

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

RELATIONSHIPS BETWEEN NEUROTOXICITY, ACCUMULATION, AND PHYSICOCHEMICAL PROPERTIES OF A SERIES OF PLATINUM DRUGS

Daniela Screnci

A thesis submitted for the degree of Doctor of Philosophy, Faculty of

Medical and Heath Sciences, University of Auckland, 2000.

Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.

> PHILSON LIBRARY Faculty of Medical & Health Sciences Park Road Grafton AUCKI AND

Abstract

Peripheral neurotoxicity induced by some platinum chemotherapy agents is the dose limiting factor, seriously affecting the quality of life of chemotherapy patients who receive this treatment. The cause of the peripheral neurotoxicity remains unknown. Using an animal model, the neurotoxic profiles of a series of platinum compounds and their related stereoisomers were determined. The series consisted of cisplatin, carboplatin, oxaliplatin, *S*,*S*-oxaliplatin, ormaplatin, *R*,*R*- and *S*,*S*- ormaplatin and JM216. The neurotoxicity of these compounds in the animal model was correlated with their hydrophobicity, accumulation and reactivity. Also, using peripheral nerve tissues dissected at the end of treatment (or at specific timepoints) from the animals, morphological changes induced by the platinum compounds were also measured.

Animals were administered the platinum compounds at the maximally tolerated dose, for a period of eight weeks, to determine the onset of neurotoxicity as indicated by changes in the sensory nerve conduction velocity (SNCV). The cumulative doses at which the platinum compounds in the series induced neurotoxicity (neurotoxic dose potency) in the animal model varied. Oxaliplatin induced neurotoxicity at the smallest dose and therefore at the earliest timepoint (15 μ mol/kg, 3 weeks of treatment) and carboplatin induced neurotoxicity at the highest dose and the latest timepoint (322 μ mol/kg, 8 weeks of treatment). The neurotoxic dose potency was compared to data obtained from the literature of incidence of neurotoxicity in patients. There was a strong correlation (r²= 0.9871).

i

It has previously been hypothesised (Gregg. et al. 1992) that platinum accumulation in peripheral nervous tissues plays a role in platinum induced neurotoxicity. Using tissues obtained from animal studies, the platinum concentration in peripheral nerve tissues was determined via Inductively Coupled Plasma-Mass Spectrometry. There was no correlation between the amount of platinum accumulated in these tissues (dorsal root ganglia, sural nerve and sciatic nerve) and neurotoxicity. Furthermore it was expected that the accumulation of these compounds in the peripheral nervous system would be related to the hydrophobicity of the compound. The inverse was found to be true. The more hydrophilic the platinum compound, the greater the accumulation in the peripheral nerve tissues, and the more hydrophobic the platinum compound the lesser the accumulation in the peripheral nerve tissue (eg. drg $r^2 = 0.99$, P=0.004).

Using *in vitro* protein binding half life, the reactivity of compounds in the platinum series was assessed. It was determined that the neurotoxic compounds had a shorter half life and were more reactive than the non neurotoxic compounds. A positive correlation was also observed between reactivity and the incidence of neurotoxicity in patients ($r^2 = 0.89$, P=0.0005).

Tissues obtained from the animals were used to measure changes in dorsal root ganglia nucleolar diameter, and comparison made between the nucleolar diameter of each of the treatment groups, and their changes in SNCV. Strong correlations were observed between nucleolar diameter changes and altered SNCV in animals ($r^2 = 0.9971$).

ii

From the above-mentioned studies, insight was gained into the physical parameters of the platinum compounds in the series that were associated with different neurotoxicity profiles. As yet a definite mechanism has not clearly defined but it is hypothesised to involve molecular nucleolar changes.

Published Journal Articles

<u>Screnci, D.,</u> Er, H.M., Hambley, T.W., Galettis, P., Brouwer, W., and McKeage, M.J. Stereoselective Peripheral Sensory Neurotoxicity of Diaminocyclohexane Platinum Enantiomers Related to Ormaplatin and Oxaliplatin. *BRITISH JOURNAL of CANCER* 76:502-510, 1997.

