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Abstract

Computing the frustration index of a signed graph is a key to solv-
ing problems in different fields of research including social networks,
physics, material science, and biology. In social networks the frus-
tration index determines network distance from a state of structural
balance. Although the definition of frustration index goes back to 1960,
an exact algorithmic computation method has not yet been proposed.
The main reason seems to be the complexity of computing the frus-
tration index which is closely related to well-known NP-hard problems
such as MAXCUT.

New quadratic and linear binary programming models are devel-
oped to compute the frustration index exactly. Using the Gurobi
solver, we evaluate the frustration index on real-world and synthetic
datasets. The synthetic data involves Erdős-Rényi networks, Barabási-
Albert networks, and specially structured random graphs. We also use
well-known datasets from the sociology literature, such as signed net-
works inferred from students’ choice and rejection as well as datasets
from the biology literature including gene regulatory networks. We also
provide some results on the frustration index of a political network of
countries over time.

The results show that exact values of the frustration index can be
efficiently computed using our suggested optimisation models. We find
that most real-world social networks and some biological networks ex-
hibit a relatively low level of frustration which indicates that they are
close to balanced.

Keywords: Integer programming, Optimisation, Frustration in-
dex, Branch and bound, Signed graphs, Balance theory
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1 Introduction

Local ties between entities lead to global structures in networks. Ties can be
formed as a result of interactions and individual preferences of the entities in
the network. The dual nature of interactions in various contexts means the
ties may form in two opposite types, namely positive ties and negative ties.
In a social context, this is interpreted as friendship vs. enmity or trust vs.
distrust between people. The term signed network embodies a multitude of
concepts involving relationships characterisable by ties with plus and minus
signs. Signed graphs are used to model such networks where edges have
positive and negative signs. Structural balance in signed graphs is a macro-
scale structural property that has recently become a focus in network science
analytical models.

Originated from social psychology, structural balance theory was the
first attempt to understand the sources of tensions and conflicts in groups
of people with signed ties [1]. Cartwright and Harary identified cycles of the
graph (closed-walks with distinct nodes) as the origins of tension, in partic-
ular cycles containing an odd number of negative edges [2]. Signed graphs
in which no such cycles are present hold the property of structural balance.
The vertex set of balanced signed networks can be partitioned into k ≤ 2
subsets such that each negative edge joins vertices belonging to different
subsets [2]. For graphs that are not totally balanced, a distance from total
balance (a measure of partial balance) can be computed. Among various
measures is the frustration index that indicates the minimum number of
edges whose removal (or equivalently, negation) results in total balance [3].

2 Literature review

In the past few decades, different measures of balance [2,4–7] are suggested
and deployed to analyse partial balance in real-world signed networks result-
ing in conflicting observations. Measures based on cycles [2,4], triangles [5,6]
and closed-walks [7] are not generally consistent and do not hold axiomatic
properties [8]. Among all the measures, a normalised version of frustration
index is shown to satisfy basic axioms (listed in 3.4) [8]. This measure pro-
vides a clear understanding of the transition to total balance in terms of the
number of edges to be modified and reduce the tension as opposed to graph
cycles that were first suggested as origins of tension in unbalanced networks.

The frustration index is a key to frequently stated problems in many
different fields of research. In biological networks, optimal decomposition
of network into monotone subsystems -which is essential for understand-
ing Drosophila segment polarity- is made possible by calculating the signed
graph frustration index [9]. In finance, risk in a portfolio of securities can be
managed by analysing the frustration index of signed graphs [10]. In Knot
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theory, the Writhe of a link diagram is a measure directly related to the
frustration index [11]. In material science, the frustration index provides
the minimum energy state of magnetic materials [12]. In international re-
lations, signed clustering of countries in a region can be investigated using
the frustration index [13]. In nano-materials, bipartite edge frustration has
applications on the stability of fullerene, a carbon allotrope [14]. Finally in
electronics, frustration index helps finding the minimal set of phase conflicts
in integrated circuit design [15].

From a computational viewpoint, detecting if a graph is balanced is not
a difficult problem and can be solved in polynomial time [16]. However,
calculating the frustration index is an NP-hard problem equivalent to the
ground state calculation of the Sherrington-Kirkpatrick spin glass model [17,
18]. Computation of frustration index can be also reduced from the graph
maximum cut (MAXCUT) problem, in a special case of all negative edges,
which is known to be NP-hard [16]. MAXCUT can be solved in polynomial
time for planar graphs [19] and efficient approximations have long existed
for MAXCUT in general graphs [20]. While the frustration index can be
computed in polynomial time for planar graphs [21], the frustration index
in general graphs, which is as difficult as the weighted version of MAXCUT
with negative weights, lacks extensive and systematic investigation.

Despite the lack of investigation of the frustration index, a closely-related
and more general problem in signed graphs has been investigated compre-
hensively. According to Davis’s definition of generalized balance, a signed
network is weakly balanced (k-balanced) iff its vertex set can be partitioned
into k subsets such that each negative edge joins vertices belonging to differ-
ent subsets [22]. The problem of finding the minimum number of frustrated
edges for general k (an arbitrary number of subsets) is referred to as the
Correlation Clustering problem. For every fixed k, there is a polynomial
time approximation scheme for the correlation clustering problem [23]. For
arbitrary k, exact [24,25] and heuristic methods [26,27] are developed based
on a mixed integer programming model [28]. Denoting the order of a graph
by n, exact algorithms fail for n > 21 [24] and n > 40 [25], while greedy
algorithms [26] and local search heuristics [27] are capable of providing good
solutions for n ≤ 103 and n ≤ 104.

Doreian and Mrvar have recently analysed signed international relations
[29] using the frustration index and correlation clustering [13] arguing that
the frustration index is computable in polynomial time. Their claims must
be evaluated while maintaining a certain level of healthy skepticism.

For k fixed to 2, efficient data reduction schemes [30] and ground state
search heuristics [9] are suggested that provide bounds for the frustration
index. Iacono et al. showed that the frustration index equals the minimum
number of fundamental negative cycles over all spanning trees of the graph
[9]. Originally discussed in the biology context, the terminology used in [9]
is different where monotonocity and inconsistency are the equivalences for
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balance and frustration. Facchetti, Iacono, and Altafini suggested a non-
linear energy function minimization model for finding the frustration index
[31]. Their model was solved using various techniques [9, 32–34]. Using
the ground state search heuristic algorithms [9], the frustration index is
estimated in biological networks up to n ≤ 1.5× 103 [9] and social networks
up to n ≤ 105 [31, 35].

