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Appropriate Boundary Conditions for a Pressure Driven Boundary Layer

P.J. Richards® and S.E. Norris*

'Department of Mechanical Engineering
University of Auckland, Auckland 1142, New Zealand

Abstract

Velocity and turbulence property profiles are derived for an equilibrium pressure driven atmospheric boundary
layer for CFD models using the k-¢ k-@ and SST turbulence model. By comparison with the Deaves and Harris
model it is shown that such a pressure driven boundary layer is a reasonable model for the lower half of the
atmospheric boundary layer where the shear stress decreases approximately linearly with height. The profiles
derived satisfy equilibrium of the momentum and both turbulence property conservation equations. It is shown that
using these profiles as the inlet conditions on an empty domain results in outlet profiles which are almost identical
to the inlet values. It is also shown that using profiles intended for a shear driven situation, but without the driving
shear stress, leads to significant changes as the flow relaxes towards matching the free slip boundary condition at
the top of the domain.

1. Introduction

At the first Computational Wind Engineering Conference Richards and Hoxey (1993) recommended modelling the
atmospheric surface layer as a horizontally-homogeneous turbulent surface layer (HHTSL), which is one with
constant properties in directions tangential to the ground and hence the only variation is along the vertical axis.
Since the pressure is constant the flow is driven by a shear stress at the upper surface of the layer, and this is
constant throughout the layer, equalling the shear stress at the wall. As noted by Panofsky and Dutton (1984) the
surface layer is the lowest part of the atmospheric boundary layer (ABL), where the shear stress is almost constant
and which in moderate to strong winds may extend 100m or more above the ground. Velocity and turbulence
property profiles, together with the associated boundary conditions, were proposed for CFD studies using the
standard k-¢ turbulence model (Launder and Spalding, (1974)) and were shown to satisfy horizontal homogeneity
provided the various constants satisfied a particular relationship. Richards and Hoxey (1993) concluded “In order to
adequately model the atmospheric surface layer the boundary conditions, turbulence model and associated
constants must be consistent with each other”. In this regard the boundary conditions included the inlet velocity and
turbulence property profiles, the wall functions used at the ground, the driving shear stress and the diffusion of
turbulence properties at the top of the domain.

Richards and Hoxey (1993) has been cited numerous times and while many of these citations are from authors who
have simply utilised the recommendations, a number contain related discussions. Bottema (1997) has discussed the
difference between the level of turbulence kinetic energy (TKE) observed in the atmospheric surface layer and
those given by the standard constants of many turbulence models. Blocken et al. (2007) focus on wall function
problems and the relationship between the wind engineering roughness length and the sand grain roughness
commonly used in internal flows. Hargreaves and Wright (2007) discuss some of the difficulties with
implementing the Richards and Hoxey (1993) boundary conditions and note that many computational wind
engineers adopt only a subset of these and as a result the turbulence profiles decay along the fetch. They also noted
the over production of turbulence kinetic energy in cells near the ground. Richards and Norris (2011) have revisited
the analysis of the constant shear stress surface layer and have extended the analysis to include a number of
common turbulence models. In addition they have provided an explanation of the excessive production of
turbulence kinetic energy often observed in the near wall region.

The Richards and Hoxey (1993) recommendations have found their way into various guidelines including those for
predicting the pedestrian wind environment by COST (European Cooperation in the field of Scientific and
Technical Research) Action C14 “Impact of Wind and Storms on City Life and Built Environment”, Working
group 2 — CFD Techniques, as reported by Franke (2006), and the Architectural Institute of Japan (Tominaga et al.
(2008)).

2. Horizontally Homogeneous Turbulent Surface Layer

Richards and Hoxey (1993) modelled a HHTSL by proposing velocity and turbulence property profiles, together
with the associated boundary conditions, for the standard k-¢ turbulence model and showed that these satisfied
horizontal homogeneity provided certain additional conditions were satisfied. Richards and Norris (2011) use an
alternative approach to derive the profiles directly from the conservation and equilibrium equations for a HHTSL



associated with a particular turbulence model. For example with the standard k-¢ model and a rough wall with U=0
at the roughness height z=z,, these yield:
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where u, is the friction velocity associated with the wall shear stress, which within the surface layer equals the
shear stress at all levels

=7 = puf )
where p is the air density.

