 𝐶 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗𝑘

= 1 

(4.7) ∀ 𝑙 ∈ 𝐶 , ∀ 𝑘 ∈ 𝐾 ∑ 𝑥𝑖𝑙
𝑘

𝑖

− ∑ 𝑥𝑙𝑗
𝑘

𝑗

= 0 

(4.8) ∀ 𝑖 ∈ 𝑉, ∀ 𝑘 ∈ 𝐾 𝑥𝑖0
𝑘 = 0  , 𝑥𝑛+1,𝑖

𝑘 = 0 

(4.9) ∀ 𝑘 ∈ 𝐾 ∑ 𝑥0𝑗
𝑘

𝑗 ∈ 𝑣

= 1 

(4.10) ∀ 𝑘 ∈ 𝐾 ∑ 𝑥𝑗,𝑛+1
𝑘

𝑗

= 1 

(4.11) ∀ 𝑖 ∈ 𝑉, ∀ 𝑘 ∈ 𝐾 𝑎𝑖 ∑ 𝑥𝑖𝑗
𝑘

𝑗

≤ 𝑦𝑖
𝑘 

(4.12) ∀ 𝑖 ∈ 𝑉, ∀ 𝑘 ∈ 𝐾 𝑏𝑖 ∑ 𝑥𝑖𝑗
𝑘

𝑗

≥ 𝑦𝑖
𝑘 

(4.13) ∀ (𝑖, 𝑗) ∈ 𝐴, ∀ 𝑘 ∈ 𝐾 𝑥𝑖𝑗
𝑘 (𝑦𝑖

𝑘 + 𝑔𝑖 + ∑ (
𝑑𝑖𝑗

𝑣
𝑟 ) 𝑧𝑖𝑗

𝑟

𝑟

) ≤ 𝑦𝑗
𝑘 

(4.14) ∀ 𝑖 ∈ 𝐶 ∑ 𝑓𝑗𝑖 − ∑ 𝑓𝑖𝑗

𝑗𝑗

= 𝑞𝑖 

(4.15) ∀ (𝑖, 𝑗) ∈ 𝐴 𝑞𝑗𝑥𝑖𝑗
𝑘 ≤ 𝑓𝑖𝑗 ≤ (𝑞𝑚𝑎𝑥 − 𝑞𝑖)𝑥𝑖𝑗

𝑘  
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(4.16) ∀ (𝑖, 𝑗) ∈ 𝐴 ∑ 𝑧𝑖𝑗
𝑟

𝑟

= ∑ 𝑥𝑖𝑗
𝑘

𝑘

 

(4.17) ∀ (𝑖, 𝑗) ∈ 𝐴 𝑥𝑖𝑗
𝑘 ∈ {0,1} 

(4.18) ∀ (𝑖, 𝑗) ∈ 𝐴 𝑓𝑖𝑗 ≥ 0 

(4.19)    ∀ (𝑖, 𝑗) ∈ 𝐴 , 𝑟 ∈ ℜ 𝑧𝑖𝑗
𝑟 ∈ {0,1} 

As noted earlier, inequality (4.13) requires a linearization technique. According to the method in 

(Cordeau et al., 2007) it can be linearized to (4.20) in which 𝑀𝑖𝑗
𝑘  is calculated with respect to 

(4.21) to (4.23).  

(4.20) ∀ 𝑖 𝜖 𝑉 , 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗, ∀ 𝑘 ∈ 𝐾 𝑦𝑖
𝑘 − 𝑦𝑗

𝑘 + 𝑔𝑖 + ∑ (
𝑑𝑖𝑗

𝑣
𝑟 ) 𝑧𝑖𝑗

𝑟

𝑟

≤ 𝑀𝑖𝑗
𝑘 (1 − 𝑥𝑖𝑗

𝑘 ) 

(4.21) ∀ 𝑖 𝜖 𝑉 , 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 , ∀ 𝑘 ∈ 𝐾 𝑀𝑖𝑗
𝑘 = max {0, 𝑏𝑖 + 𝑠𝑖 +

𝑑𝑖𝑗

𝑙
− 𝑎𝑗} 

(4.22) ∀ 𝑖 𝜖 𝑉 , 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 , ∀ 𝑘 ∈ 𝐾 𝑦𝑗
𝑘 + 𝑔𝑖 − 𝑠𝑗 + ∑ (

𝑑𝑗0

𝑣
𝑟 ) 𝑧𝑗0

𝑟

𝑟

≤ 𝐿(1 − 𝑥𝑗0
𝑘 ) 

(4.23) ∀𝑗 ∈ 𝐶, ∀ 𝑘 ∈ 𝐾 𝑠𝑗 = (𝑦𝑗
𝑘 + 𝑡𝑗 +

𝑑𝑗0

𝑣𝑗0
) 𝑥𝑗0

𝑘  

The developed mathematical model needs an appropriate solution method to deal with the 

combinatorial complexity discussed. In the next section, after discussing the methodological 

background, a solution method is introduced and then tested. 