After extending the non-linear energy minimization model to weak struc-
tural balance, Ma et al. provided good solutions for the correlation clustering
problem in networks up to n ≤ 105 using various heuristics [33,34]. Esmail-
ian et al. have also extended the work of Facchetti, Iacono, and Altafini,
focusing on the role of negative ties in signed graph clutering [32,36]. Their
suggested heuristic is reported to solve networks with up to n ≤ 105 within
99% of optimality. However, not only their main theorem (Theorem 1 in [32])
is incorrect, but Mendonça et al. has also cast doubt on their main conclu-
sion regarding the role of negative ties in signed graphs [37]. The analysis
of literature shows that there is a critical gap in the exact methods for
computing the frustration index that can guarantee the solution quality.

Our contribution

The principal focus of this research study is to provide insight into comput-
ing the frustration index. Besides multiple applications in various fields of
research, another motivation for computing this measure is to systematically
investigate signed networks transition to balance using basic graph opera-
tions on frustrated edges. Thus we develop the first algorithmic method for
exact computation of the frustration index.

Starting with a quadratic programming model based on signed graph
switching equivalences, we suggest several optimisation models. The ad-
vantage of formulating the problem as an optimisation model is not only
exploring the details involved in a fundamental NP-hard problem, but mak-
ing use of powerful mathematical programming solvers like Gurobi to solve
the NP-hard problem exactly and efficiently. This approach allows us to
compute a measure overlooked for decades because of the inherent combi-
natorial complexity. We provide a numerical comparison of the frustration
index on a variety of undirected signed networks, both randomly generated
and inferred from well-known datasets.

This paper begins by laying out the theoretical dimensions of the research
in Section 3. A quadratic programming model is developed in Section 4 and
linear programming models are formulated in Section 5. The results on
synthetic data are provided in Section 6 which also contains closed-form for-
mula for the frustration index in specially structured graphs and discussions
on the performance of the binary linear models. Numerical results on real
social and biological networks are provided in Section 7. The frustration
index of a temporal network is provided in Section 8. Section 9 presents the
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findings of the research and sums up the research highlights.

3 Preliminaries

3.1 Basic notation

We consider undirected signed networks G = (V,E, σ). The set of nodes is
denoted by V , with |V | = n. E is the set of edges that is partitioned into
the set of positive edges E+ and the set of negative edges E− with |E| = m,
|E−| = m−, and |E+| = m+ where m = m− + m+. σ is the sign function
σ : E → {−1,+1}. The adjacency matrix A is defined in (1).

Aij =

{
σi,j if (i, j) ∈ E
0 if (i, j) /∈ E (1)

The number of positive (negative) edges connected to the node i ∈ V
represent positive (negative) degree of the node and is denoted by d+(i)
(d−(i)). The net degree of a node is defined by d+(i)− d−(i).

A walk of length k in G is a sequence of nodes v0, v1, ..., vk−1, vk such
that for each i = 1, 2, ..., k there is an edge from vi−1 to vi. If v0 = vk,
the sequence is a closed walk of length k. If the nodes in a closed walk
are distinct except endpoints, it is a directed cycle (for simplicity cycle) of
length k. The sign of a cycle is the product of the signs of its edges and
cycles with negative signs are unbalanced. A balanced cycle is one with
positive sign. A balanced graph is one with no negative cycles.

3.2 Node colouring and frustration count

Satisfied and frustrated edges are defined based on two-colourings of the
nodes. Colouring the nodes with black and white, a frustrated (satisfied)
edge (i, j) is either a positive (negative) edge with different colours on the
endpoints i, j or a negative (positive) edge with the same colours on the
endpoints i, j.

To be more specific, for any signed graph G = (V,E, σ), we can partition
V into two sets, denoted X ⊆ V and X̄ = V \X. We think of X as specifying
a colouring of the nodes, where each node i ∈ X is coloured black, and i ∈ X̄
is coloured white. We let xi denote the colour of node i ∈ V under X, where
xi = 1 if i ∈ X and xi = 0 otherwise. We say that an edge (i, j) is frustrated
under X if either edge (i, j) is a positive edge (i.e. (i, j) ∈ E+) but nodes i
and j have different colours (xi 6= xj), or edge (i, j) is a negative edge (i.e.
(i, j) ∈ E−) but nodes i and j share the same colour (xi = xj). We define
the frustration count fG(X) as the number of frustrated edges under X:

fG(X) =
∑

(i,j)∈E

fi,j(X)
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where

fi,j(X) =


0, if xi = xj and (i, j) ∈ E+

1, if xi = xj and (i, j) ∈ E−

0, if xi 6= xj and (i, j) ∈ E−

1, if xi 6= xj and (i, j) ∈ E−

(2)

The frustration index L(G) of a graph G can be found by finding a subset
X∗ ⊆ V of G that minimises the frustration count fG(X), i.e. solving Eq.
(3).

min
X⊆V

fG(X) (3)

3.3 Deletion-minimal set and switching function

For each signed graph, there is a collection of edges E∗ ⊆ E, called deletion-
minimal, whose deletion results in a balanced graph while there is no subset
of this collection that yields balance if deleted. The frustration index L(G)
equals the number of members in a deletion-minimal set: L(G) = |E∗|.

We define the switching function g operating over a set of vertices, called
the switching set, X ⊆ V as follows in (4).

σg(i,j) =

{
σi,j if i, j ∈ X or i, j /∈ X
−σi,j if i ∈ X and j /∈ X or i /∈ X and j ∈ X (4)

The graph resulted from applying switching function g to signed graph
G is called G’s switching equivalence and denoted by Gg. The switch-
ing equivalences of a graph have the same value of the frustration index
∀g : L(Gg) = L(G) [16]. Ag represents the adjacency matrix of the graph
switched by g. It is straightforward to prove that the frustration index is
equal to the minimum number of negative edges over all switching func-
tions [16]. An immediate result is that any balanced graph can switch to
an equivalent graph where all the edges are positive [16]. Moreover, in the
switched graph with the minimal negative edges, called negative minimal
graph and denoted by Gg∗ , all vertices have a non-negative net degree. In
other words, if m−(Gg) = L(G) then every vertex ∀i ∈ V under switching g
satisfies d−(ig) ≤ d+(ig).