The derivation showed that the turbulence model effectively chooses its own value for von Karman’s constant «,
such that the usual k-¢ turbulence model constants C, = 1.44, C,=1.92, C,= 0.09 and o,= 1.3 give

K, = \/(Cﬂ -C,) o.4Jc, =0.4237 (5)

which is slightly larger than the commonly accepted value x= 0.4, which will be used in the remainder of this
paper.

The form of Egs. (1-3) only differs from those given by Richards and Hoxey (1993) in terms of the definition of the
height at which the velocity is zero. To implement such profiles the shear stress is imposed at the upper boundary
of the domain, a zero flux condition is set for &, and the flux of ¢ across the top boundary is prescribed as,
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Hargreaves and Wright (2007) note that in their experience “many computational wind engineers adopt only a
subset of the Richards and Hoxey boundary conditions (i.e. those at the inlet) and assume that the boundary layer
will be maintained up to the point at which the building is located”. However they show that this is not the case,
even in the absence of obstructions, and that the velocity and turbulence profiles decay along the fetch under these
conditions. In their numerical modelling they initially investigate an empty domain, deliberately ignore the shear
stress at the top of the domain, “since many practitioners ignore this requirement”, but instead decide “that a
symmetry condition would suffice” for the demonstration. Without the driving shear stress the problem becomes a
pressure driven boundary layer, within which the shear stress varies with height, and while equilibrium profiles
may exist these will be different from the constant shear stress case. The turbulence kinetic energy development
from a computation similar to that undertaken by Hargreaves and Wright (2007) is shown in Fig. 1, where the
turbulence kinetic energy is seen to gradually develop from the Richards and Hoxey (1993) uniform value, which is
appropriate for a shear driven boundary layer, towards values appropriate for a pressure driven boundary layer. The
uniform turbulence kinetic energy value derived by Richards and Hoxey (1993) is a consequence of the constant
shear stress, which is an approximation to reality. Noting this limitation Yang et al. (2009) have proposed
alternative k£ and ¢ turbulence property profiles and in their discussion they state: “The new inflow turbulence
boundary conditions for the standard k—e model that have been presented in this paper are different from those
proposed by Richards and Hoxey (1993). In particular, the new profile for k shows a decay of k with height, while
the profile for k by Richards and Hoxey (1993) is constant with height. Note that the decrease with height is
typically observed in measurements.” However these profiles have been derived by assuming a log-law velocity
profile and splitting the turbulence kinetic energy conservation equation into two independent parts, production
equal to dissipation and zero diffusion, and solving these. The profiles derived in this manner do not generally
satisfy either the dissipation or momentum equations and hence, while they may not change rapidly, are not in
equilibrium. The derivation of appropriate boundary conditions for an alternative approximation, that of a pressure
driven boundary layer, by using the full set of conservation equations is the subject of this paper.
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Fig. 1. Development of the turbulence kinetic energy in a pressure driven boundary layer with inlet conditions
appropriate for a shear driven boundary layer.

3. The Deaves and Harris Model of the Atmospheric Boundary Layer

Deaves and Harris (1978) provided a mathematical model of the characteristics of the ABL in strong winds. This
model has been adopted as the basis for wind speed and turbulence characteristics of the ABL in various wind
loading codes including AS/NZS 1170.2 (2011). The primary equations for this model are:

The gradient height (%) is

u

h=—= 7
6f (7

where the Coriolis parameter

f=2Qsing (8)

with Q the rate of rotation of the earth (72.9 x10 rad/s) and ¢ the latitude. In this paper the latitude used as an
example is 45°, a mid-latitude that in the northern hemisphere passes through the USA, Canada and numerous
countries in Europe and Asia and in the southern hemisphere through New Zealand, Argentina and Chile. As a
result f=1.03 x10™ rad/s.

The velocity profile is

U(z):ﬁ{ln(i}d]s(%j—lﬁﬁ(%j —1.333(%] +0.25(%] J )
K Z,

which, since 1+5.75-2x1.875-3x1.333+4x0.25=0, has zero gradient at z = A.

Egs. (7-9) can be used to determine the gradient height, gradient wind speed and friction velocity given the surface
roughness and a reference velocity at a known height. For example Hargreaves and Wright (2007) used a test case
where the surface roughness length z,~=0.01 m and the reference velocity at z=6 m was set to U(6 m)=10 m/s, which
yields a gradient height #=1005 m, gradient wind speed U(h)= 22.25 m/s and a friction velocity u,= 0.622 m/s.
This test case will also be used in this paper but with the gradient height rounded to 1000m.