Screnci, D., Galettis, P., Baguley, B.C., and McKeage, M.J. Optimisation of an ICP-MS Assay for the Detection of Trace Levels of Platinum in Peripheral Nerves. *ATOMIC SPECTROSCOPY* 19:172-175, 1998.

<u>Screnci, D.</u> and McKeage, M.J. Platinum neurotoxicity. Clinical Profiles, Experimental Models and Neuroprotective Approaches. *JOURNAL OF INORGANIC BIOCHEMISTRY* 77: 105-110, 1999.

<u>Screnci, D.</u>, McKeage, M.J., Galettis, P., Hambley, T.W., Palmer, B.D., and Baguley, B.C. Relationships Between Hydrophobicity, Accumulation and Peripheral Nerve Toxicity of a Series of Platinum Drugs. *BRITISH JOURANL of CANCER*, 2000 (In Press).

McKeage, M.J., Haddad, G.,G., Ding, L., Galettis, P., <u>Screnci, D.</u>, Zhuang, L., and Baguley, Neuroprotective Interactions in Rats Between Paclitaxel and Cisplatin. *ONCOLOGY RESEARCH* 11: 1999 (In Press).

Published Abstracts

Galettis, P., <u>Screnci, D</u>., McQuilty, R., Snitch, P., and McKeage, M.J. Platinum Quantitation in Biological Tissues by Inductively Coupled Plasma Mass Spectrometry. *PROCEEDINGS OF NEW ZEALAND SOCIETY FOR CLINICAL ONCOLOGY*, 1996.

<u>Screnci, D</u>., Er, H.M., Hambley, T.W., Galettis, P., and McKeage, M.J. Tissue-Platinum Accumulation in Relation to Sensory Peripheral Neuropathy of Platinumdiaminocyclohexane (Pt-DACH) Analogues. *PROCEEDINGS OF THE AUSTRALIASIAN SOCIETY OF CLINICAL AND EXPERIMENTAL PHARMACOLOGISTS AND TOXICOLOGISTS*, 1996. <u>Screnci, D</u>., Er, H.M., Hambley, T.W., Galettis, P., Brouwer, W., and McKeage, M.J. Stereoselective Toxicity of diamniocyclohexane (DACH) Platinum Complexes Related to Ormaplatin and Oxaliplatin in the Rat. *PROCEEDINGS OF THE AMERICAN SOCIETY OF CLINICAL ONCOLOGY*, 1996.

<u>Screnci, D</u>., Er, H.M., Hambley, T.W., Galettis, P., Brouwer, W., and McKeage, M.J. Stereoselective Peripheral Neurotoxicity of diaminocyclohexane (DACH) Platinum Complexes Relating to Ormaplatin and Oxaliplatin in the Rat. *PROCEEDINGS OF THE NEW ZEALAND SOCIETY FOR ONCOLOGY*, 1996.

<u>Screnci, D</u>., Galettis, P., Palmer, B.D., McKeage, M.J., and Baguley, B.C. Relatiosnhips Between the Physiochemical Properties, Tissue Accumulation and Peripheral Neurotoxicity of Antitumour Platinum Derivatives. *PROCEEDINGS OF THE NEW ZEALAND SOCIETY FOR ONCOLOGY*, 1998.

Screnci, D., Galettis, P., Palmer, B.D., McKeage, M.J., and Baguley, B.C. Peripheral Neurotoxicity of Antitumour Platinum Complexes; Relationship To Physicochemical Properties and Tissue Accumulation of Platinum. *PROCEEDINGS OF THE AUSTRALASIAN SOCIETY OF CLINICAL AND EXPERIMENTAL PHARMACOLOGISTS AND TOXICOLOGISTS (NZ SECTION)*, 1998.

McKeage, M.J., Haddad, G.,G., Ding, L., Galettis, P., <u>Screnci, D.</u>, and Baguley, B.C. Neuroprotective Interactions Between Paclitaxel and Cisplatin in Female Wistar rats.8TH INTERNATIONAL SYMPOSIUM ON PLATINUM AND OTHER METAL COORDINATION COMPOUNDS IN CANCER CHEMOTHERAPY, 1999.