To see that Eq. (3) is equivalent to finding a negative minimal graph,
we note that any X ⊆ V defines a switching set that results in a switched
graph Gg = (V,E, σg) in which σgi,j = −1 if and only if edge (i, j) ∈ E in
our original graph G is frustrated under X. Therefore, the count of negative
edges in Gg equals the frustration count fG(X), and so L(G) = fG(X∗).
Note that fG(X) gives an upper bound on L(G) for any X ⊆ V .
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3.4 Axioms for a measure of balance

The level of partial balance in signed graphs can be measured by several
methods. The lack of standard in the suggested methods based on cycles
[2, 4], triangles [5, 6], matrix eigenvalues [38], and closed-walks [7] led Aref
and Wilson to suggest the following axioms for a measure of partial balance
[8]:

A1 A measure of balance is bounded by 0 and 1.

A2 Only total balance is denoted by value 1.

A3 Overall balance of two graphs is bounded between their individual bal-
ance.

A4 Adding a balanced cycle increases balance.

A5 Switching nodes does not change balance.

A6 Removing a deletion-minimal edge does not decrease balance.

A7 Adding a frustrated edge does not increase balance.

Among all the measures, the normalised frustration index, F (G) = 1 −
2L(G)/m, satisfies the axioms [8] and therefore is suggested for measuring
and comparing the level of partial balance in signed networks.

3.5 Upper bounds for the frustration index

Upper bounds can be readily provided for the frustration index such as
L(G) ≤ m− which states the obvious result that removing all negative
edges gives a balanced graph. Tomescu [39] proves that frustration index

is bounded by
⌊
(n− 1)2 /4

⌋
. Bounds for the largest frustration count for a

given graph (over all colourings) are provided by [40]:

m

2
−
√
mn ≤ max fG(X) ≤ m

2
. (5)

4 Quadratic programming models

In this section, we formulate two quadratic programming models in (6) and
(9) to calculate the frustration index by minimising an objective function
formed using variables defined over the nodes of the graph.
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4.1 A quadratically constrained quadratic programming model

We start by developing a mathematical programming model in Eq. (6) to
maximise Z1 the sum of entries of Ag over different switching functions g.
Bearing in mind that the frustration index is the number of negative edges in
the negative minimal graph, L(G) = m−

(Gg∗ )
, the maximising Z1 will calcu-

late the frustration index. Decision variables, yi ∈ {−1, 1} define the black
coloured nodes X = {i|yi = 1} (alternatively nodes in the switching set).
The restriction for the variables is formulated by n quadratic constraints
y2i = 1. Note that the switching set X = {i|yi = 1} creates the negative
minimal graph with the adjacency matrix entries given by aijyiyj . Max-
imising

∑
i∈V

∑
j∈V aijyiyj is equivalent to minimising m−

(Gg∗ )
= |(i, j) ∈

E : aijyiyj = −1|. The model can be represented as Eq. (6) in the form
of a continuous quadratically constrained quadratic programming (QCQP)
model with n decision variables and n constraints.

max
y1,y2,...

Z1 =
∑
i∈V

∑
j∈V

aijyiyj

s.t. y2i = 1 ∀i ∈ V
(6)

The optimal value of the objective function Z∗1 is equal to the sum of
entries in the adjacency matrix of the negative minimal graph which can
be represented by Z∗1 = 2m+

(Gg∗ )
− 2m−

(Gg∗ )
= 2m − 4L(G). Therefore, the

graph frustration index can be calculated by L(G) = (2m− Z∗1 )/4.
While the model expressed in (6) is quite similar to the non-linear energy

function minimization model used in [32, 33, 35, 41] and the Sherrington-
Kirkpatrick spin glass model [17], the feasible region in model (6) is neither
convex nor a second order cone. Therefore, model (6) only serves as an
easy-to-understand optimisation model clarifying the node colouring (alter-
natively selecting nodes to switch) and how it relates to the frustration
index.

4.2 An unconstrained binary quadratic programming model

The optimisation model (6) can be converted into an unconstrained binary
quadratic programming (UBQP) model (9) by changing the decision vari-
ables into binary variables yi = 2xi − 1 where xi ∈ {0, 1}. Note that the
binary variables, xi, define the black coloured nodes X = {i|xi = 1} (al-
ternatively nodes in the switching set). The optimal solution represents a
subset X∗ ⊆ V of G that minimises the frustration count.

Furthermore, the terms in the objective function can be modified as
shown in (7)–(8) in order to directly represent L(G) in the objective func-
tion Z2.
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Z1 =
∑
i∈V

∑
j∈V

(4aijxixj − 2xiaij − 2xjaij + aij)

=
∑
i∈V

∑
j∈V

(4aijxixj − 4xiaij) + (2m− 4m−(G))
(7)

Z2 = (2m− Z1)/4 (8)

Note that the binary quadratic model in Eq. (9) has n decision variables
and no constraints.

min
x1,x2,...

Z2 =
∑
i∈V

∑
j∈V

aijxi(1− xj) +m−(G)

s.t. xi ∈ {0, 1}
(9)

The optimal value of the objective function in Eq. (9) is denoted by Z∗2
which represents the frustration index directly as shown in (10).

Z∗2 = (2m− Z∗1 )/4 = (2m− (2m− 4L(G)))/4 = L(G) (10)

Note that the term aijxi(1− xj) in (9) takes value 1 for a positive frus-
trated edge and value -1 for a negative satisfied edge. Therefore, the ob-
jective function in Eq. (9) can be interpreted as initially starting by m−(G)
and then adding 1 for each positive frustrated edge and -1 for each negative
satisfied edge which results in the total number of frustrated edges.

Having discussed the continuous quadratic (6) and binary quadratic (9)
programming models, the next section of this paper addresses linear pro-
gramming models as well as the structural properties of the problem.

5 Linear programming models

In this section, we formulate three linear programming models in (11), (17),
and (19).

5.1 The AND model

The linearised version of (9) is the AND model. As formulated in Eq. (11),
the non-linear term xixj in the objective function of Eq. (9) is replaced
by additional binary variables for each edge xij that take value 1 whenever
xi = xj = 1 and 0 otherwise. Note that the binary variables taking value 1,
xij , represent edges for which the both endpoints are in the switching set.
The dependencies between the xij and xi, xj values are taken into account
by considering a constraint for each new variable. Therefore, the binary
linear formulation of the model has n+m variables and m constraints as it
follows in (11).
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min
x1,x2,...,x12,x13,...

