http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Regulation of the beta7 integrin gene in T cells-
Role of the MAPK signalling pathways

Farhad Shafieei
Department of Molecular Medicine & Pathology

A Thesis submitted for the degree of Doctor of Philosophy at The University of Auckland, Auckland, New Zealand

October 2004
To my dear parents, for without their love and support, this would not have been possible.
Abstract

Members of the integrin superfamily of adhesion molecules are involved in cell to cell, cell to ECM, and cell to pathogen interactions, and are of fundamental importance in many biological processes. The β7 integrins α4β7 and αEβ7 have evolved to play specialized roles in gut mucosal immunity. α4β7 mediates the homing of lymphocytes to intestinal Peyer’s patches, mesenteric lymph nodes, and the lamina propria by binding to the vascular addressin MAdCAM-1 (Fong et al., 1997). αEβ7 binds epithelial E-cadherin retaining lymphocytes at the intraepithelial compartment of the mucosa. The expression of αEβ7 is induced on migratory lymphocytes by TGF-β secreted by gut enterocytes. The signalling mechanisms responsible for basal and TGF-β-induced expression of β7 integrins are not well understood. Previous studies identified two TGF-β1 response regions in the β7 gene promoter termed TGFBRRI and TGFBRRII encompassing nucleotides -509 to -398 and -121 to -34. Here, TGF-β1 activation of the β7 gene proximal promoter is shown to be mediated by MAPK family members. TGF-β1 stimulation of TK-1 T cells increased the steady-state mRNA levels of the β7 gene relative to α4 transcripts, and led to enhanced phosphorylation of c-Jun. TGF-β1 stimulation induced rapid increases in the binding of nuclear protein complexes to TGFBRRI and -2. Sp1 and Sp3 which mediate TGF-β1 signalling were shown to bind to an Sp1 cis-element encompassing nucleotide positions -67 to -60 within TGFBRRII. The interaction of Sp1 with its cognate binding site was c-Jun dependent. In contrast, there was no evidence for involvement of the Smad proteins. ATF-2 was identified to bind to a region encompassing nucleotide positions -699 to -689 just upstream of TGFBRRI. Sp1 and ATF-2 expression vectors co-transfected into Sp1-deficient SL-2 cells synergized to drive the activity of a β7 gene luciferase reporter. Mutation of the ATF-2-binding site modestly reduced β7 gene reporter activity.
The involvement of c-Jun in TGF-β signalling and interaction of Sp1 with the β7 gene promoter suggested that MAP kinase pathways might mediate β7 gene transcription. Specific chemical inhibitors were used to ascertain which of the three MAPK pathways namely p38, JNK, and ERK were involved. Results obtained by nuclear run-on transcription analysis which measures nascent RNA synthesis showed that both the p38 and JNK pathways regulate β7 gene expression in TK-1 cells, whereas only the p38 pathway regulates α4 gene expression. Thus, treatment of TK-1 cells with the p38 inhibitor SB203580 and the JNK inhibitor SP600125 inhibited the synthesis of β7 transcripts, whereas only SB203580 inhibited the synthesis of α4 transcripts. Conversely, sodium arsenite which induces JNK and p38 upregulated nascent synthesis of α4 and β7 RNA transcripts. SB203580 blocked the binding of nuclear factors to TGFBR-1, and ATF-2 binding to nucleotide position -699 to -689. Similarly, SP600125 blocked the binding of Sp1 and Sp3 to TGFBR-2, whereas unexpectedly SB203580 enhanced their binding. Furthermore, both SB203580 and SP600125 decreased cell-surface expression of the β7 subunit and SB203580 inhibited TK-1 cell adhesion to MAdCAM-1. In contrast, the MEK inhibitor PD98059 had no effect on the expression of nascent β7 RNA transcripts and cell-surface expression of the β7 subunit, suggesting that the ERK pathway is not involved in regulation of β7 gene expression in TK-1 cells. In contrast to the results obtained with TK-1 cells, SB203580, SP600125, and PD98059 each inhibited the nascent synthesis of α4, β7, and αE transcripts in peripheral blood lymphocytes.