McKeage, M.J., Haddad, G.,G., Ding, L., Galettis, P., <u>Screnci, D.</u>, and Baguley, B.C. Neuroprotective Interactions Between Paclitaxel and Cisplatin in Female Wistar rats.8TH PROCEEDINGS OF THE AMERICAN ASSOCIATION OF CANCER RESEARCH, 1999.

<u>Screnci, D.</u>, Galettis, P., Palmer, B.D., McKeage, M.J., and Baguley, B.C. Relationships Between Platinum Accumulation, Neurotoxicity and Physicochemical Properties of Series of Platinum Antitumour Agents. 8TH INTERNATIONAL SYMPOSIUM ON PLATINUM AND OTHER METAL COORDINATION COMPOUNDS IN CANCER CHEMOTHERAPY, 1999.

Acknowledgments

First and foremost I would like to acknowledge the support, encouragement and knowledge of my supervisor Dr Mark McKeage. I have come up with some fairly strange ideas over the years and he has always tried to find some scientific merit in them. Dr Peter Galettis, always listened to the ideas before they went to Mark. Thanks a million for all the encouragement and insults that kept me going. I would also like to acknowledge the support of Professor Bruce Baguley, my co-supervisor, and Professor Murray Mitchell as the Head of Department of Pharmacology and Clinical Pharmacology. Thanks to Dr Trevor Hambley and Dr Brian Palmer for the help with the chemistry and to Michelle Mc Anulty-Smith for all the help with the histology.

I would like to acknowledge the financial support from the Auckland Medical Research foundation, the Cancer Society of New Zealand, the University of Auckland Graduate Students Research Fund and the Department of Pharmacology and Clinical Pharmacology. Without this support, the research formulating the basis of this thesis would not have been possible.

Last but not least I would like to thank my family and friends for their constant encouragement and support.

Table of Contents

ABST	RACT	Γ	i
PUBL	PUBLICATIONS RESULTING IN PART OR FULL FROM THESIS		
ACKN	NOWL	LEDGEMENTS	vi
TABL	EOF	CONTENTS	vii
LIST	OF FIG	GURES	xii
LIST	OF TA	ABLES	XV
ABBR	REVIA	TIONS	xvii
CHAP	TER 1	1: GENERAL INTRODUCTION	
1.1	Antitu	umour Platinum Drugs	1
	1.1.1	Structure Activity Relationships	1
	1.1.2	Cisplatin	4
		1.1.2.1 Mechanism of Action	4
		1.1.2.2 Cisplatin Toxicities	5
	1.1.3	Other Platinum Drugs	5
		1.1.3.1 Diaminocyclohexane Compounds	6
		1.1.3.1.1 Chemistry	6
		1.1.3.1.2 Preclinical Data	8
		1.1.3.1.3 Clinical	9
	1.1.4	Platinum Analysis in Biological Tissues	12
1.2	Platin	num Neurotoxicity	14
	1.2.1.	. Clinical Features	14
	1.2.2.	. Experimental Models of Platinum Neurotoxicity	15
		1.2.2.1 Animal Models	15
		1.2.2.2 Dorsal Root Ganglia Explants and Primary Cultures	17
		1.2.2.3 Tumour Cell lines of Neural Origin	19
		1.2.2.4 Preferred Animal Model	19
	1.2.3	Neuroprotectants: Their Effect on Platinum Toxicity	22
		1.2.3.1 Thiol Compounds	22
		1.2.3.2 Neurotrophin Related Neuroprotectants	24

		1.2.3.3 ACTH Analogues	25
		1.2.3.4 Calcium Channel Antagonists	26
		1.2.3.5 Combination Therapy	26
1.3	The P	eripheral Nervous System	27
	1.3.1	Anatomy of the Peripheral Nervous System	27
	1.3.2	The Somatic Nervous System	28
	1.3.3	The Dorsal Root Ganglion	28
		1.3.3.1 Organisation	28
		1.3.3.2 Morphology and Cytology of Ganglion Cells	29
1.4	Aims	and Objectives	31
CHA	PTER	2: GENERAL METHODOLOGY	
2.1	Drugs	s and Drug Synthesis	33
	2.1.1	Synthesis of R, R- and S, S- DACH Pt(IV)Cl4	33
	2.1.2	Synthesis of the R, R-DACHPt(II)-oxalato	34
	2.1.3	HPLC Identification of the DACH-Platinum Isomers	35
	2.1.4	Other Platinum Compounds	35
2.2	Anin	nal Studies	36
	2.2.1	Animal Treatment	36