Z2 =
∑
i∈V

∑
j∈V

(aijxi − aijxij) +m−(G)

s.t. xij ≤ (xi + xj)/2 ∀(i, j) ∈ E+

xij ≥ xi + xj − 1 ∀(i, j) ∈ E−

xi, xij ∈ {0, 1}

(11)

Having discussed the first linear programming formulation of the prob-
lem, we move on to the structural properties of the problem to restrict the
feasible space.

The structural properties of the model allow us to restrict the model by
adding additional valid inequalities. Properties of the the optimal solution
can be used to determine additional constraints. Properties observed in
negative minimal graphs include the nonnegativity of a node’s net degree
and negation states of the edges making a cycle.

An obvious structural property of the nodes in the negative minimal
graph, Gg∗ , is that their net degrees are always non-negative, i.e. d+(ig

∗
)−

d−(ig
∗
) ≥ 0∀i ∈ V . Equivalently, a node i should be given a colour that

minimises the number of frustrated edges connected to it. This can be
proved by contradiction using the definition of the switching function (4).

Proof. Assume a node in the negative minimal graph has a negative degree.
It follows that the negative edges connected to the node outnumber the
positive edges. Therefore, switching the node decreases the total number of
negative edges in the negative minimal graph which is a contradiction.

This structural property can be formulated as constraints in the problem.
Net-degree constraint can be added to the model for each node restricting all
variables associated with the connected edges. They are formulated using
quadratic terms of xi variables. As xi represents the colour of a node,
(1−2xi)(1−2xj) takes value −1 if and only if the two endpoints of edge (i, j)
have different colours. It means the edge should be negated in the process of
transforming to the negative minimal graph. The quadratic formulation of
our net-degree constraints is provided in (12). The linearised version using
xi and xij variables is provided in (13).∑

j∈V
aij(1− 2xi)(1− 2xj) ≥ 0 ∀i ∈ V (12)

∑
j∈V

aij(1− 2xi − 2xj + 4xij) ≥ 0 ∀i ∈ V (13)

Another structural property observed is related to the edges making a
cycle. According to the definition of switching function (4), switching one
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node negates all edges connected to that node. As in a cycle, there are two
edges connected to each node, the negation states of edges making a cycle
are not independent. To be more specific, the number of negated edges in
each cycle of the graph must be even in Gg∗ .

As listing all cycles of a graph is computationally intensive, this struc-
tural property can be applied to cycles of a limited length. For instance,
we may apply this structural property to the edge variables making trian-
gles in the graph. In this case, for each triangle, half of the combination
of variable values is cut from the feasible space. This structural property
can be formulated as valid inequalities in Eq.(14) in which T = {(i, j, k) ∈
V 3|(i, j), (i, k), (j, k) ∈ E} denotes the set of nodes making a triangle. Note
that, (xi + xj − 2xij) represents the negation state of the edges (i, j). The
expression in Eq.(14) denotes the sum of negation states for the three edges
ij, ik, jk making a triangle.

xi + xj − 2xij + xi + xk − 2xik + xj + xk − 2xjk

= 0 or 2 ∀(i, j, k) ∈ T
(14)

Eq.(14) can be linearised to Eq.(15) as follows. Triangle constraints can
be applied to the model as four constraints per triangle restricting three
edge variables and three node variables per triangle.

xi + xjk ≥ xij + xik ∀(i, j, k) ∈ T
xj + xik ≥ xij + xjk ∀(i, j, k) ∈ T
xk + xij ≥ xik + xjk ∀(i, j, k) ∈ T

1 + xij + xik + xjk ≥ xi + xj + xk ∀(i, j, k) ∈ T

(15)

More restrictions can be imposed using the minimum of the two frus-
tration upper bounds, Z2 ≤ min{m/2,m−} as discussed in 3.5. They are
implemented as constraints in Eq. (16).

Z2 ≤ min{m/2,m−} (16)

The complete formulation of the AND model with further restrictions
on the feasible space includes the objective function and core constraints in
Eq. (11) and valid inequalities in Eq. (13), Eq. (15), and Eq. (16). The
model has n + m binary variables, m core constraints, and n + 4|T | + 1
additional constraints. The next subsection discusses an alternative binary
linear model for calculating the frustration index.

5.2 The XOR model

The problem of finding the frustration index can be directly formulated
as a binary linear model. The XOR model is designed to directly count
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the number of edges whose negation leads to a negative minimal graph.
We define binary variable uij ∀(i, j) ∈ E denoting negation state of each
edge. uij takes value 1 if the edge is negated in the negative minimal graph,
otherwise it takes value 0. We use xi ∀i ∈ V denoting the colouring of a
node similar to the previous models.

Therefore, the frustration count under a node colouring (x1, x2, . . . , xn)
is given by: ∑

(i,j)∈E+

uij +
∑

(i,j)∈E−

(1− uij) =
∑

(i,j)∈E

aijuij +m−(G)

The respective minimisation model is as follows in Eq. (17).

min
x1,x2,...,u12,u13,...

Z3 =
∑

(i,j)∈E

aijuij +m−(G)

s.t. core constraints

uij ≤ 2− xi − xj∀(i, j) ∈ E−

uij ≤ xi + xj ∀(i, j) ∈ E−

uij ≥ xi − xj ∀(i, j) ∈ E+

uij ≥ xj − xi ∀(i, j) ∈ E+

xi, uij ∈ {0, 1}

(17)

The objective function in (17) can be interpreted as starting by the initial
number of negative edges then adding 1 for each negated positive edges and
adding -1 for each negated negative edges.

The counterparts of the valid inequalities (13), (15), and (16) for the
XOR model is formulated in Eq. (18) using the uij variables.