The equilibrium of forces in the atmosphere is a balance between pressure gradients, shear stresses, centripetal
acceleration and Coriolis effects. Deaves and Harris (1978) concluded that the shear stress (1) gradient was most
appropriately modelled as a quadratic decay of the form

7(z) = pun’ (10)

where 17 =1—2z/h, which is a dimensionless fraction of the gradient height measured from the top downwards.



In addition they suggest the standard deviation of the along-wind component of the wind velocity is given by

LAC 2.637[0.538+0.091In(z/ z,)]" (a0
u

where the exponent m=7"’.

ESDU 85020 (1985) supplements the Deaves and Harris (1978) equations by providing formulas for the ratio of the
transverse and vertical standard deviations to the along-wind standard deviation as follows:
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From Egs. (11-13) the variation of the transverse and vertical standard deviations with height can be determined.
Hence noting that the turbulence kinetic energy
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Fig. 2(a) shows the variation of the shear stress, as given by Eq. (10) (labelled “t/pu,” Quad™), and the standard

deviation ratios with height and Fig. 2(b) the variation of the three standard deviations and the turbulence kinetic

energy. These profiles suggest that the shear stress is never constant and that while & = 814T2 for a small range of
heights 0.005 < z/h <0.05, the general behaviour is a decay similar to that of the shear stress. It may also be
noted that the low height k values are much larger than the k = 3-33“3 given by Eq. (2). Richards and Hoxey (1993)

recognised this apparent anomaly, which has been further discussed by Bottema (1997) and Richards and Norris
(2011) amongst others. The primary explanation is related to the much higher levels of inactive low frequency
turbulence which is present in the atmospheric boundary layer in comparison with the smaller scale turbulent
boundary layers used to set the standard turbulence model constants. This low frequency turbulence contributes
significant energy while having very little effect on the Reynolds stresses and hence may be considered inactive. In
many ways these low frequency fluctuations may be more appropriately considered to be a slowly varying mean
flow rather than part of the turbulence. Richards et al. (2007) showed that during boundary layer wind tunnel
testing of the Silsoe cube, where with relatively low linear scale ratio the low frequency turbulence cannot exist in
the confined space, the mean pressure coefficients could be matched even though the turbulence intensity was
much lower provided the high frequency end of the spectrum was matched. In that wind tunnel test measurements

showed k =3.18u at building height. Hence in CFD modelling the values of k used might be considered to
represent high-pass filtered full-scale turbulence. But even this filtered turbulence will decrease with height.

As noted in ESDU 85020 (1985) in the lower atmosphere the Reynolds shear stress can be approximated by the
linear function

w(z)=pu’(1-2z/h) (16)

which is also depicted in Fig. 2(a), labelled “t/pu,” Linear”.

While it is possible to construct computational models that include pressure gradients, Coriolis effects and the shear
stresses, this is probably overly complex for many practical problems. Fortunately, as will be shown in the
following section, an equilibrium pressure driven boundary layer will have a Reynolds shear stress that varies
linearly with height in a manner similar to Eq. (16). The associated velocity and turbulence property profiles will be
derived.
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Fig. 2. (a) Shear stress and standard deviation ratio profiles and (b) the variation of standard deviations and TKE

with height in the atmospheric boundary layer.
4. Semi-Analytic Analysis of the Equilibrium Pressure Driven Boundary Layer

As noted in section 2, many computational wind engineers will set up a problem by choosing a turbulence model,
defining the inlet conditions and will probably define the roughness of the ground plane. However they will leave
the top boundary as a default free-slip symmetry boundary. As a result the flow is driven through the domain by a
pressure difference between inlet and outlet. In this section we seek to find velocity and turbulence property
profiles that will result in an equilibrium boundary layer under such conditions. The turbulence models considered
are the standard k-& model of Launder and Spalding (1974); the Wilcox (1993) k- @ model and the blending of these
in the SST model of Menter (1994), although a similar analysis is possible with most of the standard turbulence
models. The solution domain considered, see Fig. 3, is an empty domain of height A but arbitrary width and length.
The pressure is assumed to decrease at a steady rate in the streamwise direction, while being constant across all
heights. All other variables are assumed to be independent of both the x and y co-ordinates but may vary with

height z above the ground plane.

z T Free-slip, symmetry boundary

e X

Fig. 3. Layout schematic of the solution domain.