5 Solution Method 

5.1. Methodological background 

The noticeable heterogeneity of VRPs and the inherent complexity involved in solving them led 

to the advent of different tailored algorithms. These algorithms are designed to obtain high quality 

and near-optimal solutions with computational advantages to exact methods. Exact methods for 

solving different classes of VRPs including: column generation (Liberatore et al., 2011); branch-

and-price (Feillet, 2010); and, a two phase algorithm (Hernandez et al., 2014); are discussed in a 

recent dissertation (Roberti, 2013). According to (Cordeau, Laporte, Savelsbergh, and Vigo, 

2007), non-exact solution methods developed for VRPs include basic heuristics and tailored meta-

heuristics. Basic heuristics are comprised of: a saving heuristic; a sweeping heuristic; and, a 

Fisher-Jaikumar heuristic. Tailored meta-heuristics developed consist of: genetic algorithms; tabu 

searches; and simulated annealing algorithms. The ability of such algorithms to acquire a high 

quality solution, referred to as accuracy, needs to be individuated quantitatively. Besides being 

accurate, a well-performing evolutionary algorithm constructs a basic, good quality solution and 

defines appropriate neighborhood selection strategies to enhance the solutions.  

The solution method used in this study was first developed as a calculation method for computing 

machines by (Metropolis et al., 1953), which then evolved into Simulated Annealing (SA) by 

(Kirkpatrick et al., 1983) as a meta-heuristic method for combinatorial optimization. According 

to the algorithm, the search procedure starts by expanding basic solutions into new solutions. The 
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objective function values are conceptualized as energy levels. From this point, a controlling 

parameter, known as the temperature, is decreased according to a predefined function. The 

algorithm continues by producing a new population and assessing it. In each of the iterations, the 

previous solutions are replaced by new solutions with a larger fraction of high quality ones. 

Continuing the search beyond local optimality is guaranteed by considering the probability of 

replacing a solution with another solution of lower quality. Similarly, a gradual decrease of 

temperature ensures the convergence of the algorithm to an appropriate solution when the 

controlling parameters are meticulously tuned. 

The algorithm in this study includes four different neighborhood selection strategies to expand 

the new solutions within different directions of the feasible space. The temperature is reduced 

when the number of moves reaches a certain point. In contrast to the other meta-heuristic methods, 

only enough neighborhoods are produced to obtain one new feasible solution. The flowchart in 

Fig. 1 demonstrates how the suggested SA works. 

Start

Generating the 

initial solution

The number of moves in this 

temperature=0

The times of staying still in 

this temperature=0

T>T end

End

Is the number of performed 

moves less than the required?

Mirroring a 

part of a route

Moving a city in 

a route

Exchanging 

cities in two 

different routes

Exchanging 

cities in a single 

route

Is the new route 

feasible?

Cooling 

function

No

Yes

Yes

Yes

No

No

Randomly choosing 

neighborhood selection 

strategy

 
Fig. 1 Simulated annealing flowchart drawn by Microsoft Visio 
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5.2. Representation and neighborhood selection 

As the representation of the solutions affects the computational complexity, it is important to 

represent the solutions as simply as possible. The routes and their associated speed limits are the 

two pieces of information incorporated in a string to characterize a solution. The string 0,1-3,1-

5,1-7,1-8,1-11,1-0,1-2,1-4,1-6,1-11,1-0,2-1,2-9,2-10,2-11,2 represents a solution comprising of 

three routes. Each route is planned to allow for a vehicle to drive within the range of the predefined 

average speeds according to the time of day. A comma mark is used to distinguish the cities from 

the average speeds. The zeros and elevens in the string represent the warehouses at both start and 

finish points of each route. The numbers after a comma and before a hyphen stand for the average 

speed limits. So in the exemplified string, the first two vehicles are scheduled to drive within the 

first average speed bracket and the last one is planned to reach the customers by driving within 

the second average speed bracket. The remaining numbers in the string represent the order of the 

customers to visit. The delivery plan of this string is illustrated in Fig. 2.  