The complete formulation of the XOR model includes the objective func-
tion and core constraints in Eq. (17) and valid inequalities in Eq. (18) which
has n+m binary variables, 2m core constraints, and n+ 4|T |+ 1 additional
constraints.

valid inequalities∑
j∈V

aij(1− 2uij) ≥ 0 ∀i ∈ V

uij + uik ≥ ujk ∀(i, j, k) ∈ T
uij + ujk ≥ uik ∀(i, j, k) ∈ T
uik + ujk ≥ uij ∀(i, j, k) ∈ T

uij + uik + ujk ≤ 2 ∀(i, j, k) ∈ T
Z3 ≤ min{m/2,m−}

(18)

A third linear formulation of the problem is provided in the next sub-
section.
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5.3 The ABS model

In this section, we propose an alternative binary linear model in which edge
variables represent the frustration state of the edges.

We start by observing that for a node colouring (x1, x2, . . . , xn), |xi −
xj | = 1 for a positive frustrated edge and |xi−xj | = 0 for a positive satisfied
edge (i, j) ∈ E+. Similarly, 1 − |xi − xj | gives the frustration state of a
negative edge (i, j) ∈ E−. Introducing two binary variables eij , fij for each
edge that collectively represent the frustration state of the edge (i, j) allows
us to formulate the linear model in (19).

The objective function, being the total number of frustrated edges, sums
the above mentioned absolute value terms to compute the frustration count
in (19). Linear constraints expressed in (19) account for determining the
frustration state of an edge based on the node variables xi, xj that represent
the two endpoint colourings of the edge (i, j).

min
x1,x2,...,e12,e13,...,f12,f13,...

Z4 =
∑

(i,j)∈E

eij + fij

s.t. xi + xj − 1 = eij − fij ∀(i, j) ∈ E−

xi − xj = eij − fij ∀(i, j) ∈ E+

xi, eij , fij ∈ {0, 1}

(19)

In order to speed up the model in (19), we consider adding a constraint
to increase the root node objective function. The linear programming re-
laxation of the model in (19), sets all node variables to 0.5 resulting in all
edge variables staying at 0 which minimises the objective function and gives
a root node objective of value 0. However, by fixing one node variable, we
can increase the root node objective by breaking the symmetry that exists
and allows switching the colour on each node to give an equivalent solution.
We conjecture the best node variable is the one associated with the high-
est unsigned node degree. This constraint is formulated in (20) which our
experiments show speeds up the branch and bound algorithm by increasing
the lower bound.

uk = 1 dk = max
i∈V

di (20)

Based on the same concept, we may configure the branch and bound
algorithm so that it branches first on the node with the highest unsigned
degree.

As another effort to make the algorithm more effective, we consider
adding valid inequalities to the model in (19). According to [16], every
unbalanced cycle of the graph contains an odd number of frustrated edges.
This means that any colouring of the nodes in an unbalanced triangle must
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produce at least one frustrated edge. Recalling that eij +fij is 1 if edge (i, j)
is frustrated (and 0 otherwise), then for any node triple (i, j, k) defining an
unbalanced triangle in G, we have the valid inequality (21).

eij + fij + eik + fik + ejk + fjk ≥ 1 ∀(i, j, k) ∈ T− (21)

In (21), T− = {(i, j, k) ∈ V 3|σ(i,j)σ(i,k)σ(j,k) = −1} denotes the set of
nodes defining an unbalanced triangle. The expression in Eq. (21) denotes
the sum of frustration states for the three edges (i, j), (i, k), (j, k) making an
unbalanced triangle.

The complete formulation of the alternative binary linear programming
model includes the objective function and core constraints in Eq. (19) – (20)
and valid inequalities in Eq. (21). The model has n+ 2m binary variables,
m core constraints, and |T−| valid inequalities.

5.4 Comparison of the five models

In this subsection we compare the five models based on the number and type
of variables and constraints. Table 1 summarises the five models developed
in Sections 4 and 5.

Table 1: Comparison of the variables and constraints in the five models

QCQP
(6)

UBQP
(9)

AND
(11)

XOR
(17)

ABS
(19)

Variables n n n+m n+m n+ 2m
Constraints n 0 m 2m m
Variable type continuous binary binary binary binary
Constraint type quadratic - linear linear linear
Objective quadratic quadratic linear linear linear

As Table 1 shows, the number and types of variables and constraints
differ in the five models. While one can suggest ways to transform one model
to the other which indicates their mathematical equivalence, they perform
differently in terms of solve time, root node objective and the number of
branch and bound (B&B) nodes required to solve a given problem.

Valid inequalities are utilised as additional non-core constraints that are
kept aside from the core constraints of the model. Upon violation by a
solution, valid inequalities are efficiently pulled in to the model. Pulled in
valid inequalities cut a part of the feasible space and restrict the model.
Additional restrictions imposed on the model would speed up the solver
algorithm if they are valid and useful [42].

The names used for the three linear models reflect their model formu-
lation concepts. The AND model features xij variable denoting the AND
function of the two binary variable xi, xj . Similarly, uij variable in the XOR
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model and eij , fij variables in the ABS model represent the XOR function
and the absolute difference of variables xi, xj .

Having discussed various programming models and speed-up techniques
for computing the frustration index, the next section presents the numerical
results on synthetic data using the proposed models.

6 Numerical results in random graphs

In this section, the frustration index of various random networks is computed
by solving the optimisation models using Gurobi version 6.5.1 on a desktop
computer with an Intel Corei5 4670 @ 3.40 GHz and 8.00 GB of RAM
running 64-bit Microsoft Windows 7. The models were created using the
Gurobi Python environment.

6.1 Small random signed graphs

Both Erdős-Rényi and Barabási-Albert random graphs are used as synthetic
data for calculation of the frustration index. In this analysis, the same ran-
domly generated graphs with different numbers of negative edges assigned by
a uniform random distribution are used as test cases over 50 runs per exper-
iment setting. Figure 1 demonstrates the average and standard deviation of
frustration index in these random signed networks with n = 15,m = 50. It is
worth mentioning that similar results are observed in other types of random
graphs including small world, scale-free, and random regular graphs.
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Figure 1: (colour online) The frustration index in Erdős-Rényi random
graphs with 15 nodes and 50 edges (n = 15, p = 0.45) and Barabási-Albert
random graphs with 15 nodes and 50 edges and various number of negative
edges
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Figure 1 shows similar increases in the frustration index in the two graph
classes as m− increases. It can be observed that the maximum frustration
index is still smaller than m/3. This shows a gap between the values of the
frustration index in random graphs and the theoretical upper bound of m/2.
It is important to know whether this gap is proportional to graph size and
density.