In many CFD problems the inlet conditions are defined in terms of the velocity and turbulence property profiles.
The computer code is then used to determine such things as the wall shear stress or the pressure differential
required to drive the prescribed flow through the domain. In this analysis the order is reversed and it is assumed
that the driving pressure gradient is known and the analysis seeks to determine the velocities and turbulence
profiles which would match this driving force. While these conditions can be obtained by running a CFD model
with either a long fetch or with cyclic boundary conditions, the initial approach taken here is to analyse the basic

equations and then to compare the results with CFD.
If the flow is in equilibrium then the forces must be balanced both on the entire domain and on a sub-domain up to

height z. As a result for the complete domain
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dx dx

where 7, is the shear stress at the wall (ground), W the width and L the length of the domain. From the balance of
forces on the sub-domain we obtain

%LZW +7(z)LW =7 LW , which together with Eq. (17) yields 7(z)=7,(1-z/ H) (18)
X

Egs. (17) and (18) apply to any equilibrium pressure driven boundary layer of depth H, irrespective of the
turbulence model used. If H=h/2, that is half the gradient height as given by Eq. (7), then Eq. (18) is equivalent to
Eq. (16). If the domain depth is less than half the gradient height, equilibrium profiles can still be derived but the
shear stress gradient will be greater than that in the lower part of the ABL.

In a rough wall, high Reynolds number boundary layer such as the ABL, the turbulent shear stress is much larger
than the viscous shear stress right down to the level of the roughness. Hence in this analysis it is assumed that

dUu
—pu'w'>> u—- (19)
dz
In addition it is assumed that the Boussinesq eddy viscosity approximation, which is part of most two equation

turbulence models, applies such that

—pu'w'=y, & (20)
dz

where the calculation of the eddy viscosity z will depend on the particular turbulence model. Note that in a log law
atmospheric boundary layer with u,= 0.622 m/s and z;=0.01m then even at z=0.01m, 2, =pxu.z= 3x10~ Pas, about
170 times larger than the laminar viscosity and it increases almost linearly with height. As a result within the
equilibrium pressure driven boundary layer considered here
()= 1)

dz
To go beyond this point requires the choice of a particular turbulence models. While the analysis has been carried
out with both the standard k-¢ and Wilcox k-® models, only the former will be described in detail since the analysis
is very similar. The approach taken involves analytic development of the equations as far as possible and only
resorts to a numerical approach in the final stage, it is hence referred to hereafter as the “Semi-Analytic” (SA)
method. Due to the complex nature of the blending of these two models in the SST model no attempt has been
made to use the semi-analytic approach on that model, although CFD solutions are presented in Section 5.

With the standard k-& model the eddy viscosity is related to the turbulence kinetic energy (k) and its rate of
dissipation (&) by

2

4 =Cp (22)
&

Since the solution sought is for the equilibrium situation the total derivatives of the turbulence properties is zero
and so the standard conservation equations are simplified to

Dk duY d( u dk
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where the model constants are as given in Section 2 in association with Eq. (5), plus o; = 1.0.



The velocity derivative in Eqgs. (23) and (24) can be replaced by using the relationships in Egs. (18) and (21)
yielding

1—z/H)\ d dk
0-u nd-z/H)) A Ak (25)
H, dz\ O, dz
2 2
0oc | 22DV e o A de (26)
’ H, k k dz\o, dz

In order to obtain a more general result these equations can be transformed into a non-dimensional form by
normalising the variables in the following manner

.z .U Lk . &eH . . T
e T 27)
H u, u u; pu H pu_
and eliminating the eddy viscosity by using Eq. (22), which gives
2
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This pair of linked equations has been solved using finite-difference approximations. The boundary conditions used
are given in Table 1 and the resulting profiles plotted in Fig. 4. At the top of the domain both £* and &* reach their
minimum, but both are still finite since the diffusion (last terms in Egs. (28-29)) is matched by the dissipation (2"
to last terms).
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Fig. 4. Calculated and fitted equilibrium turbulence property profiles for the k-¢ turbulence model. For clarity the
eddy viscosity has been multiplied by 10 and £* is plotted against a log scale secondary axis. The solid lines are the
computed values while the dashed lines are the fitted relationships given by Egs. (31, 34 & 37).