In conclusion, this study has revealed for the first time that both the p38 and JNK pathways mediate TGF-β1-induced expression of the integrin β7 gene. Expression of the β7 gene is Sp1-dependent, and involves the synergistic cooperation of c-Jun and ATF-2. It is proposed that the p38 and JNK pathways play a role by triggering the activation and translocation of c-Jun and ATF-2 to the nucleus.
Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Associate Professor Geoffrey Krissansen for all his guidance, advice, and support throughout the course of this study. He has been a great mentor, and his patience, positive attitude, and work ethic have taught me a great deal at a personal level. I would also like to thank my advisor Dr Euphemia Leung who has a wealth of technical knowledge in the field and my colleague Mr Sushil Pandey for many helpful discussions and the opportunity to present two relevant results from his work namely Figures 3.6 and 3.8 in this thesis. I would like to thank Ms Yi Yang for preparation of recombinant cell adhesion molecules and help with the FACS analysis. My gratitude also extends to other laboratory colleagues including Dr Lidija Petreska, Dr Klaus Lehnert, Dr Jagat Kanwar, Dr Rupinder Kanwar, Dr Ji Zhong Bai, Mr Yih Chih Chan, and Mrs Rita Gupta for many helpful discussions and suggestions.

This work is dedicated to my parents Mr Karim Shafiei and Mrs Bita Shafiei for many reasons. I am grateful to them for all their love, support, and encouragement throughout my studies. They are and always have been my role models in life. I would like to thank my brother Mr Farzad Shafiei for his unconditional support and for the knowledge and expertise provided in the preparation of this thesis. I am indebted to the Marsden Fund for providing the necessary funding for the project, and the Maurice and Phyllis Paykel Trust for the opportunity to present my findings at two international conferences.
Table of Contents

Abstract .. I
Acknowledgements .. III
Table of Contents .. IV
List of Figures ... IX
List of Tables .. XI
Abbreviations .. XII

Chapter 1: Introduction .. 1

1.1 Integrins .. 1

1.2 Structural features of integrins .. 2
1.2.1 The α- subunit ... 4
1.2.2 The β-subunit ... 6

1.3 Integrins and their ligands ... 7

1.4 Integrins are signalling molecules .. 9
1.4.1 "Inside-out" signalling .. 9
1.4.2 Small GTP-binding proteins ... 10
1.4.2.1 Ras GTPases ... 10
1.4.2.2 RhoA and Rac1 ... 11
1.4.3 "Outside-in" signalling .. 12
1.4.3.1 Rho family ... 12
1.4.3.2 Protein tyrosine kinases ... 12
1.4.3.3 Fyn and Shc ... 13

1.5 The β7 integrins .. 14
1.5.1 Regulation and functions of β7 integrins .. 14
1.5.1.1 α4β7 .. 14
1.5.1.2 αEB7 .. 15
1.5.1.3 The role of β7 integrin subunits in ligand recognition 15

1.6 Integrins and disease ... 16
1.6.1 Hereditary diseases ... 16
1.6.2 Integrins are receptors for microbes and viruses 16
1.6.3 Integrins and inflammatory diseases .. 17
1.6.3.1 Integrin α4 antagonists .. 18
1.6.4 The role of β7 integrins in disease .. 19
1.6.5 Integrins and cancer ... 20

1.7 Mechanisms of transcription ... 21
1.7.1 The general transcription factors .. 21
1.7.2 The specific transcription factors .. 23
1.7.3 Sp1 is a key activator of TATA-less promoters .. 25
1.7.4 The β7 integrin gene promoter .. 26

1.8 The transforming growth factor-β family ... 28
1.8.1 TGF-β receptors .. 30
1.8.2 Smads: Mediators of TGF-β signal transduction 30
1.8.3 Other mediators of TGF-β signalling ... 31

1.9 Mitogen activated protein kinases (MAPKs) .. 32
1.9.1 Cross-talk between Smads and MAPKs ... 36
1.9.2 The ERK pathway ... 37
1.9.2.1 The MEK inhibitors, PD98059 and UO126 37
1.9.3 The JNK pathway ... 38
1.9.3.1 The JNK inhibitor, SP600125 .. 39
1.9.4 The p38 pathway ... 39
1.9.4.1 The p38 inhibitor, SB203580 ... 40
1.10 TGF-β signalling that is independent of Smads 40
1.11 TGF-β1 induces gene expression in an Sp1-dependent fashion 42
1.12 The project ... 43