1

3

5

7

2

4

6

910

Speed level 1

Speed level 1

Speed level 1

Speed level 1

Speed level 1

Speed level 1

Speed level 2

Speed level 2

8
Speed level 1

Speed level 1

Speed level 1

Speed level 2

Speed level 2

 
Fig. 2 Delivery plan for the string exemplified 

 

An initial node heuristic (Mosheiov, 1994) is employed in this study to establish an initial 

solution. According to this method, a random permutation of all the customers is first created by 

the algorithm. Then the time of reaching customer 𝑖 is checked to ensure it is consistent with the 

corresponding time window. Within such a procedure, if the two are not consistent, the customer 

in question is moved to the end of the route and the next customer is moved to the beginning of 

the route. As previously discussed, four different neighborhood selection strategies are deployed 

in this study to obtain new solutions by making alternations to current solutions. The first strategy 

randomly chooses a portion of the solution and replaces it with its mirror. The second strategy 

deals with obtaining a new solution by moving a customer within the sequence. The exchange of 

two customers in a solution is the foundation of the third strategy. Finally, the fourth strategy 

takes a portion of the route from a solution and replaces it in a randomly selected place in another 

solution. These four functions help to move within the feasible space and continue the search. 

Fig. 3 illustrates how the four neighborhood selection functions affect the string exemplified in 

Fig.2.  
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 Fig. 3 Neighborhood selection strategies (a. Mirroring a part of a route, b. Moving a city 

in a route, c. Exchanging cities in two route, d. Exchanging cities in a single route) 
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5.3. SA Parameters 

The meta-heuristic method deployed to solve the problem includes four controlling parameters. 

Although it is assumed that the algorithm stops when it reaches the final temperature, considering 

a stopping criterion is required for each temperature. The number of generated neighborhoods is 

restricted in each iteration. So, the iteration is skipped unless a feasible solution is generated 

before reaching 𝑛 + 50 in which 𝑛 represents the number of customers. Moreover, an exponential 

cooling function with a parameter equal to 0.97 is found by trial and error to account for changing 

the algorithm stage. Furthermore, the initial temperature is set to 1, as in such a setting at least 

half of the moves result in a decrease of objective function value for the new solutions developed. 

It is also made evident that the algorithm does not progress any further after reaching a 

temperature equal to 0.001, so this value is set as the final temperature. 

6 Computations and results interpretation  

In this section a number of randomly generated test problems of different sizes are solved, ranging 

from small problems with five customers to large problems comprising of a hundred customers. 

The empty vehicles are assumed to weigh ten units and be capable of transporting a load equal to 

their own weight. Moreover, two different time ranges are considered, comprising of a day time 

range limited to a speed of 60 km/h and another time range for afternoon and night limited to a 

speed of 50 km/h. 

The exact solution method was coded by OPL 6.3 in Cplex 12.2 and the SA algorithm was 

programmed by MATLAB 2011A. Both programs were run by an Intel Core-i5 computer with 4 

GBs of RAM. The results of the computations are summarized in Table 1, including the values 

of objective functions and computation time for each test problem. The computation times for the 

exact solution of numerical examples with more than 20 customers were restricted to 30 minutes. 

Therefore, the respective cells in Table 1 show the best objective function value found in the 

restricted time.  

Table 1 Computational result for randomly generated test problems 

No. 
Number of 

Customers 

Exact Method Meta-heuristic Method 
Gap 

(%) 

Time 

decreased (%) Optimal Value 
Computation 

Time (s) 

Best Solution 

Found 

Computation 

Time (s) 

1 5 17551017.83 10.43 17551017.83 10.65 0 -2.1 

2 6 11080856.63 16.76 11080856.63 9.40 0 43.9 

3 7 12503316.03 9.25 12503316.03 9.62 0 -4.0 

4 8 12515151.04 32.98 12948361.64 9.88 3 70.0 

5 9 13034308.25 26.56 13513451.74 10.03 3.5 62.2 

6 10 18551017.83 28.26 18551017.83 10.43 0 63.1 

7 11 16639092.82 56.42 16639092.82 10.77 0 80.9 

8 12 18904523.19 245.85 19456017.21 10.91 2.8 95.6 

9 20 25421646.51 428.87 25421646.51 13.12 0 96.9 

10 50 61658229.14* 1800.00 62407114.52 67.45 1.2 96.3 

11 70 102155572.15* 1800.00 104774945.8 110.71 2.5 93.8 

12 80 121125965.29* 1800.00 119335926.4 176.28 - 90.2 

13 90 150161797.56* 1800.00 146499314.7 375.28 - 79.2 

14 100 116314816.95* 1800.00 113146709.1 165.77 - 90.8 

*Best objective function value obtained by Cplex after 30 min. 