Table 1. Boundary conditions for the turbulence property equations.

Variable Near ground, z* — 0 Top, z*=1
. 1 ’
e K> — * o
C, dz’
C().75k*|.5 dg
8* g* = £ = 0
Kz dz




In order to make the results more readily accessible polynomial expressions have been fitted to the computed
values. The form chosen for the non-dimensional TKE was

kK = f(z) =k +hk (-2 ) +k(-2 ) +k,(1-z ) (30)

since this fitted the data well and had zero gradient at z'=1, that is z=H. The semi-analytic k* values are matched to
within £0.3% by

k"= f(z)=0.921+3.533(1-2")" —1.926(1—-z")" +0.801(1—z")° 31
It may be noted that at z* = 0, £* = 3.33, as required by the boundary conditions. In later equations f{z*) is used to
represent this polynomial.

It was found that the dissipation rate could not be readily matched by a similar polynomial and that while the eddy
viscosity could be matched, a simpler result could be obtained by first calculating the velocity gradient from

du’ B 11—z

. LT (32)
dzp K
The functional form chosen for the velocity derivative is given by
dU H ’ ’
—(Z)zu—’ —+U,+2U, = +3U, Z +4U, Z
dz kH\ z H H H
(33)
The velocity gradient in non-dimensional form is therefore
dU’ L1 . a a
—=g(z)=—| —+U, +2U,z +3U;z" +4U,z (34)
dz K\z

Determining the coefficients in this function has been conducted by calculating the product of the non-dimensional
height and the velocity gradient and then fitting a fourth order polynomial. Due to numerical instabilities at small
z* von Karman’s constant x could not be accurately determined and so was prescribed as 0.4. In addition the final
constant U, was marginally adjusted to ensure the gradient was zero at z*=1.0. Fig. 5 shows the finite difference
derived data and the fitted curve.
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—Fitted Polynomial
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Fig. 5. Velocity gradient data from the finite difference solution and the polynomial curve fitted to it.

For this turbulence model the semi-analytic data is well matched by

5
*

—=25+1.322"+1.926z" —8.172z" +2.4262" (35)

dz




From which the velocity gradient expression is

au’ . 1 (1 . 2 .
—=g(z')=—| —+0.528+2x0.385z" =3x1.090z" +4x0.243z" (36)
dz 0.4\ z

where the constants have been rearranged to match Eq. (35) and the results entered into Table 2. An expression for

the eddy viscosity may be obtained by substituting the polynomial g(z*), as defined by Eq. (36), into a rearranged
Eq. (21):

. 1-Z2 (37)
ﬂf = *
g(z)
and hence the dissipation rate from Eq. (22) giving
C 2 * *
RCRACIVC )

1-z

The resulting fits are shown in Fig. 4. The agreement is not as good as for TKE but the fitted relationships match to
within 4% and these errors are greatest near the top of the boundary layer.

Eq. (34) may be integrated to give the velocity profile
1

U' = —(ln(z*) +U,2" +U,z” +U,z" + U, 2 ) + constant (39)
K

The integration constant is evaluated by using an appropriate velocity boundary condition at the ground. If the
simple condition of a rough wall with U=0 at z=z, and z,<<H is used then the constant can be taken as -ln(zo*)/K.
Hence Eq. (39) becomes

L1 z . . . .
U :—[ln[—*J+U12 +U222+U323+U4z4j (40)
K Z,

This can be transformed back into a dimensional form as

U(z) = i(ln (ij +U, (i) +U, (i)z +U, (ijs +U, (ij4] (41)
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Fig. 6. A comparison of velocity profiles given by Egs. (1, 9 and 41) for the Hargreaves and Wright (2007) test
case.

This is similar in form to the Deaves and Harris (1978) model, however the coefficients are quite different. Fig. 6
shows a comparison between the simple log law used by Richards and Hoxey (1993) as given in Eq. (1), the
Deaves and Harris (1978) model from Eq. (9) and Eq. (41), for the Hargreaves and Wright (2007) test case



mentioned in Section 3. All three curves are very similar at low heights, where they essentially reduce to the
logarithmic term, however they diverge at heights above about 30 m. The simple log law never reaches a zero
gradient due to the constant shear stress assumption, whereas the current model flattens off at half the gradient
height, while the Deaves and Harris equation continues to increase up to the full gradient height.