Chapter 2: Materials & Methods ... 44
2.1 Common buffers .. 44
2.2 Common reagents .. 46
 2.2.1 Chemicals and solvents ... 46
 2.2.2 Polymerase chain reaction (PCR) ... 46
 2.2.3 Oligonucleotides ... 46
 2.2.4 Enzymes ... 48
 2.2.5 Antibodies .. 48
 2.2.6 Liquid media ... 48
 2.2.7 Agarose .. 49
 2.2.8 DNA and protein markers .. 49
 2.2.9 Ethidium bromide (EtBr) ... 49
2.3 Commercial kits .. 49
2.4 Cloning vectors .. 49
2.5 DNA sequencing ... 50
2.6 Sequence analysis .. 50
2.7 Radioactive isotopes ... 50
2.8 Recombinant proteins ... 51
2.9 Inhibitors .. 51
2.10 Slides ... 52
2.11 IMAGE Clones ... 52
2.12 Cell cultures .. 52
 2.12.1 Culture of mouse TK-1 cells ... 52
 2.12.2 Culture of Drosophila Schneider SL-2 cells 52
2.13 Isolation of human peripheral blood lymphocytes (PBLs) 53
2.14 Polymerase chain reaction (PCR) .. 54
 2.14.1 Purification of PCR products ... 54
2.15 DNA cloning .. 55
 2.15.1 Digestion of DNA with restriction enzymes 55
 2.15.2 Ligation of DNA inserts into plasmid vectors 55
 2.15.2.1 Preparation of vector and insert 55
 2.15.2.2 Ligation ... 56
 2.15.3 Ligation of PCR products into pGEM®-T 56
 2.15.4 Ligation of PCR products into pMT/V5-His-TOPO 57
 2.15.5 Preparation of competent E.coli cells using rubidium chloride (RbCl) ... 57
 2.15.6 Transformation of competent DH5α bacteria 58
2.16 DNA extractions .. 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16.1 Small scale extraction of plasmid DNA</td>
<td>58</td>
</tr>
<tr>
<td>2.16.2 Large scale extraction of plasmid DNA using cesium chloride (CsCl)</td>
<td>59</td>
</tr>
<tr>
<td>2.16.3 Extraction of DNA from agarose gels</td>
<td>60</td>
</tr>
<tr>
<td>2.17 Calcium phosphate-mediated transfection of SL-2 cells</td>
<td>60</td>
</tr>
<tr>
<td>2.17.1 β-galactosidase assays</td>
<td>61</td>
</tr>
<tr>
<td>2.17.2 Luciferase gene reporter assays</td>
<td>61</td>
</tr>
<tr>
<td>2.18 Electromobility shift assay (EMSA)</td>
<td>62</td>
</tr>
<tr>
<td>2.18.1 Preparation of nuclear extracts</td>
<td>62</td>
</tr>
<tr>
<td>2.18.2 Preparation of EMSA probes</td>
<td>63</td>
</tr>
<tr>
<td>2.18.3 Purification of labelled probes by polyacrylamide gel electrophoresis (PAGE)</td>
<td>64</td>
</tr>
<tr>
<td>2.18.4 Preparation of competitor probes</td>
<td>64</td>
</tr>
<tr>
<td>2.18.5 Electromobility shift assay (EMSA)</td>
<td>65</td>
</tr>
<tr>
<td>2.19 RNA extractions</td>
<td>65</td>
</tr>
<tr>
<td>2.20 Nuclear run-on transcription assay</td>
<td>66</td>
</tr>
<tr>
<td>2.20.1 Preparation of membrane blots</td>
<td>66</td>
</tr>
<tr>
<td>2.20.2 Isolation and labelling of nascent RNA transcripts</td>
<td>66</td>
</tr>
<tr>
<td>2.20.2.1 Isolation of nuclei</td>
<td>66</td>
</tr>
<tr>
<td>2.20.2.2 Labelling of newly transcribed RNA</td>
<td>67</td>
</tr>
<tr>
<td>2.20.3 Hybridisation and development of blots</td>
<td>67</td>
</tr>
<tr>
<td>2.21 Northern blot analysis</td>
<td>68</td>
</tr>
<tr>
<td>2.21.1 Transfer of RNA from gel to membrane</td>
<td>68</td>
</tr>
<tr>
<td>2.21.2 Preparation of cDNA probes</td>
<td>68</td>
</tr>
<tr>
<td>2.21.3 Hybridisation of blots</td>
<td>69</td>
</tr>
<tr>
<td>2.22 Flow cytometry analysis</td>
<td>69</td>
</tr>
<tr>
<td>2.23 Cell adhesion assays</td>
<td>70</td>
</tr>
<tr>
<td>2.24 In-vitro kinase assay</td>
<td>70</td>
</tr>
<tr>
<td>Chapter 3: Results</td>
<td>72</td>
</tr>
<tr>
<td>3.1 TGF-β1 induces transcription of the β7 gene</td>
<td>72</td>
</tr>
<tr>
<td>3.2 TGF-β1 induces the expression of nascent β7 RNA transcripts</td>
<td>75</td>
</tr>
<tr>
<td>3.3 TGF-β1 has no effect on the overall levels of cell-surface β7 integrins, but combines with PMA to induce expression of αEβ7</td>
<td>77</td>
</tr>
<tr>
<td>3.4 The integrin β7 gene promoter is responsive to TGF-β1</td>
<td>79</td>
</tr>
<tr>
<td>3.5 Identification of potential cis–elements in the integrin β7 gene promoter</td>
<td>81</td>
</tr>
<tr>
<td>3.6 Sp1 and Sp3 transcription factors bind to TGFBR-2</td>
<td>82</td>
</tr>
<tr>
<td>3.7 Sp1 binding to an Sp1 cis-element within TGFBR-2 is enhanced by TGF-β1</td>
<td>83</td>
</tr>
<tr>
<td>3.8 Binding of Sp1 to its cognate binding site within TGFBR-2 is dependent on c-Jun</td>
<td>84</td>
</tr>
<tr>
<td>3.9 TGF-β1 stimulation of cells leads to the phosphorylation of c-Jun</td>
<td>85</td>
</tr>
<tr>
<td>3.10 Four potential Smad-binding sites are responsive to TGF-β1</td>
<td>86</td>
</tr>
<tr>
<td>3.10.1 Smad binding is not observed at sites –719 and –623</td>
<td>87</td>
</tr>
<tr>
<td>3.10.2 Smad binding is not observed at sites –354 and –216 whereas Sp1 binds to site –354</td>
<td>89</td>
</tr>
<tr>
<td>3.11 ATF-2 binds to a putative Sp1-binding site within the integrin β7 gene promoter</td>
<td>90</td>
</tr>
<tr>
<td>3.11.1 ATF-2 binding is inhibited by a consensus ATF-2 cis-element competitor</td>
<td>92</td>
</tr>
<tr>
<td>3.12 Defining the MAPK pathways that control β7 gene transcription</td>
<td>94</td>
</tr>
<tr>
<td>3.12.1 The p38 inhibitor SB203580 blocks the binding of nuclear factors to TGFBR-1</td>
<td>94</td>
</tr>
</tbody>
</table>
Chapter 3.13 The MAPK family of protein kinases mediates TGF-β1 upregulation of integrin α4 and β7 gene expression