CHAPTER 3: NEUROTOXICITY OF A SERIES OF PLATINUM COMPOUNDS: DETERMINATION OF THE NEUROTOXIC DOSE POTENCY IN A WISTAR RAT MODEL

3.1	Introdu	action	37
3.2	Metho	ds	37
	3.2.1	Animals	37
	3.2.2	Electrophysiology	38
3.3	Result	S	41
	3.3.1	Experiment 1	41
	3.3.2	Experiment 2	43
	3.3.3	Neurotoxic Dose Potency	45
3.4	Discus	sion	49

CHAPTER 4: VALIDATION AND DETECTION OF PLATINUM IN NEUROLOGICAL TISSUES VIA ICP-MS

4.1	Introd	uction	53
4.2	Metho	ds	54
	4.2.1	Instrumentation	54
	4.2.2	Assay Validation	54
	4.2.3	Tissue Preparation	56
	4.2.4	Animal Studies	58
	4.2.5	Eight Week Platinum Accumulation Studies	58
	4.2.6	Statistics	60
4.3	Result	S	60
	4.3.1	ICP-MS Validation	60
		4.3.1.1 Optimisation of Instrument Parameters	60
		4.3.1.2 Calibration Curve	60
		4.3.1.3 Tissue Preparation	61
		4.3.1.4 Matrix Effects	61
		4.3.1.5 Assay Performance	62
	4.3.2	Platinum Accumulation in Tissue After 8 Weeks of Treatment	62
	4.3.3	Platinum Accumulation During Eight Weeks of Repeated Platinum Treatment	67
	4.4	Discussion	75

CHAPTER 5: DETERMINATION OF THE RELATIVE

HYDROPHOBICITY/HYDROPHILICITY FOR THE PLATINUM SERIES OF COMPOUNDS

5.1	Introdu	action	78		
5.2	Metho	Methods			
	5.2.1	Shake Flask Method	79		
	5.2.2	Reverse Phase HPLC	80		
5.3	Results	3	82		
5.4	Discussion		85		

CHAPTER 6: PROTEIN BINDING OF A SERIES OF PLATINUM COMPLEXES AND THEIR

EN.	ANT	ION	IERS

6.1	Introduction	89
6.2	Methods	90
6.3	Results	92
6.4	Discussion	96

CHAI	PTER 7	: MORPHOLOGICAL CHANGES INDUCED BY PLATINUM TREATM	IENT IN
DRG			
7.1	Introdu	uction	99
7.2	Metho	ds	100
	7.2.1	Initial Nucleolar Number/Diameter Measurements	100
	7.2.2	Timecourse Studies	100
	7.2.3	Preparation of drg for Light Microscopy	102
	7.2.4	Haematoxylin and Eosin Staining Procedure	103
	7.2.5	Drg Neuronal Nucleolar Counting Protocol	103
	7.2.6	Drg Nucleolar Diameter Protocol	104
	7.2.7	Statistical Analysis	104
7.3	Result	S	105
	7.3.1	Comparison of Nucleolar Control Diameters Between Experiments at the	
		End of Eight Weeks of Treatment	105
	7.3.2	Nucleolar Number	112
	7.3.3	Correlations	112
	7.3.4	Nucleolar Diameter Monitored Throughout the Treatment Period for Five	
		Compounds in the Platinum Series	114
	7.3.5	Correlations	119
7.4	Discus	ssion	119

7.4 Discussion

х

CHAPTER 8: CHARACTERISATION OF THE NEUROTOXIC PROFILE OF THREE NOVEL PLATINUM DACH COMPOUNDS

8.1	Introd	action	123
8.2	Metho	ds	125
8.3	Result	S	127
	8.3.1	SNCV Measurements	127
	8.3.2	Platinum Accumulation	128
	8.3.3	Change in drg Nucleolar Size	128
	8.3.4	Protein Binding	129
8.4	Discus	ssion	132