The corresponding dimensional forms for the turbulence properties are

k(z):uf[kl+k2 (1—%) Ttk (1—%) +k4(1—§j] (42)

. Cﬂk(z)z[1+U1(Z/H)+2><U2(Z/H)2+3XU3(Z/H)3+4><U4(Z/H)4]
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Ku z
T

1+ (1+U,)z/ H)+ (14U, +2U,)(z/ HY +(1+U, +2U, +3U,)(z/ H)’)

The simplification in Eq. (43) is possible because the polynomial in the numerator has zero value at z=H and hence
has 1-z/H as a factor. Fig. 7 contrasts the turbulence property profiles for a pressure driven boundary layer as
determined from Egs. (31) and (38), or from CFD calculation, with those for the shear driven boundary layer
analysed by Richards and Hoxey (1993) as given in Egs. (2) and (3). It is clear that the decreasing shear stress with
height has a dramatic effect on the turbulence kinetic energy and also affects the dissipation rate.

108404

1wl — - k*k-5SA — — & k-sSA
- N k* k-5 CFD — £* k-sCFD

) — k* k-5R&H L-0e0x - &" k-eR&H
0

1.06+01

MNeon-dimensional TKE k*

Non-dimensional Dissipation Rate g*
:

z ? ; L T ' L 1.0E-01 - - - -
0.0 01 02 03 0.4 05 06 0.7 0.8 0.3 10 b o4 o o6 G A=

Fig. 7. (a) Turbulence kinetic energy and (b) dissipation profiles for shear (SA or CFD) and pressure (R&H) driven
boundary layers.

With the ko model (Wilcox, 1993) the major difference from the standard k-& model is that the second turbulence
property solved is the specific dissipation

g
w=—" (44)
kp'
The constant 3’ is equivalent to C,, and also has a value of 0.09.
The conservation equations, equivalent to Egs. (25) and (26), are:
Dk duy d dk
p—=0=,u,(—j - ' pko+— M (45)
Dt dz dz\ oy dz
Daw dUY o , d| u do
Y aﬂt(dz] PP dz[aw dzj

with the supplementary equation

k
u = pk 47)
@



and the model constants a=5/9, f=0.075, =2 and 0,=2. These equations can be processed and solved in much
the same way as the k- analysis. The polynomials for £* and dU*/dz* take exactly the same form although the
coefficients are slightly different as can be seen from Table 2. These can then be combined to provide a specific
dissipation profile through

k dU  k(z2)
= =
u(l-z/H) dz  xu,z

Table 2: Polynomial coefficients for Egs. (30) and (34).

(1+Q+U e/ H)+ (1 +U, +2U,)(z/ HY + (14U, +2U, +3U,)(z/ H)’')  (48)

ki k, ks ky K U, U, Us U,
k- SA 0921 3533 -1.926 0.805 04 0.528 0385 -1.090 0.243
k-& CFD 0.923 3552 -1994 0.852 0415 0.784 0.055 -0.842 0.158
k- SA 0.810 4.046 -2.623 1.100 0.4 0.333 -0.666 0.465 -0.349
k-oCFD  0.817 3955 -2385 0.946 0407 0368 -0.635 0393 -0.319
SSTCFD 1.056 2814 -0.834 0.297 0407 0512 -0.772  0.072  -0.046
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Fig. 8. Comparison of semi-analytic (SA) and CFD equilibrium profiles for 3 turbulence models. (a) Turbulence
kinetic energy, (b) specific dissipation (where for the k-¢ model the equivalent @ value has been calculated using
Eq. (44)) and (c) velocity profiles.

The differences between the models is illustrated in Fig. 8, where in addition to the two semi-analytic solutions,
CFD solutions, which will be discussed further in the following section, are provided for the 3 turbulence models.
All of the profiles are very similar at low levels but diverge as the top of the domain is approached. This partially
reflects the significant difference in the diffusion expressions where in Eq. (45) o,p=2 whereas with the k-& model
in Eq. (23) 0,=1, which halves the diffusion of TKE. This difference is also clear in the values for k;, which reflect the level
of TKE at the top of the domain.