3.13.1 The p38 inhibitor SB203580 downregulates integrin α4 and β7 gene transcription

3.13.2 The JNK inhibitor SP600125 specifically downregulates β7 gene transcription

3.13.3 The MEK inhibitor PD98059 has no effect on integrin α4 and β7 gene transcription

3.14 Sodium arsenite upregulates α4 and β7 transcription

3.15 Modulation of integrin β7 subunit expression at the cell-surface by MAPK inhibitors

3.16 The effect of MAPK inhibitors on α4β7-mediated cell adhesion to MAdCAM-1

3.17 The effect of the MAPK inhibitors on α4, β7, and αE gene expression in human peripheral blood lymphocytes

3.18 Sp1 is a key regulator of integrin β7 gene expression

3.19 ATF-2 synergizes with Sp1 to drive β7 gene expression

3.20 ATF-2 combines with Sp1 to enhance the expression of the β7 gene reporter

3.21 Mutation of the ATF-2 binding site modestly reduces β7 gene reporter activity

Chapter 4: Discussion

4.1 The β7 gene promoter resembles the β2 and CD11b integrin gene promoters

4.2 Transcription factors that bind the β7 gene promoter

4.3 Sp1 regulates integrin β7 gene expression

4.4 TGF-β1 induces β7 gene transcription

4.5 The role of TGF-β1 in the expression of integrins α4β7 and αEβ7

VII
4.6 Lineage-restricted distributions of α4β7 and αEβ7 .. 135

4.7 Signalling mechanisms mediating TGF-β1-induced β7 gene expression 136
 4.7.1 The p38 pathway mediates TGF-β1-induced β7 gene expression in TK-1 cells 136
 4.7.2 JNK contributes to TGF-β1-induced β7 gene expression in TK-1 cells 137
 4.7.3 The ERK pathway may contribute TGF-β1-induced β7 gene expression in normal T-cells