CHAPTER 9: GENERAL DISCUSSION

9.1	Platinu	m Accumulation and Hydrophobicity	138
9.2	Reacti	vity	141
9.3	Nucleo	olar Changes	144
	9.3.1	UBF	146
	9.3.2	Retinoblastoma Protein	148
	9.3.3	Inhibition of DNA Repair	149
	9.3.4	Does Their Exist a Binding Pocket?	149
	9.3.5	Mimicking Metals in Enzyme Systems	150
9.4	Dorsal	Root Ganglia Cell Types	151
9.5	Overa	l Hypothesis/Conclusion	152

REFERENCES

References	154

APPENDICES

Appendix I	Histological Solutions	171
Appendix II	Copy of Publications	174

List of Figures

Chapter 1

Figure 1.1.	Chemical Structures of cisplatin, carboplatin and JM 216	2
Figure 1.2.	Chemical Structures of the DACH derivatives	7
Figure 1.3.	Schematic diagram of the ICP-MS	13
Figure 1.4.	Schematic diagram of animal method used to record SNCV in the rat	21
Figure 1.5.	Digital photo of large dorsal root ganglia cells	30

Chapter 3

Figure 3.1.	Sample recording of the H- and M- waves of a peripheral nerve in the rat	40
Figure 3.2.	Experiment 1: Mean body weight change over the period of eight weeks	
	for control, 1mg/kg and 2mg/kg cisplatin treatment groups	42
Figure 3.3.	MNCV Experiment 1, for control, 1mg/kg and 2mg/kg cisplatin	
	treatment groups	42
Figure 3.4.	SNCV Experiment 1, for control, 1mg/kg and 2mg/kg cisplatin	
	treatment groups	44
Figure 3.5.	Experiment 2: Mean body weight change over the period of eight	
	weeks for control, 1mg/kg, 8mg/kg carboplatin and 1mg/kg ormaplatin	44
Figure 3.6.	MNCV Experiment 2, for control, 1mg/kg, 8mg/kg carboplatin and	
	1mg/kg ormaplatin	46
Figure 3.7.	SNCV Experiment 2, for control, 1mg/kg, 8mg/kg carboplatin and	
	1mg/kg ormaplatin	46

xii

Chapter 4

Figure 4.1.	ICP-MS tissue preparation 57	
Figure 4.2.	Platinum concentration in dorsal root ganglion after eight weeks of platinum	
	treatment vs neurotoxic dose potency	68
Figure 4.3.	Platinum accumulation over eight weeks of treatment for the isomers of	
×	ormaplatin	71
Chapter 5		
Figure 5.1.	Sample HPLC-ICPMS trace	81
Figure 5.2.	Example of the methanol regression used to determine the k_w value	
	for JM 216	83
Figure 5.3.	Relationship between Log P and platinum accumulation in the PNS,	
	blood and plasma for the platinum series of compounds	86
Chapter 6		
Figure 6.1.	Decay of platinum over time for ormaplatin and its related isomers	94
Figure 6.2.	In vitro protein binding half life vs neurotoxic dose potency for the	
	platinum series	95
Figure 6.3.	In vitro protein binding half life vs incidence of neurotoxicity in patients (%)	95

xiii

Chapter 7

Figure 7.1.	DRG (a) nucleolar diameters for compounds in the platinum series after 8	
	weeks of platinum treatment (b) nucleolar numbers for compounds in the	
	platinum series after 8 weeks of platinum treatment	106
Figure 7.2.	Digital photos of drg treated with the platinum series after eight weeks	
	of treatment	107
Figure 7.3.	Correlation between neurotoxic dose potency and nucleolar number and	
	neurotoxic dose potency and nucleolar diameter	113
Figure 7.4.	Accumulation study results	115
Figure 7.5.	Change in nucleolar diameter throughout the experimental period for	
	oxaliplatin for timepoints day 7 and day 56	117