6.2 4-regular signed graphs of different orders

In order to investigate the gap discussed earlier, 4-regular random graphs
with a constant fraction of randomly assigned negative edges are analysed
averaging over 50 runs per experiment setting. The frustration index is
computed for 4-regular random graphs with 25%, 50%, and 100% negative
edges and compared with the upper bound m/2. Figure 2 demonstrates the
average and standard deviation of frustration index where the degree of all
nodes remains constant, but the the density decreases as the graph grows in
size and order.
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Figure 2: (colour online) The frustration index in random 4-regular networks
of different orders n and decreasing densities 4/n− 1

An observation to derive from Figure 2 is the similar frustration index
values obtained for networks of the same sizes, even if they have different
percentages of negative edges. It can be concluded that starting with an all-
positive graph, making the first quarter of graph edges negative increases the
frustration index much more than making further edges negative. Another
observation is that the gap between the frustration index values and the
theoretical upper bound increases with increasing n. Finding values of the
frustration index closer to the theoretical upper bound may require investi-
gating denser graphs with specific structures that we refer to as maximally
unbalanced graphs.
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6.3 Complete graphs with maximal imbalance

There have been a few studies of maximally unbalanced graphs and maxi-
mum frustration count values [7,40]. However, due to a lack of symmetry in
balance theory, frustration maximising assignment of signs to a given graph
is not known. In this section, two previously suggested families of specially
structured complete graphs are investigated to help find an upper bound on
the frustration index that is tighter than m/2.

The first family of specially structured graphs we consider is referred
to as maximally unbalanced graphs by [7]. These graphs, denoted by Kb

n,
are comprised of one cycle of n positive edges with the remaining pairs of
nodes connected by negative edges forming a complete graph. The adjacency
matrix can be defined as A(Kb

n) = 2Cn −Kn in which Cn is a cycle graph
of order n and Kn is a complete graph of the same order. Based on the
structure of the optimal solution given by (18) for Kb

n, we may calculate
exact closed-form formulae for L(Kb

n) as follows in (22).

L(Kb
n) =

{
(n2 − 6n+ 16)/4 if n is even
(n2 − 6n+ 17)/4 if n is odd

(22)

The second family of specially structured graphs to analyse includes
all-negative complete graphs denoted by Kc

n. Associating the fraction of
negative edges with lack of balance, one may expect Kc

n to have a high
frustration. A simple observation of optimal solutions of model Eq. (18) for
Kc

n reveals a structure in the solution that can be used to derive an exact
closed-form formula for frustration index in all-negative complete graphs
L(Kc

n).

L(Kc
n) =

{
(n2 − 2n)/4 if n is even
(n2 − 2n+ 1)/4 if n is odd

(23)

Eq. (23) confirms the upper bound L(G) ≤
⌊
(n− 1)2 /4

⌋
Tomescu pro-

vided for the frustration index [39].
A comparison of L(Kc

n) and L(Kb
n) with m/2 = (n2 − n)/4 reveals the

gaps between the frustration index of such graphs and the proposed upper
bound. This gap for even n equals n/4 and (5n− 16)/4 respectively for Kc

n

and Kb
n. This supports the previous discussions about looseness of m/2 as

an upper bound for frustration index. Assuming Kc
n to be “the family of

maximally unbalanced graphs”, m/2−n/4 would be a tighter upper bound
for the frustration index.

6.4 Performance of the binary linear models

In this section we discuss the time performance of the branch and bound
algorithms for solving the binary linear models.

In order to compare the performance of the three linear models, we gen-
erate 10 decent-sized Erdős-Rényi random test cases with various densities
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and percentages of negative edges. As it can be observed in Table 2, AND
has the smallest root node objective and ABS features the best root node
objective amongst the models. The superiority of ABS is also confirmed in
the solve time of the 10 test cases, while XOR is the slowest model. Keep-
ing in mind that the number of B&B nodes depends on the heuristics and
should not be considered as a definite criterion, it also indicates ABS as the
best model in 8 out of 10 test cases while AND explores less B&B nodes in
test cases 1 and 2.

Having gained an understanding of frustration in random signed graphs
and the performance of the models, we continue to investigating frustration
in small signed networks inferred from the literature.

7 Numerical results in real signed networks

In this section, the frustration index is computed in various real networks by
solving the ABS model (19) using Gurobi Python interface and a desktop
computer with an Intel Corei5 4670 @ 3.40 GHz and 8.00 GB of RAM
running 64-bit Microsoft Windows 7.

There are well-studied signed social network datasets representing com-
munities with positive and negative interactions and preferences. Read’s
dataset for New Guinean highland tribes [43] and Sampson’s dataset for
monastery interactions [44] are denoted by G1 and G2. We also use graphs
inferred from datasets of students’ choice and rejection denoted by G3 and
G4 [45, 46]. A further explanation on the details of inferring signed graphs
from the choice and rejection data can be found in [8]. Moreover, a larger
signed network, denoted by G5, is inferred by [47] through implementing
a stochastic degree sequence model on Fowler’s data on Senate bill co-
sponsorship [48].

Besides the signed social network datasets, large scale biological networks
can be analysed as signed graphs. There are four signed biological networks
analysed by [49] and [50]. G6 is a network representing Epidermal growth
factor receptor pathway [51]. G7 represents the molecular interaction map of
a macrophage [52]. We also investigate two gene regulatory networks, related
to two organisms: a eukaryote (the yeast Saccharomyces cerevisiae) and a
bacterium (Escherichia coli). G8 Represents the gene regulatory network of
Saccharomyces cerevisiae [53]. The largest biological network we consider
is G9 which is related to the gene regulatory network of the Escherichia
coli [54]. For more details on the previous records of the four biological
datasets, one may refer to [50].

The results are shown in Table 3 where the average and standard devia-
tion of the frustration index in 100 reshuffled graphs, denoted by L(Gr) and
SD, are also provided for comparison. Reshuffling the signs on the edges 100
times, we obtain two parameters of frustration distribution for the fixed un-
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derlying structure. The randomisation process allocates signs to edges based
on random permutations while preserving the unsigned graph structure.