4.8 The specificity of the MAPK inhibitors ... 139

4.9 TGF-β1-mediated upregulation of β7 gene expression appears to be independent of Smad signalling ... 140

4.10 Other modulators of β7 expression ... 142
 4.10.1 MAPKs play an important role in TNF-mediated signalling 142

4.11 Blockade of the p38 pathway inhibits β7 integrin-mediated T cell adhesion to
 MAdCAM-1 .. 143

4.12 A signalling model for TGF-β1-induced β7 gene regulation ... 144

4.14 Future directions ... 147

References ... 149
List of Figures

Figure 1.1: Integrin subunits and pairings ... 2
Figure 1.2: Integrin architecture ... 4
Figure 1.3: Schematic illustrations of the structures of αVβ3 10
Figure 1.4: Models of the (A) FAK, and (B) Shc pathways 13
Figure 1.5: The formation of a pre-initiation complex in mammalian cells 22
Figure 1.6: A model of mediator function .. 24
Figure 1.7: DNA sequence of the promoter of the mouse β7 subunit gene 27
Figure 1.8: Parallel MAPK cascades involve specific MAPK enzyme modules 33
Figure 3.1: TGF-β1 increases the steady-state levels of integrin β7 mRNA transcripts .. 74
Figure 3.2: TGF-β1 induces the expression of nascent β7 RNA transcripts relative to α4 transcripts ... 76
Figure 3.3: TGF-β1 has no effect on the level of cell-surface integrin β7 expression but combines with PMA to induce αE expression .. 78
Figure 3.4: Enhanced binding of nuclear proteins to TGFBR-1 and TGFBR-2 upon stimulation with TGF-β1 ... 80
Figure 3.5: Multiple potential transcription factor binding sites within the integrin β7 gene proximal promoter .. 81
Figure 3.6: Sp1 and Sp3 bind to TGFBR-2 .. 82
Figure 3.7: Enhanced binding of Sp1 to the Sp1 cis-element starting at nucleotide position −67 within TGFBR-2 .. 83
Figure 3.8: The interaction of Sp1 with its cognate binding site is c-Jun-dependent 84
Figure 3.9: TGF-β1 causes rapid and transient increases in the level of phosphorylation of c-Jun ... 85
Figure 3.10: Enhanced binding of nuclear proteins to four potential Smad binding sites in response to TGF-β1 ... 87
Figure 3.11: Supershift assay of potential Smad binding sites starting at nt positions −719 & −623 fails to identify Smads as components of the DNA-protein complexes .. 88
Figure 3.12: Supershift assay of potential Smad binding sites starting at nucleotides −354 & −216 reveals Sp1 binds to the site at −354 90
Figure 3.13: A putative Sp1-binding site starting at nucleotide position −699 within the proximal β7 gene promoter binds ATF-2 .. 91
Figure 3.14: Binding of ATF-2 to the putative Sp1 binding site starting at nucleotide position −699 is inhibited by an ATF-2 oligonucleotide 93
Figure 3.15: Binding of nuclear proteins to TGFBR-1 is inhibited by blockade of the p38 pathway ... 95
Figure 3.16: SB203580 and an anti-ATF-2 antibody inhibit the binding of ATF-2 to its binding site at nucleotide position −699 .. 97
Figure 3.17: Binding of Sp1 and Sp3 to TGFBR-2 is inhibited by SP600125 but enhanced by SB203580 ... 99
Figure 3.18: SB203580 downregulates α4 and β7 gene transcription in TK-1 cells 101
Figure 3.19: SP600125 specifically blocks β7 gene transcription in TK-1 cells 102
Figure 3.20: PD98059 has no effect on α4 and β7 gene transcription in TK-1 cells 103
Figure 3.21: Arsenite upregulates α4 and β7 gene transcription 104
Figure 3.22: SB203580 and SP600125 decrease the basal cell-surface expression of the integrin β7 subunit on TK-1 cells. ... 106
Figure 3.23: Prolonged blockade of the p38 pathway inhibits α4β7-mediated adhesion of TK-1 cells to MAdCAM-1. ... 108
Figure 3.24: Short-term blockade of the p38 and MEK pathways has no apparent effect on the adhesion of TK-1 cells to MAdCAM-1. ... 109
Figure 3.25: MAPK inhibitors decrease α4, β7, and αE gene transcription in peripheral blood lymphocytes. ... 111
Figure 3.26: Engineering Sp1-deficient SL-2 cells to express exogenous Sp1........ 113
Figure 3.27: Sp1 by itself can drive the expression of a β7 gene reporter. 116
Figure 3.28: Engineering SL-2 cells to overexpress ATF-2. 118
Figure 3.29: ATF-2 alone only weakly stimulates the activity of the integrin β7 gene promoter. .. 120
Figure 3.30: ATF-2 and Sp1 synergize to drive expression of the β7 gene reporter. 122
Figure 3.31: Mutation of the ATF-2-binding site at nt positions -699 to -689 modestly reduces the activity of the β7 gene reporter in response to Sp1 and ATF-2.... 124
Figure 4.1: A proposed signal transduction model for TGF-β1-induced expression of the β7 gene in TK-1 cells. ... 146
List of Tables