5. Numerical Modelling

In order to obtain comparable values from a CFD program, CFX version 14.0 has been used with cyclic boundary
conditions to obtain equilibrium solutions. For the CFD solutions a domain height H=500m, a roughness length z,
=0.01 m and a pressure gradient of -0.00097 Pa/m was used in all cases. This has been integrated with the
boundary condition U=0 at height z=z,. The resulting data has been fitted in the same way as the semi-analytic
solutions, except that x was not forced to be 0.4, and the polynomial coefficients are given in Table 2. Close
agreement is achieved between the semi-analytic (SA) and CFD results for both the k-g and k-® turbulence models.
It should be noted that the polynomial coefficient are sensitive to small changes and that a small change in one
coefficient can cause a dramatic change in another. It is therefore significant to note that in comparing the values



obtain from the semi-analytic and CFD methods there is generally closer agreement between the two solutions than
between the turbulence models. For example both approaches have U, positive for the k-& model whereas it is
negative with both methods for the k-« models. This changing of sign also occurs with U; and Uy. It therefore
appears that both approaches have captured the same differences between the turbulence models. This is also clear

in Fig. 9 where the two approaches provide almost identical results for each model, and noticeable differences
between models.
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Fig. 9. Illustration of the universal nature of the functions (a) f{z*) and (b) g(z*).

During analysis of several CFD runs using the k-¢ turbulence model it was recognised that if the TKE and velocity
gradient results were plotted in a non-dimensional form, then they coalesced into in a single curve. This is
illustrated in Fig. 8 for the two boundary layers whose parameters are given in Table 3. The two curves are almost
indistinguishable. Also shown are the functions f{z*) and g(z*), as defined in Egs. (31) and (36), which closely
match both pairs of curves and hence may be considered to represent universal functions for any two-dimensional
pressure driven boundary layer modelled using the &-¢ turbulence model.

Table 3: Boundary layer parameters

U(10) Zy H U,

(m/s)  (m) (m)  (m/s)
BLI 10 0.2 1000 1.05
BL2 5 0.1 100 0.45

To demonstrate the ability of these profiles to represent an equilibrium pressure driven boundary layer, these were
prescribed at the inlet of flow through a long empty domain. The profiles at the outlet of the domain could then be
compared with the inlet values, to see if the inlet values were actually in equilibrium, and also as a test of the ability
of the CFD code solver to model such a flow. If the boundary conditions accurately describe the pressure driven
flow, then there should be little difference between the values at the inlet and outlet of the domain.

The model problem used was the same as that given by Hargreaves and Wright (2007), and a schematic of the
domain and the grid used is shown in Fig. 10. The inlet flow had a reference velocity of 10 m/s at a reference
height of 6 m, with a ground roughness of zy = 0.01 m. The flow was modelled using CFX 14.0 using the standard
k-¢ model. Profiles of the velocity and the turbulence kinetic energy were extracted at the inlet and outlet of the
domain and are plotted in Fig.s 11. Those labelled “Pressure ...” use the inlet conditions derived in this paper for a
pressure driven boundary layer. For comparison purposes, a calculation was also made using the Richards and
Hoxey (1993) inlet profiles, which are intended for a shear driven boundary layer, but are deliberately misused here
in conjunction with a free slip surface at the high-z boundary.

Fig. 11 shows that with the equilibrium profiles derived in this paper there is little difference between the inlet and
outlet. There is a small change in TKE at low levels, which Richards and Norris (2011) show is caused by
discretisation errors in the near wall region. In comparison the misuse of the Richards and Hoxey (1993) profiles
results in significant changes between the inlet and outlet, most noticeably affecting the TKE profile since there is
so much difference between the shear driven and pressure driven equilibrium situations. This change is also
illustrated in Fig. 1. In contrast Fig. 12 shows the TKE development when the inlet is correctly matched to the
pressure driven situation.
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Fig. 10. (a) Schematic of the computational domain and (b) the corresponding grid.
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Fig. 11. Inlet and outlet (a) velocity and (b) TKE profiles using the equilibrium inlet profiles derived here in
comparison with the misuse of the Richards and Hoxey inlet profiles.
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Fig. 12. Development of the turbulence kinetic energy in a pressure driven boundary layer with inlet conditions
appropriate for this situation.