As evident in Table 1, except for test problem number 4, 5, and 8, with an insignificant gap 

between the results of two methods, the SA algorithm was capable of finding the exact solutions 

for the rest of small to mid-sized test problems. According to the results obtained for large test 
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problems with 50 to 100 customers, the SA algorithm performed well. It even came up with 

solutions of higher qualities in comparison to the exact method in much shorter computation 

times. 

The algorithm convergence for a test problem with 100 customers is plotted in Fig. 4. As it is 

shown, the SA algorithm initially resisted the changes due to the quality of the initial solution. 

Then in the middle of the computations, the solutions evolved into the final value with an almost 

uniform trend of improvement. 

 
Fig. 4 The trend of convergence in reaching the final solution for test problem 14 

In order to evaluate the time performance of the suggested algorithm, the computation times of 

the first nine test problems are compared in Fig. 5.  

 
Fig.5 Computation time performance comparison 
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The simulated annealing method almost took a time equal to the exact method computation time 

for the first three test problems, as evident in Fig. 5. However, the computation times for the next 

four test problems were significantly reduced. The last two test problems were associated with a 

prolonged computation time in the exact method that is also significantly reduced to a more 

appropriate solve time by the suggested solution method. 

7 Further Discussion 

The proposed model is developed based on incorporating the adverse impacts of transportation 

into the objective function of a minimization model. One may argue that in many cases of 

transportation planning, classic decisions are made based on the analysis of total cost for different 

alternatives while environmental imperatives are a secondary consideration. In such cases, 

meeting the environmental requirements by following normative guidelines has been the standard 

practice of supply chain managers. In spite of this, the new environmental economics solutions 

advocated to mitigate environmental problems require new decision making paradigms. For 

instance, based on environmental taxations introduced in developed countries, optimal level of 

emissions should allow pollution occurring only if the benefits to society exceeds the costs of 

pollution (Claus et al., 2010). Our proposed model is capable of providing a tool for this novel 

decision making paradigm in which total cost is not the only determinant factor. 

8 Application Perspectives 

Although this study focuses on GHG emissions and fuel consumption in VRP, the findings may 

well have a bearing on sustainable supply chain and logistics as a broader applications. This 

research has several practical applications. Firstly, the proposed model can be used to extend 

common location technologies into delivery planning applications that provide sustainable 

solutions for delivery companies using location data and traffic maps. Secondly, as discussed 

earlier a slight improvement in delivery productivity can have far reaching effects on monetary 

savings for courier companies. The proposed model can be deployed as the backbone of a decision 

making tool for green courier companies to help them save resources and fuel required to deliver 

the same number of packages per day while environmental aspects of operations are taken into 

account as well. 

9 Conclusion and Future Research 

The environmental challenges of freight transportation call for numerical models to make 

sustainably responsible decisions in delivery plans. Fuel consumption and GHG emissions are 

highly regarded challenges of transportation networks due to their monetary cost and undeniable 

role in environmental degradation. This study has posed a new problem with more relevance to 

current environmental concerns. The problem was solved using a combinatorial optimization 

approach capable of handling industry-sized models.  

To be more specific, this study aimed to propose a model for a capacitated VRP with time 

windows and time-dependent speed limits. Fuel consumption and GHG emissions were 

minimized as two principal green objectives to investigate the feasibility of planning 

transportation activities with respect to green imperatives. Accordingly, the control of speed and 

time of travel were studied through a mixed-integer programming model with constant values for 

nodes’ demand. 

Solving the proposed model to optimality using exact methods was an NP-complete problem. So, 

an SA algorithm capable of solving problems of different sizes was suggested. The proposed 
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algorithm was characterized by simple solution representation and productive neighborhood 

selection strategies. The SA algorithm was tested in a number of numerical examples. It obtained 

high quality solutions with efficiency in computations by establishing initial solutions and 

evolutionarily improving them using different neighborhood selection strategies. 

As this study posed a new problem in green transportation, it offered significant research gaps for 

further investigation. The developed green objective function is capable of being investigated 

more pervasively in different types of VRPs, as discussed earlier. The proposed model can be 

extended into a multi-objective optimization model to investigate the trade-offs between the two 

green objectives and the total cost that can be potentially in conflict. Similarly, one may introduce 

a model to minimize total cost while controlling the fuel consumption and GHG emissions at 

certain levels inferred from guidelines. Using the same research structure of this study, other 

environmental aspects of freight transportation can be considered and formulated as optimization 

models to explore other research avenues in mitigating impacts of transportation by conducting 

quantitative analyses. This study has illustrated the potential of planning transportation according 

to environmental objectives. Therefore, it is necessary to investigate these concepts further in 

order to advance toward practical implementations. 
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