Table 3: The frustration index in various signed networks

Graph n m m− L(G) L(Gr)± SD Z score

G1 16 58 29 7 14.80± 1.25 -6.25
G2 18 49 12 5 10.02± 1.22 -4.10
G3 17 40 17 4 8.02± 0.88 -4.55
G4 17 36 16 6 7.04± 1.00 -1.04
G5 100 2461 1047 331 973.83± 9.30 -69.13
G6 329 779 264 193 148.82± 5.11 8.65
G7 678 1425 478 332 253.16± 6.48 12.16
G8 690 1080 220 41 114.90± 5.52 -13.39
G9 1461 3212 1336 371 651.58± 6.92 -40.55

Although the signed networks G1 – G9 are not totally balanced, the
relatively small values of L(G) suggest low level of frustration in some of
the the networks. G1 – G5 and G8 – G9 exhibit a level of frustration lower
than expected by chance L(G) < L(Gr).

Figure 3 shows how the small signed networks G1 – G4 can be made
balanced by negating (or removing) the edges on the deletion minimal sets.
Dotted lines represent negative edges, solid lines represent positive edges and
edges in the deletion minimal set are indicated by dotdash lines regardless
of their original signs.

In order to be more precise, we have implemented a very basic statistical
analysis using Z scores Z = (L(G)− L(Gr))/SD. Z scores, provided in the
right column of the Table 3, show how far the balance is with regards to
balance distribution of the underlying structure. Negative values of Z score
can be interpreted as lower level of frustration than the random expectation.
Z score values also represent the significance when compared to the standard
range of (−3, 3).

The significance and level of partial balance are very high for G5 and G9,
high for G1, G2, G3 and G8, and low for G4. The level of partial balance
is very low for G6 and G7 which means that they are more frustrated than
expected by chance.

As the signed graph frustration problem has not been solved by exact
methods, we compare the quality and solve time of our exact algorithm with
that of recent heuristics and approximations implemented on the datasets.
The capability limits of recent heuristics developed for the signed graph
frustration index is discussed in Section 2. Various performance measures
for the ABS model (19) solving G1 – G9 is illustrated in Table 4. The signed
networks G1 – G4 are so small that a very basic binary linear formulation of
the problem would solve them in a reasonable time. However for G5 – G9,
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(a) Highland tribes network (G1), a
signed network of 16 tribes of the
Eastern Central Highlands of New
Guinea [43]. Deletion minimal set
comprises of 7 negative edges

(b) Monastery interactions network
(G2) of 18 New England novitiates in-
ferred from the integration of all pos-
itive and negative relationships [44].
Deletion minimal set comprises of 2
positive and 3 negative edges

(c) Fraternity preferences network
(G3) of 17 boys living in a pseudo-
dormitory inferred from ranking data
of the last week in [45]. Deletion min-
imal set comprises of 4 negative edges

(d) College preferences network (G4)
of 17 girls at an Eastern college in-
ferred from ranking data of house B
in [46]. Deletion minimal set com-
prises of 3 positive and 3 negative
edges

Figure 3: The deletion minimal sets represented by dotdash lines for four
small signed networks inferred from the sociology datasets

the speed-up techniques discussed are more useful to restrict the feasible
space of more than 1000 binary variables.

Hüffner, Betzler, and Niedermeier have previously investigated frustra-
tion in G6 – G8 suggesting a data reduction scheme and an approximation
algorithm [30]. Their suggested data reduction algorithm takes more than 5
hours for G8, more than 15 hours for G6, and more than 1 day for G7. Their
approximation method provides 196 ≤ L(G6) ≤ 219 and L(G6) = 210, both
of which are incorrect. While their bound and exact solution for G8 is cor-
rect, they have also reported the exact value of L(G7) = 374 which is a
sub-optimal solution.

Iacono et al. have investigated frustration in G6 – G9 [9]. Their heuris-
tic algorithm provides upper and lower bounds for G6 – G9 with 96.37%,
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Table 4: Performance measures for the ABS model (19) in solving G1 – G9

Graph L(G) Root node
objective

Number of B&B
nodes

Solve time (s)

G1 7 5.0 0 0.02
G2 5 4.0 0 0.02
G3 4 3.0 0 0.01
G4 6 3.5 0 0.01
G5 331 36.5 7 2.33
G6 193 15.5 2 0.49
G7 332 14.0 0 0.50
G8 41 11.5 0 0.29
G9 371 127.5 27 1.25

90.96%, 100%, and 98.38% ratio of lower to upper bound. Regarding solve
time, they have only mentioned their heuristic requires a fairly limited
amount of time (a few minutes on an ordinary PC).

Table 5 provides more comprehensive results on the solution quality and
the solve time of the three linear models against the literature.

Table 5: Comparison of the solution quality and solve time between the
linear models and against the literature

Graph Hüffner et al. [30] Iacono et al. [9] AND XOR ABS

Q
u

ality
G6 [196, 219], 210 [186, 193] 193 193 193
G7 [218,383], 374 [302, 332] 332 332 332
G8 [0, 43], 41 41 41 41 41
G9 Not tested [365, 371] 371 371 371

T
im

e

G6 15 hours A few minutes 2.72 s 6.24 s 0.49 s
G7 1 day A few minutes 2.38 s 19.99 s 0.50 s
G8 5 hours A few minutes 0.91 s 0.74 s 0.29 s
G9 Not tested A few minutes 44.09 s 1.57 s 1.25 s

While data reductions schemes [30] take up to 1 day for these datasets
and heuristic algorithms [9] only provide bounds with up to 9% gap from
optimality, our ABS model solves the 9 datasets to optimality in a few
seconds.
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8 Temporal network frustration index

In this section, we analyse the frustration index in a political network of
international relations over time. The Correlates of War dataset contains
51 time windows of a temporal network representing signed international
relations among countries starting with 1946-1949 time window and ending
with 1996-1999 time window [29].

In the first time window of the temporal network n = 64, m = 362 and
m− = 42. These numbers change in each time window as a result of the
changes not only in the relations, but change of the nodes. In the last time
window, n = 151, m = 1247 and m− = 147. Figure 4 demonstrates the
frustration index in the Correlates of War dataset. The solve times of the
ABS model for each time window of this dataset is ≤ 0.18 seconds.
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Figure 4: The frustration index of the Correlates of War dataset over time

Doreian and Mrvar have also analysed the Correlates of War dataset [29]
using the frustration index [13] as a measure of balance. They claim that
the frustration index is computable in polynomial time. Their argument
must be evaluated while maintaining a certain level of healthy skepticism
as their reported frustration index values using blockmodeling in Pajek is
suboptimal for all 51 time windows of the Correlates of War dataset.