6. Appropriate Boundary Conditions for a Pressure Driven Boundary Layer

Based on the analysis presented in the previous sections it is recommended that if the atmospheric boundary layer
is modelled as a pressure driven flow then the gradient height h should be estimated from

u
h=— (7

6f

and the domain height H set at half this height. The inlet velocity profile can then be calculated using Eq. (41).

u z z z ? z : z !
U(z):—’(ln[—j+U1 (—j+U2 (—j +U3(—j +U4(—) j (41)

K z, H H H H
Similarly the inlet turbulence profiles can be set by using Eqs. (42, 43 or 48) as appropriate. The suggested
polynomial constants are given in Table 4. For the k-& and Wilcox k- models these have been extracted directly
from Table 2, where both solution techniques generated similar values. For the SST model the data has been
reanalysed forcing von Karman’s constant to k=0.4 in order to bring it in line with the other two models. While this

modifies the polynomial coefficients significantly the resulting velocity gradients only change by less than 4%
across the entire boundary layer.

k(z)=u,2[k1+k2 (1—1) +ky (1—1) +k4(1_in (42)
H H H

o) = ) (1+Q+U )2/ H)+(1+U, +2U,)(z/ HY +(1+U, +2U, +3U,)(z/ HY’) (43)
Ku z

o(z) = k) (1+(1+U|)(Z/H)+(1+U1 +2U,)z/ H) +(1+U, +2U, +3U3)(z/H)3) (48)
KurZ

Table 4: Recommended Polynomial Coefficients

ki k, ks ky K U, U, Us U,
k-& 0921 3.533 -1.926 0.805 04 0.528 0385 -1.090 0.243
k-@ 0.810 4.046 -2.623 1.100 0.4 0.333  -0.666 0.465 -0.349
SST 1.056 2.814 -0.834 0.297 0.4 0.280 -0.331 -0.334 0.096

While it is believed that these inlet boundary conditions can be used to generate an equilibrium pressure driven
boundary layer, it is essential that they are combined with an appropriate rough wall treatment of the ground
surface. In this regard it is important to note that many CFD codes use an equivalent sand grain roughness and that
this is different from the wind engineering roughness length z, used in this paper. This aspect is discussed in detail
by Blocken et al. (2007).

It is also noted that the above equations can be used to generate an equilibrium pressure driven boundary layer even
if the domain height is less than half the gradient height. If the top of this shorter domain is a free-slip zero
diffusion boundary then the shear stress gradient will be exaggerated and hence may affect results. If a shorter
domain is necessary then a partial model is possible but a shear stress and associated turbulence diffusion sinks
should be applied to the top of the domain. For example if the domain height is d and d</A/2 but the shear stress is
assumed to decrease to zero a z=h/2, then the top of the domain has a shear stress

t(d)= pu’(1-2d / h) (49)

and the diffusion fluxes of &, € or ® are

wu,(d )ﬁ , #(d) ds or #d)do respectively. (50)
dZ z=d O-g dZ z=d O-a) dZ z=d

Where the gradients can be determined by differentiating Eqs. (42), (43) or (48).



While only three turbulence models have been considered it is believed that these inlet profile would probably
work reasonably well with many other turbulence models. The similarity of the profile in Fig. 7 suggests that the
equilibrium profiles are more related to the shear stress variation than to the particular turbulence model and hence
these results can be used as an approximation with any similar turbulence model.

7. Conclusions

CFD calculations of wind engineering flows often inappropriately use inlet boundary conditions derived for a shear
driven flow but without the driving shear stress. Without this shear stress the flow being modelled is driven through
the domain by a pressure gradient. By comparison with the Deaves and Harris model of the atmospheric boundary
layer (ABL) it is demonstrated that a pressure driven boundary layer can be considered a reasonable model for the
lower half of the ABL where the shear stress decreases approximately linearly with height. Boundary conditions
have been derived for an equilibrium pressure driven flow using three common turbulence models. While no
analytic solution has been found it is shown that the results can be fitted by simple polynomial equations. In non-
dimensional form the profiles for the turbulence kinetic energy and the velocity gradients apply to all rough wall
pressure driven equilibrium boundary layers. These profiles have been successfully applied to modelling flow
through an empty computational domain such that the outlet conditions are almost the same as the inlet.
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