Chapter 8

Figure 8.1.	Chemical structures of R,R-malonate(DACH-Pt), S,S-malonate(DACH-Pt),	
	and S,S-hydroxy(DACH-Pt)	124
Figure 8.2.	Reactivity of R, R-, S, S-malonate(DACH-Pt) and S, S-hydroxy(DACH-Pt)	
	in plasma	131

Figure 8.3.	Nucleolar diameter vs reactivity of the R, R-, S, S-malonate(DACH-Pt) and S, S-	
	hydroxy(DACH-Pt)	133

Chapter 9

÷

Figure 9.1.	Schematic representation of a possible hypothesis for platinum neurotoxicity.	145
-------------	---	-----

List of Tables

Chapter 3

Table 3.1.	e 3.1. Neurotoxic dose potency of the clinical platinum compounds and their	
	stereoisomers	47
Table 3.2.	Change in sensory function and body weight at onset of neurotoxicity by	
	the platinum series in the rat	48
Table 3.3.	Incidence of neurotoxicity in patients vs neurotoxic dose potency in the rat	50

Chapter 4

Table 4.1.	Optimal ICP-MS operating parameters	55
Table 4.2.	Doses and timepoints used in the platinum accumulation studies	59
Table 4.3.	Performance of the developed ICP-MS assay	63
Table 4.4.	Platinum content in the tissues taken from the animals after eight	
	weeks of treatment	65
Table 4.5.	Platinum content in blood and plasma taken from animals after eight	
	weeks of treatment	66
Table 4.6.	Total platinum dose received by the animals for each platinum compound vs	69
	the amount of platinum accumulated in the drg	
Table 4.7.	Platinum accumulation in tissues treated with repeated doses of the series of	
	platinum compounds	70
Table 4.8.	Platinum accumulation in blood and plasma from animals treated with	
	repeated doses of a series of platinum compounds	73

Table 4.9.	Tissue, blood and plasma concentration-time products of the platinum	
	series over the course of eight weeks	74
Chapter 5		
Table 5.1.	JM 216 Kw determination	83
Table 5.2.	Hydrophobicity parameters	84
Chapter 6		
Table 6.1.	Timepoints at which aliquots were taken to determine $t_{1/2}$ for the compounds	
	in the platinum series	91
Table 6.2.	In vitro protein binding half life for the platinum series as determined in rat plasma	93
Chapter 7		
Table 7.1.	Doses and timepoints used for nucleolar diameter time-course studies	101
Table 7.2.	Regression parameters obtained for cisplatin, oxaliplatin, carboplatin	
	and the ormaplatin isomers over 8 weeks of treatment	118
Chapter 8		
Table 8.1.	Body weight change, SNCV, platinum accumulation and nucleolar changes	
	induced by the malonate-DACH isomers and S,S-hydroxy-DACH	126
Table 8.2.	Linear regression parameters for each of the compounds	130

xvi

Abbreviations

AAS	Atomic Absorption Spectroscopy
ADP	Adenosine Di-Phosphate
AMU	Atomic Mass Units
ATP	Adenosine Tri-Phosphate
cbdca	carboplatin
cddp	cisplatin
cm	centimetre
CNS	Central nervous system
CxT	Concentration-Time products
DACH	Diaminocyclohexane
DLT	Dose Limiting Toxicity
DNA	Deoxyribose Nucleic Acid
drg	dorsal root ganglion
er	endoplasmic reticulum
HMG	High Mobility Group
HPLC	High Performance Liquid Chromatography
hr	hour
ICP-MS	Inductively Coupled Plasma – Mass Spectrometry
i.p	intraperitoneal
kDa	kilo Daltons
L	Litre
m	metre

М	Molar
mL	milli Litre
MNCV	Motor Nerve Conduction Velocity
m/s	metres/second
min	minutes
MTD	Maximum Tolerated Dose
MW	Molecular Weight
NOR	Nucleolar Organising Region
PNS	Peripheral Nervous System
Pt	Platinum
Rb	Retinoblastoma Protein
RNA	Ribose Nucleic Acid
rRNA	ribosomal Ribose Nucleic Acid
SL1	promoter selectivity factor
t _{1/2}	half life
SNCV	Sensory Nerve Conduction Velocity
UBF	Upstream Binding Factor
μL	microlitre