Bearing in mind that the size and order changes in each time window
of the temporal network, we use the normalised frustration index, F (G) =
1 − 2L(G)/m, in order to investigate the partial balance over time. Figure
5 demonstrates the normalised frustration index in the Correlates of War
dataset. This measure shows that the signed international relation network
is close to a state of structural balance.
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Figure 5: The partial balance in the Correlates of War dataset over time

9 Conclusion and future direction

Although this study focuses on frustration index as a measure of balance
in signed networks, the findings may well have a bearing on the applica-
tions of frustration index in other disciplines discussed in Section 2. The
present study suggested a novel method for computing a standard measures
of partial balance that can be used for analysing network dynamics. It
contributes additional evidence that suggests signed social networks and bi-
ological gene regulatory networks exhibit a relatively low level of frustration
(relatively high partial balance). The findings for maximally unbalanced
families of complete graphs suggest the looseness the previously suggested
upper bounds even for graphs generated deliberately unbalanced.

This study have a number of important implications for future inves-
tigation. The optimisation model introduced can make network dynamics
models more consistent with the theory [55]. To be more specific, many
research studies on network dynamics use the number of balanced triads in
the network as a criterion for transitioning towards balance using sequential
sign change models. These models may result in stable states that are not
totally balanced like jammed states and glassy states [56]. This contradicts
not only the instability of unbalanced states, but the fundamental assump-
tion that networks gradually moves towards balance. Deploying decrease
in the frustration index as the criterion, the above-mentioned states can be
avoided resulting in a realistic simulation of signed network dynamics that
is consistent with the underlying theory and the assumptions.
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[40] J. Akiyama, D. Avis, V. Chvàtal, and H. Era, “Balancing signed
graphs,” Discrete Applied Mathematics, vol. 3, no. 4, pp. 227–233,

28

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.042817
http://www.sciencedirect.com/science/article/pii/S0950705115001811
http://www.sciencedirect.com/science/article/pii/S0950705115001811
http://www.sciencedirect.com/science/article/pii/S0020025516313883
http://www.sciencedirect.com/science/article/pii/S0020025516313883
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.49
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.49
http://archive.numdam.org/article/MSH_1973__42__37_0.pdf
http://archive.numdam.org/article/MSH_1973__42__37_0.pdf


Nov. 1981. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0166218X81900019

[41] G. Facchetti, G. Iacono, and C. Altafini, “Computing global structural
balance in large-scale signed social networks,” Proceedings of the
National Academy of Sciences, vol. 108, no. 52, pp. 20 953–20 958, Dec.
2011. [Online]. Available: http://www.pnas.org/content/108/52/20953

[42] E. Klotz and A. M. Newman, “Practical guidelines for solving difficult
mixed integer linear programs,” Surveys in Operations Research
and Management Science, vol. 18, no. 12, pp. 18 – 32, 2013.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1876735413000020

[43] K. E. Read, “Cultures of the central highlands, New Guinea,”
Southwestern Journal of Anthropology, pp. 1–43, 1954. [Online].
Available: http://www.jstor.org/stable/3629074

[44] S. F. Sampson, “A Novitiate in a Period of Change,” An Experimental
and Case Study of Social Relationships (PhD thesis). Cornell Univer-
sity, Ithaca, 1968.

[45] T. Newcomb, The Acquaintance Process. New York: Holt, Rinehart and
Winston.(1966).” The General Nature of Peer Group Influence”, pps.
2-16 in College Peer Groups, edited by TM Newcomb and EK Wilson.
Chicago: Aldine Publishing Co, 1961.

[46] T. B. Lemann and R. L. Solomon, “Group characteristics as revealed in
sociometric patterns and personality ratings,” Sociometry, vol. 15, pp.
7–90, 1952. [Online]. Available: http://www.jstor.org/stable/2785447

[47] Z. Neal, “The backbone of bipartite projections: Inferring
relationships from co-authorship, co-sponsorship, co-attendance and
other co-behaviors,” Social Networks, vol. 39, pp. 84–97, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0378873314000343

[48] J. H. Fowler, “Legislative cosponsorship networks in the US House
and Senate,” Social Networks, vol. 28, no. 4, pp. 454–465, 2006.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0378873305000730

[49] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang, “Algorithmic
and complexity results for decompositions of biological networks into
monotone subsystems,” Biosystems, vol. 90, no. 1, pp. 161–178, 2007.

29

http://www.sciencedirect.com/science/article/pii/0166218X81900019
http://www.sciencedirect.com/science/article/pii/0166218X81900019
http://www.pnas.org/content/108/52/20953
http://www.sciencedirect.com/science/article/pii/S1876735413000020
http://www.sciencedirect.com/science/article/pii/S1876735413000020
http://www.jstor.org/stable/3629074
http://www.jstor.org/stable/2785447
http://www.sciencedirect.com/science/article/pii/S0378873314000343
http://www.sciencedirect.com/science/article/pii/S0378873314000343
http://www.sciencedirect.com/science/article/pii/S0378873305000730
http://www.sciencedirect.com/science/article/pii/S0378873305000730


[50] G. Iacono, F. Ramezani, N. Soranzo, and C. Altafini, “Determining the
distance to monotonicity of a biological network: a graph-theoretical
approach,” IET Systems Biology, vol. 4, no. 3, pp. 223–235, 2010.

[51] K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano, “A comprehensive
pathway map of epidermal growth factor receptor signaling,” Molecular
systems biology, vol. 1, no. 1, 2005.

[52] K. Oda, T. Kimura, Y. Matsuoka, A. Funahashi, M. Muramatsu, and
H. Kitano, “Molecular interaction map of a macrophage,” AfCS Re-
search Reports, vol. 2, no. 14, pp. 1–12, 2004.

[53] M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz,
P. Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins,
P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg, and J. I.
Garrels, “Ypd, pombepd and wormpd: model organism volumes of the
bioknowledge library, an integrated resource for protein information,”
Nucleic Acids Research, vol. 29, no. 1, pp. 75–79, 2001. [Online].
Available: http://nar.oxfordjournals.org/content/29/1/75.abstract

[54] H. Salgado, S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo,
F. Sánchez-Solano, A. Santos-Zavaleta, I. Martinez-Flores, V. Jiménez-
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