Table 1.1: The integrin superfamily: Distribution and ligands. ... 8
Table 1.2: Microbial ligands for integrins. .. 17
Table 1.3: The TGF-β superfamily and their representative functions. 29
Table 1.4: Enzymes involved in the MAP Kinase signalling pathways.................................... 35
Table 2.1: Sequence of oligonucleotide primers used to amplify the full-length β7, GAPDH, Smad4, and ATF-2 cDNAs.. 46
Table 2.2: Sequence of oligonucleotides representing different regions within the proximal β7 gene promoter. .. 47
Table 3.1: Determination of the amount of pSV-β-galactosidase control vector required to obtain optimal transfection of SL-2 cells... 114
Table 3.2: The wild-type and mutated ATF-2 sequences at nt positions –699 to –689. 123
Abbreviations

A absorbance
Act D actinomycin D
ATP adenosine triphosphate
AMP’ ampicillin resistance
ATCC American Type Culture Collection
bp base pair
cDNA complementary DNA
Ci curies
© copyright
dATP deoxyadenosine triphosphate
dCTP deoxycytidine triphosphate
dGTP deoxyguanosine triphosphate
dNTP deoxynucleoside triphosphate
dTTP deoxythymidine triphosphate
DEPC diethylpyrocarbonate
DMSO dimethylsulfoxide
DNA deoxyribonucleic acid
DTT dithiothreitol
ECM extracellular matrix
EDTA ethylenediaminetetra-acetic acid
ERK extracellular signal-regulated protein kinase
EtBr ethidium bromide
FACS fluorescence-activated cell sorter
FMLP f-methionine-leucine-phenylalanine
FN fibronectin
fpu foot print unit
G3 glyceraldehyde-3-phosphate dehydrogenase
h hour
HBS hepes-buffered saline
HEV high endothelial venules
HBSS Hanks balanced salt solution
ICAM-1 intercellular adhesion molecule-1
IFN-γ interferon-γ
IEL intraepithelial lymphocytes
IL interleukin
IMAGE integrated molecular analysis of genomes and their expression
JNK c-Jun N-terminal kinase
kb kilobase
kDa kilodalton
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAK1</td>
<td>TGF-β activated kinase 1</td>
</tr>
<tr>
<td>TBE</td>
<td>tris-borate-EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>tetramethylethylenediamine</td>
</tr>
<tr>
<td>TfbI</td>
<td>transformation buffer I</td>
</tr>
<tr>
<td>TfbII</td>
<td>transformation buffer II</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor-β</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumour necrosis factor-α</td>
</tr>
<tr>
<td>U</td>
<td>unit(s)</td>
</tr>
<tr>
<td>UTP</td>
<td>uridine triphosphate</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volt(s)</td>
</tr>
<tr>
<td>v</td>
<td>volume</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>vascular cell adhesion molecule-1</td>
</tr>
<tr>
<td>w</td>
<td>weight</td>
</tr>
<tr>
<td>WWW</td>
<td>world wide web</td>
</tr>
</tbody>
</table>